ON THE LOCALLY CONVEX SPACE OF RAPIDLY DECREASING DISTRIBUTIONS

JAN KISYŃSKI

ABSTRACT. It is proved that in the set \mathcal{O}'_C of rapidly decreasing distributions on \mathbb{R}^n the two topologies yield the same bounded sets and coincide on bounded sets:

- (i) the projective topology corresponding to the inductive topology in the predual space,
- (ii) the operator topology related to the action of \mathcal{O}_C' on $\mathcal S$ by convolution.

1. The space of rapidly decreasing distributions on \mathbb{R}^n and its predual space

1.1. The J. Horváth space \mathcal{O}_C of slowly increasing C^{∞} -functions on \mathbb{R}^n . Let

$$\begin{split} C_b^{\infty} &= \Big\{ \varphi \in C^{\infty}(\mathbb{R}^n) : \sup_{x \in \mathbb{R}^n} |\partial^{\alpha} \varphi(x)| < \infty \text{ for every } \alpha \in \mathbb{N}_0^n \Big\}, \\ C_0^{\infty} &= \Big\{ \varphi \in C^{\infty}(\mathbb{R}^n) : \lim_{|x| \to \infty} |\partial^{\alpha} \varphi(x)| = 0 \text{ for every } \alpha \in \mathbb{N}_0^n \Big\}, \\ \mathcal{D}_{L^p} &= \{ \varphi \in C^{\infty}(\mathbb{R}^n) : \partial^{\alpha} \varphi \in L^p(\mathbb{R}^n) \text{ for every } \alpha \in \mathbb{N}_0^n \} \quad \text{if } p \in [1, \infty[. \end{split}$$

Moreover, for $\mu \in \mathbb{R}$ let

$$\tilde{S}_{\mu} = (1+|\cdot|^2)^{\mu/2} C_b^{\infty}, \quad S_{\mu} = (1+|\cdot|^2)^{\mu/2} C_0^{\infty}, \quad S_{\mu}^p = (1+|\cdot|^2)^{\mu/2} \mathcal{D}_{L^p}.$$

All the spaces defined above are contained in $C^\infty(\mathbb{R}^n)$ and are topological Fréchet spaces.

Lemma. Whenever $\mu \in \mathbb{R}$, the function $f_{\mu} : \mathbb{R}^n \ni x \mapsto (1 + |x|^2)^{\mu/2} \in \mathbb{R}^+$ belongs to \tilde{S}_{μ} . Moreover, whenever $\lambda, \mu \in \mathbb{R}$, multiplication by f_{μ} yields isomorphisms of the Fréchet spaces \tilde{S}_{λ} onto $\tilde{S}_{\lambda+\mu}$, S_{λ} onto $S_{\lambda+\mu}$, and S_{λ}^p onto $S_{\lambda+\mu}^p$, and multiplication by $f_{-\mu}$ yields the inverse isomorphisms.

The above lemma is a consequence of the equality

(1.1)
$$\partial^{\alpha} (1+|x|^2)^{\mu/2} = (1+|x|^2)^{\mu/2-|\alpha|} P_{\alpha}(x)$$

in which P_{α} is a polynomial on \mathbb{R}^n of degree no greater than $|\alpha|$. The equality (1.1) appears in [H, Sect. 2.5, Example 8] and can be proved by induction on the length $|\alpha|$ of the multiindex α .

Corollary. Whenever $\mu \in \mathbb{R}$ and $\lambda \in [n/p, \infty[$, there are continuous imbeddings

(1.2)
$$S^p_{\mu} \subset S_{\mu} \subset S_{\mu} \subset S^p_{\mu+\lambda}.$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 46A13, 46F05.

Key words and phrases. Rapidly decreasing distributions, convolution of a distribution with a sample function, inductive limit, projective topology.

JAN KISYŃSKI

From the Remark in [B, Sect. II.2.4] and from the imbeddings (1.2) it follows that all the inductive limits

$$\liminf_{\mu \to \infty} \tilde{S}_{\mu}, \quad \liminf_{\mu \to \infty} S_{\mu} \quad \text{and} \quad \liminf_{\mu \to \infty} S_{\mu}^{p}, \quad p \in [1, \infty[,$$

define the same locally convex space contained in $C^{\infty}(\mathbb{R}^n)$. This space, denoted by \mathcal{O}_C , was discovered by J. Horváth (before 1966 when the first edition of his book was published by Addison-Wesley). J. Horváth represented \mathcal{O}_C as $\liminf_{\mu\to\infty} S_{\mu}$. See [H, Sect. 2.12, Example 9].

1.2. The strong projective topology in $(\mathcal{O}_C)'$. The strong projective topology in the space $(\mathcal{O}_C)'$ dual to \mathcal{O}_C is defined as the weakest locally convex topology τ in $(\mathcal{O}_C)'$ such that for every $\mu \in [0, \infty[$ the locally convex space $((\mathcal{O}_C)', \tau)$ is continuously imbedded in the strong dual space $(\tilde{S}_{\mu})'$. The same holds when $(\tilde{S}_{\mu})'$ is replaced by $(S^p_{\mu})'$ or $(S_{\mu})'$. In this connection let us stress that $(S^p_{\mu})'$ and $(S_{\mu})'$ have transparent form: $(S^p_{\mu})' = (1+|\cdot|^2)^{-\mu/2}(\mathcal{D}_{L^1})'$ and $(S_{\mu})' = (1+|\cdot|^2)^{-\mu/2}(C_0^{\infty})'$ where $(\mathcal{D}_{L^1})'$ is the space of bounded distributions on \mathbb{R}^n , and $(C_0^{\infty})'$ is the space of integrable distributions on \mathbb{R}^n . See [S, Sect. VI.8] and [H, Sect. 4.11, Corollary to Proposition 6].

For every $\mu \in [0, \infty[$ let \tilde{B}_{μ}, B_{μ} and B^p_{μ} denote the families of all bounded subsets of the spaces \tilde{S}_{μ}, S_{μ} and S^p_{μ} . The imbeddings (1.2) imply that

$$\bigcup_{\mu \in [0,\infty[} \tilde{B}_{\mu} = \bigcup_{\mu \in [0,\infty[} B_{\mu} = \bigcup_{\mu \in [0,\infty[} B_{\mu}^{p}]$$

Let U denote the common value of these unions. From [R-R, Sect. V.4, Proposition 15] it follows that the strong projective topology in $(\mathcal{O}_C)'$ is equal to the topology of uniform convergence on subsets of \mathcal{O}_C belonging to U. Since U is a covering of \mathcal{O}_C by bounded subsets of \mathcal{O}_C , it follows that the strong projective topology in $(\mathcal{O}_C)'$ is an \mathfrak{S} -topology. See [B, Sect. III.3.1].

1.3. The L. Schwartz space \mathcal{O}'_C of rapidly decreasing distributions. Whenever $\mu \in \mathbb{R}$, the L. Schwartz space S of rapidly decreasing C^{∞} -functions on \mathbb{R}^n is sequentially dense in S^1_{μ} , and so S is sequentially dense in $\mathcal{O}_C = \liminf_{\mu \to \infty} S^1_{\mu}$ in the inductive topology. It follows that every $T \in S'$ has at most one extension to a continuous linear functional on \mathcal{O}_C . The L. Schwartz space \mathcal{O}'_C of rapidly decreasing distributions on \mathbb{R}^n is defined as follows. As a set,

(1.3) $\mathcal{O}'_C = \{T \in \mathcal{S}' : T \text{ extends uniquely to a }$

continuous linear functional on \mathcal{O}_C .

The topology in \mathcal{O}'_C is defined as the one induced from $(\mathcal{O}_C)'$ equipped with the strong projective topology.

1.4. L. Schwartz's original definition of \mathcal{O}'_C . In the original definition of \mathcal{O}'_C formulated by L. Schwartz [S, Sect. VII.5] the space \mathcal{O}_C is not used. Since \mathcal{S} is dense in S^1_{μ} , it follows that for every $T \in \mathcal{S}'$ and $\mu \in [0, \infty[$ there is at most one $T_{\mu} \in (S^1_{\mu})'$ extending T. Schwartz's definition of \mathcal{O}'_C is as follows. As a set,

$$\mathcal{O}'_{C} = \{T \in \mathcal{S}' : \text{whenever } \mu \in [0, \infty[, (1 + |\cdot|^2)^{\mu/2}T \text{ is continuous on } \mathcal{S} \\ \text{ in the topology induced from } \mathcal{D}_{L^1} \}.$$

Thus,

 $\mathcal{O}'_C = \{T \in \mathcal{S}' : \text{whenever } \mu \in [0, \infty[, T \text{ extends uniquely to a }] \}$

continuous linear functional T_{μ} on S^1_{μ} },

whence (1.3) follows by [B, Sect. II.2.2, Corollary to Proposition 1] or by [R-R, Sect. V.2, Proposition 5]. Moreover L. Schwartz defined the topology in \mathcal{O}'_C by distinguishing the class of convergent nets in \mathcal{O}'_C . Namely a net $(T_\iota)_{\iota\in J} \subset \mathcal{O}'_C$ is convergent if and only if for every $\mu \in [0, \infty[$ and $B \in B^1_\mu$ the net of non-negative numbers $(\sup_{\phi\in B} |T_{\iota,\mu}(\phi)|)_{\iota\in J}$ is convergent. The last means that the L. Schwartz topology in \mathcal{O}'_C coincides with the one induced from $(\mathcal{O}_C)'$ equipped with the strong projective topology.

2. Rapidly decreasing distributions acting by convolution in ${\cal S}$

The present section is devoted mainly to characterization of rapidly decreasing distributions as those slowly increasing distributions, convolution with which maps continuously S into S. Whenever $\phi \in C^{\infty}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$, we denote by ϕ_x the translate of ϕ by x, i.e. the function $\phi_x : \mathbb{R}^n \ni y \mapsto \phi(x+y) \in \mathbb{R}^n$. Following [K, Vol. 2, Sect. CC.III.3°], by a *periodic partition of unity* on \mathbb{R}^n we mean a partition of unity $\{\varphi_z : z \in \mathbb{Z}^n\}$ consisting of the translates of a function $\varphi \in C_c^{\infty}(\mathbb{R}^n)$.

Proposition 1. For every set $\{T_{\iota} : \iota \in J\} \subset S'$ the following three conditions are equivalent:

- (a) $\{T_{\iota} : \iota \in J\} \subset S'$ is a set of distributions equicontinuous with respect to the topology in S induced from \mathcal{O}_C ,
- (b) $\{[T_{\iota} *]|_{S} : \iota \in J\}$ is an equicontinuous set of operators belonging to $L(\mathcal{S}, \mathcal{S})$,
- (c) whenever $\{\varphi_z : z \in \mathbb{Z}^n\}$ is a periodic partition of unity on \mathbb{R}^n , then

$$\sum_{z \in \mathbb{Z}^n} \sup_{\iota \in J} |T_{\iota}(\varphi_z \phi)| < \infty \quad \text{for every } \phi \in \mathcal{O}_C.$$

For the main result of the present section it is superfluous to consider in Proposition 1 the sets of distributions instead of single distributions. However, in subsequent sections we shall use (a) and (b) for sets of distributions. We shall prove $(a)\Rightarrow(b)\Rightarrow(c)\Rightarrow(a)$. To this end, for C^{∞} -functions φ on \mathbb{R}^n , we shall use the seminorms

$$\rho_{\mu,\alpha}(\varphi) = \sup_{x \in \mathbb{R}^n} (1+|x|)^{-\mu} |\partial^{\alpha}\varphi(x)|.$$

For instance, the family of seminorms $\{\rho_{-\mu,\alpha} : \mu \in \mathbb{N}, \alpha \in \mathbb{N}_0^n\}$ determines the topology of the L. Schwartz space S of rapidly decreasing C^{∞} -functions on \mathbb{R}^n , and for every fixed $\mu \in \mathbb{R}$ the family of seminorms $\{\rho_{\mu,\alpha} : \alpha \in \mathbb{N}_0^n\}$ determines the topology of the space \tilde{S}_{μ} .

Proof of (a) \Rightarrow (b). If (a) holds, then for every $\mu \in [0, \infty[$ the set of distributions $\{T_{\iota} : \iota \in J\} \subset S'$ is equicontinuous with respect to the topology induced in S from \tilde{S}_{μ} , i.e. for every $\mu \in [0, \infty[$ there are $\nu_{\mu} \in \mathbb{N}_0$ and $C_{\mu} \in [0, \infty[$ such that

(2.1)
$$|T_{\iota}(\varphi)| \leq C_{\mu} \sup_{|\alpha| \leq \nu_{\mu}} \rho_{\mu,\alpha}(\varphi) \text{ for every } \varphi \in \mathcal{S} \text{ and } \iota \in J.$$

JAN KISYŃSKI

It follows that whenever $\varphi \in S$, $\iota \in J$ and $x \in \mathbb{R}^n$, then for every $\mu \in [0, \infty[$ one has

$$|(T_{\iota} * \varphi)(x) = |T_{\iota}((\varphi_{x})^{\vee})| \leq C_{\mu} \sup_{y \in \mathbb{R}^{n}, |\alpha| \leq \nu_{\mu}} (1 + |y|)^{-\mu} |\partial^{\alpha}\varphi(x - y)|$$

$$\leq C_{\mu} \sup_{|\alpha| \leq \nu_{\mu}} \rho_{-\mu,\alpha}(\varphi) \sup_{y \in \mathbb{R}^{n}} (1 + |y|)^{-\mu} (1 + |x - y|)^{-\mu}$$

$$\leq C_{\mu} \sup_{|\alpha| \leq \nu_{\mu}} \rho_{-\mu,\alpha}(\varphi) (1 + |x|)^{-\mu}$$

where the last inequality follows from the fact that $1 + |x| \leq (1 + |y|)(1 + |x - y|)$. Consequently, for every $\mu \in [0, \infty[$ there are $\nu_{\mu} \in \mathbb{N}_0$ and $C_{\mu} \in [0, \infty[$ such that

(2.2)
$$\rho_{-\mu,0}(T_{\iota} * \varphi) \le C_{\mu} \sup_{|\alpha| \le \nu_{\mu}} \rho_{-\mu,\alpha}(\varphi) \text{ for every } \varphi \in \mathcal{S} \text{ and } \iota \in J.$$

Applying (2.2) to $\partial^{\beta}\varphi$ in place of φ , we infer that for every $\mu \in [0, \infty[$ there are $\nu_{\mu} \in \mathbb{N}_0$ and $C_{\mu} \in [0, \infty[$ such that

$$\rho_{-\mu,\beta}(T_{\iota} \ast \varphi) \leq C_{\mu} \sup_{|\alpha| \leq \nu_{\mu}} \rho_{-\mu,\alpha+\beta}(\varphi) \quad \text{for every } \varphi \in \mathcal{S}, \, \iota \in J \text{ and } \beta \in \mathbb{N}_{0}^{n},$$

which implies (b).

Proof of (b) \Rightarrow (c). Whenever $\iota \in J$, $\psi \in S$ and $x \in \mathbb{R}^n$, then

$$T_{\iota}(\psi) = T_{\iota}((((\psi_{x})^{\vee})_{x})^{\vee}) = [T_{\iota} * (\psi_{x})^{\vee}](x)$$

so that for our periodic partition of unity consisting of shifts of a function $\varphi\in C^\infty(\mathbb{R}^n)$ we have

$$T_{\iota}(\varphi_{z}\phi) = [T_{\iota} * (\varphi\phi_{-z})^{\vee}](-z).$$

Consequently, whenever $\iota \in J$, $\kappa \in [0, \infty[$ and $\phi \in C^{\infty}(\mathbb{R}^n)$, then

(2.3)
$$|T_{\iota}(\varphi_{z}\phi)| \leq \rho_{-\kappa,0}(T_{\iota} * (\varphi\phi_{-z})^{\vee}) \cdot (1+|z|)^{-\kappa} \text{ for every } z \in \mathbb{Z}^{n}$$

Assume now that (b) holds. Then (2.3) implies that for every $\kappa \in [0, \infty[$ there are $C_{\kappa} \in [0, \infty[$, $\lambda_{\kappa} \in [0, \infty[$ and $\nu_{\kappa} \in \mathbb{N}$ such that, for every $\phi \in C^{\infty}(\mathbb{R}^n)$ and $z \in \mathbb{Z}^n$,

$$\begin{split} \sup_{\iota \in J} |T_{\iota}(\varphi_{z}\phi)| &\leq C_{\kappa} \cdot \sup_{|\alpha| \leq \nu_{\kappa}} \rho_{-\lambda_{\kappa},\alpha}((\varphi\phi_{-z})^{\vee}) \cdot (1+|z|)^{-\kappa} \\ &\leq C_{\kappa} \cdot \sup_{x \in \mathbb{R}^{n}, \, |\alpha| \leq \nu_{\kappa}} (1+|x|)^{\lambda_{\kappa}} |\partial^{\alpha}(\varphi(x)\phi(x-z))| \cdot (1+|z|)^{-\kappa} \\ &\leq C_{\kappa}(1+r)^{\lambda_{\kappa}} \cdot \sup_{x \in \mathbb{R}^{n}, \, |\alpha| \leq \nu_{\kappa}} |\partial^{\alpha}(\varphi(x)\phi(x-z))| \cdot (1+|z|)^{-\kappa} \end{split}$$

where

$$r = \sup\{|x| : x \in \operatorname{supp} \varphi\}.$$

From this, by the Leibniz formula for partial derivatives of a product of functions, it follows that for every $\kappa \in [0, \infty[, \phi \in C^{\infty}(\mathbb{R}^n) \text{ and } z \in \mathbb{Z}^n \text{ one has}$

(2.4)
$$\sup_{\iota \in J} |T_{\iota}(\varphi_{z}\phi)| \le D_{\kappa} \cdot \sup_{x \in z + \operatorname{supp} \varphi, \, |\alpha| \le \nu_{\kappa}} |\partial^{\alpha}\phi(x)| \cdot (1+|z|)^{-\kappa}$$

where

$$D_{\kappa} = LC_{\kappa}(1+r)^{\lambda_{\kappa}} \sup_{x \in \mathbb{R}^{n}, |\alpha| \le \nu_{\kappa}} |\partial^{\alpha}\varphi(x)|,$$

 ${\cal L}$ being an absolute constant equal to the maximum of the coefficients in the Leibniz formula.

Till now we assumed that (b) holds and ϕ is an arbitrary function belonging to $C^{\infty}(\mathbb{R}^n)$. Henceforth we shall assume that (b) holds and $\phi \in \mathcal{O}_C$. As a set, \mathcal{O}_C is equal to $\bigcup_{\mu \in [0,\infty[} \tilde{S}_{\mu}$. If $\mu \in [0,\infty[$ and $\phi \in \tilde{S}_{\mu}$ then

$$\sup_{x \in z + \operatorname{supp} \varphi, \, |\alpha| \le \nu_{\kappa}} |\partial^{\alpha} \phi(x)| \le \sup_{|\alpha| \le \nu_{\kappa}} \rho_{\mu,\alpha}(\phi) \cdot (1 + r + |z|)^{\mu}$$
$$\le \sup_{|\alpha| \le \nu_{\kappa}} \rho_{\mu,\alpha}(\phi) \cdot (1 + r)^{\mu} (1 + |z|)^{\mu},$$

so that, by (2.4), for every $\kappa \in [0, \infty[$ and $z \in \mathbb{Z}^n$ one has

(2.5)
$$\sup_{\iota \in J} |T_{\iota}(\varphi_z \phi)| \le D_{\kappa} \sup_{|\alpha| \le \nu_{\kappa}} \rho_{\mu,\alpha}(\phi) (1+r)^{\mu} (1+|z|)^{\mu-\kappa}.$$

Fix now $\alpha \in]n, \infty[$ and take a $\phi \in \tilde{S}_{\mu}$ where $\mu \in [0, \infty[$. Let $\kappa = a + \mu$. Then, by (2.5),

$$\sup_{\iota \in J} |T_{\iota}(\varphi_{z}\phi)| \le M(\phi) \cdot (1+|z|)^{-a} \quad \text{for every } z \in \mathbb{Z}^{n},$$

where

$$M(\phi) = D_{a+\mu} \sup_{|\alpha| \le \nu_{a+\mu}} \rho_{\mu,\alpha}(\phi)(1+r)^{\mu} \in [0,\infty[.$$

It follows that

$$\sum_{z \in \mathbb{Z}^n} \sup_{\iota \in J} |T_\iota(\varphi_z \phi)| \le M(\phi) \sum_{z \in \mathbb{Z}^n} (1+|z|)^{-a},$$

so that (c) will be proved if we show that the multiple series $\sum_{z \in \mathbb{Z}^n} (1 + |z|)^{-a}$ is convergent.

To prove that convergence, fix $\rho \in [n^{1/2}, \infty[$ and for every $z \in \mathbb{Z}^n$ define $B_z := \{x \in \mathbb{R}^n : |x - z| \leq \rho\}$. Then $\{B_z : z \in \mathbb{Z}^n\}$ is a covering of \mathbb{R}^n . If $x \in B_z$, then $1 + |x| \leq 1 + |z| + \rho \leq (1 + |z|)(1 + \rho)$, so that $(1 + |z|)^{-a} \leq (1 + \rho)^a (1 + |x|)^{-a}$. Hence

$$(1+|z|)^{-a} \le V^{-1}(1+\rho)^a \int_{B_z} (1+|x|)^{-a} dx$$
 for every $z \in \mathbb{Z}^n$,

where V is the volume of B_z , independent of z. It follows that

$$\sum_{z \in \mathbb{Z}^n} (1+|z|)^{-a} \le KV^{-1}(1+\rho)^a \int_{\mathbb{R}^n} (1+|x|)^{-a} \, dx < \infty,$$

where K denotes the order of the covering $\{B_z : z \in \mathbb{Z}^n\}$ of \mathbb{R}^n .

Proof of (c) \Rightarrow (a). Suppose that (c) holds. We shall construct the extensions \tilde{T}_{ι} of the distributions T_{ι} by the series expansions

(2.6)
$$\tilde{T}_{\iota}(\phi) = \sum_{z \in \mathbb{Z}^n} T_{\iota}(\varphi_z \phi), \quad \phi \in \mathcal{O}_C,$$

where $\{\varphi_z : z \in \mathbb{Z}^n\}$ is a periodic partition of unity on \mathbb{R}^n consisting of translates of a function $\varphi \in C_c^{\infty}(\mathbb{R}^n)$. From (c) it follows that for every $\phi \in \mathcal{O}_C$ the numerical multiple series in (2.6) is absolutely convergent. For every $\iota \in J, k \in \mathbb{N}$ and $\phi \in \mathcal{O}_C$ let

$$\tilde{T}_{\iota,k}(\phi) := \sum_{|z| \le k} T_{\iota}(\varphi_z \phi).$$

Then

(2.7) each $\tilde{T}_{\iota,k}$ is a continuous linear functional on \mathcal{O}_C ,

because for every $z \in \mathbb{Z}^n$ the mapping $\mathcal{O}_C \ni \phi \mapsto \varphi_z \phi \in C_c^{\infty}(\mathbb{R}^n)$ is continuous. Whenever $\iota \in J$ and $\phi \in \mathcal{O}_C$ are fixed, by (2.4) the sequence $(\tilde{T}_{\iota,k}(\phi))_{k\in\mathbb{N}}$ of complex numbers is convergent and

(2.8)
$$\lim_{k \to \infty} \tilde{T}_{\iota,k}(\phi) = \tilde{T}_{\iota}(\phi).$$

Since, being the inductive limit of Fréchet spaces, \mathcal{O}_C is a barrelled space, from (2.7) and (2.8), by the Banach–Steinhaus theorem, it follows that

whenever $\iota \in J$, then \tilde{T}_{ι} is a continuous linear functional on \mathcal{O}_C .

Furthermore, from (c) and (2.8) it follows that whenever $\phi \in \mathcal{O}_C$, then $\{\tilde{T}_{\iota,k}(\phi) : \iota \in J, k \in \mathbb{N}\}$ and hence also $\{\tilde{T}_{\iota}(\phi) : \iota \in J\}$ are bounded subsets of \mathbb{C} . Since \mathcal{O}_C is barrelled, from boundedness of the sets $\{\tilde{T}_{\iota}(\phi) : \iota \in J\}$, $\phi \in \mathcal{O}_C$, and from [B, Sect. III.3.6, Theorem 2] it follows that $\{\tilde{T}_{\iota}(\phi) : \iota \in J\}$ is an equicontinuous set of linear functionals on \mathcal{O}_C .

It remains to prove that $\tilde{T}_{\iota}|_{\mathcal{S}} = T_{\iota}$ for every $\iota \in J$. To this end, notice that if $\phi \in C_c^{\infty}(\mathbb{R}^n)$ then $\tilde{T}_{\iota}(\phi) = T_{\iota}(\phi)$ because $\tilde{T}_{\iota,k}(\phi) = T_{\iota}(\phi)$ for every k so large that $\operatorname{supp} \varphi_z \cap \operatorname{supp} \phi = \emptyset$ whenever |z| > k. The equality $\tilde{T}_{\iota}(\phi) = T_{\iota}(\phi)$ for $\phi \in \mathcal{S}$ is a consequence of the analogous equality for $\phi \in C_c^{\infty}(\mathbb{R}^n)$ and dense continuous imbeddings $C_c^{\infty}(\mathbb{R}^n) \subset \mathcal{S} \subset \mathcal{O}_C$.

Theorem 1. Whenever $T \in S'$, then $T \in \mathcal{O}'_C$ if and only if $[T*]|_{\mathcal{S}} \in L(\mathcal{S}, \mathcal{S})$. Moreover, if $T \in S'$ and $T*S \subset S$, then $[T*]|_{\mathcal{S}} \in L(\mathcal{S}, \mathcal{S})$.

Proof. The first assertion of the theorem follows from [E, Theorem 2] and is also a consequence of the equivalence (a) \Leftrightarrow (b) in Proposition 1. The proof of the second assertion is as follows. If $T \in \mathcal{S}'$ and $T * \mathcal{S} \subset \mathcal{S}$, then, by [H, Sect. 4.11, Proposition 7], $[T *]|_{\mathcal{S}} \subset L(\mathcal{S}, \mathcal{O}_C)$, so that $[T *]|_{\mathcal{S}}$ is a closed operator from \mathcal{S} into \mathcal{S} . Since \mathcal{S} is an F-space, by the closed graph theorem, closedness of $[T *]|_{\mathcal{S}}$ implies its continuity.

Since $[T *]|_{\mathcal{S}} \in L(\mathcal{S}, \mathcal{S})$ for every $T \in \mathcal{O}'_C$, we can equip \mathcal{O}'_C with the topology induced from $L_b(\mathcal{S}, \mathcal{S})$ via the mapping $\mathcal{O}'_C \ni T \mapsto [T *]|_{\mathcal{S}} \in L(\mathcal{S}, \mathcal{S})$. This topology will be called the *strong operator topology*.

Theorem 2. The strong projective topology in \mathcal{O}'_C is no weaker than the strong operator topology.

Proof. The topology in $L_b(\mathcal{S}, \mathcal{S})$ is determined by the system of seminorms

(2.9)
$$p_{\mu,\alpha,A}(L) = \sup_{\varphi \in A, \, x \in \mathbb{R}^n} (1+|x|)^{\mu} |\partial^{\alpha}(L\varphi)(x)|$$

where L denotes an operator belonging to $L_b(\mathcal{S}, \mathcal{S})$, and the entities labelling the system are: bounded subsets A of \mathcal{S} , non-negative numbers μ , and multiindices $\alpha \in \mathbb{N}_0^n$. Since convolution commutes with differentiations, for operators of the form L = T * the system of seminorms (2.9) is equivalent to the system

(2.10)
$$\{q_{\mu,A} : \mu \in [0,\infty), A \text{ a bounded subset of } \mathcal{S}\}$$

where

(2.11)
$$q_{\mu,A}(T) = \sup_{\varphi \in A, \, x \in \mathbb{R}^n} (1+|x|)^{\mu} |(T * \varphi)(x)| = \sup_{\varphi \in A, \, x \in \mathbb{R}^n} |\tilde{T}((1+|\cdot|)^{\mu} * \varphi^{\vee})|$$

for $T \in \mathcal{O}'_C$. Theorem 3 follows once it is proved that whenever $\mu \in [0, \infty]$ and A is a bounded subset of \mathcal{S} , then

(2.12)
$$B = \{(1+|\cdot|)^{\mu} * \varphi^{\vee} : \varphi \in A\}$$

is a bounded subset of \tilde{S}_{μ} , i.e. $\sup_{\phi \in B} \rho_{\mu,\alpha}(\phi) < \infty$ for every $\alpha \in \mathbb{N}_0^n$. But if B has the form (2.12) and $\lambda \in]\mu + n, \infty[$, then

$$\sup_{\phi \in B} \rho_{\mu,\alpha}(\phi) = \sup_{\varphi \in A, \, x \in \mathbb{R}^n} (1+|x|)^{-\mu} \left| \int_{\mathbb{R}^n} (1+|x-y|)^{\mu} \partial^{\alpha}(\varphi^{\vee})(y) \, dy \right|$$

$$\leq \sup_{\varphi \in A, \, x \in \mathbb{R}^n} \rho_{-\lambda,\alpha}(\varphi) \int_{\mathbb{R}^n} (1+|x|)^{-\mu} (1+|x-y|)^{\mu} (1+|y|)^{-\lambda} \, dy$$

$$\leq \sup_{\varphi \in A} \rho_{-\lambda,\alpha}(\varphi) \int_{\mathbb{R}^n} (1+|y|)^{\mu-\lambda} \, dy$$

where the last term is finite because A is a bounded subset of S, and $\mu - \lambda < -n$. \Box

3. Equicontinuity and boundedness

Theorem 3. For every set $\{T_{\iota} : \iota \in J\} \subset S'$ of distributions the following four conditions are equivalent:

- (a) for every $\iota \in J$ the distribution T_{ι} can be (uniquely) extended to a linear functional \tilde{T}_{ι} continuous on \mathcal{O}_{C} , and $\{\tilde{T}_{\iota} : \iota \in J\}$ is an equicontinuous set of linear functionals on \mathcal{O}_{C} ,
- (a)' for every $\iota \in J$ the distribution T_{ι} can be (uniquely) extended to a linear functional \tilde{T}_{ι} continuous on \mathcal{O}_{C} , and $\{\tilde{T}_{\iota} : \iota \in J\}$ is a bounded subset of $(\mathcal{O}_{C})'$ in the strong projective topology,
- (b) $\{[T_{\iota} *]|_{\mathcal{S}} : \iota \in J\}$ is an equicontinuous subset of $L(\mathcal{S}, \mathcal{S})$,
- (b)' $\{[T_{\iota} *]|_{\mathcal{S}} : \iota \in J\}$ is a bounded subset of $L_b(\mathcal{S}, \mathcal{S})$.

Proof. From Theorem 2 we know that (a) \Leftrightarrow (b). Moreover, the space S is barrelled as a Fréchet space, and \mathcal{O}_C is barrelled as the inductive limit of Fréchet (and hence barrelled) spaces. From barrelledness of \mathcal{O}_C and S the equivalences (a) \Leftrightarrow (a)' and (b) \Leftrightarrow (b)' follow in view of [O, Sect. 4.2, Theorem 4.16] or [B, Sect. III.3.4, Theorem 1, and Sect. III.3.6, Proposition 7 and Theorem 2].

4. Coincidence of the strong operator topology and the strong projective topology on bounded subsets of \mathcal{O}'_C

By Theorems 2 and 3 the strong projective topology in \mathcal{O}'_C is no weaker than the strong operator topology in \mathcal{O}'_C , and the bounded subsets of \mathcal{O}'_C are the same for both the topologies. The following theorem implies that both topologies coincide on bounded subsets of \mathcal{O}'_C .

Theorem 4. Let $(T_{\iota})_{\iota \in J}$ be a net in \mathcal{O}'_{C} . If the net $([T_{\iota} *]|_{\mathcal{S}})_{\iota \in J}$ of convolution operators is bounded and is convergent in $L_b(\mathcal{S}, \mathcal{S})$, then the net $(T_{\iota})_{\iota \in J}$ is convergent in the projective topology of \mathcal{O}'_{C} .

Proof. Suppose that the net $([T_{\iota}*]|_{\mathcal{S}})_{\iota\in J}$ is bounded and converges to zero in $L_b(\mathcal{S},\mathcal{S})$. Let ψ and η be non-negative C^{∞} -functions on \mathbb{R}^n such that $\operatorname{supp} \psi \subset \{x \in \mathbb{R}^n : |x| \leq 2\}$, $\operatorname{supp} \eta \subset \{x \in \mathbb{R}^n : |x| \geq 1\}$, and $\psi(x) + \eta(x) = 1$ for every $x \in \mathbb{R}^n$. For every r > 0 and $x \in \mathbb{R}^n$ let $\psi_r(x) = \psi(r^{-1}x)$, $\eta_r(x) = \eta(r^{-1}x)$. If r > 0

JAN KISYŃSKI

is fixed, then ψ_r and η_r are non-negative C^{∞} -functions on \mathbb{R}^n , $\sup \psi_r \subset \{x \in \mathbb{R}^n : |x| \le 2r\}$, $\sup \eta_r \subset \{x \in \mathbb{R}^n : |x| \ge r\}$, $\psi_r(x) + \eta_r(x) = 1$ for every $x \in \mathbb{R}^n$, and (4.1) for every $r_0 > 0$ the set $\{\eta_r : r \ge r_0\}$ is a bounded subset of C_b^{∞} .

Whenever $\mu \in [0, \infty[$ and a bounded subset **B** of \tilde{S}_{μ} are fixed, then $\sup_{\phi \in \mathbf{B}} |\tilde{T}_{\iota}(\phi)| \leq A_{r,\iota} + B_r$ for every r > 0 and $\iota \in J$ where $A_{r,\iota} = \sup_{\phi \in \mathbf{B}} |\tilde{T}_{\iota}(\psi_r \phi)|$, $B_r = \sup_{\iota \in J, \phi \in \mathbf{B}} |\tilde{T}_{\iota}(\eta_r \phi)|$. Hence, in view of the definition of the strong projective topology in \mathcal{O}'_C , Theorem 5 follows once it is proved that

(4.2) $\lim A_{r,\iota} = 0 \quad \text{for every fixed } r > 0,$

$$(4.3)\qquad\qquad\qquad\lim_{r\to\infty}B_r=0$$

If r > 0 is fixed and **B** is a bounded subset of \tilde{S}_{μ} , then $C = \{\phi_r \phi : \phi \in \mathbf{B}\}$ is a bounded subset of $C_c^{\infty}(\mathbb{R}^n)$ and, a fortiori, a bounded subset of S. It follows that

$$\lim_{\iota} A_{r,\iota} = \lim_{\iota} \sup_{\varphi \in C} |T_{\iota}(\varphi)| = \lim_{\iota} \sup_{\varphi \in C} |[T_{\iota} * \varphi^{\vee}](0)| = 0.$$

so that condition (4.2) is satisfied.

Since the net of operators $([T_{\iota}*]|_{\mathcal{S}})_{\iota\in J} \subset L(\mathcal{S},\mathcal{S})$ is bounded in the topology of $L_b(\mathcal{S},\mathcal{S})$, from the equivalence (b)' \Leftrightarrow (a)' of Theorem 3 it follows that the net $(\tilde{T}_{\iota})_{\iota\in J} \subset (\mathcal{O}_C)'$ is bounded in the strong projective topology of $(\mathcal{O}_C)'$. The proof of (4.3) will be based on the inequality (1.1) and the corresponding lemma from Section 1. Suppose that $r_0 > 0$, $\mu \ge 0$ and $\lambda > 0$ are fixed and **B** is a bounded subset of \tilde{S}_{μ} . Then $\mathbf{C} := \{(1 + |\cdot|^2)^{\lambda/2}\phi : \phi \in \mathbf{B}\}$ is a bounded subset of $\tilde{S}_{\mu+\lambda}$. Whenever $r \ge r_0 \ge 1$, then

$$(4.4) \quad B_{r} = \sup_{\iota \in J, \phi \in \mathbf{C}} |\tilde{T}_{\iota}((1+|\cdot|^{2})^{-\lambda/2}\eta_{r}\phi)| \\ \leq (1+r^{2})^{-\lambda/2} \sup_{\iota \in J, \phi \in \mathbf{C}} \left|\tilde{T}_{\iota}\left(\left(\frac{1+|\cdot|^{2}}{1+r^{2}}\right)^{-\lambda/2}\eta_{r}\phi\right)\right| \leq (1+r_{0})^{-\lambda/2} \sup_{\iota \in J, \psi \in \mathbf{D}} |\tilde{T}_{\iota}(\psi)|$$

where

$$\mathbf{D} = \left\{ \left(\frac{1+|\cdot|^2}{1+r^2}\right)^{-\lambda/2} \eta_r \phi : r \ge 1, \ \phi \in \mathbf{C} \right\}.$$

Since $\operatorname{supp}(\eta, \phi) \subset \{x \in \mathbb{R}^n : |x| \geq r\}$, from (4.1), (1.1), and the Leibniz formula one infers that, together with **C**, also **D** is a bounded subset of $\tilde{S}_{\mu+\lambda}$. Since the strong projective topology in $(\mathcal{O}_C)'$ coincides with the topology of uniform convergence on subsets of \mathcal{O}_C belonging to $\bigcup_{\mu \in [0,\infty]} \tilde{B}_{\mu}$, it follows that

(4.5)
$$\sup_{\iota \in J, \, \psi \in \mathbf{D}} |\tilde{T}_{\iota}(\psi)| < \infty.$$

It remains to observe that (4.4) and (4.5) imply (4.3).

References

- [B] N. Bourbaki, Éléments de Mathématique. Livre V, Espaces Vectoriels Topologiques, Hermann, Paris, 1953–1955; Russian transl.: Moscow, 1959.
- [E] R. E. Edwards, On factor functions, Pacific J. Math. 5 (1955), 367–378.
- [H] J. Horváth, Topological Vector Spaces and Distributions, Dover Publ., 2012.
- [K] V. K. Khoan, Distributions, Analyse de Fourier, Opérateurs aux Dérivées Partielles, Vols. 1, 2, Vuibert, Paris, 1972.
- [O] M. S. Osborne, Locally Convex Spaces, Springer, 2014.

- [R-R] A. P. Robertson and W. Robertson, *Topological Vector Spaces*, Cambridge Univ. Press, 1964; Russian transl.: Moscow, 1967.
- [S] L. Schwartz, *Théorie des Distributions*, nouvelle éd., Hermann, Paris, 1966.