
ON THE LOCALLY CONVEX SPACE OF RAPIDLY

DECREASING DISTRIBUTIONS

JAN KISYŃSKI

Abstract. It is proved that in the set O′
C of rapidly decreasing distributions

on Rn the two topologies yield the same bounded sets and coincide on bounded
sets:

(i) the projective topology corresponding to the inductive topology in the

predual space,
(ii) the operator topology related to the action of O′

C on S by convolution.

1. The space of rapidly decreasing distributions on Rn and its
predual space

1.1. The J. Horváth space OC of slowly increasing C∞-functions on Rn.
Let

C∞b =
{
ϕ ∈ C∞(Rn) : sup

x∈Rn
|∂αϕ(x)| <∞ for every α ∈ Nn0

}
,

C∞0 =
{
ϕ ∈ C∞(Rn) : lim

|x|→∞
|∂αϕ(x)| = 0 for every α ∈ Nn0

}
,

DLp = {ϕ ∈ C∞(Rn) : ∂αϕ ∈ Lp(Rn) for every α ∈ Nn0} if p ∈ [1,∞[.

Moreover, for µ ∈ R let

S̃µ = (1 + | · |2)µ/2C∞b , Sµ = (1 + | · |2)µ/2C∞0 , Spµ = (1 + | · |2)µ/2DLp .
All the spaces defined above are contained in C∞(Rn) and are topological Fréchet
spaces.

Lemma. Whenever µ ∈ R, the function fµ : Rn 3 x 7→ (1 + |x|2)µ/2 ∈ R+ belongs

to S̃µ. Moreover, whenever λ, µ ∈ R, multiplication by fµ yields isomorphisms of the

Fréchet spaces S̃λ onto S̃λ+µ, Sλ onto Sλ+µ, and Spλ onto Spλ+µ, and multiplication
by f−µ yields the inverse isomorphisms.

The above lemma is a consequence of the equality

(1.1) ∂α(1 + |x|2)µ/2 = (1 + |x|2)µ/2−|α|Pα(x)

in which Pα is a polynomial on Rn of degree no greater than |α|. The equality (1.1)
appears in [H, Sect. 2.5, Example 8] and can be proved by induction on the length
|α| of the multiindex α.

Corollary. Whenever µ ∈ R and λ ∈ ]n/p,∞[, there are continuous imbeddings

(1.2) Spµ ⊂ Sµ ⊂ S̃µ ⊂ S
p
µ+λ.
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From the Remark in [B, Sect. II.2.4] and from the imbeddings (1.2) it follows
that all the inductive limits

lim ind
µ→∞

S̃µ, lim ind
µ→∞

Sµ and lim ind
µ→∞

Spµ, p ∈ [1,∞[,

define the same locally convex space contained in C∞(Rn). This space, denoted by
OC , was discovered by J. Horváth (before 1966 when the first edition of his book
was published by Addison-Wesley). J. Horváth represented OC as lim indµ→∞ Sµ.
See [H, Sect. 2.12, Example 9].

1.2. The strong projective topology in (OC)′. The strong projective topology
in the space (OC)′ dual to OC is defined as the weakest locally convex topology
τ in (OC)′ such that for every µ ∈ [0,∞[ the locally convex space ((OC)′, τ) is

continuously imbedded in the strong dual space (S̃µ)′. The same holds when (S̃µ)′

is replaced by (Spµ)′ or (Sµ)′. In this connection let us stress that (Spµ)′ and (Sµ)′

have transparent form: (Spµ)′ = (1+|·|2)−µ/2(DL1)′ and (Sµ)′ = (1+|·|2)−µ/2(C∞0 )′

where (DL1)′ is the space of bounded distributions on Rn, and (C∞0 )′ is the space
of integrable distributions on Rn. See [S, Sect. VI.8] and [H, Sect. 4.11, Corollary
to Proposition 6].

For every µ ∈ [0,∞[ let B̃µ, Bµ and Bpµ denote the families of all bounded subsets

of the spaces S̃µ, Sµ and Spµ. The imbeddings (1.2) imply that⋃
µ∈[0,∞[

B̃µ =
⋃

µ∈[0,∞[

Bµ =
⋃

µ∈[0,∞[

Bpµ

Let U denote the common value of these unions. From [R-R, Sect. V.4, Propo-
sition 15] it follows that the strong projective topology in (OC)′ is equal to the
topology of uniform convergence on subsets of OC belonging to U . Since U is a
covering of OC by bounded subsets of OC , it follows that the strong projective
topology in (OC)′ is an S-topology. See [B, Sect. III.3.1].

1.3. The L. Schwartz space O′C of rapidly decreasing distributions. When-
ever µ ∈ R, the L. Schwartz space S of rapidly decreasing C∞-functions on Rn is
sequentially dense in S1

µ, and so S is sequentially dense in OC = lim indµ→∞ S1
µ in

the inductive topology. It follows that every T ∈ S ′ has at most one extension to a
continuous linear functional on OC . The L. Schwartz space O′C of rapidly decreasing
distributions on Rn is defined as follows. As a set,

(1.3) O′C = {T ∈ S ′ : T extends uniquely to a

continuous linear functional on OC}.

The topology in O′C is defined as the one induced from (OC)′ equipped with the
strong projective topology.

1.4. L. Schwartz’s original definition of O′C . In the original definition of O′C
formulated by L. Schwartz [S, Sect. VII.5] the space OC is not used. Since S is
dense in S1

µ, it follows that for every T ∈ S ′ and µ ∈ [0,∞[ there is at most one

Tµ ∈ (S1
µ)′ extending T . Schwartz’s definition of O′C is as follows. As a set,

O′C = {T ∈ S ′ : whenever µ ∈ [0,∞[, (1 + | · |2)µ/2T is continuous on S
in the topology induced from DL1}.
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Thus,

O′C = {T ∈ S ′ : whenever µ ∈ [0,∞[, T extends uniquely to a

continuous linear functional Tµ on S1
µ},

whence (1.3) follows by [B, Sect. II.2.2, Corollary to Proposition 1] or by [R-R,
Sect. V.2, Proposition 5]. Moreover L. Schwartz defined the topology in O′C by
distinguishing the class of convergent nets in O′C . Namely a net (Tι)ι∈J ⊂ O′C is
convergent if and only if for every µ ∈ [0,∞[ and B ∈ B1

µ the net of non-negative
numbers (supφ∈B |Tι,µ(φ)|)ι∈J is convergent. The last means that the L. Schwartz
topology in O′C coincides with the one induced from (OC)′ equipped with the strong
projective topology.

2. Rapidly decreasing distributions acting by convolution in S

The present section is devoted mainly to characterization of rapidly decreasing
distributions as those slowly increasing distributions, convolution with which maps
continuously S into S. Whenever φ ∈ C∞(Rn) and x ∈ Rn, we denote by φx the
translate of φ by x, i.e. the function φx : Rn 3 y 7→ φ(x + y) ∈ Rn. Following [K,
Vol. 2, Sect. CC.III.3o], by a periodic partition of unity on Rn we mean a partition
of unity {ϕz : z ∈ Zn} consisting of the translates of a function ϕ ∈ C∞c (Rn).

Proposition 1. For every set {Tι : ι ∈ J} ⊂ S ′ the following three conditions are
equivalent:

(a) {Tι : ι ∈ J} ⊂ S ′ is a set of distributions equicontinuous with respect to the
topology in S induced from OC ,

(b) {[Tι ∗]|S : ι ∈ J} is an equicontinuous set of operators belonging to L(S,S),
(c) whenever {ϕz : z ∈ Zn} is a periodic partition of unity on Rn, then∑

z∈Zn
sup
ι∈J
|Tι(ϕzφ)| <∞ for every φ ∈ OC .

For the main result of the present section it is superfluous to consider in Propo-
sition 1 the sets of distributions instead of single distributions. However, in sub-
sequent sections we shall use (a) and (b) for sets of distributions. We shall prove
(a)⇒(b)⇒(c)⇒(a). To this end, for C∞-functions ϕ on Rn, we shall use the semi-
norms

ρµ,α(ϕ) = sup
x∈Rn

(1 + |x|)−µ|∂αϕ(x)|.

For instance, the family of seminorms {ρ−µ,α : µ ∈ N, α ∈ Nn0} determines the
topology of the L. Schwartz space S of rapidly decreasing C∞-functions on Rn,
and for every fixed µ ∈ R the family of seminorms {ρµ,α : α ∈ Nn0} determines the

topology of the space S̃µ.

Proof of (a)⇒(b). If (a) holds, then for every µ ∈ [0,∞[ the set of distributions
{Tι : ι ∈ J} ⊂ S ′ is equicontinuous with respect to the topology induced in S from

S̃µ, i.e. for every µ ∈ [0,∞[ there are νµ ∈ N0 and Cµ ∈ [0,∞[ such that

(2.1) |Tι(ϕ)| ≤ Cµ sup
|α|≤νµ

ρµ,α(ϕ) for every ϕ ∈ S and ι ∈ J.
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It follows that whenever ϕ ∈ S, ι ∈ J and x ∈ Rn, then for every µ ∈ [0,∞[ one
has

|(Tι ∗ ϕ)(x) = |Tι((ϕx)∨)| ≤ Cµ sup
y∈Rn, |α|≤νµ

(1 + |y|)−µ|∂αϕ(x− y)|

≤ Cµ sup
|α|≤νµ

ρ−µ,α(ϕ) sup
y∈Rn

(1 + |y|)−µ(1 + |x− y|)−µ

≤ Cµ sup
|α|≤νµ

ρ−µ,α(ϕ)(1 + |x|)−µ

where the last inequality follows from the fact that 1 + |x| ≤ (1 + |y|)(1 + |x− y|).
Consequently, for every µ ∈ [0,∞[ there are νµ ∈ N0 and Cµ ∈ [0,∞[ such that

(2.2) ρ−µ,0(Tι ∗ ϕ) ≤ Cµ sup
|α|≤νµ

ρ−µ,α(ϕ) for every ϕ ∈ S and ι ∈ J.

Applying (2.2) to ∂βϕ in place of ϕ, we infer that for every µ ∈ [0,∞[ there are
νµ ∈ N0 and Cµ ∈ [0,∞[ such that

ρ−µ,β(Tι ∗ ϕ) ≤ Cµ sup
|α|≤νµ

ρ−µ,α+β(ϕ) for every ϕ ∈ S, ι ∈ J and β ∈ Nn0 ,

which implies (b). �

Proof of (b)⇒(c). Whenever ι ∈ J , ψ ∈ S and x ∈ Rn, then

Tι(ψ) = Tι((((ψx)∨)x)∨) = [Tι ∗ (ψx)∨](x),

so that for our periodic partition of unity consisting of shifts of a function ϕ ∈
C∞(Rn) we have

Tι(ϕzφ) = [Tι ∗ (ϕφ−z)
∨](−z).

Consequently, whenever ι ∈ J , κ ∈ [0,∞[ and φ ∈ C∞(Rn), then

(2.3) |Tι(ϕzφ)| ≤ ρ−κ,0(Tι ∗ (ϕφ−z)
∨) · (1 + |z|)−κ for every z ∈ Zn.

Assume now that (b) holds. Then (2.3) implies that for every κ ∈ [0,∞[ there are
Cκ ∈ [0,∞[, λκ ∈ [0,∞[ and νκ ∈ N such that, for every φ ∈ C∞(Rn) and z ∈ Zn,

sup
ι∈J
|Tι(ϕzφ)| ≤ Cκ · sup

|α|≤νκ
ρ−λκ,α((ϕφ−z)

∨) · (1 + |z|)−κ

≤ Cκ · sup
x∈Rn, |α|≤νκ

(1 + |x|)λκ |∂α(ϕ(x)φ(x− z))| · (1 + |z|)−κ

≤ Cκ(1 + r)λκ · sup
x∈Rn, |α|≤νκ

|∂α(ϕ(x)φ(x− z))| · (1 + |z|)−κ

where

r = sup{|x| : x ∈ suppϕ}.
From this, by the Leibniz formula for partial derivatives of a product of functions,
it follows that for every κ ∈ [0,∞[, φ ∈ C∞(Rn) and z ∈ Zn one has

(2.4) sup
ι∈J
|Tι(ϕzφ)| ≤ Dκ · sup

x∈z+suppϕ, |α|≤νκ
|∂αφ(x)| · (1 + |z|)−κ

where

Dκ = LCκ(1 + r)λκ sup
x∈Rn, |α|≤νκ

|∂αϕ(x)|,

L being an absolute constant equal to the maximum of the coefficients in the Leibniz
formula.
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Till now we assumed that (b) holds and φ is an arbitrary function belonging to
C∞(Rn). Henceforth we shall assume that (b) holds and φ ∈ OC . As a set, OC is

equal to
⋃
µ∈[0,∞[ S̃µ. If µ ∈ [0,∞[ and φ ∈ S̃µ then

sup
x∈z+suppϕ, |α|≤νκ

|∂αφ(x)| ≤ sup
|α|≤νκ

ρµ,α(φ) · (1 + r + |z|)µ

≤ sup
|α|≤νκ

ρµ,α(φ) · (1 + r)µ(1 + |z|)µ,

so that, by (2.4), for every κ ∈ [0,∞[ and z ∈ Zn one has

(2.5) sup
ι∈J
|Tι(ϕzφ)| ≤ Dκ sup

|α|≤νκ
ρµ,α(φ)(1 + r)µ(1 + |z|)µ−κ.

Fix now α ∈ ]n,∞[ and take a φ ∈ S̃µ where µ ∈ [0,∞[. Let κ = a + µ. Then,
by (2.5),

sup
ι∈J
|Tι(ϕzφ)| ≤M(φ) · (1 + |z|)−a for every z ∈ Zn,

where

M(φ) = Da+µ sup
|α|≤νa+µ

ρµ,α(φ)(1 + r)µ ∈ [0,∞[.

It follows that ∑
z∈Zn

sup
ι∈J
|Tι(ϕzφ)| ≤M(φ)

∑
z∈Zn

(1 + |z|)−a,

so that (c) will be proved if we show that the multiple series
∑
z∈Zn(1 + |z|)−a is

convergent.
To prove that convergence, fix ρ ∈ [n1/2,∞[ and for every z ∈ Zn define Bz :=

{x ∈ Rn : |x − z| ≤ ρ}. Then {Bz : z ∈ Zn} is a covering of Rn. If x ∈ Bz, then
1 + |x| ≤ 1 + |z| + ρ ≤ (1 + |z|)(1 + ρ), so that (1 + |z|)−a ≤ (1 + ρ)a(1 + |x|)−a.
Hence

(1 + |z|)−a ≤ V −1(1 + ρ)a
∫
Bz

(1 + |x|)−a dx for every z ∈ Zn,

where V is the volume of Bz, independent of z. It follows that∑
z∈Zn

(1 + |z|)−a ≤ KV −1(1 + ρ)a
∫
Rn

(1 + |x|)−a dx <∞,

where K denotes the order of the covering {Bz : z ∈ Zn} of Rn. �

Proof of (c)⇒(a). Suppose that (c) holds. We shall construct the extensions T̃ι of
the distributions Tι by the series expansions

(2.6) T̃ι(φ) =
∑
z∈Zn

Tι(ϕzφ), φ ∈ OC ,

where {ϕz : z ∈ Zn} is a periodic partition of unity on Rn consisting of translates
of a function ϕ ∈ C∞c (Rn). From (c) it follows that for every φ ∈ OC the numerical
multiple series in (2.6) is absolutely convergent. For every ι ∈ J , k ∈ N and φ ∈ OC
let

T̃ι,k(φ) :=
∑
|z|≤k

Tι(ϕzφ).

Then

(2.7) each T̃ι,k is a continuous linear functional on OC ,
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because for every z ∈ Zn the mapping OC 3 φ 7→ ϕzφ ∈ C∞c (Rn) is continuous.

Whenever ι ∈ J and φ ∈ OC are fixed, by (2.4) the sequence (T̃ι,k(φ))k∈N of complex
numbers is convergent and

(2.8) lim
k→∞

T̃ι,k(φ) = T̃ι(φ).

Since, being the inductive limit of Fréchet spaces, OC is a barrelled space, from
(2.7) and (2.8), by the Banach–Steinhaus theorem, it follows that

whenever ι ∈ J , then T̃ι is a continuous linear functional on OC .

Furthermore, from (c) and (2.8) it follows that whenever φ ∈ OC , then {T̃ι,k(φ) :

ι ∈ J, k ∈ N} and hence also {T̃ι(φ) : ι ∈ J} are bounded subsets of C. Since OC
is barrelled, from boundedness of the sets {T̃ι(φ) : ι ∈ J}, φ ∈ OC , and from [B,

Sect. III.3.6, Theorem 2] it follows that {T̃ι(φ) : ι ∈ J} is an equicontinuous set of
linear functionals on OC .

It remains to prove that T̃ι|S = Tι for every ι ∈ J . To this end, notice that

if φ ∈ C∞c (Rn) then T̃ι(φ) = Tι(φ) because T̃ι,k(φ) = Tι(φ) for every k so large

that suppϕz ∩ suppφ = ∅ whenever |z| > k. The equality T̃ι(φ) = Tι(φ) for φ ∈ S
is a consequence of the analogous equality for φ ∈ C∞c (Rn) and dense continuous
imbeddings C∞c (Rn) ⊂ S ⊂ OC . �

Theorem 1. Whenever T ∈ S ′, then T ∈ O′C if and only if [T ∗]|S ∈ L(S,S).
Moreover, if T ∈ S ′ and T ∗ S ⊂ S, then [T ∗]|S ∈ L(S,S).

Proof. The first assertion of the theorem follows from [E, Theorem 2] and is also a
consequence of the equivalence (a)⇔(b) in Proposition 1. The proof of the second
assertion is as follows. If T ∈ S ′ and T∗S ⊂ S, then, by [H, Sect. 4.11, Proposition 7],
[T ∗]|S ⊂ L(S,OC), so that [T ∗]|S is a closed operator from S into S. Since S is an
F -space, by the closed graph theorem, closedness of [T ∗]|S implies its continuity.

�

Since [T ∗]|S ∈ L(S,S) for every T ∈ O′C , we can equip O′C with the topology
induced from Lb(S,S) via the mapping O′C 3 T 7→ [T ∗]|S ∈ L(S,S). This topology
will be called the strong operator topology.

Theorem 2. The strong projective topology in O′C is no weaker than the strong
operator topology.

Proof. The topology in Lb(S,S) is determined by the system of seminorms

(2.9) pµ,α,A(L) = sup
ϕ∈A, x∈Rn

(1 + |x|)µ|∂α(Lϕ)(x)|

where L denotes an operator belonging to Lb(S,S), and the entities labelling the
system are: bounded subsets A of S, non-negative numbers µ, and multiindices
α ∈ Nn0 . Since convolution commutes with differentiations, for operators of the
form L = T ∗ the system of seminorms (2.9) is equivalent to the system

(2.10) {qµ,A : µ ∈ [0,∞), A a bounded subset of S}

where

(2.11) qµ,A(T ) = sup
ϕ∈A, x∈Rn

(1 + |x|)µ|(T ∗ ϕ)(x)| = sup
ϕ∈A, x∈Rn

|T̃ ((1 + | · |)µ ∗ ϕ∨)|
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for T ∈ O′C . Theorem 3 follows once it is proved that whenever µ ∈ [0,∞[ and A is
a bounded subset of S, then

(2.12) B = {(1 + | · |)µ ∗ ϕ∨ : ϕ ∈ A}

is a bounded subset of S̃µ, i.e. supφ∈B ρµ,α(φ) <∞ for every α ∈ Nn0 . But if B has
the form (2.12) and λ ∈ ]µ+ n,∞[, then

sup
φ∈B

ρµ,α(φ) = sup
ϕ∈A, x∈Rn

(1 + |x|)−µ
∣∣∣∣ ∫

Rn
(1 + |x− y|)µ∂α(ϕ∨)(y) dy

∣∣∣∣
≤ sup
ϕ∈A, x∈Rn

ρ−λ,α(ϕ)

∫
Rn

(1 + |x|)−µ(1 + |x− y|)µ(1 + |y|)−λ dy

≤ sup
ϕ∈A

ρ−λ,α(ϕ)

∫
Rn

(1 + |y|)µ−λ dy

where the last term is finite because A is a bounded subset of S, and µ−λ < −n. �

3. Equicontinuity and boundedness

Theorem 3. For every set {Tι : ι ∈ J} ⊂ S ′ of distributions the following four
conditions are equivalent:

(a) for every ι ∈ J the distribution Tι can be (uniquely) extended to a linear

functional T̃ι continuous on OC , and {T̃ι : ι ∈ J} is an equicontinuous set
of linear functionals on OC ,

(a)′ for every ι ∈ J the distribution Tι can be (uniquely) extended to a linear

functional T̃ι continuous on OC , and {T̃ι : ι ∈ J} is a bounded subset
of (OC)′ in the strong projective topology,

(b) {[Tι ∗]|S : ι ∈ J} is an equicontinuous subset of L(S,S),
(b)′ {[Tι ∗]|S : ι ∈ J} is a bounded subset of Lb(S,S).

Proof. From Theorem 2 we know that (a)⇔(b). Moreover, the space S is barrelled
as a Fréchet space, and OC is barrelled as the inductive limit of Fréchet (and
hence barrelled) spaces. From barrelledness of OC and S the equivalences (a)⇔(a)′

and (b)⇔(b)′ follow in view of [O, Sect. 4.2, Theorem 4.16] or [B, Sect. III.3.4,
Theorem 1, and Sect. III.3.6, Proposition 7 and Theorem 2]. �

4. Coincidence of the strong operator topology and the strong
projective topology on bounded subsets of O′C

By Theorems 2 and 3 the strong projective topology in O′C is no weaker than the
strong operator topology in O′C , and the bounded subsets of O′C are the same for
both the topologies. The following theorem implies that both topologies coincide
on bounded subsets of O′C .

Theorem 4. Let (Tι)ι∈J be a net in O′C . If the net ([Tι ∗]|S)ι∈J of convolution op-
erators is bounded and is convergent in Lb(S,S), then the net (Tι)ι∈J is convergent
in the projective topology of O′C .

Proof. Suppose that the net ([Tι ∗]|S)ι∈J is bounded and converges to zero in
Lb(S,S). Let ψ and η be non-negative C∞-functions on Rn such that suppψ ⊂
{x ∈ Rn : |x| ≤ 2}, supp η ⊂ {x ∈ Rn : |x| ≥ 1}, and ψ(x) + η(x) = 1 for every
x ∈ Rn. For every r > 0 and x ∈ Rn let ψr(x) = ψ(r−1x), ηr(x) = η(r−1x). If r > 0
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is fixed, then ψr and ηr are non-negative C∞-functions on Rn, suppψr ⊂ {x ∈ Rn :
|x| ≤ 2r}, supp ηr ⊂ {x ∈ Rn : |x| ≥ r}, ψr(x) + ηr(x) = 1 for every x ∈ Rn, and

(4.1) for every r0 > 0 the set {ηr : r ≥ r0} is a bounded subset of C∞b .

Whenever µ ∈ [0,∞[ and a bounded subset B of S̃µ are fixed, then supφ∈B |T̃ι(φ)|
≤ Ar,ι + Br for every r > 0 and ι ∈ J where Ar,ι = supφ∈B |T̃ι(ψrφ)|, Br =

supι∈J, φ∈B |T̃ι(ηrφ)|. Hence, in view of the definition of the strong projective topol-
ogy in O′C , Theorem 5 follows once it is proved that

lim
ι
Ar,ι = 0 for every fixed r > 0,(4.2)

lim
r→∞

Br = 0.(4.3)

If r > 0 is fixed and B is a bounded subset of S̃µ, then C = {φrφ : φ ∈ B} is a
bounded subset of C∞c (Rn) and, a fortiori, a bounded subset of S. It follows that

lim
ι
Ar,ι = lim

ι
sup
ϕ∈C
|Tι(ϕ)| = lim

ι
sup
ϕ∈C
|[Tι ∗ ϕ∨](0)| = 0,

so that condition (4.2) is satisfied.
Since the net of operators ([Tι ∗]|S)ι∈J ⊂ L(S,S) is bounded in the topology

of Lb(S,S), from the equivalence (b)′⇔(a)′ of Theorem 3 it follows that the net

(T̃ι)ι∈J ⊂ (OC)′ is bounded in the strong projective topology of (OC)′. The proof
of (4.3) will be based on the inequality (1.1) and the corresponding lemma from
Section 1. Suppose that r0 > 0, µ ≥ 0 and λ > 0 are fixed and B is a bounded
subset of S̃µ. Then C := {(1 + | · |2)λ/2φ : φ ∈ B} is a bounded subset of S̃µ+λ.
Whenever r ≥ r0 ≥ 1, then

(4.4) Br = sup
ι∈J, φ∈C

|T̃ι((1 + | · |2)−λ/2ηrφ)|

≤ (1 + r2)−λ/2 sup
ι∈J, φ∈C

∣∣∣∣T̃ι((1 + | · |2

1 + r2

)−λ/2
ηrφ

)∣∣∣∣ ≤ (1 + r0)−λ/2 sup
ι∈J, ψ∈D

|T̃ι(ψ)|

where

D =

{(
1 + | · |2

1 + r2

)−λ/2
ηrφ : r ≥ 1, φ ∈ C

}
.

Since supp(η, φ) ⊂ {x ∈ Rn : |x| ≥ r}, from (4.1), (1.1), and the Leibniz formula one

infers that, together with C, also D is a bounded subset of S̃µ+λ. Since the strong
projective topology in (OC)′ coincides with the topology of uniform convergence on

subsets of OC belonging to
⋃
µ∈[0,∞[ B̃µ, it follows that

(4.5) sup
ι∈J, ψ∈D

|T̃ι(ψ)| <∞.

It remains to observe that (4.4) and (4.5) imply (4.3). �
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