Graph C*-algebras

Rainer Matthes,
Wojciech Szymański
notes taken by:
Paweł Witkowski
August 17, 2005

Contents

1 Universal graph C*-algebras 2
$\begin{array}{ll}2 \text { Computation of K-theorv } & 10\end{array}$
3 Proof of the theorem (2.1) 15

1 Universal graph C^{*}-algebras

Let G be a directed graph with

$$
\begin{aligned}
G^{0} & - \text { vertices, } \\
G^{1} & - \text { edges } \\
r, s: G^{1} \rightarrow G^{0} & - \text { range and source of an edge. }
\end{aligned}
$$

Definition 1.1. The universal C^{*}-algebra $C^{*}(G)$ is given by generators

$$
\left\{p_{v} \mid v \in G^{0}\right\}, \quad\left\{s_{e} \mid e \in G^{1}\right\}
$$

with the following relations:

- p_{v} are mutually orthogonal projections i.e. $p_{v}^{2}=p_{v}^{*}=p_{v}$ and $p_{v} p_{w}=0$ for $v \neq w$,
- $s_{e}^{*} s_{e}=p_{r(e)}$ and $s_{e}^{*} s_{f}=0$ for $e \neq f$,
- if the set $\{e \mid s(e)=v\}$ is nonempty (v is not a sink) and finite then

$$
p_{v}=\sum_{\{e \mid s(e)=v\}} s_{e} s_{e}^{*},
$$

- $s_{e} s_{e}^{*} \leqslant p_{s(e)}$.

Example 1.2. Some known C^{*}-algebras arise in this way.

1. If G is only one vertex, then there is one generator $p=p^{2}=p^{*}$. In this case $C^{*}(G)=\mathbb{C}$.
gare 1: \mathbb{C}
2. G with one vertex and one edge (loop). Generators:

Figure 2: $C\left(S^{1}\right)$

$$
p=p^{2}=p^{*}, s
$$

relations:

$$
s^{*} s=p=s s^{*}, \quad s p=p s, \quad s=s s^{*} s
$$

Then

$$
C^{*}(G)=C^{*}(1, u)=C\left(S^{1}\right), u-\text { unitary }
$$

Figure 3: Toeplitz algebra \mathcal{T}
3. G with two vertices and two edges like on the picture (3).

$$
\begin{gathered}
p_{v}=p_{v}^{2}=p_{v}^{*}, \quad p_{w}=p_{w}^{2}=p_{w}^{*} \\
s_{e}^{*} s_{e}=p_{v}, \quad s_{f}^{*} s_{f}=p_{w} \\
p_{v}=s_{e} s_{e}^{*}+s_{f} s_{f}^{*} .
\end{gathered}
$$

$C^{*}(G)$ is isomorphic to the Toeplitz algebra - the universal C^{*}-algebra for the relation $s^{*} s=1$. The isomorphism is given by $s \mapsto s_{e}+s_{f}$.
4. G with three vertices and three edges like on a picture (4).

Figure 4: $C\left(S_{0 \infty}^{2}\right)$

$$
\begin{gathered}
p_{v}=p_{v}^{2}=p_{v}^{*}, \quad p_{w_{i}}=p_{w_{i}}^{2}=p_{w_{i}}^{*}, \quad i=1,2, \\
p_{v} p_{w_{i}}=0, \quad p_{w_{1}} p_{w_{2}}=0, \\
s_{e}^{*} s_{e}=p_{v}=s_{e} s_{e}^{*}+s_{f_{1}} s_{f_{1}}^{*}+s_{f_{2}} s_{f_{2}}^{*}, \\
s_{f_{1}}^{*} s_{f_{1}}=p_{w_{1}}, \quad s_{f_{2}}^{*} s_{f_{2}}=p_{w_{2}} .
\end{gathered}
$$

$C^{*}(G)$ is isomorphic to the quantum sphere

$$
S_{0 \infty}^{2}: \quad B^{*} B=1-A^{2}, A=A^{*}, B B^{*}=1, B A=0
$$

and the isomorphism is given by

$$
\begin{aligned}
& A \mapsto p_{w_{1}}-p_{w_{2}}, \\
& B \mapsto s_{e}^{*}+s_{f_{1}}^{*}+s_{f_{2}}^{*} .
\end{aligned}
$$

We denote this graph by $G_{S_{0 \infty}^{2}}$.

Figure 5: $C\left(\mathbb{R} P_{q}^{2}\right)$
5. In the example (4) we glue the vertices w_{1}, w_{2} into one w obtaining graph G like on a picture (5).

$$
\begin{gathered}
p_{v}=p_{v}^{2}=p_{v}^{*}, \quad p_{w}=p_{w}^{2}=p_{w}^{*}, \\
p_{v} p_{w}=0, \\
s_{e}^{*} s_{e}=p_{v}=s_{e}^{*} s_{e}+s_{f_{1}} s_{f_{1}}^{*}+s_{f_{2}} s_{f_{2}}^{*}, \\
s_{f_{1}}^{*} s_{f_{1}}=p_{w}=s_{f_{2}}^{*} s_{f_{2}} .
\end{gathered}
$$

Define \mathbb{Z}_{2}-action on the graph in the example (4).

$$
s_{e} \mapsto-s_{e}, \quad s_{f_{1}} \mapsto-s_{f_{2}}, \quad s_{f_{2}} \mapsto-s_{f_{1}}
$$

Then

$$
p_{v} \mapsto p_{v}, \quad p_{w_{1}} \mapsto p_{w_{2}}, \quad p_{w_{2}} \mapsto p_{w_{1}}
$$

This action corresponds to

$$
A \mapsto-A, \quad B \mapsto-B
$$

under the identification

$$
C^{*}\left(G_{S_{0 \infty}^{2}}\right) \simeq C\left(S_{0 \infty}^{2}\right)
$$

If we take the quotient $C\left(S_{0 \infty}^{2}\right) / \mathbb{Z}_{2}$ we obtain $C\left(\mathbb{R} P_{q}^{2}\right)$ - quantum projective space. On the other hand the quotient of the graph C^{*}-algebra $C^{*}\left(G_{S_{0 \infty}^{2}}\right)$ by the defined action is the graph C^{*}-algebra for our graph, which we now can denote $C^{*}\left(G_{\mathbb{R} P_{q}^{2}}\right)$. The isomorphism is given by

$$
\begin{gathered}
p_{v} \mapsto p_{v}, \quad p_{w} \mapsto p_{w_{1}}+p_{w_{2}}, \\
s_{e} \mapsto s_{e} s_{e}, \quad s_{f_{1}} \mapsto s_{e}\left(s_{f_{1}}+s_{f_{2}}\right), \quad s_{f_{2}} \mapsto s_{f_{1}}-s_{f_{2}}
\end{gathered}
$$

Note that this \mathbb{Z}_{2} action is not induced from a graph automorphism.
6. G with one vertex and n edges like on the picture (6).

Figure 6: Cuntz algebra O_{n}

$$
\begin{gathered}
r\left(e_{k}\right)=s\left(e_{k}\right)=v, \quad k=1, \ldots, n \\
p=s_{e_{k}}^{*} s_{e_{k}}=\sum_{k=1}^{n} s_{e_{k}} s_{e_{k}}^{*} \\
s_{e_{k}}^{*} s_{e_{k^{\prime}}}=0 \text { for } k \neq k^{\prime}
\end{gathered}
$$

When $p=1$ then $C^{*}(G)$ is the Cuntz algebra O_{n} - the universal C*-algebra for the relations

$$
s_{k}^{*} s_{k}=1, \quad k=1, \ldots n, \quad \sum_{k=1}^{n} s_{k} s_{k}^{*}=1
$$

7. G with n vertices and $(n-1)$ edges in the straight segment as in the picture (7).

Figure 7: $M_{n}(\mathbb{C})$

$$
\begin{gathered}
s\left(e_{k}\right)=k, \\
\left.p_{k}=s_{e_{k}} s_{e_{k}}^{*}, \quad p_{k+1}=s_{k}\right)=k+1 \text { for } k=1, \ldots, n-1 \\
s_{e_{k}}^{*} s_{e_{k}} s_{e_{k^{\prime}}}=0 \text { for } k=1, \ldots n-1, \\
k \neq k^{\prime}
\end{gathered}
$$

$C^{*}(G)$ is the algebra of complex matrices $n \times n$, that is $M_{n}(\mathbb{C})$.
8. Similarly to the previous example we take straight segment, but infinite in both directions. Vertices are indexed by integers as in the picture (8).

Figure 8: Compact operators \mathcal{K}

$$
\begin{gathered}
s\left(e_{k}\right)=k, \quad r\left(e_{k}\right)=k+1, \quad k \in \mathbb{Z} \\
p_{k}=s_{e_{k}} s_{e_{k}}^{*}, \quad p_{k+1}=s_{e_{k}}^{*} s_{e_{k}} \\
s_{e_{k}}^{*} s_{e_{k^{\prime}}}=0 \text { for } k \neq k^{\prime}
\end{gathered}
$$

We obtain algebra of compact operators \mathcal{K}, the limit of the algebras in the preceeding example.
9. G with n vertices and n edges forming a cycle as in the picture (9).

$$
\begin{gathered}
s\left(e_{k}\right)=k, r\left(e_{k}\right)=k+1 \text { for } k=1, \ldots, n-1, \quad r\left(e_{n}\right)=1 \\
p_{k}=s_{e_{k}} s_{e_{k}}^{*}, \quad p_{k+1}=s_{e_{k}}^{*} s_{e_{k}} \\
s_{e_{k}}^{*} s_{e_{k^{\prime}}}=0 \text { for } k \neq k^{\prime}
\end{gathered}
$$

We obtain algebra of matrices over the algebra of functions on the circle, $C^{*}(G)=$ $M_{n}\left(C\left(S^{1}\right)\right)$.

Figure 9: $M_{n}\left(C\left(S^{1}\right)\right)$

Figure 10: $C\left(\mathrm{SU}_{q}(2)\right)$
10. G with two vertices with loops and connected by one edge.

$$
\begin{gathered}
p_{v_{i}}=p_{v_{i}}^{*}=p_{v_{i}}^{2}, \quad i=1,2, \quad p_{v_{1}} p_{v_{2}}=0 \\
p_{v_{1}}=s_{e_{11}}^{*} s_{e_{11}}=s_{e_{11}}^{*} s_{e_{11}}+s_{e_{12}} s_{e_{11}}^{*} \\
p_{v_{2}}=s_{e_{22}}^{*} s_{e_{22}}=s_{e_{12}}^{*} s_{e_{12}}=s_{e_{22}} s_{e_{22}}^{*} \\
s_{e_{11}}^{*} s_{e_{12}}=0, s_{e_{11}}^{*} s_{e_{22}}=0, \quad s_{e_{12}}^{*} s_{e_{22}}=0
\end{gathered}
$$

We obtain C^{*}-algebra for quantum $\mathrm{SU}(2)$, that is $C\left(\mathrm{SU}_{q}(2)\right) \simeq C\left(\mathrm{SU}_{0}(2)\right)$, which is generated by two elements a, b satisfying the relations

$$
\begin{gathered}
a^{*} a+b^{*} b=1, \quad a a^{*}+q^{2} b^{*} b=1 \\
a b=q b a, \quad a b^{*}=q b^{*} a, \quad b^{*} b=b b^{*}
\end{gathered}
$$

The isomorphism is given by

$$
\begin{aligned}
a & \mapsto s_{e_{11}}^{*}+s_{e_{12}}^{*}, \\
b & \mapsto s_{e_{22}} .
\end{aligned}
$$

11. The example (10) can be treated as the C^{*}-algebra of the quantum sphere S_{q}^{3}. Now we present graph C*-algebra for the quantum sphere S_{q}^{7}, which is next generalized to arbitrary odd dimension. We take a graph G with four vertices with loops and each vertex is connected with all vertices with the greater index as in the picture (11). The C*-algebra for the quantum sphere S_{q}^{7} is generated by the four elements $z_{1}, z_{2}, z_{3}, z_{4}$

Figure 11: $C\left(S_{q}^{7}\right)$
satisfying the relations

$$
\begin{aligned}
z_{j} z_{i} & =q z_{i} z_{j} \text { for } i<j, \\
z_{j}^{*} z_{i} & =q z_{i} z_{j}^{*} \text { for } i \neq j \\
z_{1}^{*} z_{1} & =z_{1} z_{1}^{*}+\left(1-q^{2}\right)\left(z_{2} z_{2}^{*}+z_{3} z_{3}^{*}+z_{4} z_{4}^{*}\right), \\
z_{2}^{*} z_{2} & =z_{2} z_{2}^{*}+\left(1-q^{2}\right)\left(z_{3} z_{3}^{*}+z_{4} z_{4}^{*}\right) \\
z_{3}^{*} z_{3} & =z_{3} z_{3}^{*}+\left(1-q^{2}\right) z_{4} z_{4}^{*} \\
z_{4}^{*} z_{4} & =z_{4} z_{4}^{*} \\
z_{1} z_{1}^{*}+z_{2} z_{2}^{*}+z_{3} z_{3}^{*}+z_{4} z_{4}^{*} & =1
\end{aligned}
$$

For $q=0$ we have the isomorphism $C^{*}(G) \simeq C\left(S_{0}^{7}\right)$ given by

$$
\begin{aligned}
z_{1} & \mapsto s_{e_{11}}+s_{e_{12}}+s_{e_{13}}+s_{e_{14}}, \\
z_{2} & \mapsto s_{e_{22}}+s_{e_{23}}+s_{e_{24}}, \\
z_{3} & \mapsto s_{e_{33}}+s_{e_{34}}, \\
z_{4} & \mapsto s_{e_{44}} .
\end{aligned}
$$

12. As in the example (11) we take a graph with n vertices and edge between v_{i} and v_{j} if and only if $i \leqslant j$ as in the picture (12).

Figure 12: $C\left(S_{q}^{2 n-1}\right)$

$$
v_{1}, \ldots, v_{n}
$$

$$
e_{i j}, \quad j=i, \ldots, n, \quad s\left(e_{i j}\right)=v_{i}, \quad r\left(e_{i j}\right)=v_{j}
$$

The C^{*}-algebra for the quantum sphere $S_{q}^{2 n-1}$ is generated by the n elements z_{1}, \ldots, z_{n} satisfying the relations

$$
\begin{aligned}
z_{j} z_{i} & =q z_{i} z_{j} \text { for } i<j, \\
z_{j}^{*} z_{i} & =q z_{i} z_{j}^{*} \text { for } i \neq j, \\
z_{i}^{*} z_{i} & =z_{i} z_{i}^{*}+\left(1-q^{2}\right)\left(\sum_{j>i} z_{j} z_{j}^{*}\right) \text { for } i=1, \ldots, n, \\
\sum_{i=1}^{n} z_{i} z_{i}^{*} & =1
\end{aligned}
$$

For $q=0$ we have the isomorphism $C^{*}(G) \simeq C\left(S_{0}^{2 n-1}\right)$ given by

$$
z_{i} \mapsto \sum_{j=i}^{n} s_{e_{i j}}, \quad i=1, \ldots, n
$$

13. We take a similar graph G to the one in the example (11), but with infinitely many paralell edges $v_{i} \rightarrow v_{j}$ for $i \leqslant j$.

Figure 13: $C\left(\mathbb{C} P_{q}^{3}\right)$
14. We take a similar graph G to the one in the example (12), but with infinitely many paralell edges $v_{i} \rightarrow v_{j}$ for $i \leqslant j$.
15. If we modify the graph for the quantum sphere S_{q}^{5} by adding two additional vertices w_{1}, w_{2} and edges from each vertex v_{1}, v_{2}, v_{3} to both of the added ones, then we obtain graph for the sphere S_{q}^{6} as in the picture (15).
16. The example (15) can be generalized to arbitrary even dimension just by adding two vertices w_{1}, w_{2} to the graph of the sphere $S_{q}^{2 n-1}$. We have $n+2$ vertices v_{1}, \ldots, v_{n} and w_{1}, w_{2}. Edges $e_{i j}$ are from v_{i} to v_{j} whenever $i \leqslant j$ and $g_{i k}$ are between v_{i} and w_{k} for $k=1,2$. More precisely for $i=1, \ldots, n$ we have

$$
\begin{gathered}
s\left(e_{i j}\right)=v_{i}, \quad r\left(e_{i j}\right)=v_{j}, \quad j=i, \ldots, n \\
s\left(g_{i k}\right)=v_{i}, \quad r\left(g_{i k}\right)=w_{k}, \quad k=1,2
\end{gathered}
$$

Figure 14: $C\left(\mathbb{C} P_{q}^{n-1}\right)$

Figure 15: $C\left(S_{q}^{6}\right)$

Figure 16: $C\left(S_{q}^{2 n}\right)$

Figure 17: $C\left(\mathbb{R} P_{q}^{6}\right)$
17. In the example (15) we identify vertices w_{1}, w_{2} and leave v_{1}, v_{2}, v_{3} unchanged. The edges are as in the picture. General construction is described in the next example (18)
18. In the example (16) we identify vertices w_{1}, w_{2} and leave v_{1}, \ldots, v_{n} unchanged. The edges of the new graph are pairs $\left(h_{1}, h_{2}\right)$ of edges from (16) such that $r\left(h_{1}\right)=s\left(h_{2}\right)$ and $r\left(h_{2}\right) \neq w_{1}, w_{2}$. Additionally we have edges $f_{i k}$ from v_{i} to w for $i=1, \ldots, n$ and $k=1, \ldots, n+2-i$. The picture is analogous to the (17).

2 Computation of K-theory

The main tool for the computation of K-theory groups of the graph C^{*}-algebras is the following
Theorem 2.1. Let G be a directed graph and let $G_{+}^{0} \subset G^{0}$ be the collection of vertices that emit at least one and at most finitely many edges. Let $\mathbb{Z} G_{+}^{0}$ and $\mathbb{Z} G^{0}$ be the free abelian groups on free generators G_{+}^{0} and G^{0}. Let $A_{G}: \mathbb{Z} G_{+}^{0} \rightarrow \mathbb{Z} G^{0}$ be the map defined by the formula

$$
A_{G}(v):=\left(\sum_{e \in G^{1}, s(e)=v} r(e)\right)-v .
$$

Then

$$
\begin{aligned}
& \mathrm{K}_{0}\left(C^{*}(G)\right) \simeq \operatorname{coker} A_{G} \\
& \mathrm{~K}_{1}\left(C^{*}(G)\right) \simeq \operatorname{ker} A_{G}
\end{aligned}
$$

The proof of this theorem will be postponed to the section (3), and now we compute the K-theory groups of the graph C^{*}-algebras for the examples from section (II).
Example 2.2. $1 . \mathrm{K}_{*}(\mathbb{C})$

$$
\begin{aligned}
G^{0} & =\{v\} \\
G_{+}^{0} & =\emptyset \\
A_{G} & : \emptyset
\end{aligned}
$$

In this case A_{G} is from the empty set, but still we can write

$$
\begin{aligned}
& \mathrm{K}_{0}(\mathbb{C})=\operatorname{coker} A_{G}=\mathbb{Z} \\
& \mathrm{K}_{1}(\mathbb{C})=\operatorname{ker} A_{G}=0
\end{aligned}
$$

2. $\mathrm{K}_{*}\left(C\left(S^{1}\right)\right)$

$$
\begin{gathered}
G^{0}=\{v\} \\
G_{+}^{0}=\{v\} \\
A_{G}: \mathbb{Z} \rightarrow \mathbb{Z} \\
v \mapsto \quad v-v=0 \\
\mathrm{~K}_{0}\left(C\left(S^{1}\right)\right)=\operatorname{coker} A_{G}=\mathbb{Z} \\
\mathrm{K}_{1}\left(C\left(S^{1}\right)\right)=\operatorname{ker} A_{G}=\mathbb{Z}
\end{gathered}
$$

3. $\mathrm{K}_{*}(\mathcal{T})$

$$
\begin{gathered}
G^{0}=\{v, w\} \\
G_{+}^{0}=\{v\} \\
A_{G}: \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z} \\
v \mapsto v+w-v=w \\
\mapsto=\operatorname{coker} A_{G}=\mathbb{Z} \\
\mathrm{K}_{0}(\mathcal{T})=0 \\
\mathrm{~K}_{1}(\mathcal{T})=\operatorname{ker} A_{G}=0
\end{gathered}
$$

4. $\mathrm{K}_{*}\left(C\left(S_{0 \infty}^{2}\right)\right)$

$$
\begin{aligned}
& G^{0}=\left\{v, w_{1}, w_{2}\right\} \\
& G_{+}^{0}=\{v\} \\
& A_{G}: \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \\
& v \mapsto v+w_{1}+w_{2}-v=w_{1}+w_{2} \\
& \qquad \mapsto=\operatorname{coker} A_{G}=\mathbb{Z} \oplus \mathbb{Z} \\
& \mathrm{K}_{0}\left(C\left(S_{0 \infty}^{2}\right)\right)= \\
& \mathrm{K}_{1}\left(C\left(S_{0 \infty}^{2}\right)\right)=\operatorname{ker} A_{G}=0
\end{aligned}
$$

5. $\mathrm{K}_{*}\left(C\left(\mathbb{R} P_{q}^{2}\right)\right)$

$$
\begin{gathered}
G^{0}=\{v, w\} \\
G_{+}^{0}=\{v\} \\
A_{G}: \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z} \\
v \mapsto v+2 w-v=2 w \\
\mathrm{~K}_{0}\left(C\left(\mathbb{R} P_{q}^{2}\right)\right)=\operatorname{coker} A_{G}=\mathbb{Z} \oplus \mathbb{Z}_{2} \\
\mathrm{~K}_{1}\left(C\left(\mathbb{R} P_{q}^{2}\right)\right)=\operatorname{ker} A_{G}=0
\end{gathered}
$$

6. $\mathrm{K}_{*}\left(O_{n}\right)$

$$
\begin{gathered}
G^{0}=\{v\} \\
G_{+}^{0}=\{v\} \\
A_{G}: \mathbb{Z} \rightarrow \mathbb{Z} \\
v \mapsto n v-v=(n-1) v \\
\mapsto \\
\mathrm{~K}_{0}\left(O_{n}\right)=\operatorname{coker} A_{G}=\mathbb{Z}_{n-1} \\
\mathrm{~K}_{1}\left(O_{n}\right)=\operatorname{ker} A_{G}=0
\end{gathered}
$$

7. $\mathrm{K}_{*}\left(M_{n}(\mathbb{C})\right)$

$$
\begin{gathered}
G^{0}=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\} \\
G_{+}^{0}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \\
A_{G}: \mathbb{Z}^{n-1} \rightarrow \mathbb{Z}^{n} \\
v_{i} \mapsto v_{i+1}-v_{i} \text { for } i=1, \ldots, n-1 \\
\mathrm{~K}_{0}\left(M_{n}(\mathbb{C})\right)=\operatorname{coker} A_{G}=\mathbb{Z} \\
\mathrm{K}_{1}\left(M_{n}(\mathbb{C})\right)=\operatorname{ker} A_{G}=0
\end{gathered}
$$

8. $\mathrm{K}_{*}(\mathcal{K})$

$$
\begin{gathered}
G^{0}=\left\{v_{i} \mid i \in \mathbb{Z}\right\} \\
G_{+}^{0}=\left\{v_{i} \mid i \in \mathbb{Z}\right\} \\
A_{G}: \bigoplus_{i \in \mathbb{Z}} \mathbb{Z} \rightarrow \bigoplus_{i \in \mathbb{Z}} \mathbb{Z} \\
v_{i} \mapsto v_{i+1}-v_{i} \text { for } i \in \mathbb{Z} \\
\mathrm{~K}_{0}(\mathcal{K})=\operatorname{coker} A_{G}=\mathbb{Z} \\
\mathrm{K}_{1}(\mathcal{K})=\operatorname{ker} A_{G}=0
\end{gathered}
$$

Ramark 2.3. If we take direct product instead of direct sum, then there will be nontrivial kernel.
9. $\mathrm{K}_{*}\left(M_{n}\left(S^{1}\right)\right)$

$$
\begin{gathered}
G^{0}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \\
G_{+}^{0}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \\
A_{G}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n} \\
v_{i} \mapsto v_{i+1}-v_{i} \text { for } i=1, \ldots, n-1, \\
v_{n} \mapsto v_{1}-v_{n} \\
\mathrm{~K}_{0}\left(M_{n}\left(S^{1}\right)\right)=\operatorname{coker} A_{G}=\mathbb{Z} \\
\mathrm{K}_{1}\left(M_{n}\left(S^{1}\right)\right)=\operatorname{ker} A_{G}=\mathbb{Z}
\end{gathered}
$$

10. $\mathrm{K}_{*}\left(C\left(\mathrm{SU}_{q}(2)\right)\right)$

$$
\begin{gathered}
G^{0}=\left\{v_{1}, v_{2}\right\} \\
G_{+}^{0}=\left\{v_{1}, v_{2}\right\} \\
A_{G}: \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z} \\
v_{1} \mapsto v_{1}+v_{2}-v_{1}=v_{2}, \\
v_{2} \mapsto v_{2}-v_{2}=0 \\
\mathrm{~K}_{0}\left(C\left(\mathrm{SU}_{q}(2)\right)\right)=\operatorname{coker} A_{G}=\mathbb{Z} \\
\mathrm{K}_{1}\left(C\left(\mathrm{SU}_{q}(2)\right)\right)=\operatorname{ker} A_{G}=\mathbb{Z}
\end{gathered}
$$

11. $\mathrm{K}_{*}\left(C\left(S_{q}^{7}\right)\right)$

$$
\begin{gathered}
G^{0}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
G_{+}^{0}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
A_{G}: \mathbb{Z}^{4} \rightarrow \mathbb{Z}^{4} \\
v_{1} \mapsto v_{1}+v_{2}+v_{3}+v_{4}-v_{1}=v_{2}+v_{3}+v_{4} \\
v_{2} \mapsto v_{2}+v_{3}+v_{4}-v_{2}=v_{3}+v_{4} \\
v_{3} \mapsto v_{3}+v_{4}-v_{3}=v_{4} \\
v_{4} \mapsto v_{4}-v_{4}=0 \\
\mathrm{~K}_{0}\left(C\left(S_{q}^{7}\right)\right)=\operatorname{coker} A_{G}=\mathbb{Z} \\
\mathrm{K}_{1}\left(C\left(S_{q}^{7}\right)\right)=\operatorname{ker} A_{G}=\mathbb{Z}
\end{gathered}
$$

12. $\mathrm{K}_{*}\left(C\left(S_{q}^{2 n-1}\right)\right)$

$$
\begin{gathered}
G^{0}=\left\{v_{i} \mid i=1, \ldots, n\right\} \\
G_{+}^{0}=\left\{v_{i} \mid i=1, \ldots, n\right\} \\
A_{G}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n} \\
v_{i} \mapsto \sum_{j \geqslant i} v_{j}-v_{i}=\sum_{j>i} v_{j} \\
\mathrm{~K}_{0}\left(C\left(S_{q}^{2 n-1}\right)\right)=\operatorname{coker} A_{G}=\mathbb{Z} \\
\mathrm{K}_{1}\left(C\left(S_{q}^{2 n-1}\right)\right)=\operatorname{ker} A_{G}=\mathbb{Z}
\end{gathered}
$$

13. $\mathrm{K}_{*}\left(C\left(\mathbb{C} P_{q}^{3}\right)\right)$

$$
\begin{aligned}
& G^{0}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& G_{+}^{0}=\emptyset \\
& A_{G}: \emptyset \rightarrow \mathbb{Z}^{4} \\
& \mathrm{~K}_{0}\left(C\left(\mathbb{C} P_{q}^{3}\right)\right)=\operatorname{coker} A_{G}=\mathbb{Z}^{4} \\
& \mathrm{~K}_{1}\left(C\left(\mathbb{C} P_{q}^{3}\right)\right)=\operatorname{ker} A_{G}=0
\end{aligned}
$$

14. $\mathrm{K}_{*}\left(C\left(\mathbb{C} P_{q}^{n-1}\right)\right)$

$$
\begin{gathered}
G^{0}=\left\{v_{i} \mid i=1, \ldots, n\right\} \\
G_{+}^{0}=\emptyset \\
A_{G}: \emptyset \rightarrow \mathbb{Z}^{n} \\
\mathrm{~K}_{0}\left(C\left(\mathbb{C} P_{q}^{n-1}\right)\right)=\operatorname{coker} A_{G}=\mathbb{Z}^{n} \\
\mathrm{~K}_{1}\left(C\left(\mathbb{C} P_{q}^{n-1}\right)\right)=\operatorname{ker} A_{G}=0
\end{gathered}
$$

15. $\mathrm{K}_{*}\left(C\left(S_{q}^{6}\right)\right)$

$$
\begin{gathered}
G^{0}=\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}\right\} \\
G_{+}^{0}=\left\{v_{1}, v_{2}, v_{3}\right\} \\
A_{G}: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{5} \\
v_{1} \mapsto v_{1}+v_{2}+v_{3}+w_{1}+w_{2}-v_{1}=v_{2}+v_{3}+w_{1}+w_{2} \\
v_{2} \mapsto v_{2}+v_{3}+w_{1}+w_{2}-v_{2}=v_{3}+w_{1}+w_{2} \\
v_{3} \mapsto \quad v_{3}+w_{1}+w_{2}-v_{3}=w_{1}+w_{2} \\
\\
\mathrm{~K}_{0}\left(C\left(S_{q}^{6}\right)\right)=\operatorname{coker} A_{G}=\mathbb{Z} \oplus \mathbb{Z} \\
\mathrm{K}_{1}\left(C\left(S_{q}^{6}\right)\right)=\operatorname{ker} A_{G}=0
\end{gathered}
$$

16. $\mathrm{K}_{*}\left(C\left(S_{q}^{2 n}\right)\right)$

$$
\begin{gathered}
G^{0}=\left\{v_{1}, \ldots, v_{n}, w_{1}, w_{2}\right\} \\
G_{+}^{0}=\left\{v_{1}, \ldots, v_{n}\right\} \\
A_{G}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n+2} \\
v_{i} \mapsto \sum_{j \geqslant i} v_{j}+w_{1}+w_{2}-v_{i}=\sum_{j>i} v_{j}+w_{1}+w_{2} \\
\mathrm{~K}_{0}\left(C\left(S_{q}^{2 n}\right)\right)=\operatorname{coker} A_{G}=\mathbb{Z} \oplus \mathbb{Z} \\
\mathrm{K}_{1}\left(C\left(S_{q}^{2 n}\right)\right)=\operatorname{ker} A_{G}=0
\end{gathered}
$$

17. $\mathrm{K}_{*}\left(C\left(\mathbb{R} P_{q}^{6}\right)\right)$

$$
\begin{array}{cl}
G^{0}=\left\{v_{1}, v_{2}, v_{3}, w\right\} \\
G_{+}^{0}=\left\{v_{1}, v_{2}, v_{3}\right\} \\
A_{G}: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{4} \\
v_{1} & \mapsto= \\
v_{2} & \mapsto= \\
v_{3} & \mapsto= \\
& \\
\mathrm{K}_{0}\left(C\left(\mathbb{R} P_{q}^{6}\right)\right) & =\operatorname{coker} A_{G}= \\
\mathrm{K}_{1}\left(C\left(\mathbb{R} P_{q}^{6}\right)\right) & =\operatorname{ker} A_{G}=
\end{array}
$$

18. $\mathrm{K}_{*}\left(C\left(\mathbb{R} P_{q}^{2 n}\right)\right)$

$$
\begin{gathered}
G^{0}=\left\{v_{1}, \ldots, v_{n}, w\right\} \\
G_{+}^{0}=\left\{v_{1}, \ldots, v_{n}\right\} \\
A_{G}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n+1} \\
v_{i} \mapsto= \\
\mapsto=\operatorname{coker} A_{G}= \\
\mathrm{K}_{0}\left(C\left(\mathbb{R} P_{q}^{2 n}\right)\right)= \\
\mathrm{K}_{1}\left(C\left(\mathbb{R} P_{q}^{2 n}\right)\right)=\operatorname{ker} A_{G}=
\end{gathered}
$$

3 Proof of the theorem (2.1)

Proof. There are seven steps in the proof, which we will sketch here.

1. Gauge action γ.

$$
\begin{aligned}
\gamma: \mathrm{U}(1)=S^{1} & \rightarrow \operatorname{Aut}\left(C^{*}(G)\right) \\
\gamma_{z}\left(s_{e}\right) & =z s_{e} \\
\gamma_{z}\left(p_{v}\right) & =p_{v} .
\end{aligned}
$$

2. $C^{*}(G) \rtimes_{\gamma} \mathrm{U}(1) \simeq C^{*}(G \times \mathbb{Z})$.

We construct the new graph $G \times \mathbb{Z}$

$$
\begin{aligned}
(G \times \mathbb{Z})^{0} & =G^{0} \times \mathbb{Z} \\
(G \times \mathbb{Z})^{1} & =G^{1} \times \mathbb{Z}
\end{aligned}
$$

It has no loops and

$$
s(e, n)=(s(e), n-1), \quad r(e, n)=(r(e), n) .
$$

Each loop is resolved in the infinite segment

3. $C^{*}(G \times \mathbb{Z})$ is AF .

It follows that $\mathrm{K}_{1}\left(C^{*}(G \times \mathbb{Z})\right)=0$.
4. Dual action $\hat{\gamma}$.

$$
\begin{gathered}
\hat{\gamma}: \mathbb{Z} \rightarrow \operatorname{Aut}\left(C^{*}(G) \rtimes_{\gamma} \mathrm{U}(1)\right) \\
\hat{\gamma}_{\chi}(f)(t)=\langle\chi, t\rangle f(t), \text { where } f: \mathrm{U}(1) \rightarrow C^{*}(G) .
\end{gathered}
$$

5. Takesaki-Takai duality.

$$
\left(C^{*}(G) \rtimes_{\gamma} \mathrm{U}(1)\right) \rtimes_{\hat{\gamma}} \mathbb{Z} \simeq C^{*}(G) \times \mathcal{K} .
$$

From the stability of K_{*} it follows that

$$
\mathrm{K}_{*}\left(\left(C^{*}(G) \rtimes_{\gamma} \mathrm{U}(1)\right) \rtimes_{\hat{\gamma}} \mathbb{Z}\right) \simeq \mathrm{K}_{*}\left(C^{*}(G)\right) .
$$

6. Pimsner-Voiculescu sequence.

The Pimsner-Voiculescu sequence is as follows

where the maps are given by the formulas

$$
\begin{gathered}
\mathrm{K}_{*}\left(C^{*}(G) \rtimes_{\gamma} \mathrm{U}(1)\right) \xrightarrow{\text { id }-\mathrm{K}_{*}\left(\hat{\gamma}^{-1}\right)} \mathrm{K}_{*}\left(C^{*}(G) \rtimes_{\gamma} \mathrm{U}(1)\right), \\
\mathrm{K}_{*}\left(C^{*}(G) \rtimes_{\gamma} \mathrm{U}(1)\right) \xrightarrow{\text { id }-\mathrm{K}_{*}\left(\beta^{-1}\right)} \mathrm{K}_{*}\left(\left(C^{*}(G) \rtimes_{\gamma} \mathrm{U}(1)\right) \rtimes_{\hat{\gamma}} \mathbb{Z}\right),
\end{gathered}
$$

and the map $\beta: \mathbb{Z} \rightarrow \operatorname{Aut}\left(C^{*}(G \times \mathbb{Z})\right)$ is given by

$$
\begin{aligned}
\beta_{m}\left(p_{(v, n)}\right) & =p_{(v, n+m)}, \\
\beta_{m}\left(s_{(e, n)}\right) & =s_{(e, n+m)} .
\end{aligned}
$$

Using preceeding computations we can write the sequence as

7. Computation of the kernel and cokernel of $1-\mathrm{K}_{0}\left(\hat{\gamma}^{-1}\right)$.

