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Abstract. The paper contains a complete proof of the theorem of L. Schwartz
on Fourier exchange between convolution and multiplication. The main tool is
the L. Schwartz one-to-one correspondence between distributions on Rn and
translation invariant operators from the test space into C∞(Rn).

1. Content of the paper

We consider the L. Schwartz space S ′ of slowly increasing distributions on Rn,
and the L. Schwartz space O′C of rapidly decreasing distributions on Rn. OC denotes
the predual space of O′C , determined by J. Horváth, such that O′C = {T ∈ S ′ :

T extends uniquely to a continuous linear functional T̃ on OC}. We use the one-
to-one correspondence between distributions U ∈ S ′ and the operators AU : S 3
φ 7→ U ∗ φ ∈ C∞. If T ∈ O′C and U ∈ S ′, then the convolutions U ∗ T and T ∗ U
are defined by the equalities AU∗T = AU ◦ AT and AT∗U = AT̃ ◦ AU . It turns out
that the distributions U ∗ T ∈ S ′ and T ∗ U ∈ S ′ so defined are equal, and that
(U ∗ T )|C∞c = (T ∗ U)|C∞c is equal to the commutative convolution of T with U
defined by the general method involving tensor products.

By approximating the operators AU , U ∈ S ′, by operators Aφ, φ ∈ C∞c , we prove
the L. Schwartz theorem on Fourier exchange between convolution and multiplica-
tion for convolution of T ∈ O′C and U ∈ S ′. Let us stress that the original proof of
this theorem [S2, Sect. VII.8, Theorem XV] was incomplete (see L. Schwartz’s own
remark in [S2, pp. 269–270]). Notice also that the proof of Schwartz’s theorem was
announced (but not published) by J. Horváth [H1, Sect. 4.11, Theorem 3].

2. Convolution and Fourier transformation in S

The present section contains a concise presentation of the fundamental properties
of convolution and Fourier transformation in the L. Schwartz space S of rapidly
decreasing functions on Rn. The subsequent sections are devoted to extension of
these properties onto the dual space of S, i.e. the space S ′ of slowly increasing
distributions on Rn.

Convolution on S × S is a continuous bilinear symmetric mapping S × S → S
denoted by ∗ and defined by

(2.1) (ϕ ∗ ψ)(x) =

∫
Rn
ϕ(y)ψ(x− y) dy for ϕ,ψ ∈ S and x ∈ Rn.
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The Fourier transformation is a continuous linear mapping S → S denoted by F
and defined by

(Fϕ)(x) =

∫
Rn
e−i〈x,y〉ϕ(y) dy for ϕ ∈ S and x ∈ Rn.

It follows from Fubini’s theorem that whenever ϕ,ψ ∈ S, then
(2.2) F(ϕ ∗ ψ) = (Fϕ) · (Fψ) (the Fourier exchange equality)

and

(2.3) 〈Fϕ,ψ〉 = 〈ϕ,Fψ〉 (the Parseval equality)

where 〈ϕ,ψ〉 =
∫
Rn ϕ(x)ψ(x) dx.

Now we are going to prove that the Fourier transformation F : S → S is an
automorphism of S such that F−1 = (2π)−nF∨. To this end for every t ∈ ]0,∞[ we
consider the gaussian function Gt on Rn, and the normalized gaussian function Nt
on Rn, defined by

Gt(x) = exp

(
− t|x|

2

2

)
and Nt(x) = (2πt)−n/2 exp

(
−|x|

2

2t

)
for x ∈ Rn. Starting from the one-dimensional equality

(2π)−1/2
∫
R
e−ixy exp

(
−y

2

2

)
dy = exp

(
−x

2

2

)
whose proof can be found in the Remark at the end of [Y, Sect. VI.1], one concludes
that

Nt = (2π)−nF(Gt).

From now on, we follow [M, Sect. III.2]. Let ϕ ∈ S, t ∈ ]0,∞[ and x ∈ Rn. By
the Fubini–Tonelli theorem the integrability on R2n of the function R2n 3 (y, z) 7→
|ϕ(y)| exp(−t|z|2/2) ∈ [0,∞[ implies that

[Nt ∗ ϕ](x) = (2π)−n
∫
Rn

[∫
Rn
e−i〈x−y,z〉 exp

(
− t|z|

2

2

)
dz

]
ϕ(y) dy(2.4)

= (2π)−n
∫
Rn
e−i〈x,z〉 exp

(
− t|z|

2

2

)[∫
Rn
e−i〈y,z〉ϕ(−y) dy

]
dz

= (2π)−n
∫
Rn
e−i〈x,z〉 exp

(
− t|z|

2

2

)
[F(ϕ∨)](z) dz.

Now we shall pass to the limit as t ↓ 0 in both sides of (2.4). Since F(ϕ∨) ∈ S and
exp(−t|z|2/2) ≤ 1 for t ≥ 0, and since limt↓0 exp(−t|z|2/2) = 1 almost uniformly
with respect to z ∈ Rn, it follows by the Lebesgue dominated convergence theorem
that when t ↓ 0, the right hand side of (2.4) converges to

(2π)−n
∫
Rn
e−i〈x,z〉[F(ϕ∨)](z) dz = (2π)−n[[F ◦ F ](ϕ∨)](x).

On the other hand,∫
Rn
Nt(x) dx =

∫
Rn
N1(x) dx = (2π)−n/2

∫
Rn
G1(x) dx = 1,

and limt↓0 sup|x|≥rNt(x) = 0 for every r ∈ ]0,∞[, whence limt↓0[Nt ∗ϕ](x) = ϕ(x).
Consequently, by (2.4),

(2.5) ϕ = (2π)−n[F ◦ F ](ϕ∨) for every ϕ ∈ S.
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From (2.5) it follows that the mapping F : S → S is invertible and maps S onto S,
and

(2.6) F−1 = (2π)−nF∨.
Notice that the operator semigroup ([Nt ∗]|S)t>0 ⊂ L(S,S) is the well-known

heat (or diffusion) one-parameter convolution semigroup. By (2.4) and (2.6) we
have

[Nt ∗]|S = [F−1 ◦ (Gt ·) ◦ F ]|S ,
so that ([Gt ·]|S)t>0 ⊂ L(S,S) is the corresponding one-parameter semigroup of
Fourier multipliers. This correspondence is an example of Fourier exchange between
convolution and multiplication.

3. Locally convex spaces associated with slowly increasing
distributions

In the space D′ of all distributions on Rn L. Schwartz distinguished the linear
subset S ′ of slowly increasing distributions on Rn in which Fourier transformation
acts transparently. There are two equivalent definitions of S ′:

(a) definition by distributional differentiation of continuous functions of poly-
nomial growth: for every µ ∈ Rn let Bµ ⊂ C(Rn) be the Banach space with
the norm ‖f‖µ = supx∈Rn(1 + |x|)−µ|f(x)|. Then

S ′ = {U ∈ D′(Rn) : U = ∂αf for some α ∈ Nn0 and f ∈ Bµ where µ ∈ [0,∞[},
(b) definition by duality : S ′ is the locally convex space of continuous linear

functionals on the space S of rapidly decreasing C∞-functions on Rn.
The equivalence of these two definitions is a consequence of [S2, Sect. VII.4, Theo-
rem VI.10, p. 239].

In the theory of slowly increasing distributions there appear locally convex spaces
of C∞-functions φ on Rn whose topology can be determined by seminorms of the
form

ρµ,α(φ) = sup
x∈Rn

(1 + |x|)−µ|∂αφ(x)|,

where µ ∈ R and α ∈ Nn0 .

1. For every fixed µ ∈ R let

S̃µ = {φ ∈ C∞(Rn) : ρµ,α(φ) <∞ for every α ∈ Nn0}.
Endowed with the topology determined by the family of seminorms {ρµ,α : α ∈ Nn0},
S̃µ is a Fréchet space. Examples of functions φ ∈ S̃µ are φ = f ∗ ψ where f ∈ Bµ
and ψ ∈ C∞c (Rn). By [H1, Sect. 2.5, Example 8] for every µ ∈ R the function
φ(x) = (1 + |x|2)µ/2 belongs to S̃µ.

2. S :=
⋂
µ∈R S̃µ is the L. Schwartz space of infinitely differentiable rapidly

decreasing functions on Rn. Endowed with the topology determined by the family
of seminorms {ρ−µ,α : µ ∈ N, α ∈ Nn0}, S is a Fréchet space.

3. OC :=
⋃
µ∈R S̃µ = {φ ∈ C∞(Rn): there is µ ∈ [0,∞[ such that ρµ,α(φ) < ∞

for every α ∈ Nn0} is the space of some (not all) infinitely differentiable functions
on Rn whose partial derivatives of all orders have at most polynomial growth at
infinity (for every φ ∈ OC the same growth for all partial derivatives). The natural
topology in OC is the inductive topology determined by the family {S̃µ : µ ∈ R}
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of subspaces of OC . In this sense we write OC = lim indµ→∞ S̃µ. The space OC
endowed with an inductive topology (determined by spaces Sµ similar to S̃µ) was
introduced by J. Horváth in [H1, Sect. 2.12, Example 9]. The inductive topology
in OC is no weaker than the topology induced in OC from S ′ equipped with the
strong dual topology.

It is remarkable that whenever µ ∈ [0,∞[, then C∞0 is not dense in S̃µ, but C∞c is
dense in OC = lim indµ→∞ S̃µ. Indeed, let (χk)k∈N ⊂ C∞c be a sequence such that
χk(x) = 1 whenever |x| ≤ k, and supk∈N, x∈Rn |∂αχk(x)| < ∞ for every α ∈ Nn0 . If
φ ∈ OC , then φ ∈ S̃µ for some µ ∈ [0,∞[, χkφ ∈ C∞c for every k ∈ N, and whenever
ε > 0, then limk→∞ χkφ = φ in the topology of the Fréchet space S̃µ+ε, so that a
fortiori limk→∞ χkφ = φ in the topology of OC .

Our spaces S̃µ differ from the spaces Sµ = (1 + |x|)µ/2C∞0 used by J. Horváth.
But S̃µ−ε ⊂ Sµ ⊂ S̃µ for every µ ∈ R and ε ∈ ]0,∞[, so that OC is the same (see
the Remark in [B, Sect. II.2.4]).

4. An important non-Fréchet space of C∞-functions on Rn is the space OM of
all functions whose partial derivatives have at most polynomial growth, that is,

OM = {φ ∈ C∞ : for every α ∈ Nn0 there is µ ∈ [0,∞[ such that ρµ,α(φ) <∞}.
The space OM coincides with the algebra of multipliers of S. An example of φ ∈
OM \ OC is φ(x) = exp(i|x|2).

Apart from the above spaces of C∞-functions and the space S ′ of slowly increas-
ing distributions we shall use the L. Schwartz limes-space O′C of rapidly decreasing
distributions on Rn. According to J. Horváth [H1, Sect. 4.11], as a set,

O′C = {T ∈ S ′ : T extends to a continuous linear functional T̃ on OC}.
The extension is unique, because S is dense in OC . By [E1, Theorem 2], as a set,

(3.1) O′C = {T ∈ S ′ : [T ∗]|S ∈ L(S,S)},
so that it is reasonable to equipO′C with the operator topology induced from Lb(S,S)
via the mapping O′C 3 T 7→ [T ∗]|S ∈ L(S,S). In accordance with [S2, Sect. VII.5,
Theorem IX.10] one has
(3.2) O′C = {T ∈ S ′: for every µ ∈ ]0,∞[ the distribution T can be represented as a

finite sum T =
∑
|γ|≤G ∂

γfγ where fγ ∈ B−µ for every γ ∈ Nn0 with |γ| ≤ G}.
Here

B−µ =
{
f ∈ C(Rn) : sup

x∈Rn
|x|µ|f(x)| <∞

}
for µ ∈ [0,∞[.

For instance, if T ∈ S ′ is represented by the function φ(x) = exp(i|x|2), x ∈ Rn,
then T ∈ O′C . The proof based on (3.2) (and on Hermite polynomials) is given in
[S2, Sect. VII.5, Example on p. 245].

4. Convolutions of distributions with C∞-functions

For every function f on Rn and every x ∈ Rn we define the translate of f by x to
be the function τxf on Rn given by (τxf)(y) = f(x+y) for y ∈ Rn. In this definition
τx is the operator of translation by x whose domain consists of all functions defined
on Rn. If U ∈ S ′ and φ ∈ S then the convolution U ∗φ is defined as the C∞-function
on Rn given by [U ∗ φ](x) = U((τxφ)∨) for x ∈ Rn. Whenever T̃ ∈ (OC)′, then for
every ψ ∈ OC the convolution T̃ ∗ ψ is defined as the function on Rn given by
[T̃ ∗ ψ](x) = T̃ ((τxψ)∨) for x ∈ Rn. In order to be sure that the above definitions
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are correct we have to know that the spaces S and OC are invariant with respect
to translations and reflections. For S this is well known, and for OC it follows from
the estimation (4.1) below.

Theorem 4.1.

(i) If U ∈ S ′, then [U ∗]|S ∈ L(S,OC).
(ii) T ∈ O′C if and only if [T ∗]|S ∈ L(S,S).
(iii) If T ∈ O′C , then [T̃ ∗]|OC ∈ L(OC ,OC).

Denote by Lb(S,OC) the set L(S,OC) of continuous linear operators equipped
with the topology of uniform convergence on bounded subsets of S. Theorem 4.1(i)
implies that S ′ can be endowed with the topology induced from Lb(S,OC) via the
mapping S ′ 3 U 7→ [U ∗]|S ∈ L(S,OC). This topology in S ′ will be called the oper-
ator topology. It is no weaker than the strong dual topology in S ′ because if (Uι)ι∈J
is a net in S ′ such that [Uι ∗]|S → 0 in Lb(S,OC), then Uι(φ) = [[Uι ∗](φ∨)](0)→ 0
in C uniformly with respect to φ ranging over any bounded subset of S, i.e. Uι → 0
in the strong dual topology of S ′.

Proof of Theorem 4.1. (i) This assertion goes back to J. Horváth [H1, Sect. 4.11,
Proposition 7]. For our spaces S̃µ we have only to care about the seminorms ρµ,α
and not about more subtle asymptotic behaviour as in the case of the J. Horváth
spaces Sµ. Therefore our proof is shorter. Let U ∈ S ′. According to the definition
of S ′ by distributional differentiation of continuous functions of at most polynomial
growth, there are µ ∈ [0,∞[, α ∈ Nn0 and f ∈ Bµ such that U = ∂αf . It follows
that whenever ϕ ∈ S, β ∈ Nn0 and λ ∈ ]n,∞[, then

ρµ,β(U ∗ ϕ) = ρµ,α+β(f ∗ ϕ) ≤ sup
x∈Rn

(1 + |x|)−µ
∫
Rn
|f(x− y)| |∂α+βϕ(y)| dy

≤ sup
x∈Rn

(1 + |x|)−µ‖f‖Bµρ−µ−λ,α+β(ϕ)

∫
Rn

(1 + |x− y|)µ(1 + |y|)−µ−λ dy

≤ ‖f‖Bµ
∫
Rn

(1 + |y|)−λ dy ρ−µ−λ,α+β(ϕ),

because (1+ |x|)−µ(1+ |x−y|)µ(1+ |y|)−µ ≤ 1. This shows that [U ∗]|S ∈ L(S, S̃µ).
Since S̃µ is continuously imbedded in OC , it follows that [U ∗]|S ∈ L(S,OC).

(ii) This assertion is nothing but (3.1).
(iii) Since OC = lim indµ→∞ S̃µ, by [R-R, Sect. V.2, Proposition 5] it will follow

that [T̃ ∗]|OC ∈ L(OC ,OC) once it is proved that [T̃ ∗]|S̃µ ∈ L(S̃µ,OC) for every
µ ∈ [0,∞[. Since S̃µ is continuously imbedded in OC , it suffices to prove that
[T̃ ∗]|S̃µ ∈ L(S̃µ, S̃µ) for every µ ∈ [0,∞[.

Notice first that if Ψ ∈ S̃µ, then τxΨ ∈ S̃µ for every x ∈ Rn: this follows from
the estimation

ρµ,β(τxΨ) = sup
y∈Rn

(1 + |y|)−µ|∂βΨ(x+ y)|(4.1)

≤ sup
y∈Rn

(1 + |y|)−µ[(1 + |x+ y|)µρµ,β(Ψ)] ≤ (1 + |x|)µρµ,β(Ψ),
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which is a consequence of 1 + |x+ y| ≤ (1 + |x|)(1 + |y|). Furthermore,

ρµ,α(T̃ ∗Ψ) = sup
x∈Rn

(1 + |x|)−µ|∂α(T̃ ∗Ψ)(x)(4.2)

= sup
x∈Rn

(1 + |x|)−µ|T̃ ((τx∂
αΨ)∨)|.

Since T̃ |S̃µ is a continuous linear functional on the Fréchet space S̃µ, there are C ∈
]0,∞[ and k ∈ N, depending only on T̃ |S̃µ , such that |T̃ |S̃µ(Φ)| ≤ C

∑
|β|≤k ρµ,β(Φ)

for every Φ ∈ S̃µ. Hence from (4.2) and (4.1) it follows that whenever T ∈ O′C ,
µ ∈ [0,∞[, α ∈ Nn0 and Ψ ∈ S̃µ, then

ρµ,α(T̃ ∗Ψ) ≤ sup
x∈Rn

(1 + |x|)−µC
∑
|β|≤k

ρµ,β(τx∂
αΨ) ≤ C

∑
|β|≤k

ρµ,α+β(Ψ),

proving that [T̃ ∗]|S̃µ ∈ L(S̃µ, S̃µ). �

Lemma 4.2. If U ∈ S ′ and ϕ,ψ ∈ S, then
U ∗ (ϕ ∗ ψ) = (U ∗ ϕ) ∗ ψ.

Proof. There are α ∈ Nn0 and µ ∈ [0,∞[ such that U = ∂αf for some f ∈ Bµ.
Therefore U ∗ (ϕ ∗ ψ) = f ∗ ∂α(ϕ ∗ ψ) = (f ∗ ∂αϕ) ∗ ψ = (U ∗ ϕ) ∗ ψ by Fubini’s
theorem, because convolutions involving f are absolutely convergent integrals, in
view of elementary inequalities similar to that used in the proof of Theorem 4.1. �

5. Sequential denseness of C∞c in S ′ and of E ′ in O′C in operator
topologies

Theorem 5.1. C∞c is sequentially dense in S ′ in the operator topology.

Proof. Let U ∈ S ′. Then there are µ0 ∈ [0,∞[, α ∈ Nn0 and f ∈ Bµ0
such that

U = ∂αf . Take a continuous [0, 1]-valued function χ on Rn such that χ(x) = 1 if
|x| ≤ 1 and χ(x) = 0 if |x| ≥ 2. For every k ∈ N define χk ∈ C(Rn) by

(5.1) χk(x) = χ(k−1x)

and choose ψk ∈ C∞c (Rn) such that

(5.2) ‖ψk − χkf‖Bµ0 ≤ k
−1.

Such a ψk exists because χkf is continuous on Rn and has bounded support. Let
µ ∈ ]µ0,∞[. Then ‖ψk − χkf‖Bµ ≤ ‖ψk − χkf‖Bµ0 ≤ k

−1 and

‖χkf − f‖Bµ = sup
|x|≥k

(1 + |x|)−µ|(χk(x)− 1)f(x)|

≤ (1 + k)−(µ−µ0) sup
|x|∈Rn

(1 + |x|)−µ0 |(χk(x)− 1)f(x)|

≤ (1 + k)−(µ−µ0)‖f‖Bµ0 .
Hence

(5.3) whenever µ ∈ ]µ0,∞[, then ‖ψk − f‖Bµ0 ≤ k
−1 + ‖f‖Bµ0 (1 + k)−(µ−µ0).

Now define

(5.4) ϕk = ∂αψk.

We shall verify that (ϕk)k∈N ⊂ C∞0 is a good approximating sequence for U .
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We begin by proving that
(5.5) for every µ ∈ ]µ0,∞[ the sequence ([(ϕk −U) ∗]|S)k∈N ⊂ L(S, S̃µ) of convolu-

tion operators converges to zero pointwise on S.
To this end we take any ϕ ∈ S and for every β ∈ Nn0 we estimate ρµ,β((ϕk−U)∗ϕ).

Since (ϕk−U)∗ϕ = (ψk−f)∗∂αϕ, we have ρµ,β((ϕk−U)∗ϕ) = ρµ,α+β((ψk−f)∗ϕ).
Moreover, whenever λ ∈ ]n,∞] and x ∈ Rn, then

|[∂α+β((ψk − f) ∗ ϕ)](x) = |[(ψk − f) ∗ ∂α+βϕ](x)|

≤ ‖ψk − f‖Bµ · ρ−µ−λ,α+β(ϕ) ·
∫
Rn

(1 + |x− y|)µ(1 + |y|)−µ−λ dy

≤ ‖ψk − f‖Bµ · ρ−µ−λ,α+β(ϕ) ·
∫
Rn

(1 + |y|)−λ dy · (1 + |x|)µ,

because (1 + |x− y|)µ(1 + |y|)−µ(1 + |x|)−µ ≤ 1. Hence, by (5.3),

ρµ,β((ϕk − U) ∗ ϕ) = ρµ,α+β((ψk − f) ∗ ϕ)

= sup
x∈Rn

(1 + |x|)−µ|[∂α+β((ψk − f) ∗ ϕ)](x)|

≤ (k−1 + ‖f‖Bµ0 (1 + k)−(µ−µ0)) · ρµ−λ,α+β(ϕ)

∫
Rn

(1 + |y|)−λ dy

for every µ ∈ ]µ0,∞[, β ∈ Nn0 , ϕ ∈ S and k ∈ N, so that indeed (5.5) holds.
Since the space S is Fréchet and Montel, by the Banach–Steinhaus theorem, (5.5)

implies
(5.6) whenever µ ∈ ]µ0,∞[, then limk→∞[(ϕk − U) ∗]|S = 0 in the topology of

Lb(S, S̃µ).
Since Lb(S, S̃µ) is continuously imbedded in Lb(S,OC), by Theorem 4.1(i) from

(5.6) it follows that limk→∞[ϕk ∗]|S = [U ∗]|S in the topology of Lb(S,OC). This
means that limk→∞ ϕk = U in the operator topology of S ′. �

Theorem 5.2. Let α ∈ C∞c be such that α(x) = 1 if |x| ≤ 1, and α(x) = 0 if
|x| ≥ 2. Define the sequence (αk)k∈N ⊂ C∞c by αk(x) = α(k−1x). Let T ∈ O′C .
Then αkT ∈ O′C for every k ∈ N, and limk→∞ αkT = T in the operator topology
of O′C .

Proof. Since αk ∈ C∞c , it follows that αkT ∈ E ′ ⊂ O′C where the last inclusion is a
consequence of (3.1). Thus the assertion is equivalent to
(5.7) whenever B is a bounded subset of S(Rn), then limk→∞[(αk − 1)T ] ∗ ϕ = 0

in the topology of S, uniformly with respect to ϕ ranging over B.
Since S is a complete metrizable space, and moreover S is a Montel space, the
Banach–Steinhaus theorem implies that (5.7) is equivalent to

(5.8) lim
k→∞

[(1− αk)T ] ∗ ϕ = 0 in S, for every ϕ ∈ S.

In terms of seminorms determining the topology of S, (5.8) takes the form

(5.9) whenever µ ∈ [0,∞[ and β ∈ Nn0 , then lim
k→∞

ρµ,β([(1− αk)T ] ∗ ϕ) = 0

where

ρµ,β([(1− αk)T ] ∗ ϕ) = sup
x∈Rn

(1 + |x|)µ
∣∣[[(1− αk)T ] ∗ ∂βϕ

]
(x)
∣∣.
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By (3.2) for any fixed µ ∈ [0,∞[ and λ ∈ ]n,∞[ the distribution T ∈ O′C can be
represented as a finite sum

T =
∑
|γ|≤G

∂γfγ

where γ ∈ Nn0 and fγ ∈ B−µ−λ. One has

(5.10)
[
[(1− αk)T ] ∗ ∂βϕ

]
(x)

=
∑
|γ|≤G

∫
Rn
fγ(y)(−1)|γ|∂γ

[
[1− αk](y)[∂βϕ](x− y)

]
dy

=
∑
|γ|≤G

∑
0≤δ≤γ

(
γ

δ

)
(−1)|γ|+|γ−δ|

∫
Rn
fγ(y)[∂δ(1− αk)](y)[∂β+γ−δϕ](x− y) dy.

Since [1− αk](y) vanishes when |y| ≤ k, the integrals in (5.10) can be restricted to
{y ∈ Rn : |y| ≥ k}, so that

(5.11)
∣∣[[(1− αk)T ] ∗ ∂βϕ

]
(x)
∣∣

≤
∑
|y|≤G

∑
0≤δ≤γ

(
γ

δ

)
‖fγ‖B−µ−λ · sup

y∈Rn
|[∂δ(1− αk)](y)| · ρµ,β+γ−δ(ϕ)

·
∫
|γ|≥k

(1 + |y|)−µ−λ(1 + |x− y|)−µ dy.

Since [1−αk](y) = [1−α](k−1y), one has supy∈Rn |[∂δ(1−αk)](y)| = k−|δ|Cδ where
Cδ = supy∈Rn |[∂δ(1− α)](y)|. Hence from (5.11) one obtains the inequality

∣∣[[(1− αk)T ] ∗ ∂βϕ
]
(x)
∣∣ ≤ Kϕ,µ,λ,β

∫
|y|≥k

(1 + |y|)−µ−λ(1 + |x− y|)−µ dy

where

Kϕ,µ,λ,β =
∑
|y|≤G

∑
0≤δ≤γ

(
γ

δ

)
‖fγ‖B−µ−λCδρµ,β+γ−δ(ϕ)

is finite and independent of k. It follows that

(5.12) ρµ,β([(1− αk)T ] ∗ ϕ)

≤ Kϕ,µ,λ,β sup
x∈Rn

∫
|y|≥k

(1 + |y|)−λ[(1 + |x|)µ(1 + |y|)−µ(1 + |x− y|)−µ] dy.

Since (1 + |x|)µ ≤ (1 + |y| + |x − y|)µ ≤ (1 + |y|)µ(1 + |x − y|)µ, in (5.12) the
expression in square brackets in the integrand is never greater than one, so that for
any fixed ϕ ∈ S, µ ∈ [0,∞[ and β ∈ Nn0 one has

ρµ,β([(1− αk)T ] ∗ ϕ) ≤ Kϕ,µ,λ,β

∫
|y|≥k

(1 + |y|)−λ dy,

proving (5.9). �
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6. Convolutions of slowly increasing distributions

6.1. The L. Schwartz theorem on representation of distributions by trans-
lation invariant operators on infinitely differentiable functions. Let D be a
locally convex space contained in C∞(Rn). Assume that D is invariant with respect
to translations and reflections. Let D′ be the dual space of D, and let Λ(D, C∞)
be the space of continuous linear operators from D into C∞(Rn) commuting with
translations.

For every U ∈ D′ and φ ∈ D one can define the convolution U ∗ φ to be the
C∞(Rn) function given by [U ∗ φ](x) = U((τxφ)∨) for x ∈ Rn. This yields an
operator AU : D 3 φ 7→ U ∗ φ ∈ C∞(Rn).

When D = C∞c (Rn), the following theorem reduces to the famous theorem of
L. Schwartz quoted e.g. in [H, Sect. 4.2, Theorem 4.2.1] and [Y, Sect. VI.3, Theo-
rem 2].

Theorem 6.1. The assignment U 7→ AU maps D′ onto Λ(D, C∞) in one-to-one
manner.

Proof. To prove surjectivity, take any A ∈ Λ(D, C∞) and let U ∈ D′ be defined
by U(φ∨) = [A(φ)](0) for φ ∈ D. Then [U ∗ φ](x) = U((τxφ)∨) = [A(τxφ)](0) =
[A(φ)](x), so that A = AU .

To prove injectivity, suppose U ∈D′ and [U ∗]|D=0. Then U(φ)=[U ∗ φ∨](0)=0
for every φ ∈ D, so that U = 0. �

6.2. Extensions of slowly increasing distributions. A locally convex space
D of C∞-functions on Rn will be called admissible if it satisfies the following two
conditions:

(6.1) S is densely and continuously imbedded inD, andD is continuously imbedded
in C∞,

(6.2) D is invariant with respect to translations and reflections.

Let U ∈ S ′ and let D be an admissible locally convex space of C∞-functions on Rn.
Then there is at most one element Ũ of the space D′ dual to D such that Ũ |S = U .
The extendability of U ∈ S ′ to Ũ ∈ D′ is equivalent to continuity of U with respect
to the topology induced on S from D.

All the above is generalized in [H1, Sect. 4.2] and formulated there in terms of
normal spaces of distributions. The only NSD used in the present paper are the
admissible locally convex spaces of C∞-functions on Rn.

Theorem 6.2. Let T ∈ O′C and let T̃ ∈ (OC)′ be the unique extension of T to a
continuous linear functional on OC . Whenever ϕ ∈ S and f ∈ OC , then

(6.3) T̃ ∗ (f ∗ ϕ) = f ∗ (T ∗ ϕ).

Proof. In (6.3) there appear convolutions of f ∈ OC with ϕ and with T ∗ ϕ, both
belonging to S. These convolutions make sense because if f ∈ OC , then f belongs
to the Horváth space Sµ for some µ ∈ [0,∞[, and whenever f ∈ Sµ, ψ ∈ S and
λ ∈ ]n,∞[, then



10 JAN KISYŃSKI

ρµ,α(f ∗ ψ) = sup
x∈Rn

(1 + |x|)−µ|(f ∗ ∂αψ)(x)|

≤ sup
x∈Rn

(1 + |x|)−µρµ,0(f)ρ−µ−λ,α(ψ)

∫
Rn

(1 + |x− y|)µ(1 + |y|)−µ−λ dy

≤ ρµ,0(f)ρ−µ−λ,α(ψ)

∫
Rn

(1 + |y|)−λ dy <∞

by the inequality 1 + |x− y| ≤ (1 + |x|)(1 + |y|).
By (3.2) for every µ ∈ [0,∞[ and λ ∈ ]n,∞[ the distribution T ∈ O′C can be

represented as a finite sum
∑
|p|≤P ∂

pfp with each fp in B−µ−λ. The sum Σ :=∑
|p|≤P ∂

pfp is a distribution uniquely extendable to a continuous linear functional
on the admissible Horváth space Sµ, and Σ ∗ φ ∈ Sµ for every φ ∈ Sµ: indeed,

ρµ,α(Σ ∗ φ) = sup
x∈Rn

(1 + |x|)−µ
∣∣∣(( ∑

|p|≤P

fp

)
∗ ∂α+pφ

)
(x)
∣∣∣

≤ sup
x∈Rn

(1 + |x|)−µ
∑
|p|≤P

‖fp‖B−µ−λρµ,α+p(φ)

·
∫
Rn

(1 + |y|)−µ−λ(1 + |x− y|)µ dy

≤
∑
|p|≤P

‖fp‖B−µ−λρµ,α+p(φ)

∫
Rn

(1 + |y|)−λ dy.

Since the spaces OC and Sµ are admissible, it follows that T̃ |Sµ is the unique
extension of T to a continuous linear functional on Sµ. Consequently,

T̃ |Sµ = Σ.

Since OC =
⋃
µ∈[0,∞[ Sµ, it follows that whenever f ∈ OC and ϕ ∈ S, then f ∈ Sµ

for some µ ∈ [0,∞[, and so

T̃ ∗ (f ∗ ϕ) = Σ ∗ (f ∗ ϕ) =
∑
|p|≤P

fp ∗ (f ∗ ∂pϕ)

where in the rightmost expression all convolutions are classical convolutions of
functions on Rn. Similarly,

f ∗ (T ∗ ϕ) = f ∗ (Σ ∗ ϕ) =
∑
|p|≤P

f ∗ (fp ∗ ∂pϕ).

In order to complete the proof of Theorem 6.2 it remains to prove that whenever
|p| ≤ P , and ϕ ∈ S and f ∈ Sµ for some µ ∈ [0,∞[, then f ∗ (fp ∗ϕ) = fp ∗ (f ∗ϕ).
To this end notice that

(f ∗ (fp ∗ ϕ))(x) =

∫
Rn
f(x− y)

[ ∫
Rn
fp(z)ϕ(y − z) dz

]
dy

where the double iterated integral on the right side is absolutely convergent. Indeed,
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Rn
|f(x− y)|

[ ∫
Rn
|fp(z)| |ϕ(y − z)| dz

]
dy ≤ ρµ,0(f)‖fp‖B−µ−λρ−µ−λ,0(ϕ)

·
∫
Rn

(1 + |x− y|)µ
[ ∫

Rn
(1 + |z|)−µ−λ(1 + |y − z|)−µ−λ dz

]
dy

≤ ρµ,0(f)‖fp‖B−µ−λρ−µ−λ,0(ϕ) ·
(

sup
y,z∈Rn

(1 + |x− y|)µ(1 + |z|)−µ(1 + |y − z|)−µ
)

·
∫
Rn

[ ∫
Rn

(1 + |z|)−λ(1 + |y − z|)−λ dz
]
dy

≤ ρµ,0(f)‖fp‖B−µ−λ,0(ϕ)(1 + |x|)µ
∫
Rn

(1 + |y|)−λ dy
∫
Rn

(1 + |z|)−λ dz <∞,

because

(1 + |x− y|)µ ≤ (1 + |x|+ |y|)µ ≤ (1 + |x|)µ(1 + |y|)µ

≤ (1 + |x|)µ(1 + |z|+ |y − z|)µ ≤ (1 + |x|)µ(1 + |z|)µ(1 + |y − z|)µ.

Hence, by the Fubini–Tonelli theorem (see [El, Sect. V.2, Theorem 2.4, p. 179]),

(f ∗ (fp ∗ ϕ))(x) =

∫
Rn

[ ∫
Rn
f(x− y)ϕ(y − z) dy

]
fp(z) dz

=

∫
Rn

[(f ∗ ϕ)(x− z)]fp(z) dz = (fp ∗ (f ∗ ϕ))(x). 2

6.3. Convolution of an ordered pair of distributions

Proposition 6.3.1. Let U, V ∈ S ′. Suppose that D is an admissible locally convex
space of C∞-functions on Rn such that

(6.4) AV ∈ Λ(S,D),

and let Ũ ∈ D′ be the the extension of U . Then there is a unique distribution
W ∈ S ′ such that

(6.5) W (ϕ) = Ũ((V ∗ ϕ∨)∨) for every ϕ ∈ S.

The distribution W ∈ S ′ defined by (6.5) will be denoted by D-(U ∗ V ) and
called the D-convolution of the ordered pair (U, V ). The equality (6.5) is equivalent
to

(6.6) AW = AŨ ◦AV ,

so that the convolutionW = D-(U ∗V ) is determined by the superposition AŨ ◦AV
of the operator AŨ , which belongs to Λ(D, C∞), with the operator AV ∈ Λ(S,D).
Existence of the superposition is guaranteed by the condition (6.4). The formula
(6.5) can be written equivalently as W (ϕ) = Ũ(V ∨ ∗ ϕ).

6.4. The commutative convolution of two distributions. Commutative con-
volution of distributions T and U on Rn is discussed in [S2, Sect. VI.2]. The re-
quirements are that for every ϕ ∈ C∞c (Rn) both the expressions

Tx · (Uy · ϕ(x+ y)) and Ux · (Ty · ϕ(x+ y))

have to make sense and be equal to [ϕ(x+ y)(T ⊗U)](1R2n). The last expression is
well defined if ϕ(x+ y)(T ⊗ U) is an integrable distribution on Rn.
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In the following we limit ourselves to slowly increasing distributions and we
assume that ϕ ∈ S. Since Uy · ϕ(x + y) = [U ∗ ϕ∨](x) and generally the range of
[U ∗]|S need not be contained in S, it is visible that the first of our expressions makes
sense only if T is suitably extended. A certain method of extending U was presented
in Section 6.3. Let D be an admissible locally convex space of C∞-functions on Rn
such that AU ∈ Λ(S,D) and let T̃ be the extension of T to an element of the space
D′ dual to D. Then for every ϕ ∈ S, instead of Tx(Ux(ϕ(x + y))) we try to use
T̃x(Ux(ϕ(x+ y))) = T̃ ((U ∗ ϕ∨)∨).

Theorem 6.4.1. Let T ∈ O′C and U ∈ S ′. By (3.1) the convolution S-(U ∗T ) of the
ordered pair (U, T ) exists, and by Theorem 4.1(i)&(iii) the convolution OC-(T ∗ U)
of the ordered pair (T,U) exists. We have

(6.7) S-(U ∗ T ) = OC-(T ∗ U)

where both sides belong to S ′. The common value of both sides will be denoted
by T ☼ U and called the commutative convolution of the distributions T and U .
Moreover, whenever ϕ ∈ C∞c (Rn), then

(6.8) ϕ(x̂+ ŷ)(T ⊗ U) is an integrable distribution on Rn

and

(6.9) [T ☼ U ](ϕ) = [ϕ(x̂+ ŷ)(T ⊗ U)](1R2n).

Proof. The existence of V := S-(U ∗T ) ∈ S ′ is a consequence of (3.1). The existence
of W := OC-(T ⊗ U) ∈ S ′ is a consequence of Theorem 4.1(i)&(iii). The equality
V = W can be proved by the method of C. Chevalley [C, p. 112]. Namely, since
S ∗ S is dense in S, it is sufficient to prove that whenever ϕ,ψ ∈ S, then

V ∗ (ϕ ∗ ψ) = (U ∗ ϕ) ∗ (T ∗ ψ)

and
W ∗ (ϕ ∗ ψ) = (U ∗ ϕ) ∗ (T ∗ ψ).

To this end notice that

AT ∈ L(S,S), AU ∈ L(S,OC), AT̃ ∈ L(OC ,OC),

AV = AU ◦AT and AW = AT̃ ◦AU .
It follows that

V ∗ (ϕ ∗ ψ) = AV (ϕ ∗ ψ) = [AU ◦AT ](ϕ ∗ ψ)

= AU (T ∗ (ϕ ∗ ψ))

= AU ((T ∗ ϕ) ∗ ψ) (by Lemma 4.2)
= U ∗ ((T ∗ ψ) ∗ ϕ)

= (U ∗ ϕ) ∗ (T ∗ ψ) (by Lemma 4.2).

Similarly

W ∗ (ϕ ∗ ψ) = AW (ϕ ∗ ψ) = [AT̃ ◦AU ](ϕ ∗ ψ)

= AT̃ (U ∗ (ϕ ∗ ψ))

= AT̃ ((U ∗ ϕ) ∗ ψ) (by Lemma 4.2)

= T̃ ∗ ((U ∗ ϕ) ∗ ψ)

= (U ∗ ϕ) ∗ (T ∗ ψ) (by Theorem 6.2).
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Now we come to relations (6.8) and (6.9) which involve the tensor product
⊗ : D′(Rn) × D′(Rn) → D′(R2n). The relation (6.8) was proved by J. Horváth
in [H2, Example 6, pp. 186–187]. An equality of type (6.9), with (6.8) as a con-
dition sufficient and necessary for the existence of convolution, was proposed by
L. Schwartz [S3] as a general definition of the convolution of distributions. Such a
definition was also used in [H2]. In Theorem 6.4.1 the definition of convolution of
distributions is different, and (6.9) is an equality proving the equivalence of the two
definitions.

In order to prove (6.9) we first have to show that the right side of (6.9) makes
sense. By (6.8), whenever T ∈ OC , U ∈ S ′ and ϕ ∈ C∞c , then ϕ(x̂+ ŷ)(T ∗U) is an
integrable distribution on R2n, and hence it is equal to a finite sum

∑
p ∂

αpµp of
distributional partial derivatives of regular Borel complex measures µp with finite
variation on R2n (see [K-R, Sects. 3.2–3.5, pp. 48–50] and [Ru, Chap. 6, Theo-
rem 6.19]). It follows that every bounded measurable function on Rn is absolutely
integrable with respect to each µp, and therefore the distribution ϕ(x̂+ ŷ)(T ⊗U),
integrable on R2n, is a continuous linear functional on C∞b (R2n). The right side of
(6.9) is the value of this functional on the sample function 1R2n which belongs to
C∞b (R2n).

To prove (6.9) we shall show that if ϕ ∈ C∞c (Rn), then

(6.10) [ϕ(x̂+ ŷ)(T ⊗ U)](1R2n) = U((T ∗ ϕ∨)∨) = [S-(U ∗ T )](ϕ).

To this end we shall rely on Theorem 5.2 and on the definition of the tensor product
of distributions in [Y, Sect. I.14, Theorem 2, p. 66]1. Let (αk)k∈N ⊂ C∞c (Rn) be
the sequence described in Theorem 5.2, and let T ∈ O′(Rn), U ∈ S ′(Rn) and
ϕ ∈ C∞c (Rn). Then αkT ∈ O′(Rn) for every k ∈ N, so that, by [H2, Example 6,
pp. 186–187], ϕ(x̂+ ŷ)((αkT )⊗ U) is an integrable distribution on Rn, and

[ϕ(x̂+ ŷ)((αkT )⊗ U)](1R2n) = [T ⊗ U ](αk(x̂)ϕ(x̂+ ŷ)).2

Since αk(x̂)ϕ(x̂+ŷ) ∈ C∞c (R2n), by [Y, Sect. I.14, Theorem 2], the expression on the
right side of the last equality is equal to Uy((αkT )x(ϕ(x+y))) = U(((αkT )∗ϕ∨)∨).
By Theorem 5.2, whenever ϕ ∈ C∞c (Rn) is fixed, then

lim
k→∞

((αkT ) ∗ ϕ∨)∨ = (T ∗ ϕ∨)∨ in the topology of S,

whence
lim
k→∞

U(((αkT ) ∗ ϕ∨)∨) = U((T ∗ ϕ∨)∨) in C,

and so

(6.11) lim
k→∞

[ϕ(x̂+ ŷ)((αkT )⊗ U)](1R2n) = U((T ∗ ϕ∨)∨).

1The same definition is used in [V, Sect. II.7.1]. See also [H1, Sect. 4.8, Proposition 2].
2This equality is a consequence of the property of the tensor product od distribution stated

explicitly in [Y, Sect. II.7.3, equality (12)], and can be proved by replacing 1R2n by η(x̂/l, ŷ/l)
and αk(x̂)ϕ(x̂+ ŷ) by αk(x̂)ϕ(x̂+ ŷ)η(x̂/l, ŷ/l), and passing to the limit as l→∞. Here η(x̂, ŷ) ∈
C∞

c (R2n) takes values in [0, 1], η(x, y) = 1 whenever |x| + |y| ≤ 1, η(x, y) = 0 whenever |x| +
|y| ≥ 2. The sequence (η(x̂/l, ŷ/l))l∈N ⊂ C∞

c (R2n) converges on R2n to 1R2n in the sense of
majorized pointwise convergence, and all its partial derivatives converge to zero uniformly on R2n.
Similar sequences appear in Vladimirov’s definition of convolution of distributions [V, Sect. II.7.4]
equivalent to the definition of Schwartz–Horváth. See [O, Sect. 3].
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Finally

(6.12) lim
k→∞

[ϕ(x̂+ ŷ)((αkT )⊗ U)](1R2n)

= lim
k→∞

[ϕ(x̂+ ŷ)(T ⊗ U)](αk(x̂)(1R2n)(x̂+ ŷ))

= [ϕ(x̂+ ŷ)(T ⊗ U)](1R2n)),

because the distribution [ϕ(x̂ + ŷ)(T ⊗ U)] is integrable on R2n and
limk→∞ αk(x̂)1R2n(x̂, ŷ) = 1R2n in the sense of majorized pointwise convergence
in C∞b (R2n). See [K-R, Sect. 3.4, p. 49] for a more exact definition of that con-
vergence, related to the Lebesgue dominated convergence theorem. The equalities
(6.11) and (6.12) imply (6.10). �

7. Extension of Fourier transformation from S onto S ′

Let S be the space of infinitely differentiable rapidly decreasing functions on
Rn equipped with its usual topology of a Fréchet space, and let S ′ be its dual
space, i.e. the space of slowly increasing distributions on Rn, equipped with the
strong dual topology. The Fourier transformation F : S → S is a topological linear
automorphism of S.

By [Y, Sect. VI.2, Corollary 2], F ′ , the mapping dual to F , is a linear topological
automorphism of S ′ equipped with the ∗-weak topology, so that, by [B, Sect. IV.4.2,
Proposition 6], F ′ is also a linear topological automorphism of S ′ equipped with the
strong dual topology. Moreover, by Theorem 5.1 and the Parseval equality (2.3),
F ′ : S ′ → S ′ is an extension of F : S → S by continuity. In what follows we shall
write F instead of F ′.

8. Fourier exchange on S ′ × S

Lemma 8.1. If Ψ ∈ OM , then the mapping S ′ 3 U 7→ Ψ · U ∈ S ′ is continuous in
the strong dual topology of S ′.

The above lemma is part of the hypocontinuity theorem for multiplication [S2,
Sect. VII.5, Theorem XI]. Only this part is needed below.

Proof of Lemma 8.1. Let Ψ ∈ OM , and let (Uι)ι∈J ⊂ S ′ be a net converging to
U ∈ S ′ in the strong dual topology of S ′. From [K3, Sect. 2.3, Proposition 2] it
follows that whenever B is a bounded subset of S, then Ψ · B is also a bounded
subset of S. Consequently, limι(Ψ · Uι)(ϕ) = U(Ψ · U)(ϕ) = (Ψ · U)(ϕ) uniformly
with respect to ϕ ∈ B. �

Theorem 8.2. Whenever U ∈ S ′ and ϕ ∈ S, then
(8.1) F(U ∗ ϕ) = F(ϕ) · F(U).

Proof. If U ∈ S ′, then by Theorem 5.1 there is a sequence (ϕk)k∈N ⊂ C∞c converging
to U in the operator topology of S ′. This means that limk ϕk ∗ ϕ = U ∗ ϕ in the
topology of OC uniformly with respect to ϕ ranging over any bounded subset of S.
It follows that whenever ϕ ∈ S is fixed, then limk→∞ ϕk ∗ ϕ = U ∗ ϕ in the strong
dual topology of S ′. Furthermore, by (2.2), one has

(8.2) F(ϕk ∗ ϕ) = F(ϕ) · F(ϕk) for every ϕ ∈ S.
Since F(ϕ) ∈ S ⊂ OM , from Lemma 8.1 it follows that limk→∞ F(ϕ) · F(ϕk) =
F(ϕ) · F(U) in the strong dual topology of S ′. Moreover the continuity of F :
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S ′ → S ′ implies that limk→∞ F(ϕk ∗ ϕ) = F(U ∗ ϕ) in the strong dual topology
of S ′. Therefore (8.1) follows from (8.2) by passing to the limit in the strong dual
topology of S ′. �

9. Fourier isomorphism of O′C onto OM
Proposition 9.1. Let T ∈ O′C and let F denote the Fourier transformation un-
derstood as an automorphism of S ′. Then F(T ) ∈ S ′ is a distribution represented
by a function belonging to OM .

Proof. By Theorem 8.2 the distribution e−|x|
2/2F(T ) ∈ S ′ is equal to the distribu-

tion (2π)n/2F(T ∗ e−|x|2/2). Since F|S is an automorphism of S and [T ∗]|S ∈
L(S,S), the distribution (2π)n/2F(T ∗ e−|x|2/2) is represented by the function
ψ = (2π)n/2(F|S)(T ∗ e−|x|2/2) belonging to S. Consequently, the distribution
F(T ) ∈ S ′ is represented by the function η := e|x|

2/2ψ, which is infinitely dif-
ferentiable on Rn.

It remains to prove that η is a multiplier of S, i.e. ϕ·η ∈ S whenever ϕ ∈ S. To this
end take any ϕ ∈ S and notice that, by Theorem 8.2, ϕ·F(T ) = F(T ∗F−1(ϕ)) ∈ S ′.
Both sides of this equality are represented by the function ϕ · η ∈ C∞, and also by
the function (F|S)(T ∗F−1(ϕ)), which belongs to S. The two infinitely differentiable
functions must be equal, because they represent the same distribution. It follows
that ϕ · η ∈ S, as claimed. �

Theorem 9.2. The Fourier transformation F : S ′ → S ′ maps OC in one-to-one
manner onto (OM ), the subset of S ′ consisting of the distributions represented by
functions belonging to OM .

Proof. Denote by (S) the set of distributions which are represented by functions
belonging to S. The fact that the Fourier transformation (understood as a linear
topological automorphism of S ′) maps O′C in one-to-one manner onto (OM ) follows
from the inclusions F(O′C) ⊂ (OM ) and F((OM )) ⊂ O′C . The former inclusion is a
consequence of Proposition 9.1. In order to prove the latter, take any distribution
U ∈ F((OM )). Then F(U) ∈ (F ◦ F)((OM )) = (2π)n(OM )∨ = (OM ), so that
F(ϕ) · F(U) ∈ (S) for every ϕ ∈ S, because OM is the space of multipliers of S.
Furthermore,

F(ϕ) · F(U) ∈ (S) for every ϕ ∈ S
⇔ F(U ∗ ϕ) ∈ (S) for every ϕ ∈ S (by Theorem 8.2)
⇔ U ∗ ϕ ∈ (S) for every ϕ ∈ S

(since F is an automorphism of S ′ and F|S is an automorphism of S).

Whenever ϕ ∈ S, then U ∗ϕ ∈ C∞. The conjunction of U ∗ϕ ∈ (S) and U ∗ϕ ∈ C∞
is equivalent to U ∗ ϕ ∈ S. Thus [U ∗] maps S into S. By Theorem 4.1(i), [U ∗] is
a closed operator from S into S. Hence, by the closed graph theorem, [U ∗]|S ∈
L(S,S), so that U ∈ O′C , by (3.1). �

Theorem 9.3. The Fourier transformation determines a continuous linear iso-
morphism between the space O′C equipped with the operator topology and the space
OM equipped with the strong topology.
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Proof. The strong topology in OM is defined in [S2, Sect. VII.5], and is discused in
[K3, Sect. 2.2]. A net of distributions (Tι)ι∈J ⊂ O′C converges to the distribution
T ∈ O′C in the operator topology in O′C if and only if
(9.1) whenever B is a bounded subset of S, then limι(Tι∗ϕ) = T ∗ϕ in the topology

of S, uniformly with respect to ϕ ranging over B.
According to [K3, Sect. 2.2], a net of C∞-functions (Φι)ι∈J ⊂ OM is convergent to
a C∞-function Φ ∈ OM in the strong topology of OM if and only if
(9.2) whenever B is a bounded subset of S, then limι(Φι ·ϕ) = Φ ·ϕ in the topology

of S, uniformly with respect to ϕ ranging over B.
Suppose that (9.1) holds and Φι = F̃Tι, Φ = F̃T are functions belonging to OM ,

representing the distributions FTι, FT . Such functions Φι and Φ exist in view of
Theorem 9.2. By (3.1) and Theorem 8.2, for every ϕ ∈ S one has

(9.3) [F|S ](Tι ∗ ϕ) = F(Tι ∗ ϕ) = Φι · ϕ̂, [F|S ](T ∗ ϕ) = F(T ∗ ϕ) = Φ · ϕ̂.
Since F|S , the restriction of F : S ′ → S ′ to S, is a continuous linear automorphism
of S, so that F|S maps bounded subsets of S onto bounded subsets of S, it follows
that limι(Tι ∗ϕ) = T ∗ϕ in the topology of S, uniformly with respect to ϕ ranging
over any bounded subset of S, if and only if the same holds for limι[F|S ](Tι ∗ϕ) =

[F|S ](T ∗ϕ). Moreover, if B is a subset of S, then B̂ = {ϕ̂ ∈ S : ϕ ∈ B} is bounded
if and only if B is. Therefore, by (9.3), (9.1) implies (9.2) for C∞-functions Φι and
Φ defined by the equalities Φι = F̃Tι, Φ = F̃T .

The proof of the implication (9.2)⇒(9.1) for Φι = F̃Tι, Φ = F̃T is analogous. �

Corollary 9.4. All gaussian functions belong to OM and determine distributions
belonging to O′C .

Proof. A gaussian function in the sense of [H, Sect. 7.6] is a function of the form

φ(x) = exp
(
− 1

2 〈Ax, x〉
)
, x ∈ Rn,

where A is a symmetric complex invertible n×n-matrix such that the quadratic form
〈(ReA)x, x〉 is non-negative semi-definite. All gaussian functions belong to OM : this
follows by repeated application of the chain rule for differentiation, and the Leibniz
rule. As a result, whenever α ∈ Nn0 , then ∂αφ = Pα ·φ where Pα is a polynomial on
Rn with complex coefficients.

By [H, Sect. 7.6, Theorem 7.6.1] the Fourier transform of the gaussian function
φ(x) = exp

(
− 1

2 〈Ax, x〉
)
is

φ̂(x) = c exp
(
− 1

2 〈A
−1x, x〉

)
,

i.e. a gaussian function multiplied by a complex constant c 6= 0. Hence the Fourier
transformation preserves the class of gaussian functions up to multiplicative con-
stants and, by Theorem 9.3, gaussian functions determine distributions belonging
to O′C . �

10. Fourier exchange theorem of L. Schwartz

Theorem 10.1 ([S2, Sect. VII.8, Theorem XV], [H1, Sect. 4.11, Theorem 3]). If
T ∈ O′C and U ∈ S ′, then the commutative convolution T ☼ U ∈ S ′ in the sense of
Theorem 6.4.1 exists, and

F(T ☼ U) = F̃(T ) · F(U).
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Here F denotes the Fourier transformation understood as a linear topological au-
tomorphism of S ′, and · stands for multiplication of the distribution F(U) ∈ S ′ by
the function F̃(T ) belonging to OM , representing the distribution F(T ).

Proof. Let T ∈ O′C and U ∈ S ′. Theorem 6.4.1 implies that the commutative con-
volution T ☼U ∈ S ′ exists. By Theorem 5.1 there exists a sequence (ϕk)k∈N ⊂ C∞c
such that limk→∞ ϕk = U in the operator topology of S ′, i.e. limk→∞Aϕk = AU
in Lb(S,OC). Since, by (3.1), AT ∈ L(S,S), it follows that limk→∞(Aϕk ◦ AT ) =
(limk→∞Aϕk) ◦ AT = AU ◦ AT = S-(U ∗ T ) in Lb(S,OC). Moreover, by Lemma
4.2, whenever ϕ ∈ S, then [Aϕk ◦ AT ](ϕ) = ϕk ∗ (T ∗ ϕ) = (T ∗ ϕk) ∗ ϕ. It follows
that limk→∞ T ∗ϕk = S-(U ∗ T ) = U ☼ T in the operator topology of S ′, whence a
fortiori

(10.1) lim
k→∞

T ∗ ϕk = T ☼ U in the strong dual topology of S ′.

Since F is a linear topological automorphism of S ′, Theorem 9.2 and Lemma 8.1
imply that F(T ) ⊂ (OM ) and

(10.2) lim
k→∞

F̃(T ) · F(ϕk) = F̃(T ) · F(U) in the strong dual topology of S ′.

Finally, by Theorem 8.2,

(10.3) F̃(T ) · F(ϕk) = F(T ∗ ϕk) for every k ∈ N.

The equalities (10.1)–(10.3) imply that F̃(T ) · F(U) = F(T ☼ U). �

Remark. The equality (3.1) is involved in several reasonings which finally lead to
Theorem 10.1. Conversely, (3.1) can be deduced from Theorem 6.4.1 (a part of
Theorem 10.1), Theorem 8.2 (a particular case of Theorem 10.1), Proposition 9.1
and Theorem 10.1. Namely, from the above mentioned four theorems one can infer
that
(10.4) if T ∈ O′C and ϕ ∈ S, then T ∗ ϕ ∈ S and the distribution T ☼ (ϕ) is

represented by the function T ∗ ϕ,
where (ϕ) denotes the distribution represented by ϕ.

Indeed, let T ∈ O′C and ϕ ∈ S. By Theorem 8.2 the distribution F(T ∗ϕ) is equal
to F(T )·F(ϕ) where F is understood as an automorphism of S ′. By Proposition 9.1,
the distribution F(T ) is represented by a function F̃(T ) belonging to OM . It follows
that

(10.5) (F|S)(T ∗ ϕ) = F̃(T ) · (F|S)(ϕ)

where both sides are functions. Since OM is the space of multipliers of S and F|S
is an automorphism of S, it follows that

(10.6) T ∗ ϕ ∈ S.

By Theorem 10.1 one has

(10.7) F(T ☼ (ϕ)) = F̃(T ) · F(ϕ)

where F is understood as an automorphism of S ′. From (10.7) and (10.5) it follows
that the distribution T ☼ (ϕ) is represented by the function T ∗ ϕ. Together with
(10.6), this completes the proof of (10.4).
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11. H. Bremermann’s approach to convolution

H. Bremermann [Br, Sects. 8.27–29 and 14.10–12] defines the convolution U ∗ V
of two distributions U and V by the formula U ∗ V = F−1(F(U) · F(V )). He
treats the Fourier transformation F as an isomorphism of the space D′(Rn) of all
distributions on Rn onto the space Z(Cn) dual to the function algebra Z(Cn) of
those entire functions on Cn which are classical Fourier transforms of test functions
belonging to C∞c (Rn). The Fourier transforms of distributions on Rn with compact
support turn out to be multipliers of Z(Cn). H. Bremermann applies the above
method to the convolution of an arbitrary distribution on Rn with a distribution
on Rn with compact support.

12. Some consequences of the Fourier exchange theorem

First, the Fourier exchange theorem constitutes a base for L. Schwartz extension
[S1] of I. G. Petrovskĭı’s method [P] of spatial Fourier transformation in partial
differential equations.

Moreover, by the equality FO′C = (OM ) which is part of the Fourier exchange
theorem and [K3, Sect. 3.1, Theorem 3], the matricial distribution T ∈ O′C(Rn;
Mm×m) is the infinitesimal generator of a one-parameter infinitely differentiable
convolution semigroup (Tt)t≥0 ⊂ O′C(Rn;Mm×m) if and only if

(12.1) max
{
{0} ∪ Reσ(T̂ (x))

}
= O(log |x|) as x ∈ Rn and |x| → ∞.

For T ∈ O′C(Rn;Mm×m) the condition (12.1) is equivalent to the condition that
there are K ∈ [0,∞[ and k ∈ R such that

(12.1)′ ‖exp T̂ (x)‖Mm×m ≤ K(1 + |x|)k for every x ∈ Rn.
The proof of the equivalence is not trivial. See [K2, remarks after the main theorem
of Sect. 2] and [K3, Sect. 3.1, proof of Proposition 5].

The exact definition of the convolution algebra O′C(Rn;Mm×m) is as follows:
• as a set, O′C(Rn;Mm×m) consists of m×m matrices whose entries belong

to O′C , i.e. are rapidly decreasing distributions on Rn,
• whenever (Ti,k)mi,k=1 and (Uk,j)

m
k,j=1 belong to O′C(Rn;Mm×m), then

(12.2) (Ti,k)mi,k=1 ☼ (Uk,j)
m
k,j=1 :=

( m∑
k=1

Ti,k ☼ Uk,j

)m
i,j=1

.

The star on the right side of (12.2) denotes convolution in the sense of Theorem
6.4.1. In (12.1) the function Rn 3 x 7→ T̂ (x) ∈ Mm×m is the Fourier image of the
matricial distribution T ∈ O′C(Rn;Mm×m), and therefore this function belongs to
(OM )(Rn;Mm×m). Whenever x ∈ Rn, then Reσ(T̂ (x)) denotes the set of the real
parts of eigenvalues of the matrix T̂ (x). Let us mention that the distributions Tt,
t ∈ [0,∞], constituting the convolution semigroup (Tt)t≥0 occur in explicit form in
[K1, Sect. 2, Remark 4] and in [F, Sect. 7.8, formulas (8.5) and (8.6)].

If T ∈ O′C(Rn;Mm×m) satisfies (12.1), then the formula

(12.3) St(U) = Tt ☼ U, t ∈ [0,∞[, U ∈ S ′(Rn;Cm),

defines a semigroup (St)t≥0 ⊂ L(S ′(Rn;Cm),S ′(Rn;Cm)) with infinitesimal gener-
ator equal to the convolution operator [T ☼]|S′(Rn;Cm). The semigroup property of
the family (St)t≥0 of distributions follows from the fact that O′C(Rn;Mm×m) acts
in S ′(Rn;Cm) by the convolution ☼, and the latter is a consequence of associativity



EXCHANGE BETWEEN CONVOLUTION AND MULTIPLICATION 19

on O′C × O′C × S ′ of the convolution ☼ from Theorem 6.4.1. The associativity is
also an easy consequence of Theorem 10.1 and the associativity of multiplication
on OM ×OM × S ′.

We now briefly review the results of [K1] and [K2] concerning the locally con-
vex spaces which are universally invariant with respect to one-parameter opera-
tor semigroups on S ′(Rn;Cm) generated by the operators [T ☼]|S′(Rn;Cm) for T ∈
O′C(Rn;Mm×m) satisfying condition (12.1). These results are related to semigroup-
theoretical sense of the Petrovskĭı weak condition for forward evolutionarity.

It follows from [K1, Sect. 2, Theorem 2] and [K2, Sect. 2] that whenever T ∈
O′C(Rn;Mm×m) and E is one of the l.c.v.s. S(Rn;Cm), S ′(Rn;Cm), DL2(Rn;Cm)

or S̃µ(Rn;Cm), µ ∈ [0,∞[, then (12.1) is equivalent to the following property of T :

[T ☼]|E ∈ L(E;E) and [T ☼]|E is the generator of
a one-parameter operator semigroup of class (C0) on E.

The above mentioned one-parameter operator semigroup generated by [T ☼]|E has
the form (St|E)t≥0 where (St)t≥0 ⊂ L(S ′(Rn;Cm),S ′(Rn;Cm)) is the semigroup
occurring in (12.2).

By [K1, Sect. 2, Theorem 2], if T ∈ O′C(Rn;Mm×m) satisfies the condition (12.1),
then the l.c.v.s. S(Rn;Cm), DLp(Rn;Cm), p ∈ [1,∞], S̃µ(Rn;Cm), µ ∈ [0,∞[,
S ′(Rn;Cm), O′C(Rn;Cm), D′Lq (Rn;Cm), q ∈ ]1,∞], are invariant with respect to
every one-parameter operator semigroup (St)t≥0 ⊂ L(S ′(Rn;Cm),S ′(Rn;Cm)) gen-
erated by the operator [T ☼]|S′(Rn;Cm).

Assume that T = (Ti,j)
m
i,j=1 ∈ O′C(Rn;Mm×m) and consider the system of con-

volution equations

(12.4) ∂tui(t, x) =

m∑
j=1

Ti,j ☼
(x)
uj(t, x), i = 1, . . . ,m,

with initial conditions

(12.5) ui(0, x) = ui
◦

(x), i = 1, . . . ,m,

where (u1(t, ·), . . . , um(t, ·)) ∈ E for every t ∈ [0,∞[, E being one of S(Rn;Cm),
S ′(Rn;Cm), DL2(Rn;Cm) or S̃µ(Rn;Cm), µ ∈ [0,∞[. Then the weak Petrovskĭı for-
ward evolutionarity condition for the system (12.4)–(12.5) coincides with (12.1) and
is a necessary and sufficient condition for the operator [T ☼]|E to be the generator
of an infinitely differentiable one-parameter operator semigroup on E. Thus the
weak Petrovskĭı forward evolutionarity condition (12.1) turns out to be a necessary
and sufficient condition for the existence of a governing semigroup for the forward
Cauchy problem (12.4)–(12.5).

If E is one of the other l.c.v.s. listed before, then we can only assert that (12.1)
is a sufficient condition for the existence of a governing semigroup. Notice that
I. G. Petrovskĭı analyzed in [P] the case of E = C∞b (Rn;Cm) = S̃0(Rn;Cm) assum-
ing that all Ti,j are differential operators with constant coefficients, without using
the theory of distributions.

It follows that if E is any of the spaces listed above and the condition (12.1)
is not satisfied, then the initial value forward system (12.4)–(12.5) is not governed
by a semigroup. The question then arises about phenomena related to the system
(12.4)–(12.5) which prevent the existence of a governing semigroup. An answer for
E = S(Rn;Cm) can be found in [R, Sect. 3.10, Theorem 4].
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