
Divisibility properties of generalized Vandermonde
determinants
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1 Introduction

Given n ≥ 2 let a denote an increasing n-tuple of non-negative integers ai and let x
denote an n-tuple of indeterminates xi. Denote by Va(x) the generalized Vandermonde
determinant, the polynomial obtained by computing the determinant of the matrix
with (i, j) entry equal to x

aj
i .

Let s be the standard n-tuple of consecutive integers from the interval [0, n−1] and
given c ≥ 1 assume that x is an n-tuple of distinct 2-integral odd rational numbers xi
such that xi ≡ xj ( mod 2c+1 ).

Several years ago one of the authors, investigating some properties of Kubota-
Leopoldt 2-adic L-functions, asked whether for any n-tuples a and x with c = 1 the
identity

ord2Va(x) = ord2Vs(x) + ord2Vs(a)− ord2Vs(s) (1.1)

holds. Note that if n = 2 and c = 1 the above identity is a simple consequence of the
well known identity

ord2(xa − 1) = ord2a+ ord2(x− 1) .
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2 Generalized Vandermonde determinants

In the paper we prove that for any fixed c the identity holds for any a and x if
the blocks of identical digits of n − 1 in base 2 are not too large (Theorem 1 and
Corollary). Consequentely for any fixed c the identity holds for infinitely many n
(Theorem 2). Moreover we prove that for any n identity (1.1) holds for any a and x
with sufficiently large c (Theorem 4). It means that for sufficiently large c the exponent
ord2(Va(x)/Vs(x)) equals ord2(Vs(a)/Vs(s)) and so does not depend on x. We also find
infinitely many n, a and x with c = 1 such that (1.1) does not hold. More precisely,
we proved that for infinitely many n the left hand side of (1.1) is less (resp. greater)
than right hand side of (1.1) for some a and x (Theorem 3).

A special case of the identity for

x = (1,−7, 9, . . . , 2(−1)n−1(2n− 1)− 1) or (−3, 5,−11, . . . , 2(−1)n(2n− 1)− 1),

called Wójcik’s conjecture, was proved in [4] (cf. [5] and [6]). In this case (1.1) has the
form

ord2Va(x) = 3

(
n

2

)
+ ord2Vs(a) .

In the proof the authors made use of some results of this paper. Making use of the above
identity they found the so-called full linear congruence for special values of Kubota-
Leopoldt 2-adic L-functions L2(k, χ⊗ ω1−k) attached to quadratic characters χ with k
running over any finite subset of Z not necessarily consisting of consecutive integers.

1.1 Generalized Vandermonde determinants

The classical Vandermonde determinant Vs(x) is equal to the polynomial∏
0≤i<j≤n−1

(xj − xi) . (1.2)

It is well known that the polynomial Va(x) is divisible by Vs(x) in the polynomial
ring Z[x] and the quotient Pa(x): = Va(x)/Vs(x) is a homogeneous polynomial. The
polynomial Pa(x) has exactly Vs(a)/Vs(s) non-negative “terms”, i.e., the sum of the
coefficients of Pa(x), which all are non-negative, is equal to Vs(a)/Vs(s) (see [1] or [2]).
Note that in the Vs(s) we set 00 = 1.

If c ∈ N we define a polynomial
(
x
c

)
∈ Q[x] by c!

(
x
c

)
= x(x− 1) · · · (x− c + 1). By

definition, set
(
x
0

)
= 1.

(
x
c

)
is a polynomial of degree c, equal to 0 at integers from the

interval [0, c) and equal to 1 at x = c.
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For n-tuples a and x we denote by Ca(x) the polynomial obtained by computing

the determinant of the matrix with (i, j) entry equal to
(
xi
aj

)
. The polynomial Cs(x)

is called the Cauchy determinant. We have Cs(x)
n−1∏
i=0

i! = Vs(x). Moreover it is well

known that the polynomial Ca(x)
n−1∏
i=0

ai! is divisible by Cs(x)
n−1∏
i=0

i! in the polynomial

ring Z[x]. Denote by Qa(x) the quotient of these polynomials.

For s, r ∈ N and an s-tuple of indeterminates x denote by τr(x) (r ≤ s) the
elementary symmetric polynomial of degree r. By definition τ0(x) = 1 and τr(x) = 0
if r < 0. For r, s ∈ N, r ≤ s we have

τr(x) = τr(x1, . . . , xs−1) + τr−1(x1, . . . , xs−1)xs (1.3)

and these formulas define the elementary symmetric polynomials.

For t ∈ N, t ≤ s and any tuples x1 = (xi1 , . . . , xit), x2 = (xit+1
, . . . , xis) we call

the tuples x1 and x2 complementary with respect to x if

{i1, . . . , it} ∪ {it+1, . . . , is} = {1, . . . , s}.

By definition, we have

τr(−x) = (−1)rτr(x)

and for t ≤ s if x1 and x2 are complementary with respect to x then

τr(x) =
r∑
i=0

τi(x1)τr−i(x2).

Lemma 1 (see [3, Chapter XI, page 334]) Let a (resp. c) be an n-tuple (resp. ν-tuple)
of non-negative integers ai (resp. ci) and let x be an n-tuple of indeterminates xi.
Assume that a and c are increasing complementary tuples with respect to the standard
(n+ ν)-tuple such that an−1 = n+ ν − 1. Then we have

Va(x) = ±Vs(x) · det(τn−ci+j(x)) ,

where the row and column indices i and j in the determinant run from 0 to ν − 1.
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2 The main theorems

We can now formulate our main results. These results will be proved in subsequent
sections. The five presented theorems yield information about identity (1.1). Theorems
2 and 4 follow from the Corollary to Theorem 1. Theorem 3 is a consequence of Lemma
1 and gives infinitely many counter-examples to (1.1). Theorem 5 allows one to make
use of computers to verify (1.1) for some fixed n and n-tuples a in the cases when we
cannot use Theorem 1.

Let us consider the expansion of n− 1 in base 2. A subsequence of this expansion
consisting of consecutive 0’s or consecutive 1’s which is neither preceded nor succeeded
by the same symbol we call a block. The number of digits in the block D is said to be
its length. The length of D will be denoted by l(D). Set

n− 1 = D2ρ+1D2ρ . . . D1D0 , Dj−blocks, D2ρ+1 = 11 . . . 1 , D0 = 00 . . . 0

and l(Dj) = lj (0 ≤ j ≤ 2ρ + 1). Write pr =
r∑
s=0

ls (0 ≤ r ≤ 2ρ + 1). Assume that the

blocks Dj if 1 ≤ j ≤ 2ρ+ 1 are not empty and in the case when n− 1 is odd we have
l0 = 0 (the block D0 is empty). For 1 ≤ k ≤ ρ we define

Hk = c
( k∑
j=1

(2p2j − 2p2j−1) + 2p0

)
−

k∑
j=0

l2j+1 and H0 = c2l0 − l1 ,

and

H ′k = c
( k−1∑
j=0

(2p2j+1 − 2p2j) + 1
)
−

k∑
j=0

l2j and H ′0 = c− l0 .

Theorem 1 We follow the above notation. Given n, c ∈ N (n ≥ 2) let a be an
arbitrary increasing n-tuple of non-negative integers and let x be an n-tuple of distinct
2-integral rational numbers xi with xi ≡ xj ( mod 2c+1 ). Assume that

min (H0, H1, . . . , Hρ) ≥ 0

and
min (c,H0, H1, . . . , Hρ) + min (H ′0, H

′
1, . . . , H

′
ρ) + 1 ≥ 0 .

Then the identity

ord2Va(x) = ord2Vs(x) + ord2Vs(a)− ord2Vs(s)

holds for x and a.
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Corollary We follow the notation of Theorem 1. Assume that

l0 ≤ c+ 1 , l1 ≤ c2l0 ,

and for 2 ≤ j ≤ 2ρ+ 1

lj ≤ c2pj−2(2lj−1 − 1) .

Then the identity

ord2Va(x) = ord2Vs(x) + ord2Vs(a)− ord2Vs(s)

holds for an arbitrary increasing n-tuple a of non-negative integers and an arbitrary
n-tuple x of distinct 2-integral rational numbers xi with xi ≡ xj ( mod 2c+1 ).

Theorem 2 For any fixed c ∈ N there are infinitely many n such that the identity

ord2Va(x) = ord2Vs(x) + ord2Vs(a)− ord2Vs(s)

holds for an arbitrary increasing n-tuple a of non-negative integers and an arbitrary
n-tuple x of distinct 2-integral rational numbers xi with xi ≡ xj ( mod 2c+1 ).

Theorem 3 For any fixed c ∈ N there are infinitely many n such the inequality

ord2Va(x) > ord2Vs(x) + ord2Vs(a)− ord2Vs(s)

(resp.

ord2Va(x) < ord2Vs(x) + ord2Vs(a)− ord2Vs(s))

holds for some increasing n-tuple a of non-negative integers and some n-tuple x of
distinct 2-integral rational numbers xi with xi ≡ xj ( mod 2c+1 ).

Theorem 4 For any n ∈ N, n ≥ 2 we can find c0 such that for all natural numbers
c ≥ c0 the identity

ord2Va(x) = ord2Vs(x) + ord2Vs(a)− ord2Vs(s)

holds for an arbitrary increasing n-tuple a of non-negative integers and an arbitrary
n-tuple x of distinct 2-integral rational numbers xi with xi ≡ xj ( mod 2c+1 ).
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In the sequel let k denote the number of digits in the base 2 expansion of n − 1.
For an increasing n-tuple a of non-negative integers ai denote by C∗ the subset of the
set [1, an−1]n−1 consisting of all increasing (n− 1)-tuples not equal to (1, 2, . . . , n− 1).
Write

γ = n− 1 +
1

c

(
(k − 3)

(k − 3

2c
+

√(k − 3

2c

)2
+

2

c

)
+ 3

)
and for b ∈ C∗ set

s := s(b) = #{i ∈ [1, n− 1]: bi ≥ n} .

For 2 ≤ r ≤ n− 2 let

Γr = {b = (b1, . . . , bn−1) : bi = i if i ≤ r − 1 and r ≤ br < . . . < bn−1 ≤ γ} .

In the sequel let s2(t) (t ∈ N) denote the sum of the digits in the base 2 expansion of t.

Theorem 5 Given n, c ∈ N (n ≥ 2) let a be an increasing n-tuple of non-negative
integers ai and let x be an n-tuple of distinct 2-integral rational numbers xi with xi ≡
xj ( mod 2c+1 ). In the notation stated above, identity (1.1) holds for x and a if the
inequality

c
( n−1∑
i=1

bi −
n−1∑
i=1

i
)

+
n−1∑
i=1

s2(bi)−
n−1∑
i=1

s2(i) > 0 (2.1)

holds for all b ∈ Γr ∩ C∗, with

s(b) ≤ k − 3

2c
+

√(k − 3

2c

)2
+

2

c

and r is the smallest integer such that

r ≥ n− k + 1

2c
−
(k − 3

2c

)2
− 1

4
.

3 Two auxiliary lemmas

We first prove the main lemma of the paper (Lemma 2). Although the proof of the
lemma is rather technical, the lemma allows one to deduce all the results of the paper.
It implies Lemma 3, which provides a very useful method for verifying identity (1.1).

Given an n-tuple x of indeterminates xi let x′ denote the (n−1)-tuple such that x is
a concatenation of x0 and x′. Let x̃ = x−x0·1, where 1 = (1, . . . , 1). For n-tuples x and
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a we shall consider the polynomial Va′(x
′). Again this polynomial is divisible by Vs′(x

′)
in the polynomial ring Z[x′]. Denote by P ′a′(x

′) the quotient of these polynomials.
Similarly we denote by C ′a′(x

′) the polynomial obtained by computing the determinant

of the matrix with (i, j) entry equal to
(
xi
aj

)
. We have C ′s′(x

′)
n−1∏
i=1

i! = Vs′(x
′). Again the

polynomial C ′a′(x
′)
n−1∏
i=1

ai! is divisible in the ring Z[x′] by the polynomial C ′s′(x
′)
n−1∏
i=1

i!

and we denote by Q′a′(x
′) the quotient of these polynomials.

Lemma 2 Given n ∈ N (n ≥ 2) let a be an increasing n-tuple of non-negative integers
ai with a0 = 0 and let x be an n-tuple of distinct 2-integral rational numbers xi with
x0 = 1 and xi ≡ 1 ( mod 4). If for every b ∈ C∗

ord2

(P ′b(x̃′)
n−1∏
i=1

i!

n−1∏
i=1

bi!

)
≥ 1 (3.1)

then for x and a identity (1.1) holds.

Proof. Our proof starts with the observation that inequality (3.1) implies inequality

ord2

(Q′b(a′)P ′b(x̃′)
n−1∏
i=1

i!

n−1∏
i=1

bi!

)
≥ 1 ,

which follows from Q′b(a′) ∈ Z[a′]. Thus it suffices to prove the lemma under the above
assumption.

We first prove that
Va(x) =

∑
b∈C∗∪{s′}

G(b) , (3.2)

where

G(b) =

(
Vs(a)Vs(x)

Vs(s)

)
·
(Q′b(a′)P ′b(x̃′)

n−1∏
i=1

i!

n−1∏
i=1

bi!

)
.
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Subtract in Va(x) the first row from each of the others and expand by minors on
the first column. It follows that

Va(x) = det(x
aj
i − 1) ,

where the row and column indices i and j run from 1 to n− 1. Therefore by definition
we obtain

Va(x) =
∑
σ∈S

sgn(σ)
n−1∏
i=1

(xaiσ(i) − 1) ,

where S denotes the set of all permutations of the set {1, 2, . . . , n}. Hence we deduce
that

Va(x) =
∑
σ

sgn(σ)
n−1∏
i=1

( ai∑
k=1

(
ai
k

)
(xσ(i) − 1)k

)
.

Write A = [1, a1]× · · · × [1, an−1]. The above equation implies

Va(x) =
∑
c∈A

( n−1∏
i=1

(
ai
ci

))
·
(∑

σ

sgn(σ)
n−1∏
i=1

(xσ(i) − 1)ci
)

=
∑
c∈A

n−1∏
i=1

(
ai
ci

)
· det((xµ − 1)cν ) ,

where c is an (n− 1)-tuple of non-negative integers ci and the row and column indices

ν and µ in the determinant run from 1 to n− 1. Consequently, by virtue of
(
ai
ci

)
= 0 if

ci > ai, we obtain
Va(x) =

∑
c∈C

F (c) , (3.3)

where C is the subset of the set [1, an−1]n−1 consisting of all (n− 1)-tuples of distinct
integers ci and

F (c) =
n−1∏
i=1

(
ai
ci

)
· det((xµ − 1)cν ) .

For σ ∈ S and c ∈ C denote by cσ an n-tuple of cσ(i) and let C(c) denote the set
consisting of d ∈ C such that there exists σ ∈ S satisfying d = cσ. Set

G′(b) =
∑

c∈C(b)

F (c) .

By virtue of (3.3), we obtain

Va(x) =
∑

b∈C∗∪{s′}
G′(b) . (3.4)
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Furthermore we have

G′(b) =
∑
σ∈S

sgn(σ)
n−1∏
i=1

(
ai
bσ(i)

)
· det((xµ − 1)bν ) ,

and so

G′(b) = det

((
aµ
bν

))
· det((xµ − 1)bν ) ,

where the row and column indices ν and µ in both the determinants run from 1 to
n− 1.

In other words, we obtain

G′(b) = Cb(a′) · Vb(x̃′) ,

and so
G′(b) = G(b)

because Vs′(x̃
′) = Vs(x) and Vs′(a

′) = Vs(a). Hence, by virtue of (3.4), equation (3.2)
follows.

Now Lemma 2 follows easily from (3.2). It suffices to observe that

G(s′) =
Vs(a)Vs(x)

Vs(s)
,

which is clear from Q′s′(a
′) = 1 and P ′s′(x̃

′) = 1.

Lemma 3 Given n, c ∈ N (n ≥ 2) let a be an increasing n-tuple of non-negative
integers ai with a0 = 0 and let x be an n-tuple of distinct 2-integral rational numbers
xi with x0 = 1 and xi ≡ 1 ( mod 2c+1 ). We have

(i) If for b ∈ C∗ inequality (2.1) holds then inequality (3.1) also holds.

(ii) Inequality (2.1) holds for every b ∈ C∗ if and only if

c(b− i) + s2(b)− s2(i) > 0 (3.5)

for every n ≤ b ≤ an−1 and 1 ≤ i ≤ n− 1.

Remark Observe that, for i ≤ n− 1 and b ≥ n, (3.5) holds if either

b ≥ (n− 1) +
k

c
or i ≤ n− k

c
.
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Proof. (ii) is obvious and we turn to (i). We first notice that P ′b(x̃′) ∈ Z[x′] is a
homogeneous polynomial of degree

n−1∑
i=1

bi −
n−1∑
i=1

i .

Consequently, by virtue of xi ≡ 1 ( mod 2c+1 ), we obtain

ord2(P ′b(x̃′)) ≥ (c+ 1)(
n−1∑
i=1

bi −
n−1∑
i=1

i) ,

which implies (3.1). It remains to make use of the formula ord2(t!) = t− s2(t) (t ∈ N)
and Lemma 3 follows at once.

Remark Note that in Theorems 1, 2, 4 and 5 we may assume without loss of generality
that x0 = 1 (i.e. xi ≡ 1 (mod 2c+1)) and a0 = 0. Indeed, it is easily seen that

Va(x) = x
(a0+a1+···an−1)
0 Va(xx−1

0 ) .

Consequently, we have

Va(x) = x
(a0+a1+···an−1)
0

( n−1∏
i=1

xix
−1
0

)a0

Vã(xx−1
0 ),

where ã = a − a0 · 1. On the other hand we have Vs(x) = x
(n2)
0 Vs(xx

−1
0 ) and Vs(ã) =

Vs(a). Thus it is sufficient to note that the n-tuples xx−1
0 and ã satisfy the restricted

assumptions. Consequently, in the proofs of Theorems 1, 2, 4 and 5 we may use
Lemmas 2 and 3 which were proved under these assumptions.

4 Proof of Theorem 5

Write

B(b) = c
( n−1∑
i=1

bi −
n−1∑
i=1

i
)

+
n−1∑
i=1

s2(bi)−
n−1∑
i=1

s2(i) .

Let 1 ≤ r ≤ n− 1, b ∈ C∗ and

b = (b1, b2, . . . , bn−1) .
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Write

Cr = {b ∈ C∗ : bi = i if i ≤ r − 1, br > r} .

Assume that b ∈ Cr and recall that s = s(b) denotes the number of i ∈ [1, n− 1] such
that bi ≥ n. By virtue of

n−1∑
i=n−s

bi ≥
s−1∑
i=0

(n+ i) ,

we have
n−1∑
i=r

bi −
n−1∑
i=r

i ≥
s−1∑
i=0

(n+ i)−
s−1∑
i=1

(n− i)− r = 2
s−1∑
i=1

i+ n− r .

Consequently, we obtain

n−1∑
i=1

bi −
n−1∑
i=1

i ≥ s(s− 1) + n− r .

Moreover the left hand side of the above inequality equals s(s− 1) + n− r only if

b = (1, 2, . . . , r − 1, r + 1, . . . , n− s, n, n+ 1, . . . , n+ s− 1) .

Furthermore let us observe that

n−1∑
i=n−s

bi ≥
s−u−1∑
i=0

(n+ i) +
u−1∑
i=0

(n+ s+ i) ,

where u denotes the number of terms of b exceeding n+ s− 1. Therefore we find that

n−1∑
i=n−s

bi ≥
s−u−1∑
i=0

(n+ i) +
s−1∑
i=s−u

(n+ i+ u) ,

and in consequence

n−1∑
i=n−s

bi ≥
s−1∑
i=0

(n+ i) +
s−1∑
i=s−u

u =
s−1∑
i=0

(n+ i) + u2 .

Thus we obtain
n−1∑
i=1

bi −
n−1∑
i=1

i ≥ s(s− 1) + n− r + u2 . (4.1)



12 Generalized Vandermonde determinants

Denote by k the number of digits in the base 2 expansion of n− 1. If bn−1 < 2k+1

we have s2(bi) ≥ 2 for all bi ≥ n except at most one of them. Thus it follows in this
case that

n−1∑
i=1

s2(bi)−
n−1∑
i=1

s2(i) ≥ 2(s− 1) + 1− (k + (k − 1)(s− 1)) = −2− s(k − 3) (4.2)

because s2(i) ≤ k and s2(i) = k for at most one of the i’s.
Denote by v the number of terms of b greater than 2k+1 − 1. We see at once that

n+ s− 1 ≤ 2(n− 1) ≤ 2k+1 − 1 ,

and so
v ≤ u .

Then, by (4.2), we have

n−1∑
i=1

s2(bi)−
n−1∑
i=1

s2(i) ≥ 2(s− 1) + 1− v(k + (k − 1)(s− 1)) = −2− s(k − 3)− v .

Consequently, by virtue of (4.1) and c ≥ 1, we obtain

B(b) ≥ c(s(s− 1) + n− r)− 2− s(k − 3) ,

and hence

B(b) ≥ c
(
s2 − s

(
1 +

k − 3

c

)
+ n− r − 2

c

)
. (4.3)

The above yields (2.1) (B(b) > 0) in the case when b ∈ Cr with

r < n− 2

c
−
(k − 3 + c

2c

)2
= n− k + 1

2c
−
(k − 3

2c

)2
− 1

4
.

In this case the discriminant

D =
(
1 +

k − 3

c

)2
− 4

(
n− r − 2

c

)
of the quadratic polynomial

s2 −
(
1 +

k − 3

c

)
s+ (n− r)− 2

c
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is negative.
By the definition of s, it follows that

s ≤ n− r

if b ∈ Cr. Therefore, in view of (4.3), we have

B(b) ≥ c
(
s2 − sk − 3

c
− 2

c

)
. (4.4)

Hence we see that B(b) > 0 if

s >
k − 3

2c
+

√(k − 3

2c

)2
+

2

c
. (4.5)

For b ∈ Cr let
b′ = (b′1, b

′
2, . . . , b

′
n−1)

denote the sequence with

b′i = i if i ≤ r and b′i = bi−1 if r + 1 ≤ i ≤ n− 1 .

Since
card{i : 1 ≤ i ≤ n− 1, b′i ≥ n} = s− 1 ,

by (4.4) we obtain
B(b′) ≥ c(s− 1)2 − (s− 1)(k − 3)− 2 .

On the other hand, we have

B(b)−B(b′) = c(bn−1 − r) + s2(bn−1)− s2(r) ≥ c(bn−1 − (n− s)) + 1− (k − 1) .

Consequently, if s ≥ 2 we obtain

B(b) ≥ c((s− 1)2 + bn−1 − (n− s))− s(k − 3)− 3 .

The above inequality also holds for s = 1 because in this case we have

B(b) = c(bn−1 − r) + s2(bn−1)− s2(r) ≥ c(bn−1 − (n− 1)) + 1− k .

Hence, by virtue of s ≥ 1, we deduce that

B(b) ≥ c(bn−1 − (n− 1))− (k − 3)s− 3 .
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Combining the above with the reverse inequality to (4.5) gives

B(b) ≥ c(bn−1 − (n− 1))− (k − 3)
(k − 3

2c
+

√(k − 3

2c

)2
+

2

c

)
− 3 .

Thus B(b) > 0 if

bn−1 > n− 1 +
1

c

(
(k − 3)

(k − 3

2c
+

√(k − 3

2c

)2
+

2

c

)
+ 3

)
,

which completes the proof of Theorem 5.

5 Proof of Theorem 1

The proof of Theorem 1 is a consequence of the following two lemmas.

Lemma 4 In the notation before the statement of Theorem 1 we have

min
b>n−1

(c(b− n+ 1) + s2(b)− s2(n− 1)) = min (c,H0, H1, . . . , Hρ) + 1 .

Proof. Observe that

n− 1 =
ρ∑
j=0

(2p2j+1 − 2p2j) .

For 1 ≤ k ≤ ρ let us define

a′k =
ρ∑
j=k

(2p2j+1 − 2p2j) and ak = a′k + 2p2k−1 .

Write
a0 = n, aρ+1 = 2p2ρ+1 and aρ+2 =∞ .

For 0 ≤ k ≤ ρ+ 1 and ak < b < ak+1 we have

c(b− ak) + s2(b)− s2(ak) > 0

because c(b− ak) > 0 and

s2(b)− s2(ak) = s2(b− a′k)− s2(ak − a′k) = s2(b− a′k)− 1 ≥ 0 .
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Therefore for 1 ≤ k ≤ ρ+ 1 we have

min
ak≤b<ak+1

(c(b−n+1)+s2(b)−s2(n−1)) = c(ak−n+1)+s2(ak)−s2(n−1) = Hk−1 +1 .

If l0 > 0 we have

min
a0≤b<a1

(c(b− n+ 1) + s2(b)− s2(n− 1)) = c(a0 − n+ 1) + s2(a0)− s2(n− 1) = c+ 1 .

Observe also that if l0 = 0 then a0 = a1 and H0 ≤ c+ 1. The lemma follows, since

a0 ≤ a1 < a2 < . . . < at+1 < at+2 =∞ .

Lemma 5 In the notation before the statement of Theorem 1 we have

min
0≤b<n−1

(c(n− 1− b) + s2(n− 1)− s2(b)) = min (H ′0, H
′
1, . . . , H

′
ρ) + 1 .

Proof. The lemma follows from Lemma 4 by symmetry (i.e. by interchanging digits
0 and 1 and switching inequalities).

Proof of Theorem 1: By Lemmas 4 and 5, the inequality

c(b− i) + s2(b)− s2(i) > 0

holds for all b > n− 1 and i ≤ n− 1 if and only if both assumptions of Theorem 1 are
satisfied. Consequently Theorem 1 follows by Lemma 3(ii).

Proof of the Corollary to Theorem 1: The inequalities with j odd, in the hypoth-
esis of the Corollary, imply that Hk ≥ 0 for all 0 ≤ k ≤ ρ. Similarly, the inequalities
with j even give H ′k ≥ −1 for all 0 ≤ k ≤ ρ. Consequently, the assumptions of Theorem
1 are satisfied and the Corollary follows.

6 Proofs of Theorem 2, 3 and 4

Proof of Theorem 2: We shall define a sequence (nν)ν≥1 of distinct natural num-
bers by induction on ν such that the expansion of nν − 1 in base 2 has 2ν blocks
D2ν−1 . . . D1D0 and the lengths of these blocks l0, l1, . . . , l2ν−1 satisfy the assump-
tions of the Corollary to Theorem 1 for the fixed c. Write, by definition, n1 = 2.
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The expansion of n1 − 1 in base 2 is D1D0, where D1 = 1 and D0 is empty, so the
assumptions of the Corollary to Theorem 1 are satisfied. Let us assume that we have
defined nν such that the expansion D2ν−1 . . . D1D0 of nν − 1 in base 2 satisfies the
assumptions of the Corollary to Theorem 1. Then we define

nν+1 = D2ν+1D2ν . . . D1D0 + 1 ,

where the lengths l2ν−1 and l2ν satisfy

l2ν−1 ≤ c2p2ν−3(2l2ν−2 − 1) and l2ν ≤ c2p2ν−2(2l2ν−1 − 1) .

It is easily seen that the numbers l0, l1, . . . , l2ν+1 satisfy the assumptions of the Corol-
lary to Theorem 1, which gives the theorem.

Proof of Theorem 3: Let t ≥ 1. Set

a = (0, 1, . . . , n− t− 1, n− t+ 1, n− t+ 2, . . . , n) .

Then by Lemma 1 we obtain
Pa(x) = ±τt(x) .

On the other hand, in this case we have

Vs(a)

Vs(s)
=

(
n

t

)
.

Therefore the left hand side of identity (1.1) minus ord2Vs(x) takes the form ord2(τt(x))

and the right hand side of this identity minus ord2Vs(x) equals ord2

(
n
t

)
. In particular,

if t = 1 we have
a = (0, 1, . . . , n− 2, n)

and the left hand side of (1.1) minus ord2Vs(x) takes the form ord2(τ1(x)) and the right

hand side of the equation minus ord2Vs(x) is equal to ord2n, where τ1(x) =
n−1∑
i=0

xi.

Set τ = #{i ∈ [0, n− 1]: xi ≡ 1 + 2c+1 (mod 2c+2)}. It suffices to consider n and x
satisfying

2c+1|n and τ odd .

Indeed, we have
τ1(x) ≡ n+ τ2c+1 (mod 2c+2) .
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Thus if 2c+1||n we have
ord2(τ1(x)) ≥ c+ 2 ,

and hence for these n the former inequality of Theorem 3 holds. If 2c+2|n we have

ord2(τ1(x)) = c+ 1 ,

and hence for these n the latter inequality of Theorem 3 holds.

Proof of Theorem 4: Given n it is sufficient to set

c0 = max
(
l0 − 1,

l1
2l0
, max

2≤j≤l−1

( lj
2pj−2(2lj−1 − 1)

))
.

Then the assumptions of the Corollary to Theorem 1 are satisfied for the given n and
identity (1.1) holds for any a and x with xi ≡ xj (mod 2c+1).

7 Examples, Counter-examples and Computations

This section explains how one can compute examples and counter-examples to (1.1)
for quite large n.

7.1 Good numbers

In order to simplify the rest of the discussion let us make the following definitions. Let
n, c ∈ N (n ≥ 2). Recall that k denotes the number of digits in the base 2 expansion
of n− 1 and for a given (n− 1)-tuple b, s = s(b) denotes the number of i ∈ [1, n− 1]
such that bi ≥ n.

Definition 1 Fix n, c ∈ N (n ≥ 2). An increasing (n − 1)-tuple b not satisfying
inequality (2.1) will be called n-suspicious.

Remark Note that from the proof of Theorem 5 it follows that all n-suspicious se-
quences b satisfy

s(b) ≤ k − 3

2c
+

√(k − 3

2c

)2
+

2

c

and belong to Γr, where r is the smallest integer such that

r ≥ n− k + 1

2c
−
(k − 3

2c

)2
− 1

4
.
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Observe that for fixed n, c ∈ N the number of such sequences is finite.

Definition 2 Fix n, c ∈ N (n ≥ 2). We say that n is good if it satisfies the assumptions
of Theorem 1.

Remark Note that n is good if and only if n satisfies inequality (3.5) for all b and i
such that

n ≤ b < (n− 1) +
k

c
and n− k

c
< i ≤ n− 1 .

Moreover, note that by Theorem 1 identity (1.1) holds for all good n. A natural number
n not being good is said to be non-good.

By Theorem 5 the only possible counter-examples to (1.1) occur when there are
suspicious sequences in C∗. Thus in order to find counter-examples we start with
a search for suspicious sequences. We wrote a C program to check each n to first
determine whether n is good. If n is non-good we check inequality (2.1) for sequences
b ∈ Γr, where s(b) and r are the same as in the Remark after Definition 1. In order
to speed up this program it is very useful to precompute the s2 function for arguments
a little beyond the biggest n you will be considering.

1. For c = 2 this program finds all suspicious sequences up to n = 104 in about
36 hours. All 4 < n < 104 that are not good are determined by nine arithmetical
progressions:

n ≡ 0 ( mod 23 ), n ≡ ±1 ( mod 26 ), n ≡ ±2 ( mod 28 ) ,

n ≡ ±3 ( mod 211 ), n ≡ ±4 ( mod 212 ) .

2. For c = 1 the program is much slower. The program could only get up to n = 28 after
4 days. All non-good 2 < n ≤ 28 are determined by seven arithmetical progressions:

n ≡ 0 ( mod 22 ), n ≡ ±1 ( mod 24 ) ,

n ≡ ±2 ( mod 25 ) n ≡ ±3 ( mod 27 ) .

The number of n-suspicious sequences for c = 1 and n ≤ 28 is several times greater
than the number of n-suspicious sequences for c = 2 and n < 104.
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7.2 Modified Wójcik’s sequences

Many counter-examples we know are related to the so-called Wójcik sequences defined
in Theorem 6 below and the main motivation for this paper was a conjecture made by
A. Wójcik (private communication) several years ago.

Theorem 6 (Wójcik’s Conjecture, see [4, Proposition 4]) For

w = (w0, w1, . . . , wn−1) and v = (v0, v1, . . . , vn−1),

where

wi = 2(−1)i(2i+ 1)− 1 and vi = −2(−1)i(2i+ 1)− 1 (0 ≤ i ≤ n− 1)

and every a we have

ord2Va(w) = ord2Va(v) = 3

(
n

2

)
+ ord2Vs(a) .

We shall make use of some modifications of the sequences w and v. For an n-tuple
u = (u0, u1, . . . , un−1) let us define

u(s) = (u0, u1, . . . , ûs, . . . , un−1) ,

where the hat means that the sequence u(s) equals the sequence u without the one
term us.

For every n, a and 0 ≤ s, t ≤ n−1 identity (1.1) for the modified Wójcik sequences
w(s) and v(s) takes the form

ord2(Va(t)(w(s))) = ord2(Va(t)(v(s))) (7.1)

= 3

(
n− 1

2

)
+ ord2

((n− 1

[n+s
2

]

))
+ ord2

( ∏
0≤j<i≤n−1

i, j 6=t

(ai − aj)
)
.

As was already mentioned Wójcik’s conjecture was proved in [4]. We shall show that
the above identity is false for some n, a, s and t which gives many counter-examples
to identity (1.1).
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7.3 Computations with Wójcik’s sequences

Knowing non-good n doesn’t give us counter-examples, it only shows us where to look
for them. We still need to find a and x and compare the two sides of (1.1). We therefore
need to be able to compute terms of (1.1) for large values of n. This is made possible
by Lemma 1 provided that we can compute τr(x) quickly even for large n. This in turn
is possible if x has some simple structure.

If the terms of x are given in a polynomial form, for instance if xi = 4i+ 1, we can
use the following technique to compute formulas for τr(x) for moderately sized r (say
r ≤ 20) and any n. We use Mathematica. Its Sum function can do symbolic summation,
and as τ1(x) is just a sum of polynomial terms Mathematica can compute the formula
for τ1(x) as a polynomial in n.

Now we use the recursive relation (1.3) for τr(x), in the form

τr(x) =
n−1∑
i=0

xn−1−iτr−1(x0, x1, . . . , xn−2−i).

If τr−1(x) is known as a polynomial in n, this sum is a sum of polynomials and again
Mathematica can compute the sum symbolically (it knows the power summation formu-
las for consecutive integers). As an example the Mathematica code below will compute
the formulas for τr(x) in the case were xi = 1 + 4i for all r ≤ 10.

taurx[r_/; r < 0,n_] := 0;

taurx[0,n_] := 1;

x[i_] := 1+4*i;

taurx[r_,n_] := taurx[r,n_] = Simplify[

Sum[x[n-1-i]*taurx[r-1,n-1-i],{i,0,n-1}]]

Do[taurx[r,n];Print[taurx[r,n]],{r,1,10}]

This will work for x any polynomial in i.
We would like to do the above in the case x = w. Now the terms of w are not

polynomials, but note that w2i is a polynomial in i and w2i+1 is also a polynomial in i.
This allows us, for each r, to compute τr(w), for w of length 2i, as a polynomial in i
by a simple modification of the method outlined above. Similarly for τr(w) with w of
length 2i+ 1.
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7.4 Counter-examples

We consider the case when c = 2. The other cases can be considered in the same way,
however for c = 1 the program is much slower. We shall look for counter-examples to
(1.1) for n-tuples a and x with xi ≡ xj(mod 2c+1) of the following form. Given ν ∈ N
let c be a ν-tuple complementary to a with respect to the standard (n + ν)-tuple.
Similarly, given µ ∈ N let w denote Wójcik’s (n+ µ)-tuple. Let j be a µ-tuple being a
subsequence of the standard (n+ µ)-tuple. Set

i = n · 1− j and d = n · 1− c .

Let x be a complementary n-tuple to the tuple x̄ = (wjµ−1 , . . . , wj1 , wj0) with respect
to the tuple w.

We will look for counter-examples to (1.1) with a and x of the above form where
ν and µ are small. Above we have already seen how to evaluate τr(w). We then use
this, combined with the following recursive formula, to efficiently evaluate τr(x) for x
of the above form. We have

τr(x) = τr(w)−
µ∑
i=1

τi(x̄)τr−i(x) .

This can be quickly evaluated if µ is small.
To evaluate ord2(Vs(a)/Vs(s)) , we use the formula

Vs(a)

Vs(s)
=

n+ν−1∏
i=n

i!
∏

0≤k<m≤ν−1

(cm − ck)

ν−1∏
k=0

ck!
ν−1∏
k=0

(n+ ν − 1− ck)!
,

which follows from (1.2). This can be quickly evaluated if ν is small.
For each non-good n we looked for examples of tuples a and x such that (1.1) does

not hold. It turned out that we could find such counter-examples for all non-good
n < 104. It even happened that the form of the first counter-example we found for a
given n turned out to also work for other n’s satisfying the same congruence condition.
We can therefore present our counter-examples very compactly in Table 1. In this table
we list, for each congruence giving n, d and i which give a and x respectively such that
(1.1) does not hold.

Note that the first column of Table 1 gives counter-examples to equation (7.1). We
looked for and found more counter-examples to this identity. Of course the identity is
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Table 1: Counter-examples to (1.1) given by (d, i) for all non-good n ∈ (4, 104) with
c = 2

n ≡ 0 (mod23) ±1 (mod26) ±2 (mod28) ±3 (mod211) ±4 (mod212)
d 1 2, 0 3, 1,−1 4, 2, 0,−2 5, 3, 1,−1,−3
i 2 1, 2 0, 1, 4 −1, 0, 3, 4 −2,−1, 2, 3, 6

true for all good n and any a. For the non-good n < 104 we checked the equation for
all n− 60 ≤ s < n and all c such that ν < 7 and d is a subsequence of (1, 2, 3, . . . , 10).
The counter-examples we found suggested certain patterns. That these patterns do give
counter-examples for all s were then checked by getting Mathematica to simplify the
corresponding expressions. All known counter-examples to equation (7.1) are presented
in Table 2. For each of a number of congruences that n should satisfy, we list d and
n − s, which define a and s. The counter-example is then given by a and w(s). All
known s are listed but there are other c’s that would also give counter-examples for a
given s.

7.5 Concluding remarks

Let c = 2. We shall now describe a method for producing large sets of counter-examples
to identity (1.1). In this case Theorem 1 describes all n < 104 for which this identity
holds for any a and x with xi ≡ xj (mod 2c+1). For every non-good n we used the
method to produce a set Φ of a tuples and a set Ψ of x tuples such that equation (1.1)
does not hold for any a ∈ Φ and any x ∈ Ψ.

We make use of equation (3.2). As in the proof of Theorem 5, let

B(b) = c
( n−1∑
i=1

bi −
n−1∑
i=1

i
)

+
n−1∑
i=1

s2(bi)−
n−1∑
i=1

s2(i).

That is, for a suspicious b we have B(b) < 0. Let us define a partial order on vectors,
by saying a < b if and only if ai < bi for every i. For every non-good n < 104 there is
an n-suspicious tuple b that is <-smaller than all other suspicious sequences. Let us
denote this minimal b by bn. For a given non-good n let Ω be the set of b such that
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Table 2: Counter-examples to equation (7.1)

n ≡ d n− s
0 (mod23) 1 even and ord2(n− s) ≤ ord2(n)− 2

odd and ord2(n− s− 1) ≤ ord2(n)− 2
27 + 1 (mod28) 2, 0 6≡ 0, 1, 2, 3 (mod23)
28 + 1 (mod29) 2, 0 6≡ 0, 1, 2, 3 (mod24)
29 + 1 (mod210) 2, 0 6≡ 0, 1, 2, 3 (mod25)
29 + 2 (mod210) 3, 1,−1 ≡ 6, 7 (mod23)
210 + 1 (mod211) 2, 0 6≡ 0, 1, 2, 3 (mod26)
210 + 2 (mod211) 3, 1,−1 ≡ 6, 7, 10, 11, 14, 15 (mod24)
211 + 1 (mod212) 2, 0 6≡ 0, 1, 2, 3 (mod27)
211 + 2 (mod212) 3, 1,−1 6≡ 0, 1, 2, 3, 4, 5, 16, 17, 20, 21 (mod25)
212 + 1 (mod213) 2, 0 6≡ 0, 1, 2, 3 (mod28)
212 + 2 (mod213) 3, 1,−1 6≡ 0, 1, 2, 3, 4, 5, 32, 33, 36, 37 (mod26)
213 + 1 (mod214) 2, 0 6≡ 0, 1, 2, 3 (mod29)
213 + 2 (mod214) 3, 1,−1 6≡ 0, 1, 2, 3, 4, 5, 64, 65, 68, 69 (mod27)

B(b) ≤ B(bn). Let

qn(b,x) =

P ′b(x̃′)
n−1∏
i=1

i!

n−1∏
i=1

bi!

.

Note that we proved that ord2(qn(b,x)) ≥ B(b) for all x and b ∈ Ω. It turns out that
we could always find many x such that ord2(qn(bn,x)) = B(bn) and ord2(qn(b,x)) >
B(bn). Let the set of such x be denoted Ψ. If we can find a such that ord2(Q′bn(a′)) = 0,
then it follows from equation (3.2) that (1.1) does not hold for this a and any x ∈ Ψ.
We don’t want to evaluate Q′bn(a′) by evaluating the determinant itself. We overcome
this problem by noting that for a fixed x ∈ Ψ we shall have ord2(Q′bn(a′)) = 0 if and
only if

ord2Va(x)− ord2Vs(x)− ord2Vs(a) + ord2Vs(s) = B(bn).

We have already shown how to evaluate the left hand side of this equation quickly.
Using this we found many a satisfying this equation (for some x ∈ Ψ, and therefore all
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x ∈ Ψ). This gives the set Φ. This method was used to find Ψ with 10 elements and
Φ with 10 elements for each non-good n < 104. That is, 100 counter-examples to (1.1)
for each such n.
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ul. Śniadeckich 8
00-956 Warszawa 10, skr. poczt. 21, POLAND
urbanowi@impan.gov.pl

spiez@impan.gov.pl
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