A NOTE ON STOCHASTIC BURGERS' SYSTEM OF EQUATIONS

Krystyna Twardowska, Faculty of Mathematics and Computer Science, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland

Jerzy Zabczyk, Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-950 Warsaw, Poland

Abstract

We consider a stochastic version of a system of two equations formulated by Burgers in [2] with the aim to describe the laminar and turbulent motions of a fluid in a channel. The existence and uniqueness theorem for a global solution is established. The paper generalizes the result from the paper [11] by Da Prato and Gątarek dealing with the equation describing only the turbulent motion.

\section*{1 Introduction}

The paper is concerned with the stochastic version of two hydrodynamic equations for the turbulent flow in a channel between parallel walls. The original non-stochastic model was first proposed by Burgers in [2]. The system is derived from the theory of turbulent fluid motion and has similar properties as the Navier-Stokes equation, but is simpler to study.

Let $U=U(t)$ denote the primary velocity of the fluid, parallel to the walls of the channel, whereas the second one $v=v(t, x)$ denote the secondary velocity of the turbulent motion. Let P, ρ and μ be constants representing, respectively, an exterior force, analogous to the mean pressure gradient in the hydrodynamic case, the density of the fluid and its viscosity. Set $\nu=\frac{\mu}{\rho}>0$.

According to [2], the functions $U(t), v(t, \cdot), t \geq 0$, should satisfy the following system of equations

$$
\begin{align*}
\frac{d U(t)}{d t} & =P-\nu U(t)-\int_{0}^{1} v^{2}(t, x) d x \quad \text { for } t>0 \tag{1}\\
\frac{\partial v(t, x)}{\partial t} & =\nu \frac{\partial^{2} v(t, x)}{\partial x^{2}}+U(t) v(t, x)-\frac{\partial}{\partial x}\left(v^{2}(t, x)\right) \tag{2}
\end{align*}
$$

with the initial and boundary conditions

$$
\begin{equation*}
U(0)=U_{0, v} v(0, x)=v_{0}(x), v(t, 0)=v(t, 1)=0, x \in(0,1), t>0 . \tag{3}
\end{equation*}
$$

The simplified version consisting of one equation on v only $(U(t) \equiv 0), t \geq 0$,

$$
\begin{equation*}
\frac{\partial v(t, x)}{\partial t}=\nu \frac{\partial^{2} v(t, x)}{\partial x^{2}}-\frac{\partial}{\partial x}\left(v^{2}(t, x)\right) \tag{4}
\end{equation*}
$$

with the initial and boundary conditions

$$
\begin{equation*}
v(0, x)=v_{0}(x), \quad v(t, 0)=v(t, 1)=0 \tag{5}
\end{equation*}
$$

for $x \in(0,1)$ and for $t>0$, was investigated by many authors, e.g., in [20] and [25]. For the stochastic version of such equation see e.g. to the papers [7], [8], [10], [18], [21] and [23].

The system (1)-(3) was analysed in [2] and [3]. The existence and uniqueness theorem for the global solution of the system was examined by Dłotko in [9], using the Galerkin method. Other properties of such systems were studied by Cholewa and Dłotko in [5].

The Burger's system (1)-(3) as well as the Burger's equation do not display any chaotic phenomena and therefore a stochastic perturbations of (4) was proposed as a better model, see [4], [6], [19].

The stochastic Burgers' equation is of the form

$$
\begin{equation*}
\frac{\partial v(t, x)}{\partial t}=\nu \frac{\partial^{2} v(t, x)}{\partial x^{2}}-\frac{\partial}{\partial x}\left(v^{2}(t, x)\right)+g(v(t, x)) \frac{\partial^{2} B(t, x)}{\partial t \partial x} \tag{6}
\end{equation*}
$$

with the initial and boundary conditions (5), where B is a Brownian sheet on $[0, \infty) \times(0,1)$ and $\frac{\partial^{2} B(t, x)}{\partial t \partial x}$ is the time-space white noise.

The existence and uniqueness theorem for (6) with additive noise $g \equiv 1$ was established in [12] and the case of general g, in [11].

Our paper generalizes the existence and uniqueness result from [11] to the system

$$
\begin{align*}
\frac{d U(t)}{d t}= & P-\nu U(t)-\int_{0}^{1} v^{2}(t, x) d x \quad \text { for } t>0 \tag{7}\\
\frac{\partial v(t, x)}{\partial t}= & \nu \frac{\partial^{2} v(t, x)}{\partial x^{2}}+U(t) v(t, x) \tag{8}\\
& -\frac{\partial}{\partial x}\left(v^{2}(t, x)\right)+g(v(t, x)) \frac{\partial^{2} B(t, x)}{\partial t \partial x}
\end{align*}
$$

with the initial and boundary conditions (3). We adapt the method from [11]. We prove first the existence of a local solution by proper modification of the drift terms and Banach fixed point argument and then we establish a priori estimates to get global existence.

2 Preliminaries and formulation of the main result

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, P\right)$ be a filtered probability space on which an increasing and right-continuous family $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ of sub- $\sigma-$ algebras of \mathcal{F} is defined such that \mathcal{F}_{0} contains all P -null sets in \mathcal{F}. We model mathematicaly the space-time white noise B as the distributional derivative of the cylindrical Wiener process W

$$
\begin{equation*}
W(t)=\sum_{k=1}^{\infty} W_{k}(t) e_{k} \tag{9}
\end{equation*}
$$

Here $\left(e_{k}\right)$ is an orthonormal basis of $L^{2}=L^{2}(0,1)$,

$$
\begin{equation*}
e_{k}(x)=\sqrt{\frac{2}{\pi}} \sin k \pi x, x \in(0,1), k=1,2, \ldots \tag{10}
\end{equation*}
$$

The scalar product in L^{2} is denoted by (\cdot, \cdot),

$$
(h, \psi)=\int_{0}^{1} h(x) \psi(x) d x
$$

and the norm by $\|\cdot\|$.

We consider the following stochastic one-dimensional Burgers' problem

$$
\begin{align*}
\frac{d U(t)}{d t}= & P-\nu U(t)-\int_{0}^{1} v^{2}(t, x) d x \quad \text { for } t>0 \tag{11}\\
\frac{\partial v(t, x)}{\partial t}= & \nu \frac{\partial^{2} v(t, x)}{\partial x^{2}}+U(t) v(t, x) \tag{12}\\
& -\frac{\partial}{\partial x}\left(v^{2}(t, x)\right)+g(v(t, x)) \frac{\partial W(t)}{\partial t} \text { for }
\end{align*}
$$

with the initial and boundary conditions

$$
\begin{align*}
U(0) & =U_{0} \\
v(0, x) & =v_{0}(x) \text { for } x \in(0,1) \tag{13}\\
v(t, 0) & =v(t, 1)=0 \text { for } t>0
\end{align*}
$$

We assume that g is a real valued Lipschitz continuous and bounded function.
Notice that if we replace v by $-u$ in (12), then we obtain an equivalent form of equation (12) with the positive sign before $\frac{\partial}{\partial x}\left(v^{2}(t, x)\right)$.

We have the following definition
Definition 1 A pair of processes $\binom{U}{v}$ is a weak solution to problem (11)(13) if and only if $U(t), t \geq 0$, and $v(t), t \geq 0$, are adapted continuous processes with values in \mathbb{R}^{1} and L^{2}, respectively, $U(0)=U_{0}, v(0)=v_{0}$ and:
(i) for arbitrary $t \geq 0$:

$$
\begin{equation*}
U(t)=U_{0}+t P-\nu \int_{0}^{t} U(s) d s-\int_{0}^{t}\|v(s)\|^{2} d s, \quad P \text {-a.s. } \tag{14}
\end{equation*}
$$

(ii) for arbitrary $t \geq 0$ and arbitrary $\varphi \in C_{0}^{\infty}(0,1)$:

$$
\begin{align*}
(v(t), \varphi)= & \left(v_{0}, \varphi\right)+\int_{0}^{t} U(s)(v(s), \varphi) d s \tag{15}\\
& +\int_{0}^{t}\left(v(s), \nu \frac{\partial^{2}}{\partial x^{2}} \varphi\right) d s+\int_{0}^{t}\left(v^{2}(s), \frac{\partial}{\partial x} \varphi\right) d s \\
& +\int_{0}^{t}(\varphi, g(v(s)) d W(s)), \quad \text { P-a.s. }
\end{align*}
$$

Notice that from the very definition of the distributional derivative $\frac{\partial}{\partial x} v^{2}$, for arbitrary $v \in L^{2}$:

$$
\left(\frac{\partial}{\partial x} v^{2}, \varphi\right)=-\int_{0}^{t} v^{2}(x) \frac{\partial}{\partial x} \varphi(x) d s=-\left(v^{2}, \frac{\partial}{\partial x} \varphi\right) .
$$

We introduce now an equivalent concept of the integral solution. Let $S(t)$, $t \geq 0$, be the classical heat semigroup on L^{2}. Then, for $v \in L^{2}$:

$$
\begin{equation*}
S(t) v=\sum_{k=1}^{\infty} e^{-\frac{\pi^{2}}{\nu} k^{2} t}\left(v, e_{k}\right) e_{k} \tag{16}
\end{equation*}
$$

with the convergence of the series in L^{2}. It is well known that the generator A of the semigroup $S(t), t \geq 0$, is identical with the second derivative operator $\frac{\partial^{2}}{\partial x^{2}}$ on the domain $D(A)$ consisting of functions v such that $v, \frac{\partial v}{\partial x}$ are absolutely continuous with $\frac{\partial^{2} v}{\partial x^{2}} \in L^{2}, v(0)=v(1)=0$. In some places $S(t)$, $t \geq 0$, will be denoted by $e^{A t}, t \geq 0$.

We need the following lemma with the proof postponed to Appendix.
Lemma 1 The operator $S(t), t \geq 0$, can be extended linearly to the space of all distributions of the form $\frac{\partial}{\partial x} v, v \in L^{1}(0,1)$, in such a way that it takes values in L^{2} and

$$
\begin{equation*}
\left\|S(t) \frac{\partial}{\partial x} v\right\| \leq\|v\|_{L^{1}(0,1)}\left(\sum_{k=1}^{\infty} \frac{2 \pi}{\sqrt{\nu}} k^{2} e^{-\frac{2 \pi^{2}}{\nu} k^{2} t}\right)^{1 / 2} . \tag{17}
\end{equation*}
$$

Definition 2 A pair of continuous adapted processes $\binom{U}{v}$ with values in \mathbb{R}^{1} and L^{2}, respectively, is said to be an integral solution to problem (11)-(13) if

$$
\begin{equation*}
U(t)=e^{-\nu t} U_{0}+\int_{0}^{t} e^{-\nu(t-s)}\left(P-\|v(s)\|^{2}\right) d s \tag{18}
\end{equation*}
$$

and

$$
\begin{array}{r}
v(t)=S(t) v_{0}+\int_{0}^{t} S(t-s) U(s) v(s) d s \tag{19}\\
+\int_{0}^{t} S(t-s) \frac{\partial}{\partial x} v^{2}(s) d s+\int_{0}^{t} S(t-s) g(v(s)) d W(s)
\end{array}
$$

In the integral

$$
\int_{0}^{t} S(t-s) \frac{\partial}{\partial x} v^{2}(s) d s, t>0
$$

we use the extension of the operator $S(t-s)$ described in Lemma 1.
We have the following result which proof can be found for instance in [24].

Proposition 2 A continuous adapted process $\binom{U}{v}$ is an integral solution to problem (11)-(13) if and only if it is a weak solution to problem (11)-(13).

The main result of the paper is contained in the following
Theorem 3 System (11)-(13) has a unique weak solution.
The proof is given in the following sections.

3 Existence of a local solution

Let $\pi_{n, 1}: \mathbb{R}^{1} \rightarrow B_{1}(0, n)$ be the projection onto the interval $B_{1}(0, n)=$ $\left\{U \in \mathbb{R}^{1}:|U| \leq n\right\}$ and let $\pi_{n, 2}: L^{2} \rightarrow B_{2}(0, n)$ be the projection onto the ball $B_{2}(0, n)=\left\{v \in L^{2}:\|v\| \leq n\right\}$, where

$$
\pi_{n, 1}(U)=\left\{\begin{array}{l}
U \text { if }|U| \leq n \tag{20}\\
\frac{n U}{|U|} \text { if }|U|>n
\end{array}\right.
$$

and

$$
\pi_{n, 2}(v)=\left\{\begin{array}{c}
v \text { if }\|v\| \leq n \tag{21}\\
\frac{n v}{\|v\|} \text { if }\|v\|>n .
\end{array}\right.
$$

Let $Z_{T}^{p}, p>1$, denote the space of all continuous adapted processes $X(t)=\binom{U(t)}{v(t)}$ on $[0, T]$ with values on $\mathbb{R}^{1} \times L^{2}$ such that

$$
\begin{align*}
& \|\quad X\|_{z_{T}^{p}}=\left\|\binom{U}{v}\right\|_{T} \tag{22}\\
& =\left(E\left(\sup _{t \in[0, T]}|U(t)|^{p}\right)\right)^{1 / p}+\left(E\left(\sup _{t \in[0, T]}\|v(t)\|^{p}\right)\right)^{1 / p}<\infty
\end{align*}
$$

with fixed initial conditions $U(0)=U_{0}, v(0)=v_{0}$. We define

$$
\begin{equation*}
\left\|\binom{U}{v}\right\|_{T}=\|U\|_{1, T}+\|v\|_{2, T} . \tag{23}
\end{equation*}
$$

Now we prove
Proposition 4 For arbitrary $p>4$ and each $n=1,2, \ldots$ the following system of equations

$$
\begin{equation*}
U(t)=e^{-\nu t} U_{0}+\int_{0}^{t} e^{-\nu(t-s)}\left(P-\left\|\pi_{n, 2} v(s)\right\|^{2}\right) d s \tag{24}
\end{equation*}
$$

and

$$
\begin{array}{r}
v(t)=S(t) v_{0}+\int_{0}^{t} S(t-s) \pi_{n, 1} U(s) \pi_{n, 2} v(s) d s \tag{25}\\
+\int_{0}^{t} S(t-s) \frac{\partial}{\partial x}\left(\pi_{n, 2} v(s)\right)^{2} d s+\int_{0}^{t} S(t-s) g(v(s)) d W(s) \\
t \in[0, T]
\end{array}
$$

has a unique weak solution in the space Z_{T}^{p}.
Let us stress that we look for a continuous and adapted process $v(s)$, $s \geq 0$, with values in L^{2}, and such that $\frac{\partial}{\partial x}\left(\pi_{n, 2} v(s)\right)^{2}$ is the derivative in the distribution theory sense (on the interval $(0,1)$) of the function belonging to $L^{1}(0,1)$ (because $\left.\left(\pi_{n, 2} v(s)\right)^{2} \in L^{1}(0,1)\right)$. From Lemma 1 we have that S can be extended to the derivatives of the functions from $L^{1}(0,1)$. Therefore, equation (25) has a clear meaning.

Proof of Proposition 4. We introduce nonlinear operators F_{n}, G, H_{n} and I_{n} acting on processes $U(t), t \geq 0$, and $v(t), t \geq 0$, according to the following formulae:

$$
\begin{align*}
F_{n}(U, v)(t)= & e^{-\nu t} U_{0}+\int_{0}^{t} e^{-\nu(t-s)}\left(P-\left\|\pi_{n, 2} v(s)\right\|^{2}\right) d s \tag{26}\\
= & \left.e^{-\nu t} U_{0}+\frac{1-e^{-\nu t}}{\nu} P-\int_{0}^{t} e^{-\nu(t-s)}\left\|\pi_{n, 2} v(s)\right\|^{2}\right) d s \\
& G(U, v)(t)=\int_{0}^{t} S(t-s) g(v(s)) d W(s) \tag{27}
\end{align*}
$$

$$
\begin{equation*}
H_{n}(U, v)(t)=\int_{0}^{t} S(t-s) \frac{\partial}{\partial x}\left(\pi_{n, 2} v(s)\right)^{2} d s \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{n}(U, v)(t)=S(t) v_{0}+\int_{0}^{t} S(t-s) \pi_{n, 1} U(s) \pi_{n, 2} v(s) d s \tag{29}
\end{equation*}
$$

Observe that system (24)-(25) is equivalent to fixed point problem:

$$
\begin{gather*}
U=F_{n}(U, v), \tag{30}\\
v=G(U, v)+H_{n}(U, v)+I_{n}(U, v) . \tag{31}
\end{gather*}
$$

We shall show that for arbitrary n the mapping

$$
\begin{equation*}
\binom{U}{v} \rightarrow\binom{F_{n}(U, v)}{G(U, v)+H_{n}(U, v)+I_{n}(U, v)} \tag{32}
\end{equation*}
$$

is a contraction in the space $Z_{T_{n}}^{p}$, for properly chosen T_{n}. Therefore, system (30)-(31) has a unique solution on the interval $\left[0, T_{n}\right]$. By the standard iteration procedure system (30)-(31) has a unique global solution denoted by $\binom{U_{n}}{v_{n}}$.

First we shall show that for each $n=1,2, \ldots$ and $T>0$ there exists a constant $C_{T, n}$ such that for $X=\binom{U}{v}, \bar{X}=\binom{\bar{U}}{\bar{v}} \in Z_{T}^{p}$:

$$
\begin{align*}
& \left\|\quad\binom{F_{n}(U, v)}{G(U, v)+H_{n}(U, v)+I_{n}(U, v)}-\binom{F_{n}(\bar{U}, \bar{v})}{G(\bar{U}, \bar{v})+H(\bar{U}, \bar{v})+I_{n}(\bar{U}, \bar{v})}\right\|_{T} \\
& \leq C_{T, n}\left\|\binom{U}{v}-\binom{\bar{U}}{\bar{v}}\right\|_{T} . \tag{33}
\end{align*}
$$

We have from (23):

$$
\begin{align*}
& \left\|\binom{F_{n}(U, v)}{G(U, v)+H_{n}(U, v)+I_{n}(U, v)}-\binom{F_{n}(\bar{U}, \bar{v})}{G(\bar{U}, \bar{v})+H(\bar{U}, \bar{v})+I_{n}(\bar{U}, \bar{v})}\right\|_{T} \\
& \quad=\left\|F_{n}(U, v)-F_{n}(\bar{U}, \bar{v})\right\|_{1, T} \\
& +\|\left(G(U, v)+H_{n}(U, v)+I_{n}(U, v)-\left(G(\bar{U}, \bar{v})+H(\bar{U}, \bar{v})+I_{n}(\bar{U}, \bar{v})\right) \|_{2, T} .\right. \tag{34}
\end{align*}
$$

Step 1^{0}. First we consider

$$
\begin{aligned}
& F_{n}(U, v)(t)-F_{n}(\bar{U}, \bar{v})(t) \\
= & \int_{0}^{t} e^{-\nu(t-s)}\left[\left\|\pi_{n, 2} v(s)\right\|^{2}-\left\|\pi_{n, 2} \bar{v}(s)\right\|^{2}\right] d s .
\end{aligned}
$$

We shall find a constant $C_{T, n}^{1}$ such that

$$
\begin{equation*}
\left\|F_{n}(U, v)-F_{n}(\bar{U}, \bar{v})\right\|_{1, T} \leq C_{T, n}^{1}\left\|\binom{U}{v}-\binom{\bar{U}}{\bar{v}}\right\|_{T} \tag{35}
\end{equation*}
$$

Since $\nu>0$ and

$$
\mid\left\|\pi_{n} a\right\|-\left\|\pi_{n} b\right\|\|\leq\| a-b \|, \quad a, b \in L^{2}
$$

therefore,

$$
\begin{aligned}
& \left|F_{n}(U, v)(t)-F_{n}(\bar{U}, \bar{v})(t)\right| \\
\leq & \int_{0}^{t} e^{-\nu(t-s)}\left|\left\|\pi_{n, 2} v(s)\right\|^{2}-\left\|\pi_{n, 2} \bar{v}(s)\right\|^{2}\right| d s \\
= & \int_{0}^{t} e^{-\nu(t-s)} \mid\left(\left\|\pi_{n, 2} v(s)\right\|\right. \\
- & \left.\left\|\pi_{n, 2} \bar{v}(s)\right\|\right)\left(\left\|\pi_{n, 2} v(s)\right\|+\left\|\pi_{n, 2} \bar{v}(s)\right\|\right) \mid d s \\
\leq & 2 n \int_{0}^{t} e^{-\nu(t-s)} \mid\left\|\pi_{n, 2} v(s)\right\|-\left\|\pi_{n, 2} \bar{v}(s)\right\| \| d s \\
\leq & 2 n \int_{0}^{t}\|v(s)-\bar{v}(s)\| d s
\end{aligned}
$$

From the Hölder inequality, if $q=\frac{p}{p-1}$, we have

$$
\begin{aligned}
E\left(\operatorname { s u p } _ { t \in [0 , T] } \left(2 n \int_{0}^{t}\right.\right. & \|v(s)-\bar{v}(s)\| d s)^{p} \\
& \leq(2 n)^{p} E\left[\left(\int_{0}^{T}\|v(s)-\bar{v}(s)\| d s\right)^{p}\right] \\
& \leq(2 n)^{p} E\left(\int_{0}^{T}\|v(s)-\bar{v}(s)\|^{p} d s\right)\left(\int_{0}^{T} d s\right)^{\frac{p}{q}} \\
& \leq(2 n)^{p} T^{p} E\left(\sup _{s \leq T}\|v(t)-\bar{v}(t)\|^{p}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\| & F_{n}(U, v)-F_{n}(\bar{U}, \bar{v}) \|_{1, T} \\
= & \left(E\left(\sup _{t \in[0, T]}\left|F_{n}(U, v)(t)-F_{n}(\bar{U}, \bar{v})(t)\right|^{p}\right)\right)^{\frac{1}{p}} \\
\leq & 2 n T\|v-\bar{v}\|_{2, T} .
\end{aligned}
$$

So we can set

$$
\begin{equation*}
C_{T, n}^{1}=2 n T \tag{36}
\end{equation*}
$$

To go further let us recall that, see (25),

$$
\begin{aligned}
& I_{n}(U, v)(t)+H_{n}(U, v)(t)+G(U, v)(t) \\
= & S(t) v_{0}+\int_{0}^{t} S(t-s) \pi_{n, 1} U_{n}(s) \pi_{n, 2} v_{n}(s) d s \\
& +\int_{0}^{t} S(t-s) \frac{\partial}{\partial x}\left(\pi_{n, 2} v(s)\right)^{2} d s+\int_{0}^{t} S(t-s) g(v(s)) d W(s) .
\end{aligned}
$$

Step 2^{0}. We estimate now

$$
\|G(U, v)-G(\bar{U}, \bar{v})\|_{2, T}
$$

To treat the stochastic integral

$$
\int_{0}^{t} S(t-s)[g(v(s))-g(\bar{v}(s))] d W(s)
$$

we use the factorization procedure similarly as in [26], [11] (see also [24]). Let us fix γ such that $\frac{1}{p}<\gamma<\frac{1}{4}$ and define on $L^{p}\left([0, T], L^{2}\right)$ for $t \in[0, T]$:

$$
R_{\gamma} h(t)=\int_{0}^{t}(t-s)^{\gamma-1} e^{A(t-s)} h(s) d s
$$

$h \in L^{p}\left([0, T], L^{2}\right)$. Then for $t \in[0, T]:$

$$
R_{\gamma} Y(t)=\int_{0}^{t} S(t-s)[g(v(s))-g(\bar{v}(s))] d W(s)
$$

where

$$
Y(t)=\frac{\sin \pi \gamma}{\gamma} \int_{0}^{t}(t-s)^{-\gamma} e^{A(t-s)}[g(v(s))-g(\bar{v}(s))] d W(s), t \in[0, T]
$$

By Hölder inequality, for $0 \leq t \leq T, h \in L^{p}\left([0, T], L^{2}\right)$

$$
\left\|R_{\gamma} h(t)\right\| \leq\left(\frac{t^{(\gamma-1) q+1}}{(\gamma-1) q+1}\right)^{\frac{1}{q}}\|h\|_{L^{p}\left([0, T], L^{2}\right)} .
$$

Therefore R_{γ} is a bounded operator from $L^{p}\left([0, T], L^{2}\right)$ to $C\left([0, T], L^{2}\right)$ and

$$
\begin{aligned}
\sup _{0 \leq t \leq T} & \left\|\quad R_{\gamma} h(t)\right\| \leq\left(\frac{T^{(\gamma-1) q+1}}{(\gamma-1) q+1}\right)^{\frac{1}{q}}\|h\|_{L^{p}\left([0, T], L^{2}\right)} \\
& \leq\left(\frac{T^{(\gamma-1) \frac{p}{p-1}+1}}{(\gamma-1) \frac{p}{p-1}+1}\right)^{\frac{p-1}{p}}\|h\|_{L^{p}\left([0, T], L^{2}\right)}
\end{aligned}
$$

where $\frac{1}{p}+\frac{1}{q}=1$. So

$$
\begin{equation*}
\left\|R_{\gamma}\right\| \leq\left(\frac{T^{(\gamma-1) \frac{p}{p-1}+1}}{(\gamma-1) \frac{p}{p-1}+1}\right)^{\frac{p-1}{p}} \tag{37}
\end{equation*}
$$

Note that

$$
(\gamma-1) \frac{p}{p-1}+1>0
$$

We therefore have

$$
\begin{align*}
E\left(\sup _{0 \leq t \leq T}\right. & \left.\|(U, v)(t)-G(\bar{U}, \bar{v})(t)\|^{p}\right) \tag{38}\\
& \leq\left\|R_{\gamma}\right\|^{p} E\|Y\|_{L^{p}\left([0, T], L^{2}\right)}^{p} .
\end{align*}
$$

Denote by $\|K\|{ }_{H S}$ the Hilbert-Schmidt norm of the operator K. Thus

$$
\|K\|_{H S}^{2}=\sum_{j=1}^{\infty}\left\|K f_{j}\right\|^{2}
$$

where $\left(f_{j}\right)$ is an orthonormal basis of L^{2}.
By Burkholder's inequality, for arbitrary adapted operator valued process ϕ and $p \geq 2$,

$$
\begin{aligned}
E\left(\sup _{0 \leq t \leq T}\right. & \left|\int_{0}^{t} \phi(s) d W(s)\right|^{p} \\
& \leq\left(\frac{p}{p-1}\right)^{p} E\left(\int_{0}^{T}\|\phi(s)\|_{H S}^{2} d s\right)^{\frac{p}{2}}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& E\|Y\|_{L^{p}\left([0, T], L^{2}\right)}^{p}=\int_{0}^{T} E\|Y(t)\|^{p} d t \\
& \leq\left(\frac{p}{p-1}\right)^{p}\left|\frac{\sin \pi \gamma}{\gamma}\right|^{p} \\
& \int_{0}^{T}\left[E\left(\int_{0}^{t}\left\|e^{A(t-s)}(t-s)^{-\gamma}[g(v(s))-g(\bar{v}(s))]\right\|_{H S}^{2} d s\right)^{\frac{p}{2}}\right] d t .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\| & e^{A(t-s)}(t-s)^{-\gamma}[g(v(s))-g(\bar{v}(s))] \|_{H S}^{2} \\
= & (t-s)^{-2 \gamma}\left\|e^{A(t-s)}[g(v(s))-g(\bar{v}(s))]\right\|_{H S}^{2},
\end{aligned}
$$

and, for an orthonormal basis $\left(f_{j}\right)$ in L^{2},

$$
\begin{aligned}
& \left\|e^{A(t-s)}[g(v(s))-g(\bar{v}(s))]\right\|_{H S}^{2} \\
& =\sum_{j=1}^{\infty}\left\|e^{A(t-s)}[g(v(s))-g(\bar{v}(s))] f_{j}\right\|^{2} \\
& =\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} e^{-2 \frac{\pi^{2}}{\nu} k^{2}(t-s)}\left(\left(g(v(s))-g(\bar{v}(s)) f_{j}, e_{k}\right)^{2}\right. \\
& =\sum_{k=1}^{\infty} e^{-\frac{\pi^{2}}{\nu} k^{2}(t-s)} \|\left(g(v(s))-g(\bar{v}(s)) e_{k} \|^{2} .\right.
\end{aligned}
$$

Moreover

$$
\begin{aligned}
& \left(g(v(s))-g(\bar{v}(s)) e_{k} \|^{2}\right. \\
= & \int_{0}^{1} \mid\left(g(v(s, x))-\left.g(\bar{v}(s, x)) e_{k}(x)\right|^{2} d x\right. \\
\leq & \frac{2}{\pi}\|g\|_{\text {Lip }}^{2} \int_{0}^{1}|v(s, x)-\bar{v}(s, x)|^{2} d x \\
\leq & \frac{2}{\pi}\|g\|_{\text {Lip }}^{2}\|v(s)-\bar{v}(s)\|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|\quad e^{A(t-s)}[g(v(s))-g(\bar{v}(s))]\right\|_{H S}^{2} \\
& \leq \frac{2}{\pi}\|g\|_{L i p}^{2}\|v(s)-\bar{v}(s)\|^{2}\left(\sum_{k=1}^{\infty} e^{-2 \frac{\pi^{2}}{\nu} k^{2}(t-s)}\right) .
\end{aligned}
$$

Consequently

$$
\left.\left.\begin{array}{c}
\int_{0}^{T} E \| \\
\leq\left(\frac{p}{p-1}\right)^{p}\left|\frac{\sin \pi \gamma}{\gamma}\right|^{p} d t \\
\int_{0}^{T}\left[E \left(\int_{0}^{t}(t-s)^{-2 \gamma} \frac{2}{\pi}\right.\right.
\end{array}\|\quad g\|_{L i p}^{2}\|v(s)-\bar{v}(s)\|^{2}\left(\sum_{k=1}^{\infty} e^{-2 \frac{\pi^{2}}{\nu} k^{2}(t-s)}\right) d s\right)^{\frac{p}{2}}\right] d t . ~ \$
$$

But

$$
\int_{0}^{t}(t-s)^{-2 \gamma}\left(\sum_{k=1}^{\infty} e^{-2 \frac{\pi^{2}}{\nu} k^{2}(t-s)}\right) d s \leq \int_{0}^{+\infty} s^{-2 \gamma}\left(\sum_{k=1}^{\infty} e^{-2 \frac{\pi^{2}}{\nu} k^{2} s}\right) d s=a_{\gamma} .
$$

Since $\gamma<\frac{1}{4}$, therefore $a_{\gamma}<+\infty$. Consequently

$$
\begin{align*}
&\|G(U, v)-G(\bar{U}, \bar{v})\|_{2, T}^{p} \leq T\left(\frac{p}{p-1}\right)^{p}\left|\frac{\sin \pi \gamma}{\gamma}\right|^{p}\left(\frac{2}{\pi}\|g\|_{L i p}^{2}\right)^{\frac{p}{2}}\left(a_{\gamma}\right)^{\frac{p}{2}} \\
& E\left(\sup _{s \leq T}\|v(s)-\bar{v}(s)\|^{p}\right), \tag{39}
\end{align*}
$$

and we can set

$$
\begin{equation*}
C_{T, n}^{2}=T^{\frac{1}{p}}\left(\frac{p}{p-1}\right)\left(\frac{\sin \pi \gamma}{\gamma}\right)\left(\frac{2}{\pi}\right)^{\frac{1}{2}}\|g\|_{L i p}\left(a_{\gamma}\right)^{\frac{1}{2}} . \tag{40}
\end{equation*}
$$

Step 3^{0}. We shall show that for each $n=1, \underline{2, \ldots}$ and $T>0$ there exists a constant $C_{T, n}^{3}$ such that for $X=\binom{U}{v}, \bar{X}=\binom{\bar{U}}{\bar{v}} \in Z_{T}^{p}$:

$$
\begin{align*}
\| & H_{n}(U, v)-H_{n}(\bar{U}, \bar{v}) \|_{2, T} \tag{41}\\
\leq & C_{T, n}^{3}\left\|\binom{U}{v}-\binom{\bar{U}}{\bar{v}}\right\|_{T} .
\end{align*}
$$

Let us recall that

$$
H_{n}(U, v)(t)-H_{n}(\bar{U}, \bar{v})=\int_{0}^{t} S(t-s)\left(\frac{\partial}{\partial x}\left[\left(\pi_{n, 2} v(s)\right)^{2}-\frac{\partial}{\partial x}\left(\pi_{n, 2} \bar{v}(s)\right)^{2}\right]\right) d s
$$

By Proposition 11, (see also Lemma 2.1 in [11]), there exists a constant C such that for all $t \in[0, T]$

$$
\begin{align*}
\int_{0}^{t} & \left\|S(t-s) \frac{\partial}{\partial x}\left[\left(\pi_{n, 2} v(s)\right)^{2}-\left(\pi_{n, 2} \bar{v}(s)\right)^{2}\right]\right\| d s \tag{42}\\
& \leq C t^{\frac{1}{4}} \sup _{s \leq T}\left\|\left(\pi_{n, 2} v(s)\right)^{2}-\left(\pi_{n, 2} \bar{v}(s)\right)^{2}\right\|_{L^{1}(0,1)}
\end{align*}
$$

Since

$$
\left\|\pi_{n} a-\pi_{n} b\right\| \leq\|a-b\|, \quad a, b \in L^{2},
$$

for every $s \in[0, T]$,

$$
\left\|\left(\pi_{n, 2} v(s)\right)^{2}-\left(\pi_{n, 2} \bar{v}(s)\right)^{2}\right\|_{L^{1}(0,1)} \leq 2 n\|v(s)-\bar{v}(s)\|
$$

Consequently

$$
\begin{gather*}
\sup _{t \leq T}\left\|H_{n}(U, v)-H(\bar{U}, \bar{v})\right\| \leq 2 C n T^{1 / 4} \sup _{t \leq T}\|v(t)-\bar{v}(t)\|, \\
\left\|H_{n}(U, v)-H(\bar{U}, \bar{v})\right\|_{2, T} \leq 2 C n T^{\frac{1}{4}}\|v-\bar{v}\|_{2, T} . \tag{43}
\end{gather*}
$$

We can set

$$
\begin{equation*}
C_{T, n}^{3}=2 C n T^{1 / 4} . \tag{44}
\end{equation*}
$$

Step 4^{0}. We shall find a constant $C_{T, n}^{4}$ such that:

$$
\begin{align*}
\| & I_{n}(U, v)-I_{n}(\bar{U}, \bar{v}) \|_{2, T} \tag{45}\\
\leq & C_{T, n}^{4}\left\|\binom{U}{v}-\binom{\bar{U}}{\bar{v}}\right\|_{T} .
\end{align*}
$$

Since $\|S(t)\| \leq 1$ for every $t \geq 0$,

$$
\begin{aligned}
& \left\|I_{n}(U, v)(t)-I_{n}(\bar{U}, \bar{v})(t)\right\| \\
& \leq \int_{0}^{t}\|S(t-s)\|\left\|\pi_{n, 1} U(s) \pi_{n, 2} v(s)-\pi_{n, 1} \bar{U}(s) \pi_{n, 2} \bar{v}(s)\right\| d s \\
& \leq \int_{0}^{t}\left\|\pi_{n, 1} U(s) \pi_{n, 2} v(s)-\pi_{n, 1} \bar{U}(s) \pi_{n, 2} \bar{v}(s)\right\| d s .
\end{aligned}
$$

But notice that for all $s \geq 0$

$$
\begin{aligned}
& \left\|\pi_{n, 1} U(s) \pi_{n, 2} v(s)-\pi_{n, 1} \bar{U}(s) \pi_{n, 2} \bar{v}(s)\right\| \\
\leq & \left\|\left(\pi_{n, 1} U(s)-\pi_{n, 1} \bar{U}(s)\right) \pi_{n, 2} v(s)\right\| \\
+\quad \| & \pi_{n, 1} \bar{U}(s)\left(\pi_{n, 2} v(s)-\pi_{n, 2} \bar{v}(s)\right) \| \\
\leq & \left|\pi_{n, 1} U(s)-\pi_{n, 1} \bar{U}(s)\right|\left\|\pi_{n, 2} \bar{v}(s)\right\| \\
+\quad \mid & \pi_{n, 1} \bar{U}(s) \mid\left\|\pi_{n, 2} v(s)-\pi_{n, 2} \bar{v}(s)\right\| \\
\leq & n|U(s)-\bar{U}(s)|+n\|v(s)-\bar{v}(s)\| .
\end{aligned}
$$

By the Hölder inequality

$$
\begin{aligned}
\| & I_{n}(U, v)-I_{n}(\bar{U}, \bar{v}) \|_{2, T}^{p} \\
\leq & E\left(\sup _{t \leq T}\left[n \int_{0}^{t}(|U(s)-\bar{U}(s)|+\|v(s)-\bar{v}(s)\|) d s\right]^{p}\right. \\
\leq & n^{p} E\left(\int_{0}^{T}(|U(s)-\bar{U}(s)|+\|v(s)-\bar{v}(s)\|)^{p} d s\right)\left(\int_{0}^{T} d s\right)^{\frac{p}{q}} .
\end{aligned}
$$

Since, for non-negative $a, b,(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right)$, we have

$$
\begin{aligned}
& \| I_{n}(U, v)(t)-I_{n}(\bar{U}, \bar{v}) \|_{2, T}^{p} \\
& \leq 2^{p-1} n^{p} T^{p-1}\left\{E\left(\int_{0}^{T}\left(|U(s)-\bar{U}(s)|^{p}\right) d s\right)\right. \\
&+E\left(\int _ { 0 } ^ { T } \left(\begin{array}{ll}
& \left.\left.\left.\|(s)-\bar{v}(s)\|^{p}\right) d s\right)\right\} \\
& \leq 2^{p-1} n^{p} T^{p-1}\left\{T E\left(\sup _{s \leq T}|U(s)-\bar{U}(s)|^{p}\right)\right. \\
+T E\left(\sup _{s \leq T}\right. & \left.\left.\|v(s)-\bar{v}(s)\|^{p}\right)\right\}
\end{array}\right.\right.
\end{aligned}
$$

However $(a+b)^{\alpha} \leq a^{\alpha}+b^{\alpha}$ for $a, b \geq 0,0<\alpha \leq 1$, and therefore

$$
\begin{aligned}
& \left\|I_{n}(U, v)(t)-I_{n}(\bar{U}, \bar{v})\right\|_{2, T} \\
& \leq \operatorname{Tn} 2^{\frac{p-1}{p}}\left(\|U-\bar{U}\|_{1, T}^{p}+\|v-\bar{v}\|_{2, T}^{p}\right)^{\frac{1}{p}} \\
& \leq \\
& \leq \operatorname{Tn} 2^{\frac{p-1}{p}}\left(\|U-\bar{U}\|_{1, T}+\|v-\bar{v}\|_{2, T}\right) \\
& \leq \\
& \operatorname{Tn} 2^{\frac{p-1}{p}}\|X-\bar{X}\|_{T} .
\end{aligned}
$$

And we can set

$$
\begin{equation*}
C_{T, n}^{4}=\operatorname{Tn} 2^{\frac{p-1}{p}} . \tag{46}
\end{equation*}
$$

Step 5^{0}. Finally set

$$
\begin{equation*}
C_{T, n}=\max \left(C_{T, n}^{i}, i=1,2,3,4\right), \tag{47}
\end{equation*}
$$

then (33) holds.
Taking into account explicit expressions for the constants $C_{T, n}^{i}, i=1,2,3,4$, there exists such T_{n} that $C_{T_{n}, n}<1$.

Step 6^{0}. By Banach fixed point theorem there exists a unique fixed point of the operator $\binom{U}{v} \rightarrow\binom{F_{n}(U, v)}{G(U, v)+H_{n}(U, v)+I_{n}(U, v)}$ in the space $Z_{T_{n}}^{p}$. Hence there exists a unique solution ($\left.\begin{array}{c}U_{n} \\ v_{n}\end{array}\right)$ of problem (24)-(25). By a standard iteration procedure there exists a unique solution to problem (24)-(25) on arbitrary time interval $[0, T]$.

4 Proof of Theorem 3

Let $X_{n}(t)=\binom{U_{n}(t)}{v_{n}(t)}, t \geq 0$, be the solution to problem (11)-(13). Define

$$
\begin{equation*}
\tau_{n}=\min \left[\inf \left\{t \geq 0:\left|U_{n}(t)\right|^{2} \geq n^{2}\right\}, \inf \left\{t \geq 0:\left\|v_{n}(t)\right\|^{2} \geq n^{2}\right\}\right] \tag{48}
\end{equation*}
$$

Notice that $X_{n}(t)=X_{m}(t)$ for $m \geq n$ and $t \leq \tau_{n}$. Therefore, we can set $X(t)=X_{n}(t)$ if $t \leq \tau_{n}$ and this is a solution to problem (11)-(13) on the time interval $\left[0, \tau_{\infty}\right)$, where

$$
\tau_{\infty}=\lim _{n \rightarrow \infty} \tau_{n}
$$

We shall prove that $\tau_{\infty}=+\infty$.
Let $X(t)=\binom{U(t)}{v(t)}$ be a possibly exploding solution to problem (11)-(13) defined on $\left[0, \tau_{\infty}\right)$. We set

$$
\begin{equation*}
V(t)=v(t)-Z(t), \tag{49}
\end{equation*}
$$

that is,

$$
\binom{U(t)}{V(t)}=\binom{U(t)}{v(t)}-\binom{0}{Z(t)}
$$

where

$$
Z(t)=\int_{0}^{t} e^{A(t-s)} g(v(s)) \chi_{s<\tau_{\infty}} d W(s), Z(0)=0
$$

Recall that by the Sobolev imbedding theorem (see [1], Theorem 7.57, p. 217) we have for a domain $\Omega \subset \mathbb{R}^{n}$ with smooth boundary that if

$$
\begin{equation*}
s>0,1<p<n, n>s p \text { and } p \leq r \leq n p /(n-s p), \tag{50}
\end{equation*}
$$

then $W^{s, p}(\Omega)$ is continuously imbedded into $L^{r}(\Omega)$:

$$
W^{s, p}(\Omega) \hookrightarrow L^{r}(\Omega)
$$

Therefore, if $n=1, \Omega=(0,1), p=2, s=\frac{1}{4}$ and $r=4$ then (50) holds and

$$
H^{\frac{1}{4}}(0,1) \hookrightarrow L^{4}(\Omega),
$$

where we use notation $W^{s, 2}(0,1)=H^{s}(0,1)$. Notice that $H^{\frac{1}{4}}(0,1) \hookrightarrow L^{4}(\Omega)$ means that there exists $c>0$ such that for all $u \in H^{\frac{1}{4}}(0,1)$

$$
\|u\|_{L^{4}} \leq\|u\|_{H^{\frac{1}{4}}(0,1)} .
$$

Moreover, there exists $c>0$ such that

$$
c\left\|\left(-\frac{d^{2}}{d x^{2}}\right)^{\frac{1}{8}} u\right\| \geq\|u\|_{H^{\frac{1}{4}(0,1)}} .
$$

The following Proposition can be obtained by factorization procedure (see [26], [13] and [17]).

Proposition 5 Let A be a self-adjoint non-positive operator generating the semigroup $S(t), t \geq 0$, on a Hilbert space H such that

$$
\int_{0}^{T}\|S(t)\|_{H S}^{2} d t<\infty
$$

Let $0 \leq \gamma+\frac{1}{p}<\frac{1}{2}$ and ξ is an adapted stochastic process with values in the space $L(H)=L(H, H)$ of linear operators in H. Then there exists a constant $C>0$ such that

$$
\begin{array}{r}
E\left(\sup _{0 \leq t \leq T}\left\|(-A)^{\gamma} \int_{0}^{t} S(t-s) \xi(s) d W(s)\right\|^{p}\right) \\
\leq C E\left(\int_{0}^{T}\|\xi(s)\|_{L(H, H)}^{p} d s\right)
\end{array}
$$

Applying Proposition 5 with $\gamma=\frac{1}{8}, p=4$, and $\xi(s)$ the multiplication operator by $g(v(s)) \chi_{s<\tau_{\infty}}$;

$$
\begin{aligned}
E\left(\sup _{0 \leq t \leq T}\right. & \| \\
& \left.\left(-\frac{d^{2}}{d x^{2}}\right)^{\frac{1}{8}} Z(t) \|^{4}\right) \\
\leq & C E\left(\int_{0}^{T}\|\xi(s)\|_{L\left(L^{2}, L^{2}\right)}^{4} d s\right)<C T \sup _{\sigma}|g(\sigma)|<\infty .
\end{aligned}
$$

Let

$$
\begin{equation*}
\mu=\sup _{t \in[0, T]}\|Z(t)\|_{L^{4}}^{4} . \tag{51}
\end{equation*}
$$

From Proposition 5 and the above estimates we have

$$
\begin{aligned}
E \mu & =E\left(\sup _{t \in[0, T]}\|Z(t)\|_{L^{4}}^{4}\right) \leq C E\left(\sup _{t \in[0, T]}\|Z(t)\|_{H^{\frac{1}{4}}}^{4}\right) \\
& \leq C E\left(\sup _{t \in[0, T]}\left\|\left(-\frac{d^{2}}{d x^{2}}\right)^{\frac{1}{8}} Z(t)\right\|^{4}\right)<\infty .
\end{aligned}
$$

Thus

$$
E \mu<\infty
$$

The following is a standard result on interpolation inequalities ([22], Corollary 1.1.8).

Corollary 6 Let $(X, Y)_{\theta, p}$ and $(X, Y)_{p}$ be interpolation spaces for $0<\theta<1$, $1 \leq p \leq \infty$. There is $C(\theta, p)$ such that

$$
\|y\|_{(X, Y)_{\theta, p}} \leq C(\theta, p)\|y\|_{X}^{1-\theta}\|y\|_{Y}^{\theta} \quad \text { for every } y \in Y .
$$

Then, see [22] (Example 1.1.3, pp. 13-14) we get that there exists a constant c such that for $u \in H^{1}(0,1)$ and $0<\theta<1$

$$
\begin{equation*}
\|u\|_{H^{\theta}(0,1)} \leq c\|u\|^{1-\theta}\|u\|_{H^{1}(0,1)}^{\theta} . \tag{52}
\end{equation*}
$$

We shall prove the following basic estimate.
Lemma 7 There exist a constant C such that for arbitrary $\alpha>0$ and $V \in$ $H_{0}^{1}, Z \in L^{4}$ we have

$$
\begin{equation*}
\left|\int V Z \frac{\partial V}{\partial x} d x\right| \leq C\|V\|^{\frac{3}{4}}\|V\|_{H_{0}^{1}}^{\frac{5}{4}}\|Z\|_{L^{4}} \tag{53}
\end{equation*}
$$

and

$$
\begin{array}{r}
\|V\|^{\frac{3}{4}}\|V\|_{H_{0}^{1}}^{\frac{5}{4}}\|Z\|_{L^{4}} \tag{54}\\
\leq \frac{1}{4}\|V\|^{2}\|Z\|_{L^{4}}^{4}+\frac{5}{8} \alpha^{2}\|V\|_{H_{0}^{1}}^{2}+\frac{1}{8 \alpha^{2}}\|V\|^{2} .
\end{array}
$$

Proof. Observe that from the Schwartz inequality we have

$$
\begin{aligned}
& \left|\int V Z \frac{\partial V}{\partial x} d x\right| \leq\left(\int V^{4} d x\right)^{\frac{1}{4}}\left(\int Z^{4} d x\right)^{\frac{1}{4}}\left(\int\left\|\frac{\partial V}{\partial x}\right\|^{2} d x\right)^{\frac{1}{2}} \\
& =\|V\|_{L^{4}}\|Z\|_{L^{4}}\|V\|_{H_{0}^{1}} .
\end{aligned}
$$

From the Sobolev imbedding inequality we get

$$
\|V\|_{L^{4}} \leq c_{1}\|V\|_{H^{\frac{1}{4}}}
$$

and from (52) we obtain

$$
\|V\|_{H^{\frac{1}{4}}} \leq c_{2}\|V\|^{\frac{3}{4}}\|V\|_{H_{0}^{1}}^{\frac{1}{4}}
$$

Since $V \in H_{0}^{1}$

$$
\|V\|_{L^{4}} \leq c_{3}\|V\|^{\frac{3}{4}}\|V\|_{H_{0}^{1}}^{\frac{1}{4}}
$$

Therefore there exists c_{4} such that

$$
\begin{align*}
& \left|\quad \int V Z \frac{\partial V}{\partial x} d x\right| \leq c_{4}\|V\|^{\frac{3}{4}}\|V\|_{H_{0}^{1}}^{\frac{1}{4}}\|Z\|_{L^{4}}\|V\|_{H_{0}^{1}} \tag{55}\\
& \leq \quad c_{4}\|V\|^{\frac{3}{4}}\|V\|_{H_{0}^{1}}^{\frac{5}{4}}\|Z\|_{L^{4}}
\end{align*}
$$

and (53) holds.
To prove (54) we observe that using the generalized Young inequality for $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1, p, q, r>0$, with $p=4, q=\frac{8}{5}, r=8$, we get

$$
\begin{aligned}
& \|V\|^{\frac{3}{4}}\|V\|_{H_{0}^{1}}^{\frac{5}{4}}\|Z\|_{L^{4}} \\
& =\|Z\|_{L^{4}}\|V\|^{\frac{2}{4}}\|\alpha V\|_{H_{0}^{1}}^{\frac{5}{4}}\left\|\frac{1}{\alpha} V\right\|^{\frac{1}{4}} \\
& \leq \frac{\|Z\|_{L^{4}}^{4}\|V\|^{2}}{4}+\frac{\left(\|\alpha V\|_{H_{0}^{1}}^{\frac{5}{4}}\right)^{q}}{q}+\frac{\left(\left\|\frac{1}{\alpha} V\right\|^{\frac{1}{4}}\right)^{r}}{r} \\
& \leq \frac{1}{4}\|V\|^{2}\|Z\|_{L^{4}}^{4}+\frac{5}{8} \alpha^{2}\|V\|_{H_{0}^{1}}^{2}+\frac{1}{8 \alpha^{2}}\|V\|^{2}
\end{aligned}
$$

From (53) and (54) we get

$$
\begin{aligned}
\frac{1}{C} & \left|\int V Z \frac{\partial V}{\partial x} d x\right| \leq\|V\|^{\frac{3}{4}}\|V\|_{H_{0}^{1}}^{\frac{5}{4}}\|Z\|_{L^{4}} \\
& \leq \frac{1}{4}\|V\|^{2}\|Z\|_{L^{4}}^{4}+\frac{5}{8} \alpha^{2}\|V\|_{H_{0}^{1}}^{2}+\frac{1}{8 \alpha^{2}}\|V\|^{2}
\end{aligned}
$$

Now we prove

Proposition 8 If for $V \in C\left([0, T], L^{2}\right), Z \in L^{\infty}\left([0, T], L^{4}(0,1)\right)$ and continuous function U

$$
\begin{array}{r}
\frac{\partial V}{\partial t}=\nu \frac{\partial^{2} V}{\partial x^{2}}+U(V+Z)-\frac{\partial}{\partial x}(V+Z)^{2} \\
V(0)=v_{0} \tag{57}
\end{array}
$$

then there exists a constant C such that for all $t \in[0, T]$,

$$
\begin{equation*}
\|V\|^{2}+U^{2} \leq C\left(\mu+\left\|v_{0}\right\|^{2}+U(0)^{2}+1\right) e^{(C \mu+1) t} \tag{58}
\end{equation*}
$$

where μ is given by (51).
Proof. We can assume that V is a strong solution to (56). We have

$$
\left(\frac{\partial V}{\partial t}, V\right)=\nu\left(\frac{\partial^{2} V}{\partial x^{2}}, V\right)+U(V+Z, V)-\left(\frac{\partial}{\partial x}(V+Z)^{2}, V\right)
$$

so

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}(V, V)= & -\nu\left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial x}\right)+U(V, V)+U(Z, V) \\
& -\left(\frac{\partial}{\partial x}(V+Z)^{2}, V\right) \\
= & -\nu\left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial x}\right)+U(V, V)+U(Z, V) \\
& +\left(V^{2}, \frac{\partial}{\partial x} V\right)+2\left(V Z, \frac{\partial}{\partial x} V\right)+ \\
& \left(Z^{2}, \frac{\partial}{\partial x} V\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
\left(V^{2}, \frac{\partial}{\partial x} V\right) & =-\left(\frac{\partial}{\partial x} V^{2}, V\right)=-2\left(\frac{\partial V}{\partial x} V, V\right) \\
& =-2\left(\frac{\partial V}{\partial x}, V^{2}\right)
\end{aligned}
$$

so

$$
\left(V^{2}, \frac{\partial}{\partial x} V\right)=0
$$

and we have

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}(V, V)= & -\nu\left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial x}\right)+U(V, V)+U(V, Z) . \\
& +2\left(V Z, \frac{\partial}{\partial x} V\right)+\left(Z^{2}, \frac{\partial}{\partial x} V\right)
\end{aligned}
$$

or

$$
\begin{array}{cl}
\frac{1}{2} \frac{d}{d t} \| & V\left\|^{2}+\nu\right\| V\left\|_{H_{0}^{1}}^{2}=U\right\| V \|^{2}+U(V, Z) \\
& +2 \int V Z \frac{\partial V}{\partial x} d x+\int Z^{2} \frac{\partial V}{\partial x} d x
\end{array}
$$

Further we have

$$
\begin{aligned}
& \left|\quad\left(Z^{2}, \frac{\partial}{\partial x} V\right)\right|=\left|\int_{0}^{1} Z^{2}(x) \frac{\partial V}{\partial x}(x) d x\right| \\
& \leq \quad\left(\int_{0}^{1} Z^{4}(x) d x\right)^{\frac{1}{2}}\left\|\frac{\partial}{\partial x} V\right\| \\
& \leq\|Z\|_{L^{4}}^{2}\left\|\frac{\partial}{\partial x} V\right\|=\|Z\|_{L^{4}}^{2}\|V\|_{H_{0}^{1}} \\
& \leq \frac{\varepsilon}{2}\|V\|_{H_{0}^{1}}^{2}+\frac{1}{2 \varepsilon}\|Z\|_{L^{4}}^{4} .
\end{aligned}
$$

But from (53) and (54) we have

$$
\begin{aligned}
& \left.\int V Z \frac{\partial}{\partial x} V d x \right\rvert\, \\
\leq & C\left[\frac{1}{4}\|V\|^{2}\|Z\|_{L^{4}}^{4}+\frac{5}{8} \alpha^{2}\|V\|_{H_{0}^{1}}^{2}+\frac{1}{8 \alpha^{2}}\|V\|^{2}\right]
\end{aligned}
$$

Therefore

$$
\begin{array}{rll}
\frac{1}{2} \frac{d}{d t} & \| & V\left\|^{2}+\nu\right\| V\left\|_{H_{0}^{1}}^{2} \leq U\right\| V \|^{2}+U(V, Z) \tag{59}\\
+2\left\{C \left[\frac{1}{4}\right.\right. & \| & \left.V\left\|^{2}\right\| Z\left\|_{L^{4}}^{4}+\frac{5}{8} \alpha^{2}\right\| V\left\|_{H_{0}^{1}}^{2}+\frac{1}{8 \alpha^{2}}\right\| V \|^{2}\right] \\
+\frac{\varepsilon}{2} & \| & V\left\|_{H_{0}^{1}}^{2}+\frac{1}{2 \varepsilon}\right\| Z \|_{L^{4}}^{4} .
\end{array}
$$

Now we consider equation

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} U^{2}+\nu U^{2}=U\left(P-\|V+Z\|^{2}\right) \tag{60}
\end{equation*}
$$

Adding (59) and (60) we obtain

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}[& \left.\|V\|^{2}+U^{2}\right]+\nu\|V\|_{H_{0}^{1}}^{2}+\nu U^{2} \\
& \leq U\|V\|^{2}+U(V, Z)+2 C\left[\frac{1}{4}\|V\|^{2}\|Z\|_{L^{4}}^{4}+\frac{5}{8} \alpha^{2}\|V\|_{H_{0}^{1}}^{2}+\frac{1}{8 \alpha^{2}}\|V\|^{2}\right] \\
+\frac{\varepsilon}{2} & \|V\|_{H_{0}^{1}}^{2}+\frac{1}{2 \varepsilon}\|Z\|_{L^{4}}^{4}+U\left(P-\|V+Z\|^{2}\right) \\
& \leq-U(V, Z)+2 C\left[\frac{1}{4}\|V\|^{2}\|Z\|_{L^{4}}^{4}+\frac{5}{8} \alpha^{2}\|V\|_{H_{0}^{1}}^{2}+\frac{1}{8 \alpha^{2}}\|V\|^{2}\right] \\
+\frac{\varepsilon}{2} & \|V\|_{H_{0}^{1}}^{2}+\frac{1}{2 \varepsilon}\|Z\|_{L^{4}}^{4}+U P-U\|Z\|^{2}
\end{aligned}
$$

because

$$
\begin{aligned}
U(P- & \| \\
& \left.V+Z \|^{2}\right) \\
& =U\left(P-\|V\|^{2}-2(V, Z)-\|Z\|^{2}\right) \\
& =U P-U\|V\|^{2}-2 U(V, Z)-U\|Z\|^{2}
\end{aligned}
$$

Observe that from the Young inequality

$$
\begin{aligned}
-U(V, Z)+U P-U & \|Z\|^{2} \\
& \leq|(V, Z U)|+\frac{U^{2}}{2}+\frac{1}{2} P^{2}+\frac{U^{2}}{2}+\frac{1}{2}\|Z\|_{L^{4}}^{2} \\
& \leq\|V\||U|\|Z\|+\frac{U^{2}}{2}+\frac{1}{2} P^{2}+\frac{U^{2}}{2}+\frac{1}{2}\|Z\|_{L^{4}}^{2} \\
& \leq \frac{1}{2}\|V\|^{2}+\frac{1}{2} U^{2}\|Z\|^{2}+\frac{U^{2}}{2}+\frac{1}{2} P^{2}+\frac{U^{2}}{2}+\frac{1}{2}\|Z\|_{L^{4}}^{2}
\end{aligned}
$$

Thus

$$
\begin{array}{rll}
\frac{1}{2} \frac{d}{d t}[& \| & \left.V \|^{2}+U^{2}\right]+\nu\|V\|_{H_{0}^{1}}^{2}+\nu U^{2} \\
& \leq \frac{1}{2}\|V\|^{2}+\frac{1}{2} U^{2}\|Z\|^{2} \\
+\frac{U^{2}}{2}+\frac{1}{2} P^{2}+\frac{U^{2}}{2}+\frac{1}{2} & \| & Z \|_{L^{4}}^{2} \\
+2 C\left\{\frac{1}{4}\right. & \| & V\left\|^{2}\right\| Z\left\|_{L^{4}}^{4}+\frac{5}{8} \alpha^{2}\right\| V \|_{H_{0}^{1}}^{2} \\
+\frac{1}{8 \alpha^{2}} & \| & \left.V \|^{2}\right\}+\frac{\varepsilon}{2}\|V\|_{H_{0}^{1}}^{2}+\frac{1}{2 \varepsilon}\|Z\|^{4} .
\end{array}
$$

Now we choose α and ε to get

$$
\nu=\frac{\varepsilon}{2}+\frac{5}{8} \cdot 2 C \alpha^{2} .
$$

Therefore

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\left[\begin{array}{ll}
& \left\|\|^{2}+U^{2}\right]+\nu U^{2} \\
& \leq \frac{1}{2}\|V\|^{2}+\frac{1}{2} U^{2}\|Z\|^{2} \\
+\frac{U^{2}}{2}+\frac{1}{2} P^{2}+\frac{U^{2}}{2}+\frac{1}{2} & \| \\
+2 C\left\{\frac{1}{4}\right. & \|
\end{array} \quad V\left\|_{L^{4}}^{2}\right\| Z\left\|_{L^{4}}^{4}+\frac{1}{8 \alpha^{2}}\right\| V \|^{2}\right\}+\frac{1}{2 \varepsilon}\|Z\|^{4} .
\end{gathered}
$$

For arbitrary $Z \in L^{4}$,

$$
\|Z\| \leq\|Z\|_{L^{4}}, \quad\|Z\|_{L^{4}}^{2} \leq\|Z\|_{L^{4}}^{4}+1
$$

therefore, neglecting the term νU^{2} in the left hand side of the inequality, we arrive at

$$
\begin{aligned}
\frac{d}{d t}[& \left.\|V\|^{2}+U^{2}\right] \\
& \leq C\left(\|V\|^{2}+U^{2}\right)\left(\|Z\|_{L^{4}}^{4}+1\right)+C\left(\|Z\|_{L^{4}}^{4}+1\right)
\end{aligned}
$$

where C is the maximal number among:

$$
\frac{C}{2}, \frac{1}{2}+\frac{1}{8 \alpha^{2}}, \frac{3}{2}, \frac{1}{2} P^{2}+\frac{1}{2}, \frac{1}{2 \varepsilon}+\frac{1}{2} .
$$

Consequently

$$
\begin{aligned}
& \|\quad V(t)\|^{2}+U^{2}(t) \\
& \leq \quad e^{\int_{0}^{t} C\left(\|Z\|_{L^{4}}^{4}+1\right) d s}\left(\left\|v_{0}\right\|^{2}+U^{2}(0)\right)+C \int_{0}^{t} e^{\left.2 \int_{s}^{t}\|Z(\sigma)\|_{L^{4}}^{4}+1\right) d \sigma}\left(\|Z(s)\|_{L^{4}}^{4}+1\right) d s
\end{aligned}
$$

So the required estimate holds.

Continuation of the proof of Theorem 3

Let $X_{n}(t)=\binom{U_{n}(t)}{v_{n}(t)}$ be a, possibly exploding, solution to problem (11)(13), where $U_{n}(t)$ is the solution to (18) and $v_{n}(t)$ is the solution to (19).

By (58) (compare Lemma 3.1 of [11]) there exists a constant $C_{1} \geq 1$ such that

$$
\begin{array}{ll}
\mid & \left.U_{n}(t)\right|^{2}+\left\|v_{n}(t)\right\|^{2}+1 \\
\leq & C_{1}\left(\mu+\left|U_{n}(0)\right|^{2}+\left\|v_{0}\right\|^{2}+1\right) e^{(C \mu+1) t}+1 \\
\leq & C_{1}\left(\mu+\left|U_{n}(0)\right|^{2}+\left\|v_{0}\right\|^{2}+2\right) e^{(C \mu+1) t}
\end{array}
$$

so

$$
\begin{aligned}
\log (\quad & \left.\left.U_{n}(t)\right|^{2}+\left\|v_{n}(t)\right\|^{2}+1\right) \\
\leq & \log C_{1}+\log \left(\mu+\left|U_{n}(0)\right|^{2}+\left\|v_{0}\right\|^{2}+2\right) \\
& +C(\mu+1) T
\end{aligned}
$$

so

$$
\begin{aligned}
E\left[\log \sup _{t \leq T}(\quad \mid\right. & \left.\left.U_{n}(t)\right|^{2}+\left\|v_{n}(t)\right\|^{2}+1\right) \\
\leq & \log C_{1}+\log \left(E \mu+\left|U_{n}(0)\right|^{2}+\left\|v_{0}\right\|^{2}+2\right) \\
& +C(E \mu+1) T
\end{aligned}
$$

By Jensen inequality it follows that

$$
\begin{aligned}
E\left(\sup _{t \in[0, T]} \log (\right. & \left.\left|U_{n}(t)\right|^{2}+\left\|v_{n}(t)\right\|^{2}+1\right) \\
& \leq \log C_{1}+\log \left(E \mu+\left|U_{n}(0)\right|^{2}+\left\|v_{0}\right\|^{2}+2\right) \\
+C(E \mu+1) T & =K_{T} .
\end{aligned}
$$

Since by the Chebyshev inequality

$$
\begin{aligned}
P\left(\tau_{n}\right. & \leq T) \\
& =P\left(\sup _{t \in[0, T]} \log \left(\left|U_{n}(t)\right|^{2}+\left\|v_{n}(t)\right\|^{2}+1\right) \geq \log (n+1)\right) \\
& \leq \frac{E\left(\sup _{t \in[0, T]} \log \left(\left|U_{n}(t)\right|^{2}+\left\|v_{n}(t)\right\|^{2}+1\right)\right.}{\log (n+1)}
\end{aligned}
$$

we get, for a new constant K_{T}^{\prime}

$$
P\left(\tau_{n} \leq T\right) \leq \frac{K_{T}^{\prime}}{\log (n+1)} \rightarrow 0
$$

as $n \rightarrow \infty$. Hence $\tau_{\infty}=\infty$.

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] J. M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion, Verh. Kon. Nerderl. Akad. WetenSchappen Amsterdam, Afdeel Natuurkunde, 17, No.2(1939), 1-53.
[3] K. M. Case and S. C. Chiu, Burgers' turbulent models, Phys. Fluids, 12,9(1969), 1799-1808.
[4] D. H. Chambers, R.J. Adrian, P. Moin, D. S. Stewart and H. J. Sung, Karhumen-Loève expansion of Burgers model of turbulence, Phys. Fluids 31 (9)(1988), 2573-2582.
[5] J. W. Cholewa and T. Dłotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000.
[6] H. Chui, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its applications to Burgers equation, Center for Turbulence Research, Stanford University, CTR Manuscript 131, 1992.
[7] A. Dermoune, Arround the stochastic Burgers equation, Stoch. Anal. Appl., 15,3(1997), 295-311.
[8] A. Dermoune, Stochastic approach for the Burgers equation with singular initial values, Stoch. Anal. Appl., 17,4(1999), 529-539.
[9] T. Dłotko, The one-dimensional Burgers' equation; existence, uniqueness and stability, Zeszyty Naukowe UJ, Prace Mat., 23(1982), 157-172.
[10] G. Da Prato and and A. Debussche, Control of the stochastic Burgers model of turbulence, SIAM J. Control Optim., 37,4(1999), 1123-1149.
[11] G. Da Prato and D. Gątarek, Stochastic Burgers equation with correlated noise, Stochastics and Stochastics Rep., 52(1995), 29-41.
[12] G. Da Prato A. Debussche and R. Temam, Stochastic Burgers' equation, NoDEA, 1(1994), 389-402.
[13] G. Da Prato S. Kwapień and J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics, 23(1987), 1-23.
[14] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge, 1992.
[15] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II,John Wiley and Sons, New York, 1966.
[16] B. Ferrario, The Bérnard problem with random perturbations: dissipativity and invariant measures, NoDEA, 4(1997), 101-121.
[17] D. Gątarek, A note on nonlinear stochastic equations in Hilbert spaces, Statistics and Probab. Letters, 17(1993), 387-394.
[18] I. Gyöngy and D. Nualart, On the stochastic Burgers' equation in the real line, Ann. Probab., 27,2(1999), 782-802.
[19] Dah-Teng Jang, Forced model equation for turbulence, The Physics of Fluids, 12, 10 (1969), 2006-2010.
[20] M. Kardar, M. Parisi and J. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56(1986), 889-892.
[21] W. E, K. Khanin, A. Mazel and Ya. Sinai, Invariant measures for Burgers equation with stochastic forcing, Ann. Math., 151(2000), 877-960.
[22] A. Lunardi, Interpolation Theory, Preprints di MJatematica, No. 17, Scuola Normale superiore di Pisa, Pisa, 1998.
[23] A. Truman and H. Z. Zhao, Stochastic Burgers' equations and their semi-classical expansions, Comm. Math. Phys., 194(1998), 231-248.
[24] K. Twardowska, J. Zabczyk, A note on stochastic Burgers' system of equations, Preprint No. 646, Polish Academy of Sciences, Inst. of Math., Warsaw, 2003, 1-32.
[25] W. A. Woyczyński, Burgers - KPZ Turbulence, Springer, Berlin, 1998.
[26] J. Zabczyk, The fractional calculus and stochastic evolution equations, Barcelona Seminar on Stochastic Analysis, in: Progress in Probability, Vol. 32, 1993, 222-234.

Appendix

An estimate for extended heat semigroup

Let us recall that $S(t)$ is the heat semigroup introduced in (16). We prove now

Lemma 1. The operators $S(t), t>0$, can be extended linearly in the space of all distributions of the form $\frac{\partial}{\partial x} v, v \in L^{1}(0,1)$, in a way such that

$$
\left\|S(t) \frac{\partial}{\partial \xi} v\right\| \leq\|v\|_{L^{1}(0,1)}\left(\sum_{k=1}^{\infty} \frac{2 \pi}{\sqrt{\nu}} k^{2} e^{-2 \frac{\pi^{2}}{\nu} k^{2} t}\right)^{1 / 2} .
$$

Proof. Set $\nu=1$. By Parseval's identity

$$
\|S(t) u\|^{2}=\sum_{k=1}^{\infty} e^{-2 \pi^{2} k^{2} t}\left(u, e_{k}\right)^{2}, u \in L^{2}
$$

Let $v \in L^{2}$ be an absolutely continuous function such that $\frac{\partial}{\partial \xi} v \in L^{2}$. Then

$$
\left\|S(t) \frac{\partial}{\partial \xi} v\right\|^{2}=\sum_{k=1}^{\infty} e^{-2 \pi^{2} k^{2} t}\left(\int_{0}^{1} \frac{\partial}{\partial \xi} v(\xi) e_{k}(\xi) d \xi\right)^{2} .
$$

Integrating by parts

$$
\sqrt{\frac{2}{\pi}} \int_{0}^{1} \frac{\partial}{\partial \xi} v(\xi) \sin k \pi \xi d \xi=-\sqrt{\frac{2}{\pi}} k \pi \int_{0}^{1} v(\xi) \cos k \pi \xi d \xi
$$

Therefore

$$
\left|\int_{0}^{1} \frac{\partial}{\partial \xi} v(\xi) e_{k}(\xi) d \xi\right| \leq \sqrt{2 \pi} k \int_{0}^{1}|v(\xi)| d \xi
$$

and consequently

$$
\begin{aligned}
\| & S(t) \frac{\partial}{\partial x} v\|\leq\| v \|_{L^{1}(0,1)} \\
& \times\left(\sum_{k=1}^{\infty} 2 \pi k^{2} e^{-2 \pi^{2} k^{2} t}\right)^{1 / 2} .
\end{aligned}
$$

Since absolutely continuous function with square integrable derivatives are dense in $L^{1}(0,1)$ the required extension of S exists. It will be denoted with the same symbol $S(t), t \geq 0$. From this lemma follows.

Our aim is to prove in an elementary way the following result from [12].
Proposition 9 For arbitrary $T>0$ there exists C such that for $t \leq T$ and for measurable, bounded, $L^{1}(0,1)$-valued function $v(s), s \in(0, t)$:

$$
\int_{0}^{t}\left\|S(\sigma) \frac{\partial}{\partial \xi} v(\sigma)\right\| d \sigma \leq C t^{1 / 4} \sup _{s \leq t}\|v(s)\|_{L^{1}(0,1)}
$$

Proof. Set $\nu=1$. We have to show that for a constant $C>0$ and $T>0$

$$
\int_{0}^{T}\left(\sum_{k=1}^{\infty} e^{-2 \pi^{2} k^{2} t} k^{2}\right)^{1 / 2} d t \leq C T^{1 / 4}
$$

The function

$$
h(t)=\sum_{k=1}^{\infty} e^{-2 \pi^{2} k^{2} t} k^{2}, t \geq 0
$$

is the Laplace transform of purely atomic measure μ which associates with points $2 \pi^{2} k^{2}$ masses $k^{2}, k=1,2, \ldots$

Let

$$
U(\sigma)=\mu((0, \sigma])=\sum_{2 \pi^{2} k^{2} \leq \sigma} k^{2}=\sum_{k \leq \frac{1}{\pi} \sqrt{\frac{\sigma}{2}}} k^{2} .
$$

One easily finds that U is slowly varying and

$$
\lim _{\sigma \rightarrow \infty} \frac{U(\sigma y)}{U(\sigma)}=y^{3 / 2}, y>0
$$

Consequently, by tauberian theorems (see [15], p. 422-423)

$$
\lim _{t \rightarrow 0} \frac{h(t)}{U\left(\frac{1}{t}\right)}=\Gamma\left(\frac{5}{2}\right) .
$$

But $U\left(\frac{1}{t}\right) \sim \frac{1}{3} \frac{1}{t^{3 / 2}}$ as $t \rightarrow+\infty$ and therefore

$$
h(t) \sim \frac{1}{3 \Gamma\left(\frac{5}{2}\right)} \frac{1}{t^{3 / 2}}
$$

and for a constant C

$$
h(t) \leq C \frac{1}{t^{3 / 2}}, t \leq T_{0}
$$

Finally

$$
\int_{0}^{T} h^{1 / 2}(t) d t \leq C \int_{0}^{T} \frac{1}{t^{3 / 4}} d t=4 C T^{1 / 4}, T \leq T_{0}
$$

and therefore, the required inequality follows.

