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ABSTRACT

We consider a stochastic version of a system of two equations formulated
by Burgers in [2] with the aim to describe the laminar and turbulent motions
of a fluid in a channel. The existence and uniqueness theorem for a global
solution is established. The paper generalizes the result from the paper [11]
by Da Prato and Ga̧tarek dealing with the equation describing only the
turbulent motion.

1 Introduction

The paper is concerned with the stochastic version of two hydrodynamic
equations for the turbulent flow in a channel between parallel walls. The orig-
inal non-stochastic model was first proposed by Burgers in [2]. The system is
derived from the theory of turbulent fluid motion and has similar properties
as the Navier-Stokes equation, but is simpler to study.

Let U = U(t) denote the primary velocity of the fluid, parallel to the
walls of the channel, whereas the second one v = v (t, x) denote the secondary
velocity of the turbulent motion. Let P, ρ and µ be constants representing,
respectively, an exterior force, analogous to the mean pressure gradient in the
hydrodynamic case, the density of the fluid and its viscosity. Set ν = µ

ρ
> 0.
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According to [2], the functions U(t), v(t, ·), t ≥ 0, should satisfy the following
system of equations

dU (t)

dt
= P − νU (t)−

1∫
0

v2 (t, x) dx for t > 0, (1)

∂v (t, x)

∂t
= ν

∂2v (t, x)

∂x2
+ U (t) v (t, x)− ∂

∂x

(
v2 (t, x)

)
(2)

with the initial and boundary conditions

U (0) = U0, v (0, x) = v0 (x) , v (t, 0) = v (t, 1) = 0, x ∈ (0, 1), t > 0. (3)

The simplified version consisting of one equation on v only (U(t) ≡ 0), t ≥ 0,

∂v (t, x)

∂t
= ν

∂2v (t, x)

∂x2
− ∂

∂x

(
v2 (t, x)

)
(4)

with the initial and boundary conditions

v (0, x) = v0 (x) , v (t, 0) = v (t, 1) = 0 (5)

for x ∈ (0, 1) and for t > 0, was investigated by many authors, e.g., in [20]
and [25]. For the stochastic version of such equation see e.g. to the papers
[7], [8], [10], [18], [21] and [23].

The system (1)-(3) was analysed in [2] and [3]. The existence and unique-
ness theorem for the global solution of the system was examined by D lotko
in [9], using the Galerkin method. Other properties of such systems were
studied by Cholewa and D lotko in [5].

The Burger’s system (1)-(3) as well as the Burger’s equation do not dis-
play any chaotic phenomena and therefore a stochastic perturbations of (4)
was proposed as a better model, see [4], [6], [19].

The stochastic Burgers’ equation is of the form

∂v (t, x)

∂t
= ν

∂2v (t, x)

∂x2
− ∂

∂x

(
v2 (t, x)

)
+ g (v (t, x))

∂2B(t, x)

∂t∂x
(6)

with the initial and boundary conditions (5), where B is a Brownian sheet

on [0,∞)× (0, 1) and ∂2B(t,x)
∂t∂x

is the time-space white noise.
The existence and uniqueness theorem for (6) with additive noise g ≡ 1

was established in [12] and the case of general g, in [11].
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Our paper generalizes the existence and uniqueness result from [11] to
the system

dU (t)

dt
= P − νU (t)−

1∫
0

v2 (t, x) dx for t > 0, (7)

∂v (t, x)

∂t
= ν

∂2v (t, x)

∂x2
+ U (t) v (t, x) (8)

− ∂

∂x

(
v2 (t, x)

)
+ g (v (t, x))

∂2B(t, x)

∂t∂x

with the initial and boundary conditions (3). We adapt the method from
[11]. We prove first the existence of a local solution by proper modification
of the drift terms and Banach fixed point argument and then we establish a
priori estimates to get global existence.

2 Preliminaries and formulation of the main

result

Let (Ω,F , (Ft)t∈[0,T ], P ) be a filtered probability space on which an increas-
ing and right-continuous family (Ft)t∈[0,T ] of sub−σ−algebras of F is defined
such that F0 contains all P-null sets in F . We model mathematicaly the
space-time white noise B as the distributional derivative of the cylindrical
Wiener process W

W (t) =
∞∑

k=1

Wk(t)ek. (9)

Here (ek) is an orthonormal basis of L2 = L2(0, 1),

ek(x) =

√
2

π
sin kπx, x ∈ (0, 1), k = 1, 2, ... (10)

The scalar product in L2 is denoted by (·, ·),

(h, ψ) =

∫ 1

0

h(x)ψ(x)dx

and the norm by ‖ · ‖ .
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We consider the following stochastic one-dimensional Burgers’ problem

dU (t)

dt
= P − νU (t)−

1∫
0

v2 (t, x) dx for t > 0, (11)

∂v (t, x)

∂t
= ν

∂2v (t, x)

∂x2
+ U (t) v (t, x) (12)

− ∂

∂x

(
v2 (t, x)

)
+ g (v (t, x))

∂W (t)

∂t
for

with the initial and boundary conditions

U (0) = U0,

v (0, x) = v0 (x) for x ∈ (0, 1), (13)

v (t, 0) = v (t, 1) = 0 for t > 0.

We assume that g is a real valued Lipschitz continuous and bounded function.
Notice that if we replace v by −u in (12), then we obtain an equivalent

form of equation (12) with the positive sign before ∂
∂x

(v2 (t, x)).
We have the following definition

Definition 1 A pair of processes (
U
v

) is a weak solution to problem (11)-

(13) if and only if U(t), t ≥ 0, and v(t), t ≥ 0, are adapted continuous
processes with values in R1 and L2, respectively, U(0) = U0, v(0) = v0 and :

(i) for arbitrary t ≥ 0 :

U(t) = U0 + tP − ν

∫ t

0

U(s)ds−
∫ t

0

‖ v(s) ‖2 ds, P -a.s., (14)

(ii) for arbitrary t ≥ 0 and arbitrary ϕ ∈ C∞
0 (0, 1) :

(v(t), ϕ) = (v0, ϕ) +

∫ t

0

U (s) (v(s), ϕ)ds (15)

+

∫ t

0

(v(s), ν
∂2

∂x2
ϕ)ds+

∫ t

0

(v2(s),
∂

∂x
ϕ)ds

+

∫ t

0

(ϕ, g(v(s))dW (s)), P-a.s.
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Notice that from the very definition of the distributional derivative ∂
∂x
v2, for

arbitrary v ∈ L2 :

(
∂

∂x
v2, ϕ) = −

∫ t

0

v2(x)
∂

∂x
ϕ(x)ds = −(v2,

∂

∂x
ϕ).

We introduce now an equivalent concept of the integral solution. Let S(t),
t ≥ 0, be the classical heat semigroup on L2 . Then, for v ∈ L2 :

S(t)v =
∞∑

k=1

e−
π2

ν
k2t(v, ek)ek (16)

with the convergence of the series in L2. It is well known that the generator
A of the semigroup S(t), t ≥ 0, is identical with the second derivative oper-
ator ∂2

∂x2 on the domain D(A) consisting of functions v such that v, ∂v
∂x

are

absolutely continuous with ∂2v
∂x2 ∈ L2, v(0) = v(1) = 0. In some places S(t),

t ≥ 0, will be denoted by eAt, t ≥ 0.
We need the following lemma with the proof postponed to Appendix.

Lemma 1 The operator S(t), t ≥ 0, can be extended linearly to the space
of all distributions of the form ∂

∂x
v, v ∈ L1(0, 1), in such a way that it takes

values in L2 and

‖ S(t)
∂

∂x
v ‖≤‖ v ‖L1(0,1) (

∞∑
k=1

2π√
ν
k2e−

2π2

ν
k2t)1/2. (17)

Definition 2 A pair of continuous adapted processes (
U
v

) with values in R1

and L2, respectively, is said to be an integral solution to problem (11)-(13) if

U(t) = e−νtU0 +

∫ t

0

e−ν(t−s)(P− ‖ v(s) ‖2)ds (18)

and

v(t) = S(t)v0 +

∫ t

0

S(t− s)U (s) v(s)ds (19)

+

∫ t

0

S(t− s)
∂

∂x
v2(s)ds+

∫ t

0

S(t− s)g(v(s))dW (s).
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In the integral ∫ t

0

S(t− s)
∂

∂x
v2(s)ds, t > 0

we use the extension of the operator S(t− s) described in Lemma 1.
We have the following result which proof can be found for instance in

[24].

Proposition 2 A continuous adapted process (
U
v

) is an integral solution

to problem (11)-(13) if and only if it is a weak solution to problem (11)-(13).

The main result of the paper is contained in the following

Theorem 3 System (11)-(13) has a unique weak solution.

The proof is given in the following sections.

3 Existence of a local solution

Let πn,1 : R1 → B1(0, n) be the projection onto the interval B1(0, n) =
{U ∈ R1 :| U |≤ n} and let πn,2 : L2 → B2(0, n) be the projection onto the
ball B2(0, n) = {v ∈ L2 : ‖ v ‖≤ n}, where

πn,1(U) =

{
U if | U |≤ n,
nU
|U | if | U |> n.

(20)

and

πn,2(v) =

{
v if ‖ v ‖≤ n,
nv
‖v‖ if ‖ v ‖> n.

(21)

Let Zp
T , p > 1, denote the space of all continuous adapted processes

X(t) = (
U(t)
v(t)

) on [0, T ] with values on R1 × L2 such that

‖ X ‖Zp
T
=‖ (

U
v

) ‖T (22)

= (E(supt∈[0,T ] | U(t) |p))1/p + (E(supt∈[0,T ] ‖ v(t) ‖p))1/p <∞
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with fixed initial conditions U(0) = U0, v(0) = v0. We define

‖ (
U
v

) ‖T =‖ U ‖1,T + ‖ v ‖2,T . (23)

Now we prove

Proposition 4 For arbitrary p > 4 and each n = 1, 2, ... the following sys-
tem of equations

U(t) = e−νtU0 +

∫ t

0

e−ν(t−s)(P− ‖ πn,2v(s) ‖2)ds (24)

and

v(t) = S(t)v0 +

∫ t

0

S(t− s)πn,1U (s)πn,2v(s)ds (25)

+

∫ t

0

S(t− s)
∂

∂x
(πn,2v(s))2ds+

∫ t

0

S(t− s)g(v(s))dW (s),

t ∈ [0, T ]

has a unique weak solution in the space Zp
T .

Let us stress that we look for a continuous and adapted process v(s),
s ≥ 0, with values in L2, and such that ∂

∂x
(πn,2v(s))2 is the derivative in the

distribution theory sense (on the interval (0, 1)) of the function belonging
to L1(0, 1) (because (πn,2v(s))2 ∈ L1(0, 1)). From Lemma 1 we have that S
can be extended to the derivatives of the functions from L1(0, 1). Therefore,
equation (25) has a clear meaning.

Proof of Proposition 4. We introduce nonlinear operators Fn, G, Hn

and In acting on processes U(t), t ≥ 0, and v(t), t ≥ 0, according to the
following formulae:

Fn(U, v)(t) = e−νtU0 +

∫ t

0

e−ν(t−s)(P− ‖ πn,2v(s) ‖2)ds (26)

= e−νtU0 +
1− e−νt

ν
P −

∫ t

0

e−ν(t−s) ‖ πn,2v(s) ‖2)ds,

G(U, v)(t) =

∫ t

0

S(t− s)g(v(s))dW (s), (27)
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Hn(U, v)(t) =

∫ t

0

S(t− s)
∂

∂x
(πn,2v(s))2ds (28)

and

In(U, v)(t) = S(t)v0 +

∫ t

0

S(t− s)πn,1U (s)πn,2v(s)ds. (29)

Observe that system (24)-(25) is equivalent to fixed point problem:

U = Fn(U, v), (30)

v = G(U, v) +Hn(U, v) + In(U, v). (31)

We shall show that for arbitrary n the mapping

(
U
v

) → (
Fn(U, v)

G(U, v) +Hn(U, v) + In(U, v)
) (32)

is a contraction in the space Zp
Tn

, for properly chosen Tn. Therefore, system
(30)-(31) has a unique solution on the interval [0, Tn]. By the standard it-
eration procedure system (30)-(31) has a unique global solution denoted by

(
Un

vn
).

First we shall show that for each n = 1, 2, ... and T > 0 there exists a

constant CT,n such that for X = (
U
v

), X = (
U
v

) ∈ Zp
T :

‖ (
Fn(U, v)

G(U, v) +Hn(U, v) + In(U, v)
)− (

Fn(U, v)
G(U, v) +H(U, v) + In(U, v)

) ‖T

≤ CT,n ‖ (
U
v

)− (
U
v

) ‖T . (33)

We have from (23):

‖ (
Fn(U, v)

G(U, v) +Hn(U, v) + In(U, v)
)− (

Fn(U, v)
G(U, v) +H(U, v) + In(U, v)

) ‖T

= ‖ Fn(U, v)− Fn(U, v) ‖1,T

+ ‖ (G(U, v) +Hn(U, v) + In(U, v)− (G(U, v) +H(U, v) + In(U, v)) ‖2,T .

(34)
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Step 10. First we consider

Fn(U, v)(t)− Fn(U, v)(t)

=

∫ t

0

e−ν(t−s)[‖ πn,2v(s) ‖2 − ‖ πn,2v(s) ‖2]ds.

We shall find a constant C1
T,n such that

‖ Fn(U, v)− Fn(U, v) ‖1,T≤ C1
T,n ‖ (

U
v

)− (
U
v

) ‖T . (35)

Since ν > 0 and

|‖ πna ‖ − ‖ πnb ‖|≤‖ a− b ‖, a, b ∈ L2,

therefore,

| Fn(U, v)(t)− Fn(U, v)(t) |

≤
∫ t

0

e−ν(t−s) |‖ πn,2v(s) ‖2 − ‖ πn,2v(s) ‖2| ds

=

∫ t

0

e−ν(t−s) | (‖ πn,2v(s) ‖

− ‖ πn,2v(s) ‖)(‖ πn,2v(s) ‖ + ‖ πn,2v(s) ‖) | ds

≤ 2n

∫ t

0

e−ν(t−s) |‖ πn,2v(s) ‖ − ‖ πn,2v(s) ‖|| ds

≤ 2n

∫ t

0

‖ v(s)− v(s) ‖ ds.

From the Hölder inequality, if q = p
p−1

, we have

E(supt∈[0,T ](2n

∫ t

0

‖ v(s)− v(s) ‖ ds)p

≤ (2n)pE[(

∫ T

0

‖ v(s)− v(s) ‖ ds)p]

≤ (2n)pE(

∫ T

0

‖ v(s)− v(s) ‖p ds)(

∫ T

0

ds)
p
q

≤ (2n)pT pE(sups≤T ‖ v(t)− v(t) ‖p).
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Hence

‖ Fn(U, v)− Fn(U, v) ‖1,T

= (E(supt∈[0,T ] | Fn(U, v)(t)− Fn(U, v)(t) |p))
1
p

≤ 2nT ‖ v − v ‖2,T .

So we can set
C1

T,n = 2nT. (36)

To go further let us recall that, see (25),

In(U, v)(t) +Hn(U, v)(t) +G(U, v)(t)

= S(t)v0 +

∫ t

0

S(t− s)πn,1Un (s)πn,2vn(s)ds

+

∫ t

0

S(t− s)
∂

∂x
(πn,2v(s))2ds+

∫ t

0

S(t− s)g(v(s))dW (s).

Step 20. We estimate now

‖ G(U, v)−G(U, v) ‖2,T .

To treat the stochastic integral∫ t

0

S(t− s)[g(v(s))− g(v(s))]dW (s)

we use the factorization procedure similarly as in [26], [11] (see also [24]).
Let us fix γ such that 1

p
< γ < 1

4
and define on Lp([0, T ], L2) for t ∈ [0, T ] :

Rγh(t) =

∫ t

0

(t− s)γ−1eA(t−s)h(s)ds,

h ∈ Lp([0, T ], L2). Then for t ∈ [0, T ] :

RγY (t) =

∫ t

0

S(t− s)[g(v(s))− g(v(s))]dW (s)
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where

Y (t) =
sin πγ

γ

∫ t

0

(t− s)−γeA(t−s)[g(v(s))− g(v(s))]dW (s), t ∈ [0, T ].

By Hölder inequality, for 0 ≤ t ≤ T , h ∈ Lp([0, T ], L2)

‖ Rγh(t) ‖≤ (
t(γ−1)q+1

(γ − 1)q + 1
)

1
q ‖ h ‖Lp([0,T ],L2) .

Therefore Rγ is a bounded operator from Lp([0, T ], L2) to C([0, T ], L2) and

sup0≤t≤T ‖ Rγh(t) ‖≤ (
T (γ−1)q+1

(γ − 1)q + 1
)

1
q ‖ h ‖Lp([0,T ],L2)

≤ (
T (γ−1) p

p−1
+1

(γ − 1) p
p−1

+ 1
)

p−1
p ‖ h ‖Lp([0,T ],L2),

where 1
p

+ 1
q

= 1. So

‖ Rγ ‖≤ (
T (γ−1) p

p−1
+1

(γ − 1) p
p−1

+ 1
)

p−1
p . (37)

Note that
(γ − 1)

p

p− 1
+ 1 > 0.

We therefore have

E(sup0≤t≤T ‖ G(U, v)(t)−G(U, v)(t) ‖p) (38)

≤ ‖ Rγ ‖p E ‖ Y ‖p
Lp([0,T ],L2) .

Denote by ‖ K ‖ HS the Hilbert-Schmidt norm of the operator K. Thus

‖ K ‖2
HS=

∞∑
j=1

‖ Kfj ‖2,

where (fj) is an orthonormal basis of L2.
By Burkholder’s inequality, for arbitrary adapted operator valued process

φ and p ≥ 2,

E(sup0≤t≤T |
∫ t

0

φ(s)dW (s) |p

≤ (
p

p− 1
)pE(

∫ T

0

‖ φ(s) ‖2
HS ds)

p
2 .
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Therefore

E ‖ Y ‖p
Lp([0,T ],L2)=

∫ T

0

E ‖ Y (t) ‖p dt

≤ (
p

p− 1
)p | sin πγ

γ
|p∫ T

0

[E(

∫ t

0

‖ eA(t−s)(t− s)−γ[g(v(s))− g(v(s))] ‖2
HS ds)

p
2 ]dt.

Note that

‖ eA(t−s)(t− s)−γ[g(v(s))− g(v(s))] ‖2
HS

= (t− s)−2γ ‖ eA(t−s)[g(v(s))− g(v(s))] ‖2
HS,

and, for an orthonormal basis (fj) in L2,

‖ eA(t−s)[g(v(s))− g(v(s))] ‖2
HS

=
∞∑

j=1

‖ eA(t−s)[g(v(s))− g(v(s))]fj ‖2

=
∞∑

j=1

∞∑
k=1

e−2π2

ν
k2(t−s)((g(v(s))− g(v(s))fj, ek)2

=
∞∑

k=1

e−
π2

ν
k2(t−s) ‖ (g(v(s))− g(v(s))ek ‖2 .

Moreover

‖ (g(v(s))− g(v(s))ek ‖2

=

∫ 1

0

| (g(v(s, x))− g(v(s, x))ek(x) |2 dx

≤ 2

π
‖ g ‖2

Lip

∫ 1

0

| v(s, x)− v(s, x) |2 dx

≤ 2

π
‖ g ‖2

Lip‖ v(s)− v(s) ‖2

and

‖ eA(t−s)[g(v(s))− g(v(s))] ‖2
HS

≤ 2

π
‖ g ‖2

Lip‖ v(s)− v(s) ‖2 (
∞∑

k=1

e−2π2

ν
k2(t−s)).
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Consequently ∫ T

0

E ‖ Y (t) ‖p dt

≤ (
p

p− 1
)p | sin πγ

γ
|p∫ T

0

[E(

∫ t

0

(t− s)−2γ 2

π
‖ g ‖2

Lip‖ v(s)− v(s) ‖2 (
∞∑

k=1

e−2π2

ν
k2(t−s))ds)

p
2 ]dt.

But ∫ t

0

(t− s)−2γ(
∞∑

k=1

e−2π2

ν
k2(t−s))ds ≤

∫ +∞

0

s−2γ(
∞∑

k=1

e−2π2

ν
k2s)ds = aγ.

Since γ < 1
4
, therefore aγ < +∞. Consequently

‖ G(U, v)−G(U, v) ‖p
2,T≤ T (

p

p− 1
)p | sin πγ

γ
|p (

2

π
‖ g ‖2

Lip)
p
2 (aγ)

p
2

E(sups≤T ‖ v(s)− v(s) ‖p), (39)

and we can set

C2
T,n = T

1
p (

p

p− 1
)(

sin πγ

γ
)(

2

π
)

1
2 ‖ g ‖Lip (aγ)

1
2 . (40)

Step 30. We shall show that for each n = 1, 2, ... and T > 0 there exists a

constant C3
T,n such that for X = (

U
v

), X = (
U
v

) ∈ Zp
T :

‖ Hn(U, v)−Hn(U, v) ‖2,T (41)

≤ C3
T,n ‖ (

U
v

)− (
U
v

) ‖T .

Let us recall that

Hn(U, v)(t)−Hn(U, v) =

∫ t

0

S(t− s)(
∂

∂x
[(πn,2v(s))2 − ∂

∂x
(πn,2v(s))2])ds.
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By Proposition 11, (see also Lemma 2.1 in [11]), there exists a constant C
such that for all t ∈ [0, T ]∫ t

0

‖ S(t− s)
∂

∂x
[(πn,2v(s))2 − (πn,2v(s))2] ‖ ds (42)

≤ Ct
1
4 sups≤T ‖ (πn,2v(s))2 − (πn,2v(s))2 ‖L1(0,1) .

Since
‖ πna− πnb ‖≤‖ a− b ‖, a, b ∈ L2,

for every s ∈ [0, T ],

‖ (πn,2v(s))2 − (πn,2v(s))2 ‖L1(0,1)≤ 2n ‖ v(s)− v(s) ‖ .

Consequently

supt≤T ‖ Hn(U, v)−H(U, v) ‖≤ 2CnT 1/4supt≤T ‖ v(t)− v(t) ‖ ,

‖ Hn(U, v)−H(U, v) ‖2,T≤ 2CnT
1
4 ‖ v − v ‖2,T . (43)

We can set
C3

T,n = 2CnT 1/4. (44)

Step 40. We shall find a constant C4
T,n such that:

‖ In(U, v)− In(U, v) ‖2,T (45)

≤ C4
T,n ‖ (

U
v

)− (
U
v

) ‖T .

Since ‖ S(t) ‖≤ 1 for every t ≥ 0,

‖ In(U, v)(t)− In(U, v)(t) ‖

≤
∫ t

0

‖ S(t− s) ‖‖ πn,1U (s)πn,2v(s)− πn,1U(s)πn,2v(s) ‖ ds

≤
∫ t

0

‖ πn,1U (s)πn,2v(s)− πn,1U(s)πn,2v(s) ‖ ds.

14



But notice that for all s ≥ 0

‖ πn,1U (s)πn,2v(s)− πn,1U(s)πn,2v(s) ‖
≤ ‖ (πn,1U (s)− πn,1U(s))πn,2v(s) ‖

+ ‖ πn,1U(s)(πn,2v(s)− πn,2v(s)) ‖
≤ | πn,1U (s)− πn,1U(s) |‖ πn,2v(s) ‖

+ | πn,1U(s) |‖ πn,2v(s)− πn,2v(s) ‖
≤ n | U (s)− U(s) | +n ‖ v(s)− v(s) ‖ .

By the Hölder inequality

‖ In(U, v)− In(U, v) ‖p
2,T

≤ E(supt≤T [n

∫ t

0

(| U (s)− U(s) | + ‖ v(s)− v(s) ‖)ds]p

≤ npE(

∫ T

0

(| U (s)− U(s) | + ‖ v(s)− v(s) ‖)pds)(

∫ T

0

ds)
p
q .

Since, for non-negative a, b, (a+ b)p ≤ 2p−1(ap + bp), we have

‖ In(U, v)(t)− In(U, v) ‖p
2,T

≤ 2p−1npT p−1{E(

∫ T

0

(| U (s)− U(s) |p)ds)

+E(

∫ T

0

( ‖ v(s)− v(s) ‖p)ds)}

≤ 2p−1npT p−1{TE (sups≤T | U (s)− U(s) |p)

+TE (sups≤T ‖ v(s)− v(s) ‖p)}

However (a+ b)α ≤ aα + bα for a, b ≥ 0, 0 < α ≤ 1, and therefore

‖ In(U, v)(t)− In(U, v) ‖2,T

≤ Tn2
p−1

p (‖ U − U ‖p
1,T + ‖ v − v ‖p

2,T )
1
p

≤ Tn2
p−1

p (‖ U − U ‖1,T + ‖ v − v ‖2,T )

≤ Tn2
p−1

p ‖ X −X ‖T .

And we can set
C4

T,n = Tn2
p−1

p . (46)
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Step 50. Finally set

CT,n = max (Ci
T,n, i = 1, 2, 3, 4), (47)

then (33) holds.
Taking into account explicit expressions for the constants Ci

T,n, i = 1, 2, 3, 4,
there exists such Tn that CTn,n < 1.

Step 60. By Banach fixed point theorem there exists a unique fixed point

of the operator (
U
v

) → (
Fn(U, v)

G(U, v) +Hn(U, v) + In(U, v)
) in the space Zp

Tn
.

Hence there exists a unique solution (
Un

vn
) of problem (24)-(25). By a stan-

dard iteration procedure there exists a unique solution to problem (24)-(25)
on arbitrary time interval [0, T ].

4 Proof of Theorem 3

Let Xn(t) = (
Un(t)
vn(t)

), t ≥ 0, be the solution to problem (11)-(13). Define

τn = min [inf{t ≥ 0 :| Un(t) |2≥ n2}, inf{t ≥ 0 :‖ vn(t) ‖2≥ n2}]. (48)

Notice that Xn(t) = Xm(t) for m ≥ n and t ≤ τn. Therefore, we can set
X(t) = Xn(t) if t ≤ τn and this is a solution to problem (11)-(13) on the
time interval [0, τ∞), where

τ∞ = limn→∞τn.

We shall prove that τ∞ = +∞.

Let X(t) = (
U(t)
v(t)

) be a possibly exploding solution to problem (11)-(13)

defined on [0, τ∞). We set

V (t) = v(t)− Z(t), (49)

that is,

(
U(t)
V (t)

) = (
U(t)
v(t)

)− (
0

Z(t)
),

16



where

Z(t) =

∫ t

0

eA(t−s)g(v(s))χs<τ∞dW (s), Z(0) = 0.

Recall that by the Sobolev imbedding theorem (see [1], Theorem 7.57, p.
217) we have for a domain Ω ⊂ Rn with smooth boundary that if

s > 0, 1 < p < n, n > sp and p ≤ r ≤ np/(n− sp), (50)

then W s,p(Ω) is continuously imbedded into Lr(Ω) :

W s,p(Ω) ↪→ Lr(Ω).

Therefore, if n = 1, Ω = (0, 1), p = 2, s = 1
4

and r = 4 then (50) holds
and

H
1
4 (0, 1) ↪→ L4(Ω),

where we use notation W s,2(0, 1) = Hs(0, 1). Notice that H
1
4 (0, 1) ↪→ L4(Ω)

means that there exists c > 0 such that for all u ∈ H 1
4 (0, 1)

‖ u ‖L4≤‖ u ‖
H

1
4 (0,1)

.

Moreover, there exists c > 0 such that

c ‖ (− d2

dx2
)

1
8u ‖≥‖ u ‖

H
1
4 (0,1)

.

The following Proposition can be obtained by factorization procedure (see
[26], [13] and [17]).

Proposition 5 Let A be a self-adjoint non-positive operator generating the
semigroup S(t), t ≥ 0, on a Hilbert space H such that∫ T

0

‖ S(t) ‖2
HS dt <∞.

Let 0 ≤ γ + 1
p
< 1

2
and ξ is an adapted stochastic process with values in the

space L(H) = L(H,H) of linear operators in H. Then there exists a constant
C > 0 such that

E(sup0≤t≤T ‖ (−A)γ

∫ t

0

S(t− s)ξ(s)dW (s) ‖p)

≤ CE(

∫ T

0

‖ ξ(s) ‖p
L(H,H) ds).
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Applying Proposition 5 with γ = 1
8
, p = 4, and ξ(s) the multiplication

operator by g(v(s))χs<τ∞ ;

E(sup0≤t≤T ‖ (− d2

dx2
)

1
8Z(t) ‖4)

≤ CE(

∫ T

0

‖ ξ(s) ‖4
L(L2,L2) ds) < CT supσ | g(σ) |<∞.

Let
µ = supt∈[0,T ] ‖ Z(t) ‖4

L4 . (51)

From Proposition 5 and the above estimates we have

Eµ = E(supt∈[0,T ] ‖ Z(t) ‖4
L4) ≤ CE(supt∈[0,T ] ‖ Z(t) ‖4

H
1
4
)

≤ CE(supt∈[0,T ] ‖ (− d2

dx2
)

1
8Z(t) ‖4) <∞.

Thus
Eµ <∞.

The following is a standard result on interpolation inequalities ([22],
Corollary 1.1.8).

Corollary 6 Let (X, Y )θ,p and (X, Y )p be interpolation spaces for 0 < θ < 1,
1 ≤ p ≤ ∞ . There is C(θ, p) such that

‖ y ‖(X,Y )θ,p
≤ C(θ, p) ‖ y ‖1−θ

X ‖ y ‖θ
Y for every y ∈ Y.

Then, see [22] (Example 1.1.3, pp. 13-14) we get that there exists a
constant c such that for u ∈ H1(0, 1) and 0 < θ < 1

‖ u ‖Hθ(0,1)≤ c ‖ u ‖1−θ‖ u ‖θ
H1(0,1) . (52)

We shall prove the following basic estimate.

Lemma 7 There exist a constant C such that for arbitrary α > 0 and V ∈
H1

0 , Z ∈ L4 we have

|
∫
V Z

∂V

∂x
dx |≤ C ‖ V ‖

3
4‖ V ‖

5
4

H1
0
‖ Z ‖L4 (53)

and

‖ V ‖
3
4‖ V ‖

5
4

H1
0
‖ Z ‖L4 (54)

≤ 1

4
‖ V ‖2‖ Z ‖4

L4 +
5

8
α2 ‖ V ‖2

H1
0

+
1

8α2
‖ V ‖2 .
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Proof. Observe that from the Schwartz inequality we have

|
∫
V Z

∂V

∂x
dx |≤ (

∫
V 4dx)

1
4 (

∫
Z4dx)

1
4 (

∫
‖ ∂V
∂x

‖2 dx)
1
2

= ‖ V ‖L4‖ Z ‖L4‖ V ‖H1
0
.

From the Sobolev imbedding inequality we get

‖ V ‖L4≤ c1 ‖ V ‖
H

1
4

and from (52) we obtain

‖ V ‖
H

1
4
≤ c2 ‖ V ‖

3
4‖ V ‖

1
4

H1
0
.

Since V ∈ H1
0

‖ V ‖L4≤ c3 ‖ V ‖
3
4‖ V ‖

1
4

H1
0
.

Therefore there exists c4 such that

|
∫
V Z

∂V

∂x
dx |≤ c4 ‖ V ‖

3
4‖ V ‖

1
4

H1
0
‖ Z ‖L4‖ V ‖H1

0
(55)

≤ c4 ‖ V ‖
3
4‖ V ‖

5
4

H1
0
‖ Z ‖L4

and (53) holds.
To prove (54) we observe that using the generalized Young inequality for

1
p

+ 1
q

+ 1
r

= 1 , p, q, r > 0, with p = 4, q = 8
5
, r = 8, we get

‖ V ‖
3
4‖ V ‖

5
4

H1
0
‖ Z ‖L4

= ‖ Z ‖L4‖ V ‖
2
4‖ αV ‖

5
4

H1
0
‖ 1

α
V ‖

1
4

≤
‖ Z ‖4

L4‖ V ‖2

4
+

(‖ αV ‖
5
4

H1
0
)q

q
+

(‖ 1
α
V ‖ 1

4 )r

r

≤ 1

4
‖ V ‖2‖ Z ‖4

L4 +
5

8
α2 ‖ V ‖2

H1
0

+
1

8α2
‖ V ‖2 .

From (53) and (54) we get

1

C
|

∫
V Z

∂V

∂x
dx |≤‖ V ‖

3
4‖ V ‖

5
4

H1
0
‖ Z ‖L4

≤ 1

4
‖ V ‖2‖ Z ‖4

L4 +
5

8
α2 ‖ V ‖2

H1
0

+
1

8α2
‖ V ‖2 .

Now we prove
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Proposition 8 If for V ∈ C([0, T ], L2), Z ∈ L∞([0, T ], L4(0, 1) ) and con-
tinuous function U

∂V

∂t
= ν

∂2V

∂x2
+ U(V + Z)− ∂

∂x
(V + Z)2, (56)

V (0) = v0, (57)

then there exists a constant C such that for all t ∈ [0, T ],

‖ V ‖2 +U2 ≤ C(µ+ ‖ v0 ‖2 +U(0)2 + 1)e(Cµ+1)t, (58)

where µ is given by (51).

Proof. We can assume that V is a strong solution to (56). We have

(
∂V

∂t
, V ) = ν(

∂2V

∂x2
, V ) + U(V + Z, V )− (

∂

∂x
(V + Z)2, V )

so

1

2

d

dt
(V, V ) = −ν(

∂V

∂x
,
∂V

∂x
) + U(V, V ) + U(Z, V )

−(
∂

∂x
(V + Z)2, V )

= −ν(
∂V

∂x
,
∂V

∂x
) + U(V, V ) + U(Z, V )

+(V 2,
∂

∂x
V ) + 2(V Z,

∂

∂x
V ) +

(Z2,
∂

∂x
V ).

Since

(V 2,
∂

∂x
V ) = −(

∂

∂x
V 2, V ) = −2(

∂V

∂x
V, V )

= −2(
∂V

∂x
, V 2)

so

(V 2,
∂

∂x
V ) = 0
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and we have

1

2

d

dt
(V, V ) = −ν(

∂V

∂x
,
∂V

∂x
) + U(V, V ) + U(V, Z).

+2(V Z,
∂

∂x
V ) + (Z2,

∂

∂x
V )

or

1

2

d

dt
‖ V ‖2 +ν ‖ V ‖2

H1
0
= U ‖ V ‖2 +U(V, Z)

+2

∫
V Z

∂V

∂x
dx+

∫
Z2∂V

∂x
dx.

Further we have

| (Z2,
∂

∂x
V ) |=|

∫ 1

0

Z2(x)
∂V

∂x
(x)dx |

≤ (

∫ 1

0

Z4(x)dx)
1
2 ‖ ∂

∂x
V ‖

≤ ‖ Z ‖2
L4‖

∂

∂x
V ‖=‖ Z ‖2

L4‖ V ‖H1
0

≤ ε

2
‖ V ‖2

H1
0

+
1

2ε
‖ Z ‖4

L4 .

But from (53) and (54) we have

|
∫
V Z

∂

∂x
V dx |

≤ C[
1

4
‖ V ‖2‖ Z ‖4

L4 +
5

8
α2 ‖ V ‖2

H1
0

+
1

8α2
‖ V ‖2].

Therefore

1

2

d

dt
‖ V ‖2 +ν ‖ V ‖2

H1
0
≤ U ‖ V ‖2 +U(V, Z) (59)

+2{C[
1

4
‖ V ‖2‖ Z ‖4

L4 +
5

8
α2 ‖ V ‖2

H1
0

+
1

8α2
‖ V ‖2]

+
ε

2
‖ V ‖2

H1
0

+
1

2ε
‖ Z ‖4

L4 .

Now we consider equation

1

2

d

dt
U2 + νU2 = U(P− ‖ V + Z ‖2). (60)
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Adding (59) and (60) we obtain

1

2

d

dt
[ ‖ V ‖2 +U2] + ν ‖ V ‖2

H1
0

+νU2

≤ U ‖ V ‖2 +U(V, Z) + 2C[
1

4
‖ V ‖2‖ Z ‖4

L4 +
5

8
α2 ‖ V ‖2

H1
0

+
1

8α2
‖ V ‖2]

+
ε

2
‖ V ‖2

H1
0

+
1

2ε
‖ Z ‖4

L4 +U(P− ‖ V + Z ‖2)

≤ −U(V, Z) + 2C[
1

4
‖ V ‖2‖ Z ‖4

L4 +
5

8
α2 ‖ V ‖2

H1
0

+
1

8α2
‖ V ‖2]

+
ε

2
‖ V ‖2

H1
0

+
1

2ε
‖ Z ‖4

L4 +UP − U ‖ Z ‖2

because

U(P− ‖ V + Z ‖2)

= U(P− ‖ V ‖2 −2(V, Z)− ‖ Z ‖2)

= UP − U ‖ V ‖2 −2U(V, Z)− U ‖ Z ‖2 .

Observe that from the Young inequality

−U(V, Z) + UP − U ‖ Z ‖2

≤ | (V, ZU) | +
U2

2
+

1

2
P 2 +

U2

2
+

1

2
‖ Z ‖2

L4

≤ ‖ V ‖| U |‖ Z ‖ +
U2

2
+

1

2
P 2 +

U2

2
+

1

2
‖ Z ‖2

L4

≤ 1

2
‖ V ‖2 +

1

2
U2 ‖ Z ‖2 +

U2

2
+

1

2
P 2 +

U2

2
+

1

2
‖ Z ‖2

L4 .

Thus

1

2

d

dt
[ ‖ V ‖2 +U2] + ν ‖ V ‖2

H1
0

+νU2

≤ 1

2
‖ V ‖2 +

1

2
U2 ‖ Z ‖2

+
U2

2
+

1

2
P 2 +

U2

2
+

1

2
‖ Z ‖2

L4

+2C{1

4
‖ V ‖2‖ Z ‖4

L4 +
5

8
α2 ‖ V ‖2

H1
0

+
1

8α2
‖ V ‖2}+

ε

2
‖ V ‖2

H1
0

+
1

2ε
‖ Z ‖4 .
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Now we choose α and ε to get

ν =
ε

2
+

5

8
· 2Cα2.

Therefore

1

2

d

dt
[ ‖ V ‖2 +U2] + νU2

≤ 1

2
‖ V ‖2 +

1

2
U2 ‖ Z ‖2

+
U2

2
+

1

2
P 2 +

U2

2
+

1

2
‖ Z ‖2

L4

+2C{1

4
‖ V ‖2‖ Z ‖4

L4 +
1

8α2
‖ V ‖2}+

1

2ε
‖ Z ‖4 .

For arbitrary Z ∈ L4,

‖ Z ‖≤‖ Z ‖L4 , ‖ Z ‖2
L4≤‖ Z ‖4

L4 +1,

therefore, neglecting the term νU2 in the left hand side of the inequality, we
arrive at

d

dt
[ ‖ V ‖2 +U2]

≤ C(‖ V ‖2 +U2)(‖ Z ‖4
L4 +1) + C(‖ Z ‖4

L4 +1),

where C is the maximal number among:

C

2
,

1

2
+

1

8α2
,

3

2
,

1

2
P 2 +

1

2
,

1

2ε
+

1

2
.

Consequently

‖ V (t) ‖2 +U2(t)

≤ e
R t
0 C(‖Z‖4

L4+1)ds(‖ v0 ‖2 +U2(0)) + C

∫ t

0

e2
R t

s (‖Z(σ)‖4
L4+1)dσ(‖ Z(s) ‖4

L4 +1)ds

So the required estimate holds.

Continuation of the proof of Theorem 3
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Let Xn(t) = (
Un(t)
vn(t)

) be a, possibly exploding, solution to problem (11)-

(13), where Un(t) is the solution to (18) and vn(t) is the solution to (19).
By (58) (compare Lemma 3.1 of [11]) there exists a constant C1 ≥ 1 such

that

| Un(t) |2 + ‖ vn(t) ‖2 +1

≤ C1(µ+ | Un(0) |2 + ‖ v0 ‖2 +1)e(Cµ+1)t + 1

≤ C1(µ+ | Un(0) |2 + ‖ v0 ‖2 +2)e(Cµ+1)t

so

log ( | Un(t) |2 + ‖ vn(t) ‖2 +1)

≤ log C1 + log(µ+ | Un(0) |2 + ‖ v0 ‖2 +2)

+C(µ+ 1)T

so

E[log supt≤T ( | Un(t) |2 + ‖ vn(t) ‖2 +1)

≤ log C1 + log(Eµ+ | Un(0) |2 + ‖ v0 ‖2 +2)

+C(Eµ+ 1)T.

By Jensen inequality it follows that

E( supt∈[0,T ] log( | Un(t) |2 + ‖ vn(t) ‖2 +1)

≤ log C1 + log(Eµ+ | Un(0) |2 + ‖ v0 ‖2 +2)

+C(Eµ+ 1)T = KT .

Since by the Chebyshev inequality

P (τn ≤ T )

= P (supt∈[0,T ] log (| Un(t) |2 + ‖ vn(t) ‖2 +1) ≥ log (n+ 1))

≤
E(supt∈[0,T ] log (| Un(t) |2 + ‖ vn(t) ‖2 +1)

log(n+ 1)

we get, for a new constant K ′
T

P (τn ≤ T ) ≤ K ′
T

log (n+ 1)
→ 0
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as n→∞. Hence τ∞ = ∞.
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Appendix

An estimate for extended heat semigroup

Let us recall that S(t) is the heat semigroup introduced in (16). We prove
now

Lemma 1. The operators S(t), t > 0, can be extended linearly in the
space of all distributions of the form ∂

∂x
v, v ∈ L1(0, 1), in a way such that

‖ S(t)
∂

∂ξ
v ‖≤‖ v ‖L1(0,1) (

∞∑
k=1

2π√
ν
k2e−2π2

ν
k2t)1/2.

Proof. Set ν = 1. By Parseval’s identity

‖ S(t)u ‖2=
∞∑

k=1

e−2π2k2t(u, ek)2, u ∈ L2.

Let v ∈ L2 be an absolutely continuous function such that ∂
∂ξ
v ∈ L2. Then

‖ S(t)
∂

∂ξ
v ‖2=

∞∑
k=1

e−2π2k2t(

∫ 1

0

∂

∂ξ
v(ξ)ek(ξ)dξ)2.

Integrating by parts√
2

π

∫ 1

0

∂

∂ξ
v(ξ) sin kπξ dξ = −

√
2

π
kπ

∫ 1

0

v(ξ) cos kπξ dξ.
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Therefore

|
∫ 1

0

∂

∂ξ
v(ξ)ek(ξ)dξ |≤

√
2πk

∫ 1

0

| v(ξ) | dξ

and consequently

‖ S(t)
∂

∂x
v ‖≤‖ v ‖L1(0,1)

×(
∞∑

k=1

2πk2e−2π2k2t)1/2.

Since absolutely continuous function with square integrable derivatives are
dense in L1(0, 1) the required extension of S exists. It will be denoted with
the same symbol S(t), t ≥ 0. From this lemma follows.

Our aim is to prove in an elementary way the following result from [12].

Proposition 9 For arbitrary T > 0 there exists C such that for t ≤ T and
for measurable, bounded, L1(0, 1)-valued function v(s), s ∈ (0, t) :∫ t

0

‖ S(σ)
∂

∂ξ
v(σ) ‖ dσ ≤ Ct1/4 sups≤t ‖ v(s) ‖L1(0,1) .

Proof. Set ν = 1. We have to show that for a constant C > 0 and T > 0∫ T

0

(
∞∑

k=1

e−2π2k2tk2)1/2dt ≤ CT 1/4.

The function

h(t) =
∞∑

k=1

e−2π2k2tk2, t ≥ 0

is the Laplace transform of purely atomic measure µ which associates with
points 2π2k2 masses k2, k = 1, 2, ...

Let
U(σ) = µ((0, σ]) =

∑
2π2k2≤σ

k2 =
∑

k≤ 1
π

√
σ
2

k2.

One easily finds that U is slowly varying and

lim σ→∞
U(σy)

U(σ)
= y3/2, y > 0.
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Consequently, by tauberian theorems (see [15], p. 422-423)

lim t→0
h(t)

U(1
t
)

= Γ(
5

2
).

But U(1
t
) ∼ 1

3
1

t3/2 as t→ +∞ and therefore

h(t) ∼ 1

3Γ(5
2
)

1

t3/2

and for a constant C

h(t) ≤ C
1

t3/2
, t ≤ T0.

Finally ∫ T

0

h1/2(t)dt ≤ C

∫ T

0

1

t3/4
dt = 4CT 1/4, T ≤ T0.

and therefore, the required inequality follows.
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