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1 Universal graph C*-algebras

Let G be a directed graph with

G0 − vertices,

G1 − edges,

r, s : G1 → G0 − range and source of an edge.

Definition 1.1. The universal C∗-algebra C∗(G) is given by generators

{pv

∣

∣ v ∈ G0}, {se

∣

∣ e ∈ G1},

with the following relations:

• pv are mutually orthogonal projections i.e. p2
v = p∗v = pv and pvpw = 0 for v 6= w,

• s∗ese = pr(e) and s∗esf = 0 for e 6= f ,

• if the set {e
∣

∣ s(e) = v} is nonempty (v is not a sink) and finite then

pv =
∑

{e
∣

∣ s(e)=v}

ses
∗
e,

• ses
∗
e 6 ps(e).

Example 1.2. Some known C∗-algebras arise in this way.

1. If G is only one vertex, then there is one generator p = p2 = p∗. In this case C∗(G) = C.
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Figure 1: C

2. G with one vertex and one edge (loop). Generators:
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e

v

Figure 2: C(S1)

p = p2 = p∗, s

relations:
s∗s = p = ss∗, sp = ps, s = ss∗s.

Then
C∗(G) = C∗(1, u) = C(S1), u − unitary.
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Figure 3: Toeplitz algebra T

3. G with two vertices and two edges like on the picture (3).

pv = p2
v = p∗v, pw = p2

w = p∗w

s∗ese = pv, s∗fsf = pw

pv = ses
∗
e + sfs∗f .

C∗(G) is isomorphic to the Toeplitz algebra - the universal C*-algebra for the relation
s∗s = 1. The isomorphism is given by s 7→ se + sf .

4. G with three vertices and three edges like on a picture (4).
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Figure 4: C(S2
0∞)

pv = p2
v = p∗v, pwi

= p2
wi

= p∗wi
, i = 1, 2,

pvpwi
= 0, pw1

pw2
= 0,

s∗ese = pv = ses
∗
e + sf1

s∗f1
+ sf2

s∗f2
,

s∗f1
sf1

= pw1
, s∗f2

sf2
= pw2

.

C∗(G) is isomorphic to the quantum sphere

S2
0∞ : B∗B = 1 − A2, A = A∗, BB∗ = 1, BA = 0

and the isomorphism is given by

A 7→ pw1
− pw2

,

B 7→ s∗e + s∗f1
+ s∗f2

.

We denote this graph by GS2

0∞

.

3



��
��
��
��

��
��
��
��

e

v

w

f 1 f 2

Figure 5: C(RP 2
q )

5. In the example (4) we glue the vertices w1, w2 into one w obtaining graph G like on a
picture (5).

pv = p2
v = p∗v, pw = p2

w = p∗w,

pvpw = 0,

s∗ese = pv = s∗ese + sf1
s∗f1

+ sf2
s∗f2

,

s∗f1
sf1

= pw = s∗f2
sf2

.

Define Z2-action on the graph in the example (4).

se 7→ −se, sf1
7→ −sf2

, sf2
7→ −sf1

Then
pv 7→ pv, pw1

7→ pw2
, pw2

7→ pw1
.

This action corresponds to
A 7→ −A, B 7→ −B

under the identification
C∗(GS2

0∞

) ≃ C(S2
0∞).

If we take the quotient C(S2
0∞)/Z2 we obtain C(RP 2

q ) - quantum projective space.
On the other hand the quotient of the graph C*-algebra C∗(GS2

0∞

) by the defined

action is the graph C*-algebra for our graph, which we now can denote C∗(GRP 2
q
). The

isomorphism is given by
pv 7→ pv, pw 7→ pw1

+ pw2
,

se 7→ sese, sf1
7→ se(sf1

+ sf2
), sf2

7→ sf1
− sf2

.

Note that this Z2 action is not induced from a graph automorphism.

6. G with one vertex and n edges like on the picture (6).
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Figure 6: Cuntz algebra On
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r(ek) = s(ek) = v, k = 1, . . . , n,

p = s∗ek
sek

=
n

∑

k=1

sek
s∗ek

,

s∗ek
sek′

= 0 for k 6= k′.

When p = 1 then C∗(G) is the Cuntz algebra On - the universal C*-algebra for the
relations

s∗ksk = 1, k = 1, . . . n,
n

∑

k=1

sks
∗
k = 1.

7. G with n vertices and (n − 1) edges in the straight segment as in the picture (7).
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Figure 7: Mn(C)

s(ek) = k, r(ek) = k + 1 for k = 1, . . . , n − 1,

pk = sek
s∗ek

, pk+1 = s∗ek
sek

for k = 1, . . . n − 1,

s∗ek
sek′

= 0 for k 6= k′.

C∗(G) is the algebra of complex matrices n × n, that is Mn(C).

8. Similarly to the previous example we take straight segment, but infinite in both direc-
tions. Vertices are indexed by integers as in the picture (8).
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Figure 8: Compact operators K

s(ek) = k, r(ek) = k + 1, k ∈ Z,

pk = sek
s∗ek

, pk+1 = s∗ek
sek

,

s∗ek
sek′

= 0 for k 6= k′.

We obtain algebra of compact operators K, the limit of the algebras in the preceeding
example.

9. G with n vertices and n edges forming a cycle as in the picture (9).

s(ek) = k, r(ek) = k + 1 for k = 1, . . . , n − 1, r(en) = 1,

pk = sek
s∗ek

, pk+1 = s∗ek
sek

,

s∗ek
sek′

= 0 for k 6= k′.

We obtain algebra of matrices over the algebra of functions on the circle, C∗(G) =
Mn(C(S1)).
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Figure 9: Mn(C(S1))
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Figure 10: C(SUq(2))

10. G with two vertices with loops and connected by one edge.

pvi
= p∗vi

= p2
vi

, i = 1, 2, pv1
pv2

= 0,

pv1
= s∗e11

se11
= s∗e11

se11
+ se12

s∗e11
,

pv2
= s∗e22

se22
= s∗e12

se12
= se22

s∗e22
,

s∗e11
se12

= 0, s∗e11
se22

= 0, s∗e12
se22

= 0.

We obtain C*-algebra for quantum SU(2), that is C(SUq(2)) ≃ C(SU0(2)), which is
generated by two elements a, b satisfying the relations

a∗a + b∗b = 1, aa∗ + q2b∗b = 1,

ab = qba, ab∗ = qb∗a, b∗b = bb∗.

The isomorphism is given by

a 7→ s∗e11
+ s∗e12

,

b 7→ se22
.

11. The example (10) can be treated as the C*-algebra of the quantum sphere S3
q . Now

we present graph C*-algebra for the quantum sphere S7
q , which is next generalized to

arbitrary odd dimension. We take a graph G with four vertices with loops and each
vertex is connected with all vertices with the greater index as in the picture (11). The
C*-algebra for the quantum sphere S7

q is generated by the four elements z1, z2, z3, z4
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Figure 11: C(S7
q )

satisfying the relations

zjzi = qzizj for i < j,

z∗j zi = qziz
∗
j for i 6= j,

z∗1z1 = z1z
∗
1 + (1 − q2)(z2z

∗
2 + z3z

∗
3 + z4z

∗
4),

z∗2z2 = z2z
∗
2 + (1 − q2)(z3z

∗
3 + z4z

∗
4),

z∗3z3 = z3z
∗
3 + (1 − q2)z4z

∗
4 ,

z∗4z4 = z4z
∗
4 ,

z1z
∗
1 + z2z

∗
2 + z3z

∗
3 + z4z

∗
4 = 1.

For q = 0 we have the isomorphism C∗(G) ≃ C(S7
0) given by

z1 7→ se11
+ se12

+ se13
+ se14

,

z2 7→ se22
+ se23

+ se24
,

z3 7→ se33
+ se34

,

z4 7→ se44
.

12. As in the example (11) we take a graph with n vertices and edge between vi and vj if
and only if i 6 j as in the picture (12).

e12v1

e1,n−1 e2n

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

e e11 22

e23

e

ee

14

13 24

e e

v3 v4

33 44

e34v2

. . .

en

vn−1 vn
en−1,n
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Figure 12: C(S2n−1
q )

v1, . . . , vn,
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eij , j = i, . . . , n, s(eij) = vi, r(eij) = vj.

The C*-algebra for the quantum sphere S2n−1
q is generated by the n elements z1, . . . , zn

satisfying the relations

zjzi = qzizj for i < j,

z∗j zi = qziz
∗
j for i 6= j,

z∗i zi = ziz
∗
i + (1 − q2)





∑

j>i

zjz
∗
j



 for i = 1, . . . , n,

n
∑

i=1

ziz
∗
i = 1.

For q = 0 we have the isomorphism C∗(G) ≃ C(S2n−1
0 ) given by

zi 7→
n

∑

j=i

seij
, i = 1, . . . , n.

13. We take a similar graph G to the one in the example (11), but with infinitely many
paralell edges vi → vj for i 6 j.

v2v1
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�
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��
��
��

v3 v4

Figure 13: C(CP 3
q )

14. We take a similar graph G to the one in the example (12), but with infinitely many
paralell edges vi → vj for i 6 j.

15. If we modify the graph for the quantum sphere S5
q by adding two additional vertices

w1, w2 and edges from each vertex v1, v2, v3 to both of the added ones, then we obtain
graph for the sphere S6

q as in the picture (15).

16. The example (15) can be generalized to arbitrary even dimension just by adding two
vertices w1, w2 to the graph of the sphere S2n−1

q . We have n + 2 vertices v1, . . . , vn and
w1, w2. Edges eij are from vi to vj whenever i 6 j and gik are between vi and wk for
k = 1, 2. More precisely for i = 1, . . . , n we have

s(eij) = vi, r(eij) = vj , j = i, . . . , n,

s(gik) = vi, r(gik) = wk, k = 1, 2.

8



v1
�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

v3 v4v2
vn−1 vn

. . .

. . .

. . . . . .

. . .

. . .

Figure 14: C(CPn−1
q )
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Figure 15: C(S6
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Figure 16: C(S2n
q )

9



e12
�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

e e e11 22

v3

33

v1 v2

e23

w

Figure 17: C(RP 6
q )

17. In the example (15) we identify vertices w1, w2 and leave v1, v2, v3 unchanged. The
edges are as in the picture. General construction is described in the next example (18)

18. In the example (16) we identify vertices w1, w2 and leave v1, . . . , vn unchanged. The
edges of the new graph are pairs (h1, h2) of edges from (16) such that r(h1) = s(h2)
and r(h2) 6= w1, w2. Additionally we have edges fik from vi to w for i = 1, . . . , n and
k = 1, . . . , n + 2 − i. The picture is analogous to the (17).

2 Computation of K-theory

The main tool for the computation of K-theory groups of the graph C*-algebras is the fol-
lowing

Theorem 2.1. Let G be a directed graph and let G0
+ ⊂ G0 be the collection of vertices that

emit at least one and at most finitely many edges. Let ZG0
+ and ZG0 be the free abelian groups

on free generators G0
+ and G0. Let AG : ZG0

+ → ZG0 be the map defined by the formula

AG(v) :=





∑

e∈G1, s(e)=v

r(e)



 − v.

Then

K0(C
∗(G)) ≃ coker AG

K1(C
∗(G)) ≃ ker AG

The proof of this theorem will be postponed to the section (3), and now we compute the
K-theory groups of the graph C*-algebras for the examples from section (1).

Example 2.2. 1. K∗(C)

G0 = {v}

G0
+ = ∅

AG : ∅ → Z

In this case AG is from the empty set, but still we can write

K0(C) = coker AG = Z

K1(C) = ker AG = 0
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2. K∗(C(S1))

G0 = {v}

G0
+ = {v}

AG : Z → Z

v 7→ v − v = 0

K0(C(S1)) = coker AG = Z

K1(C(S1)) = ker AG = Z

3. K∗(T )

G0 = {v,w}

G0
+ = {v}

AG : Z → Z ⊕ Z

v 7→ v + w − v = w

K0(T ) = coker AG = Z

K1(T ) = ker AG = 0

4. K∗(C(S2
0∞))

G0 = {v,w1, w2}

G0
+ = {v}

AG : Z → Z ⊕ Z ⊕ Z

v 7→ v + w1 + w2 − v = w1 + w2

K0(C(S2
0∞)) = coker AG = Z ⊕ Z

K1(C(S2
0∞)) = ker AG = 0

5. K∗(C(RP 2
q ))

G0 = {v,w}

G0
+ = {v}

AG : Z → Z ⊕ Z

v 7→ v + 2w − v = 2w

K0(C(RP 2
q )) = coker AG = Z ⊕ Z2

K1(C(RP 2
q )) = ker AG = 0

11



6. K∗(On)

G0 = {v}

G0
+ = {v}

AG : Z → Z

v 7→ nv − v = (n − 1)v

K0(On) = coker AG = Zn−1

K1(On) = ker AG = 0

7. K∗(Mn(C))

G0 = {v1, v2, . . . , vn−1}

G0
+ = {v1, v2, . . . , vn}

AG : Z
n−1 → Z

n

vi 7→ vi+1 − vi for i = 1, . . . , n − 1

K0(Mn(C)) = coker AG = Z

K1(Mn(C)) = ker AG = 0

8. K∗(K)

G0 = {vi

∣

∣ i ∈ Z}

G0
+ = {vi

∣

∣ i ∈ Z}

AG :
⊕

i∈Z

Z →
⊕

i∈Z

Z

vi 7→ vi+1 − vi for i ∈ Z

K0(K) = coker AG = Z

K1(K) = ker AG = 0

Ramark 2.3. If we take direct product instead of direct sum, then there will be nontrivial
kernel.

9. K∗(Mn(S1))

G0 = {v1, v2, . . . , vn}

G0
+ = {v1, v2, . . . , vn}

AG : Z
n → Z

n

vi 7→ vi+1 − vi for i = 1, . . . , n − 1,

vn 7→ v1 − vn

K0(Mn(S1)) = coker AG = Z

K1(Mn(S1)) = ker AG = Z
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10. K∗(C(SUq(2)))

G0 = {v1, v2}

G0
+ = {v1, v2}

AG : Z ⊕ Z → Z ⊕ Z

v1 7→ v1 + v2 − v1 = v2,

v2 7→ v2 − v2 = 0

K0(C(SUq(2))) = coker AG = Z

K1(C(SUq(2))) = ker AG = Z

11. K∗(C(S7
q ))

G0 = {v1, v2, v3, v4}

G0
+ = {v1, v2, v3, v4}

AG : Z
4 → Z

4

v1 7→ v1 + v2 + v3 + v4 − v1 = v2 + v3 + v4

v2 7→ v2 + v3 + v4 − v2 = v3 + v4

v3 7→ v3 + v4 − v3 = v4

v4 7→ v4 − v4 = 0

K0(C(S7
q )) = coker AG = Z

K1(C(S7
q )) = ker AG = Z

12. K∗(C(S2n−1
q ))

G0 = {vi

∣

∣ i = 1, . . . , n}

G0
+ = {vi

∣

∣ i = 1, . . . , n}

AG : Z
n → Z

n

vi 7→
∑

j>i

vj − vi =
∑

j>i

vj

K0(C(S2n−1
q )) = coker AG = Z

K1(C(S2n−1
q )) = ker AG = Z

13. K∗(C(CP 3
q ))

G0 = {v1, v2, v3, v4}

G0
+ = ∅

AG : ∅ → Z
4

K0(C(CP 3
q )) = coker AG = Z

4

K1(C(CP 3
q )) = ker AG = 0
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14. K∗(C(CPn−1
q ))

G0 = {vi

∣

∣ i = 1, . . . , n}

G0
+ = ∅

AG : ∅ → Z
n

K0(C(CPn−1
q )) = coker AG = Z

n

K1(C(CPn−1
q )) = ker AG = 0

15. K∗(C(S6
q ))

G0 = {v1, v2, v3, w1, w2}

G0
+ = {v1, v2, v3}

AG : Z
3 → Z

5

v1 7→ v1 + v2 + v3 + w1 + w2 − v1 = v2 + v3 + w1 + w2

v2 7→ v2 + v3 + w1 + w2 − v2 = v3 + w1 + w2

v3 7→ v3 + w1 + w2 − v3 = w1 + w2

K0(C(S6
q )) = coker AG = Z ⊕ Z

K1(C(S6
q )) = ker AG = 0

16. K∗(C(S2n
q ))

G0 = {v1, . . . , vn, w1, w2}

G0
+ = {v1, . . . , vn}

AG : Z
n → Z

n+2

vi 7→
∑

j>i

vj + w1 + w2 − vi =
∑

j>i

vj + w1 + w2

K0(C(S2n
q )) = coker AG = Z ⊕ Z

K1(C(S2n
q )) = ker AG = 0

17. K∗(C(RP 6
q ))

G0 = {v1, v2, v3, w}

G0
+ = {v1, v2, v3}

AG : Z
3 → Z

4

v1 7→ =

v2 7→ =

v3 7→ =

K0(C(RP 6
q )) = coker AG =

K1(C(RP 6
q )) = ker AG =

14



18. K∗(C(RP 2n
q ))

G0 = {v1, . . . , vn, w}

G0
+ = {v1, . . . , vn}

AG : Z
n → Z

n+1

vi 7→ =

K0(C(RP 2n
q )) = coker AG =

K1(C(RP 2n
q )) = ker AG =

3 Proof of the theorem (2.1)

Proof. There are seven steps in the proof, which we will sketch here.

1. Gauge action γ.

γ : U(1) = S1 → Aut(C∗(G))

γz(se) = zse,

γz(pv) = pv.

2. C∗(G) ⋊γ U(1) ≃ C∗(G × Z).

We construct the new graph G × Z

(G × Z)0 = G0 × Z,

(G × Z)1 = G1 × Z.

It has no loops and

s(e, n) = (s(e), n − 1), r(e, n) = (r(e), n).

Each loop is resolved in the infinite segment
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e

v
... ...

(e,0) (e,1) (e,2) (e,3)

(v,−1) (v,0) (v,1) (v,2) (v,3)

3. C∗(G × Z) is AF.

It follows that K1(C
∗(G × Z)) = 0.

4. Dual action γ̂.

γ̂ : Z → Aut(C∗(G) ⋊γ U(1))

γ̂χ(f)(t) = 〈χ, t〉f(t), where f : U(1) → C∗(G).
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5. Takesaki-Takai duality.

(C∗(G) ⋊γ U(1)) ⋊γ̂ Z ≃ C∗(G) ×K.

From the stability of K∗ it follows that

K∗((C
∗(G) ⋊γ U(1)) ⋊γ̂ Z) ≃ K∗(C

∗(G)).

6. Pimsner-Voiculescu sequence.

The Pimsner-Voiculescu sequence is as follows

K0((C
∗(G) ⋊γ U(1)) - K0((C

∗(G) ⋊γ U(1)) - K0((C
∗(G) ⋊γ U(1)) ⋊γ̂ Z)

K1((C
∗(G) ⋊γ U(1)) ⋊γ̂ Z)

6

� K1((C
∗(G) ⋊γ U(1)) � K1((C

∗(G) ⋊γ U(1))
?

where the maps are given by the formulas

K∗(C
∗(G) ⋊γ U(1))

id−K∗(γ̂−1)
−−−−−−−−→ K∗(C

∗(G) ⋊γ U(1)),

K∗(C
∗(G) ⋊γ U(1))

id−K∗(β−1)
−−−−−−−−→ K∗((C

∗(G) ⋊γ U(1)) ⋊γ̂ Z),

and the map β : Z → Aut(C∗(G × Z)) is given by

βm(p(v,n)) = p(v,n+m),

βm(s(e,n)) = s(e,n+m).

Using preceeding computations we can write the sequence as

K0(C
∗(G × Z))

id−K0(γ̂
−1)- K0(C

∗(G × Z))
1 − K0(β

−1)- K0(C
∗(G))

K1(C
∗(G))

6

� 0 � 0
?

7. Computation of the kernel and cokernel of 1 − K0(γ̂
−1).
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