Multiline formulas

Publications Department of IMPAN
publ@impan.pl
https://www.impan.pl/en/publishing-house/for-authors

April 11, 2018

- A general remark: the constructs ("environments") discussed below require the use of the amsart style or math\}andareoftwotypes:(1)thealign,gather,multlineandalignatenvironmentsconcernthewholeequations,i.e.theyreplaceequation(anexception:aligncanbeusedinsidegather);(2)split,aligned,gatheredandalignedatare"subsidiaryenvironments":theycanonlyappearinsideothers,likeequation,alignorgather,andmayembraceonlysomepartofadisplayedline.undefined

Some constructs below require package\{mathtools\}or\usepackage\{enumitem\}.undefinedundefinedundefinedundefinedundefinedundefined

- A piece of advice: forget eqnarray!

1 One multiline formula

- Quite often one formula (i.e. a sequence of expressions connected by binary operations and relations) takes more than one line. As a rule, one formula (in this sense) should have one number; numbering parts of it separately is seldom necessary. In case of need, you can refer to a specific line of a formula by writing e.g. $(1.1)_{2}$.

If equation numbers are placed on the left (as in the amsart style, and also in IMPAN journals), the number is normally on the first line of a multiline formula; if the numbers are on the right, it is on the last line. (Warning: this convention is followed by many publishers, but not all: sometimes the number is centred.)

- If there are no natural places for alignment, use multline:

аааaaaaaaaaaaaaaaaaaaaaaaaaa

> + bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb $$
\leq d
$$

The first line is set (almost) flush left, the last line is (almost) flush right, and the middle lines (if any) are centred.

- You can shove any middle line within multline to the right or to the left by making it the argument of \shoveright or \shoveleft:

(1.2) aaaaaaaaaaaaaaaaaaaaaaaaaaaaa

$+b b+d d d d d d d d d d$
\times ееееееееееееееееееееееее
$\leq d$.

- You can align a group of lines within multline, using aligned:

```
aaaaaaaaaaaaaaaaa + xxxxxxxxxxxxx
    < bbbbbbbbbbbbbbbbbbbbbbb
    + dddddddddddddddddddddddddddddddddddddd
    < ссссссссссссссссссс.
```

- To code an "object" consisting of centred lines within a formula, use gathered:

$$
\begin{gather*}
1 \\
121 \tag{1.4}\\
1331 \\
14641
\end{gather*}
$$

If you want to bottom-align two such objects, apply gathered [b] (then you have to add split to centre the equation number):

	1
1	121
121	1331
1331	14641

With gathered [t], you get top alignment:

1	1
121	121
1331	1331
	14641

- The aligned[t] and aligned[b] constructions enable independent and/or nested alignments, e.g., aligned [t] inside aligned:

$$
\begin{align*}
& A=x y z t=z t u v+\left[f_{1}(a, b, c, d, e, f, g, h),\right. \tag{1.6}\\
& f_{2}(a, b, c, d, e, f, g, h), \\
& \left.f_{3}(a, b, c, d, e, f, g, h)\right] \\
& =\operatorname{ccc} c c c c c c c c c c c
\end{align*}
$$

or aligned[b] inside aligned:

$$
\begin{aligned}
x x x x x x x+\left[f_{1}(a, b, c, d, e, f, g, h),\right. & \\
& f_{2}(a, b, c, d, e, f, g, h), \\
\left.f_{3}(a, b, c, d, e, f, g, h)\right] & =t \\
& =b b b b b b b b b b b b b b
\end{aligned}
$$

- To move a line within an aligned structure to the left or to the right, use MoveEqLeft with a positive or negative parameter (this requires :undefined

$$
\begin{align*}
x x x x x= & \text { yyyyyyyyyyyyyy }+ \tag{1.7}\\
& \text { eeeee } \\
& \times z z z z z z z z z z z z z z z z z z] \\
= & t t t t t t t t t t t t t t t t t t \\
= & \\
& \\
&
\end{align*}
$$

- If the formulas are left-numbered, you can also label a longer statement as a "formula", by treating it as an item of an itemized list (this requires "leftmargin"parameterhastobeadjustedaccordingtothewidthoftheformulanumber):(1.8)Hereyoucanplaceanystatement,eventakingseverallinesoftextandincludingdisplayedformulas,likeundefined

$$
a a a a=b b b .
$$

(1.9) Next item.

2 Several formulas or sets of displayed conditions

- Separate formulas should end with a comma or semicolon-to make it clear that the next line is not a continuation of the preceding one.
- If there are no natural places for vertical alignment, use gather:

$$
\begin{gather*}
\text { aaaaaaaaaaa }=b, \quad c c=x x x, \quad d d=y y y \tag{2.1}\\
m m m m m m m m m m m m m=0 \quad \text { for all } i=1, \ldots, n \tag{2.2}
\end{gather*}
$$

Note the spacing between parts of a formula on the same line; you can use \quad (small space), \quad $_{\sqcup}$ (medium space) or \qquad (large space).

- If a formula number is unnecessary, you can "switch it off", using \notag:

$$
\begin{gather*}
\text { aaaaaaaaaaa }=b, \quad c c=x x x, \quad d d=y y y \\
m m m m m m m m m m m m m=0 \quad \text { for all } i=1, \ldots, n \tag{2.3}
\end{gather*}
$$

(A formula number not cited in text is "information noise"; also, the number takes some space and often causes the formula to occupy one line more. As a rule, number only those formulas that are referred to later.)

- If no number is necessary, use gather*:

$$
\begin{gathered}
\text { aaaaaaaaaa }=b, \quad c c=x x x, \quad d d=y y y \\
m m m m m m m m m m m m m=0 \quad \text { for all } i=1, \ldots, n
\end{gathered}
$$

- If you need one centred number (for a group of equations), instead of gather use gathered inside equation:

$$
\begin{gather*}
\text { aaaaaaaaaa }=b, \quad c c=x x x, \quad d d=y y y \tag{2.4}\\
m \text { mmmmmmmmmmm }=0 \quad \text { for all } i=1, \ldots, n
\end{gather*}
$$

- You can also "gather" several "multlines", using the subsidiary construct multlined, available in mathtools, with optional parameters indicating the placement of formula numbers and the width of the formulas:

$$
\begin{align*}
& \text { аааaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa } \tag{2.5}\\
& +b \\
& \times \text { yyyyyyyyyyy } \\
& =x x, \tag{2.6}
\end{align*}
$$

сс
$=d d$.

- In most cases, however, we want to align something, and then we use align:

$$
\begin{align*}
x x x x x= & \text { yyyyyyyyyyyyyy } \tag{2.7}\\
& +z z z z z z z z z z z z z z z z z z \\
b b b= & \text { tttttttttttttttttt } \tag{2.8}\\
h h= & \text { vvvvvvvvvvv. } \tag{2.9}
\end{align*}
$$

Note that the alignment symbols, called ampersands (\&), should be placed to the left of binary relation signs; if, as above, part of an expression is continued on the next line, put \& $\backslash q u a d$ before the binary operation sign.

Remember that you cannot place \& signs anywhere: the parts between two \& signs and between \& and $\backslash \backslash$ should be "separate formulas" (in the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ sense), so you cannot e.g. put a \& inside \{ \} or inside \left-\right.

- If you need one centred number for a group of aligned equations, use split or aligned inside equation:

$$
\begin{align*}
x x x x x= & y y y y y y y y y y y y y y \\
& +z z z z z z z z z z z z z z z z z z, \\
b b b= & t t t t t t t t t t t t t t t t t t \tag{2.10}\\
h h= & \text { vvvvvvvvvvv. }
\end{align*}
$$

- If you have two "split" sets of equations and you want them to have a common alignment, you have to use two split's inside align (this is the advantage of split over aligned):

$$
\begin{align*}
\text { aaaaaaaaaaaaaaaaaaaaaaaa } & =b b b b b b b b b b b b b, \\
b b b b & =x x x x x x, \tag{2.11}\\
c c c c c & =y y y y y y y \\
d d d d d d d d & =z z z z z . \tag{2.12}
\end{align*}
$$

If you do not want "aligned alignments", use split or aligned inside gather:

$$
\begin{gather*}
\text { aaaaaaaaaaaaaaaaaaaaaaa }=b b b b b b b b b b b b b, \\
b b=x x x x x x, \tag{2.13}\\
c c c c c=y y y y y y y \\
d d d d d d d=z z z z z \tag{2.14}
\end{gather*}
$$

- If you need several aligned "columns", you can still use align or align*, but you have to add additional ampersands separating the columns:

$$
\begin{aligned}
a a & =b b b b b, & & (\text { by Lemma } 2), \\
h h & =i i, & & =e \\
l l & =k k k k k k & & (\text { by }(2.14)) .
\end{aligned}
$$

However, here you do not control the spacing between the columns. If you want to prescribe it, use alignat (or alignat*), which has a parameter (the number of columns) and requires specifying the intercolumn spaces:

$$
\begin{align*}
a a & =b b b b b, & d d & =e e \tag{2.15}\\
h h & =i i, & l l & =k k k k k k \tag{2.16}
\end{align*} \quad(\text { by Lemma } 2),
$$

- alignat also has a subsidiary version, alignedat, which you can put inside equation if you need one centred number:

$$
\begin{align*}
a a & =b b b b b, & d d & =e e \\
h h & =i i, & l l & =k k k k k k \tag{2.17}
\end{align*} \quad(\text { by Lemma } 2),
$$

- If you want the consecutive equations of a group of equations to be numbered e.g. (2a), (2b) etc., use subequations, inside which you can place the previous constructs, e.g., alignat inside subequations:

$$
\begin{align*}
a a & =b b b b b, & d d & =e e \tag{2.18a}\\
h h & =i i, & l l & =k k k k k k \tag{2.18b}
\end{align*} \quad(\text { by Lemma } 2),
$$

or gather inside subequations:

$$
\begin{gather*}
\text { aaaaaaaaaaaaaaaaaaaaaaa }=b b b b b b b b b b b b b, \\
b b=x x x x x x, \tag{2.19a}\\
c c c c c=y y y y y y y \tag{2.19b}\\
d d d d d d d=z z z z z .
\end{gather*}
$$

Note the independent labels of the whole group and its parts; writing \eqref $\{E:$ suba\}, we invoke the whole system (2.18), while writing \eqref\{E:suba1\} we refer to (2.18a).

- If you want to place a longer comment in the middle of an aligned construction, you can use \intertext (this only works within align or align*, but not with aligned):

$$
\begin{align*}
x x x x x=\text { yyyyyyyyyyyy }+ & {[\text { eeee }} \tag{2.20}\\
& \times z z z z z z z z z z z z z z z z z z]
\end{align*}
$$

(note that we have not used the full strength of (H) here, but only the concavity of f)

$$
\begin{aligned}
& =\text { tttttttttttttttttt } \\
& =\text { vvvvvvvvvvvv }
\end{aligned}
$$

References

[1] G. Grätzer, More Math into $L^{A} T_{E} X$, 4th ed., Springer, Berlin, 2007.

