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Abstract

The problem of constructing impulsive rebalancing of portfolios, introduced by Pliska and
Suzuki, is solved for models with general Markovian prices. Existence of optimal strategy is es-
tablished and its structure described. Quasi-variational inequalities determining the value function
are deduced for multiplicative prices with general Levy noise and the case of Poissonian noise is
considered in some detail.

1. Introduction

An important problem for portfolio managers is to respect the diversification requirement to maintain
proportions of the capital, that should be invested in different asset groups, constant. It is impossible
to rebalance a portfolio continuously, so it usually does not keep exactly to the required proportions.
Therefore each manager has to come up with some algorithm to decide the moments of rebalancing.

Pliska and Suzuki [5] (we have recently learned that this article had been published [6]), improving
the ideas of Leland [4], considered a model consisting ofd assets whose prices satisfy

dSi
t = Si

t

(
µidt+ σidWt

)
, i = 1, . . . ,d,

whereWt is am-dimensional Brownian motion,σi is a vector andµi is any real number. Trading
strategy is described by ad-dimensional adapted process(Nt)t≥0 denoting the number of units of
assets held at each moment. They imposed both proportional and constant transaction costs specified
in details later.

In the view of constant transaction costs, any trading strategyΠ can be described by a sequence
of transaction times (stopping times)τ1, τ2, . . . and resulting portfolio contentsNτ1 ,Nτ2 , . . .. The
processNt is constant between transaction times i.e.Nt = N01t∈[0,τ1[ +

∑∞
i=1Nτi1t∈[τi,τi+1[. We
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introduce a proportion process linked to the strategyΠ

wt = W

(
Nt

St

)
,

where, denoting byNtSt the scalar product inRd,

W

(
Nt

St

)
=
(
N1

t S
1
t

NtSt
, . . . ,

Nd
t S

d
t

NtSt

)
.

The transaction costs are expressed in terms of proportions:

c(w,v) = K + k
d∑

i=1

|wi − vi|

for K > 0 andk ≥ 0. This is a reasonable simplification that enables us to incorporate transactions
costs into a cost functional. Pliska and Suzuki introduced the cost functional

J(Π) = E
(∫ ∞

0
e−βtf(wt)dt+

∞∑
i=1

e−βτic

(
W

(
Nτi−
Sτi

)
,W

(
Nτi

Sτi

))
1τi<∞

)
,

wheref : Rd → R is a function measuring quality of the portfolio. They specified further that
f(w) = λ(w−w∗)′σσ′(w−w∗)−(w−w∗)′µ, whereσ is a matrix consisting of rowsσi, i = 1, . . . ,d,
µ = (µ1, . . . ,µd) ∈ Rd, w∗ is a target asset mix andλ ∈ R. For d = m = 2 they established
the existence of optimal strategy and showed that it is characterized by a continuation region of the
proportions where trading is not performed.

In the present paper we cover general Markovian price processes. We consider a market mod-
eled by a generald-dimensional positive Markovian process(St)t≥0, representing price movements
of different groups of assets or assets themselves. By positivity we meanP(Si

t > 0 for t ≥ 0,
i = 1, . . . ,d) = 1. Our evaluation procedure, measuring quality of the portfolio at each moment, is
determined by a continuous functionf defined on proportions. We show that ifSt is a positive Feller
process then there exists an optimal trading strategyΠ minimizing the cost functionalJ(Π). More-
over, for multiplicative Poissonian prices we show how the optimal strategy can be found explicitly.

The content of the paper is as follows. In§2 we establish a general existence theorem containing
as a special case result by Pliska and Suzuki [5], without any reference to quasi-variational inequal-
ities. In §3 multiplicative price processes with general Levy noise are considered and the form of
the corresponding quasi-variational inequality for the value function is established. The special case
of Poissonian noise is studied in§4. More details on quasi-variational inequalities for discontinuous
process are given in the Appendix.

2. Existence of optimal strategy

We approach the problem of finding optimal solution with the impulse control method. First we prove
existence of solution to the functional equation connected to our problem. Then we show that obtained
solution defines the optimal strategy.

We assume throughout this section thatSt is a Feller process and the functionf is continuous.
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To formulate the problem in a formal way we take

Yt =
(
Nt

St

)
∈ R2d

+

as a controlled process. Certainly impulses change only first coordinate, second representing asset
prices is present only for technical reasons. Our goal is to construct a processYt satisfying following
conditions

• there exists an increasing sequence of stopping timesτ1, τ2, . . . with τi ↑ ∞ such that first
coordinate ofYt changes only in moments defined by(τi)i=1,2,...,

• second coordinate ofYt is equal to an external price processSt,

• the trading strategy encoded inYt is self-financing i.e.(Nτi −Nτi−)Sτi = 0,

• the portfolio wealth is always positive, i.e.NtSt > 0,

• the number of shares of each stock is non-negative (no borrowing of shares allowed), i.e.Nt ≥ 0

and minimizing the functional

J(Y ) = E Y0

(∫ ∞

0
e−βtF

(
Nt

St

)
dt+

∞∑
i=1

e−βτiC̃(Nτi−,Nτi ,Sτi)1τi<∞

)
, (1)

where

F

(
Nt

St

)
= f

(
W

(
Nt

St

))
and

W

(
Nt

St

)
=
(
N1

t S
1
t

NtSt
, . . . ,

Nd
t S

d
t

NtSt

)
is the proportion function,Y0 = (N0,S0) is the initial point (S0 > 0, N0 ≥ 0, N0S0 > 0). The cost
of impulses is defined as

C̃(N1,N2,S) = c

(
W

(
N1

S

)
,W

(
N2

S

))
.

Note that between impulses the dynamics ofYt is governed by the semigroup

P ∗
t v

(
n
s

)
= Pt

(
v

(
n
·

))
(s) ,

for v ∈ C(R2d,R) andPt – the semigroup forSt.

To derive a functional equation connected to the problem (1) we recall the assumption that
P(St > 0 ∀ t) = 1 and denote

E =
{(

n
s

)
∈ R2d : n ≥ 0 , n 6= 0 , s > 0

}
.

It is obvious that the process

(
Nt

St

)
starting from any point inE does not exitE.
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For functionsv : E → R we write the equation

v

(
n
s

)
= Kv

(
n
s

)
= inf

τ
E (n,s)

[∫ τ

0
e−βtF

(
Nt

St

)
dt+ e−βτMv

(
Nτ

Sτ

)]
, (2)

where the switching functional is given as

Mφ

(
n
s

)
= inf

{
C̃(n,n+ ξ,s) + φ

(
n+ ξ
s

)
:
(
n+ ξ
s

)
∈ E , ξs = 0

}
. (3)

Notice thatC̃(n,n+ ξ,s) = C̃(0, ξ,s).
The following theorem contains as a special case a result by Pliska, Suzuki [5] concerned with the

case ofSt being a two dimensional Black-Scholes process. Their method was based on the theory of
quasi-variational inequalities (QVI) [1]. We deal directly with the equation (2).

THEOREM 2.1. Assume thatSt is a Feller process andf is a bounded continuous function ofE.
There exists exactly one bounded continuous solutionv(n,s) to the equation (2) and the optimal
strategy for the problem (1) is given by

τ1 = inf{t ≥ 0 : Mv(Nt,St) = v(Nt,St)},
τi = inf{t > τi−1 : Mv(Nt,St) = v(Nt,St)},

Nτi ∈ {n ∈ Rd : (n,Sτi) ∈ E, Mv(Nτi−1 ,Sτi) = v(n,Sτi) + C(Nτi−1 ,n,Sτi)}

Proof. In order to prove existence of a unique solution to the equation (2) we recall a result from
Zabczyk [7]. Define

h

(
n
s

)
= E (n,s)

[∫ ∞

0
e−βtF

(
Nt

St

)
dt

]
and letCb(E) be the space of bounded continuous functions.

PROPOSITION 2.2. Assume that

(
Nt

St

)
is a Feller process,F ≥ 0, h ∈ Cb(E), γh ≤ M(0) for

a positive constantγ andM transformsCb(E) into Cb(E). Then equation (2) has exactly one
solutionv ∈ Cb(E). Moreover,Knh tends tov uniformly asn→∞.

In our setting we have to weaken conditions of the above theorem. We define operators

KLv

(
n
s

)
= inf

τ
E (n,s)

[∫ τ

0
e−βt

(
F

(
Nt

St

)
+ L

)
dt+ e−βτMv

(
Nτ

Sτ

)]
for L ∈ R. ThusK0 = K.

LEMMA 2.3. There exists a unique solution to the equationv = Kv iff there exists a unique solution
to the equationv = KLv. Moreover, ifṽ is the solution ofv = KLv thenṽ − L

β is the solution of
v = Kv.
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Proof. Let ṽ be the solution ofv = KLv. Then

ṽ

(
n
s

)
= KLṽ

(
n
s

)
= inf

τ
E (n,s)

[∫ τ

0
e−βt

(
F

(
Nt

St

)
+ L

)
dt+ e−βτMv

(
Nτ

Sτ

)]
= inf

τ
E (n,s)

[∫ τ

0
e−βtF

(
Nt

St

)
dt+

L

β
− L

β
e−βτ + e−βτMv

(
Nτ

Sτ

)]
=
L

β
inf
τ

E (n,s)
[∫ τ

0
e−βtF

(
Nt

St

)
dt+ e−βτM

(
v − L

β

)(
Nτ

Sτ

)]
.

Thus

ṽ − L

β
= K

(
ṽ − L

β

)
.

A similar reasoning proves second implication.

As a corollary to above results we obtain the following lemma.

LEMMA 2.4. Assume that

(
Nt

St

)
is a Feller process,h ∈ Cb(E) andM transformsCb(E) into

Cb(E). LetF be bounded from below by(−L). If there exists positive constantγ such that

γ

(
h+ L

∫ ∞

0
e−βtdt

)
= γ(h+

L

β
) ≤M(0)

then there exists a unique solutionṽ ∈ Cb(E) of the equationv = KLv. Moreover, the function
v = ṽ − L

β is a unique solution of (2).

Now we shall prove existence of solution to the equation (2) for our specific functionF , functional

M and process

(
Nt

St

)
. First notice that

(
Nt

St

)
is a Feller process sinceSt is a Feller process from

previous assumptions andNt is constant. Observe thatF is a continuous function that is defined on
proportions. So it must be bounded, since proportions form a compact setD in Rd:

D =
{

(w1, . . . ,wd) ∈ Rd : wi ∈ [0,1],
d∑

i=1

wi = 1
}
.

Thus it is straightforward thath ∈ Cb(E). LetL = min(0,− infx∈E F (x)). SinceM(0) ≥ K > 0
one can easily find a positive constantγ such thatγ(h+ L

β ) ≤M(0). Continuity of the cost function

C̃ and the multifunction mapping

(
n
s

)
into the set of possible impulse destinations implies thatM

transforms the set continuous functions into itself. To show thatM transformsCb(E) intoCb(E) take

any functiong ∈ Cb(E) with α = sup |g|. ThenMg

(
n
s

)
≤ K + dk+α andMg

(
n
s

)
≥ K −α, so

Mg ∈ Cb(E). Therefore by lemma 2.4 there exists a unique continuous and bounded functionv that
is the solution tov = Kv. Thus, we have proved the first assertion of the theorem 2.1.

Now, we derive an impulse control for the main problem. Since we know that there exists solution
v to the functional equation (2) we have to prove that the infimum in (2) is attained by some stopping

5



time (this would be the moment of the impulse) and that we can find a transaction (change ofNt)
that should be made in this moment. It is well known (see Bensoussan, Lions [1], Zabczyk [7]) that
the optimal stopping time is given byτ = inf{t ≥ 0 : Yt ∈ Z}, whereZ = {y ∈ R2d : v(y) =
Mv(y)}. We only have to prove that for each(n,s) ∈ E there existsξ ∈ Rd such that(n+ ξ,s) ∈ E
and

Mv

(
n
s

)
= C̃(0, ξ,s) + v

(
n+ ξ
s

)
.

Fix (n,s) ∈ E. Both functionsC̃ andv are continuous (v is also bounded). We first prove that the
infimum is taken over a closed set. In fact this set can be written as

A = {ξ : (n+ ξ,s) ∈ E, ξs = 0} = {ξ : n+ ξ ≥ 0, ξs = 0} \ {−n} .

The self-financing conditionξs = 0 assures that(−n) /∈ A, soA is closed. Now take a sequence
ξn ∈ A such that

C̃(0, ξn,s) + v

(
n+ ξn
s

)
→Mv

(
n
s

)
.

If ||ξn|| 9 ∞ thenξn admits a subsequence converging to someξ ∈ E. Otherwise,||ξn|| → ∞. From
self-financing condition and equivalence of all norms onRd we obtain thatC(0, ξn,s) ≥ K + β||ξn||
for someβ ∈ R+. Hence, the boundedness ofv implies thatC(0, ξn,s) + v(ξn) → ∞, which leads
to contradiction. For completeness of the proof we shall show thatτn → ∞ a.s. Notice that each
impulse adds a cost of a size at leastK. Since the value functionv is bounded, an infinite number
of transactions in finite time is impossible – its discounted transaction costs would sum up to infinity.
This completes the proof of theorem 2.1.

3. Markov property for proportion process

In this section we assume that the price process is multiplicative i.e.

Si(γs, t) = γSi(s, t), γ ∈ R, s ∈ R, s ≥ 0, t ≥ 0, i = 1, . . . ,d. (4)

Here
(
Si(s, t)

)
t≥0

denotes ani-th coordinate of a price process starting from the points

S(s,0) = s.

An important example of a multiplicative price process is a solution to the Ito equation

dSi(s, t) = Si(s, t)dZi(t), i = 1, . . . ,d, (5)

S(s,0) = s, s ∈ Rd, s ≥ 0.

for a Levy process(Z1, . . . ,Zd) with jumps greater than−1 granting that the solution is a positive
process.

We will show that the proportion process linked toSt is Markovian and argue that the control
problem (1) formulated in terms of proportions has an optimal solution. LetD be a simplex of
proportions as defined earlier

D = {(w1, . . . ,wd) ∈ [0,1]d :
d∑

i=1

wi = 1}.
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The processN(t) is constant, so, intuitively, we can incorporate it intoS(s, t) using (4). We define
T : Rd

+ → D

T (S) =
(

S1

S1 + · · ·+ Sd
, . . . ,

Sd

S1 + · · ·+ Sd

)
.

Thenw(t) = T (S(s̃, t)), wheres̃ = (N1(0)S1(0), . . . Nd(0)Sd(0)) and obviouslyw(t) is indifferent
to scaling of initial conditioñs

T (S(s̃, t)) = T (S(γs̃, t)), for scalarγ 6= 0. (6)

We introduce an operatorT ∗ acting on functionsf : D → R in the following way:

(T ∗f)(s) = f (T (s)) , s ∈ Rd
+.

THEOREM 3.1. LetA be a generator for the positive price processS i.e. almost all trajectories of(
S(s, t)

)
t≥0

are positive for a positive initial conditions. Then the proportion process is Markov

with the generator̃A given by

(Ãf)(w) = (A(T ∗f))(w), w ∈ D.

Proof. The proof uses theorem 10.13 in Dynkin [3]. We have to show a few properties of the mapT
with respect to the transition function ofS(s, t). We denote byB the Borelσ-field in Rd

+ and byB̃
the Borelσ-field inD. LetP (t,s,Γ) be a transition function for the processS(t), Γ ∈ B. We have to
check the following conditions:

i) T (Rd
+) = D,

ii) T (B) ⊆ B̃,

iii) for all s,s′ ∈ Rd such thatTs = Ts′ andΓ ∈ B̃ we have

P (t,s,T−1Γ) = P (t,s′,T−1Γ).

The properties i) and ii) are straightforward. Only the third one requires some consideration. If
Ts = Ts′ then there exists a scalarγ 6= 0 such thats = γs′. Therefore,T (S(s, t)) = T (S(s′, t))
from (6). Hence, theorem 10.13 in Dynkin [3] implies that

T ∗Ã = AT ∗.

Takef : D → R, s ∈ Rd, s ≥ 0 and notice that

(T ∗(Ãf))(s) = (A(T ∗f))(s),

(Ãf)(T (s)) = (A(T ∗f))(s),

(Ãf)(w) = (A(T ∗f))(T−1w),

wherew = T (s) andT−1w is any element of the counterimage ofw, for examples. We can simplify
the formula further by noting thatw ∈ T−1w. Hence,(Ãf)(w) = (A(T ∗f))(w).

We can reformulate our problem solely in the language of the proportion process. Our trading
strategyΠ consists of a sequence of stopping timesτ1, τ2, . . . and changes of the proportion process
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at these times̃w1, w̃2, . . .. Since the proportion process must be defined onR+ almost everywhere,
we take on the following interpretation of the trading strategy which would allow us to write clearly
the cost functional:w(t) = w(w̃i, t− τi) for t ∈]τi, τi+1].

We do not have to limit possible impulses (as in the previous case) to satisfy self-financing con-
dition. It is possible to reach any proportion starting from arbitrary one and satisfying self-financing
condition. Hence, the functional looks as follows

J(Π) = E
(∫ ∞

0
e−βtf(w(t))dt+

∞∑
i=1

e−βτic
(
w(τi), w̃i

)
1τi<∞

)
. (7)

We can use a similar approach as in section 2 to prove a counterpart of theorem 2.1

THEOREM 3.2. Assume thatw is a Feller process andf is a continuous function onD. There exists
exactly one bounded continuous solutionv(w) to the equation

v(x) = inf
τ

E
(∫ τ

0
e−βtf

(
w(x, t)

)
dt+ e−βτM̃v

(
w(x, τ)

))
,

Mv(x) = inf
y∈D

(
v(y) + c(x,y)

)
.

(8)

and the optimal strategy for the problem (1) is given by

τ1 = inf{t ≥ 0 : Mv(wt) = v(wt)},
τi = inf{t > τi−1 : Mv(wt) = v(wt)}.

The size of the impulse at the momentτi is any number from the set

{w ∈ D : Mv(wτi) = v(w) + c(wτi ,w)}.

Notice that ifS is a Feller process then so isw. Takeg ∈ Cb(D), t ≥ 0 and and consider̃g(x) =
E g
(
w(x, t)

)
, x ∈ D. The functiong̃ can be written in terms of the price process

g̃(x) = E g
(
T
(
S(x, t)

))
.

Moreover,g ◦ T ∈ Cb(Ẽ) so g̃ ∈ Cb(Ẽ), whereẼ = [0,∞[d\{0} andD ⊆ Ẽ.
To find explicit solutions to the equation (8) it is convenient to rewrite it in a differential form as

a suitable quasi-variational inequality (QVI). We change the state space in order to have a non empty
interior. We remove the last coordinate and take

D = {w1, . . . ,wd−1 ∈ [0,1]d−1 :
d−1∑
i=1

wi ≤ 1},

c(u,w) = K + k
d−1∑
i=1

|ui − wi|+ k|
d−1∑
i=1

(ui − wi)| for K > 0,k ≥ 0.

We denote byÃ the generator for the proportion process in the new state space and make obvious
modifications to the functionf . We introduce a switching functional

Mv(w) = inf
u∈D

(
v(u) + c(w,u)

)
(9)
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for any functionv : D → R. The QVI related to the cost functional (7) takes the form

min
(
Ãv(w)− βv(w) + f(w), Mv(w)− v(w)

)
= 0, w ∈ D. (10)

Let the price process be two dimensional with the second coordinate being always1 and the first
satisfying the Ito equation

dS(s, t) = H
(
S(s, t−)

)
dζ(t),

S(s,0) = s, s ∈ R, s > 0.
(11)

Hereζ(t) is a Levy process with the Fourier transform

E exp
(
− isζ(t)

)
= exp

(
− tψ(s)

)
,

ψ(s) =
1
2
σ2s2 − iµs−

∫
R

(
eisy − 1− 1|y|≤1isy

)
ν(dy),

whereσ ∈ R+, µ ∈ R andν is aσ-finite measure satisfying∫
R
(1 ∧ y2)ν(dy) <∞.

We assume thatH is chosen in such a way that (11) has a unique weak solution for any initial condition
s ≥ 0. It can be easily verified thatS(s, t) is a multiplicative process (cf. (4)) only ifH is a linear
function. Therefore, without any loss of generality we assume thatH(x) = x.

PROPOSITION 3.3. The generatorÃ for the proportion process for the price process (11) has the
form:

Ãu(w) =
1
2
σ2w

(
u′′(w)(1− w)3 − 2u′(w)(1− w)2

)
+ µwu′(w)(1− w)

+
∫

R

(
u

(
w + wy

1 + wy

)
− u(w)− 1|y|≤1wyu

′(w)(1− w)
)
ν(dy), u ∈]0,1[,

Ãu(0) = Ãu(1) = 0.

for u ∈ C2(R).

Proof. Following Bichteler [2], we write the generatorA for S(s, t). Letu ∈ C2(0,1).

Au(s) =
1
2
σ2su′′(s) + µsu′(s) +

∫
R

(
u
(
s+ sy

)
− u(s)− 1|y|≤1syu

′(s)
)
ν(dy).

Let
T (s) =

s

s+ 1
.

The proportion process is obtained asT (S(s, t)). (We recall that the price of the second instrument is
equal1.) We apply theorem 3.1 and observe that

d

ds
u

(
s

s+ 1

)
= u′

(
s

s+ 1

)
1

(s+ 1)2
,

d2

ds2
u

(
s

s+ 1

)
= u′′

(
s

s+ 1

)
1

(s+ 1)4
− 2u′

(
s

s+ 1

)
1

(s+ 1)3
.
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Moreover,T−1(w) = w
1−w , s+ 1 = 1

1−w , which implies our result forw ∈ (0,1).
We extend the generator to the points0,1 in an obvious way. These points are stable for the process

i.e. the process cannot move away from them, soÃu(0) = Ãu(1) = 0.

On this stage we can write a QVI for the problem of optimal asset allocation:

min
(
Ãv(w)− βv(w) + f(w),Mv(w)− v(w)

)
= 0,w ∈]0,1[,

(12)
min

(
f(w)− βv(w),Mv(w)− v(w)

)
= 0, w = 0,1,

where
Mv(w) = K + inf

u∈[0,1]

(
k|u− w|+ v(u)

)
, K > 0, k ≥ 0.

Hence, we conclude that the optimal strategy is described by an impulse region{Mv − v = 0}.

4. Multiplicative Poissonian prices

For further considerations we restrict ourselves to the case where prices are driven by a Poisson
process. We specify

ζ(t) = N(t)− γt,

whereN(t) is a Poisson process with intensityλ andγ ∈ R. The characteristics(µ,σ,ν) of this Levy
process is the following:µ = λ − γ, σ = 0, ν({1}) = ν(R) = λ. By proposition 3.3 the generator
for the proportion process is given by

Ãu(w) = λ

(
u

(
2w
w + 1

)
− u(w)

)
− γu′(w)w(1− w).

We write a QVI for the problem of optimal asset allocation:

min
(
λ

(
v

(
2w
w + 1

)
− v(w)

)
− γv′(w)w(1− w)− βv(w) + f(w),Mv(w)− v(w)

)
= 0,

w ∈]0,1[, (13)

min
(
f(w)− βv(w),Mv(w)− v(w)

)
= 0, w = 0,1,

where
Mv(w) = K + inf

u∈[0,1]

(
k|u− w|+ v(u)

)
, K > 0, k ≥ 0.

Moreover, the optimal strategy is described by an impulse region{Mv−v = 0}. However, we have to
prove that the QVI (13) has an appropriately smooth bounded solution and that this solution satisfies
the functional equation

v(w) = inf
τ

E
(∫ τ

0
e−βsf

(
w(w,s)

)
ds+ e−βτMv

(
w(w, τ)

))
. (14)

The functionv(w) defines an optimal strategy as stated in theorem 3.2.
The following theorem could be deduced from general results of Bensoussan and Lions [1] chapter

3, although non-degenerate diffusion term is required there. We therefore present here a direct proof.
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THEOREM 4.1. Assume thatγ 6= 0. Let v(w) be a bounded continuous function defined on[0,1],
piecewiseC1 and with finite left- and right-hand derivatives. Ifv(w) satisfies (13) in0,1 and
almost everywhere in]0,1[, thenv(w) solves (14).

Proof. We shall use theorem 5.2 in appendix. First observe thatD(Ã) ⊃ C1. Moreover, there exists
a sequencevn of C1 functions converging tov in sup-norm such thatvn = v, v′n = v′ everywhere but
intervals of measure converging to0. We introduce

h(w) = λ

(
v

(
2w
w + 1

)
− v(w)

)
− γv′(w)w(1− w),

for w ∈ [0,1] such thatv′(w) is defined and continuous. The processw(t,w) has a nonzero drift, so
P (t,w,{vn 6= v,v′n 6= v′}) → 0 asn→∞ for anyt > 0 which proves condition iii) of theorem 5.2.
Moreover, similar argument shows that every set of Lebesgue measure zero in]0,1[ is of Ã-measure
zero, so iv) is satisfied. Therefore

Y (w, t) =
∫ t

0
e−βsf

(
w(w,s)

)
ds+ e−βτv

(
w(w, t)

)
is a submartingale, soEY (w,σ) ≥ EY (w,0) = v(w) for any stopping timeσ (f is bounded). The
process

Z(w, t) =
∫ t

0
e−βsf

(
w(w,s)

)
ds+ e−βτMv

(
w(w, t)

)
satisfiesZ(w, t) ≥ Y (w, t) sinceMv(w)− v(w) ≥ 0. This leads to the conclusion thatEZ(w,σ) ≥
v(w) for any stopping timeσ. To finish the proof it suffices to show that there exists an optimal stop-
ping timeτ∗(w) such thatEZ(w, τ∗(w)) = v(w). It is true forτ∗(w) = inf{t ≥ 0 : Mv

(
w(w, t)

)
=

v
(
w(w, t)

)
}.

COROLLARY 4.2. Previous considerations imply thatv(w) is a unique bounded continuous solu-
tion to (14) and it is the value function for the problem of minimizing (7). Theorem 3.2 shows how
to construct the optimal strategy.

¿From now we assume, without any loss of generality (see the lemma 2.3), thatf(w) is a positive
function. We derive two results.

LEMMA 4.3. If f in non-decreasing on[0,1] thenv is non-decreasing. Iff in non-increasing on
[0,1] thenv is non-increasing.

Proof. We sketch the proof of the first fact. The proof of the second one is analogous. Observe that if
x ≥ x′ the proportion process satisfiesw(x, t) ≥ w(x′, t). Denote byv0 the potential

v0(x) = E
∫ ∞

0
e−βsf

(
w(x,s)

)
ds, x ∈ [0,1].

Hencev0 is a non-decreasing function. Let

vn(x) = inf
τ

E
(∫ τ

0
e−βsf

(
w(x,s)

)
ds+ e−βτMvn−1

(
w(x, τ)

))
, x ∈ [0,1].

We can show by induction thatvn is a non-decreasing function. By theorem 2.2vn converges uni-
formly to the value functionv, sov is non-decreasing.
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LEMMA 4.4. If the difference between minimum and maximum off is smaller thenβK the contin-
uation region spans all the interval[0,1].

Proof. Let f = minu∈[0,1] f(u), f = maxu∈[0,1] f(u). The value functionv has trivial bounds
f ≤ βv(x) ≤ f , x ∈ [0,1]. HenceMv(x) > v(x) for all x ∈ [0,1], which implies that the optimal
strategy prohibits any impulses.

Assume now that there are no proportional costs, i.e.k = 0. In this case all impulses aim at
the same target pointu∗ ∈ [0,1] in which the functionv attains its minimum. Hence, iff is non-
decreasing impulses can only occur on some interval[b0,1] and they aim atw = 0 (minimum ofv).
We know, by direct calculation, thatv(0) = f(0)/β. The potential off in 1 equals tof(1)/β. Hence,
the impulse interval is nonempty if and only ifv(1) > v(0) + βK. The same reasoning applies to the
case of non-increasingf .

4.1. Recursive formulae

We derive a solution to (13) for a specific case of nonempty impulse region around1 and absence of
proportional transaction costsk = 0. We do not require monotonicity off . However, we assume that
f ≥ 0, which is no restriction (see lemma 2.3).

We construct an iterative procedure to find the solution to the QVI (13). We setv0(w) = H,H ∈ R
for w ∈ [b0,1]. The functionv0 is undefined outside of the interval[b0,1]. A pairH, b0 ∈ R × [0,1]
is used as an index for the set of solutions.

To formulate the lemma we need to define a sequence

bn+1 =
bn

2− bn
, n = 0,1, . . .

and introduce the equation being a differential part of (13)

λ

(
v

(
2w
w + 1

)
− v(w)

)
− γv′(w)w(1− w)− βv(w) + f(w) = 0. (15)

We note that the sequencebn is strictly decreasing with the limit equal to0.

LEMMA 4.5. Assume thatvn is defined on[bn,1] and satisfies (15) forw ∈ [bn, b0]. We definevn+1

on [bn+1,1] by the formula:

vn+1(w) = ν(w)

(
vn(bn)
ν(bn)

−
∫ bn

w

λvn

(
2u
u+ 1

)
+ f(u)

γν(u)u(1− u)
du

)
, w ∈ [bn+1, bn[,

vn+1(w) = vn(w), w ∈ [bn,1].

whereξ = λ+β
γ and

ν(w) =
(1− w

w

)ξ
.

Thenvn+1 satisfies (15) forw ∈ [bn+1, b0].
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We can easily see that

vn+1(w) =
(1− w

w

)ξ
(

vn(b0)(1− b0
b0

)ξ
−
∫ b0

w

λvn

(
2u
u+ 1

)
+ f(u)

γ

(
1− u

u

)ξ

u(1− u)

du

)
, w ∈ [bn+1, b0[.

Proof of the lemma. Here we show the derivation of the above formulas. We solve

λv

(
2w
w + 1

)
+ f(w)− λv(w)− γv′(w)w(1− w)− βv(w) = 0, w ∈ [bn+1, bn]

v(w) = vn(w), w ∈ [bn,1].

First we sort out the homogeneous case

−(λ+ β)v(w)− γv′(w)w(1− w) = 0,

which we simplify to
−ξv(w) = v′(w)w(1− w)

for ξ = λ+β
γ . We obtain the solution

v(w) = c

(
1− w

w

)−ξ

.

By settingc = c(w) and plugging into the generic equation we obtain

c′(w) =
λv

(
2w
w + 1

)
+ f(w)

γ

(
1− w

w

)ξ

w(1− w)

.

Remark. Functionν(w) is unbounded on[0,1]. It converges to∞ asw → 0 and to0 asw → 1.

We expect that in the majority of cases the optimal control is determined by the numbers0 ≤ a <
c < b ≤ 1 and consists of making impulses toc when the proportion process exits from the interval
[a, b]. Such strategies will be denoted byΠa,b,c. Now we formulate the conditions under which this is
really the case.

Let vb0,H(w) be limit of vn with initial condition v0(w) = H, w ∈ [b0,1] in the sense that
vb0,H(w) = vn(w), w ∈ [bn,1]. Defineb∗b0,H = sup{w < b0 : vb0,H(w) = H}.

THEOREM 4.6. Assume that the following conditions hold:

1) infw∈[b∗b0 ,H ,1] vb0,H(w) = H −K,

2) supw∈[b∗b0 ,H ,1] vb0,H(w) = H,

3) f(w) ≥ βH, w ∈ [b0,1],

4) f(w) + λvb0,H
(

2w
1+w

)
≥ (λ+ β)H, w ∈

[ b∗b0 ,H

2−b∗b0 ,H
, b∗b0,H

]
,
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5) f(w) ≥ βH, w ∈
[
0,

b∗b0 ,H

2−b∗b0 ,H

]
Then

v(w) = 1{w≥b∗b0 ,H}vb0,H(w) + 1{w<b∗b0 ,H}H

is a solution to (13). Moreover,Πb∗b0 ,H ,b0,c, where

c = arginfw∈[b∗b0 ,H ,1]vb0,H(w),

is the optimal strategy.

Proof. The conditions grant thatv is piecewiseC1 with finite left- and right-hand derivatives and
satisfies (13) in all points but(bn)n∈N. By theorem 4.1v is a value function for the control problem
of minimizing (7).

Remark. If f(b0) > βH thenv′(b0−) < 0 and the condition 2) is satisfied.

If we know a priori that the functionv attains its minimum in the first interval[b1, b0] then the
target pointu∗ can be characterized by the following transcendental equation

1
ν(u∗)

λH + f(u∗)
λ+ β

=
H

ν(b0)
−
∫ b0

u∗

λH + f(u)
γν(u)u(1− u)

du. (16)

To obtain above equation we observe thatv′(u∗) = 0. From (15) we have

λH − (β + λ)v(u∗) + f(u∗) = 0.

Hence

v(u∗) =
λH + f(u∗)

λ+ β

and we take the formula forv(u∗) from lemma 4.5.
If we assume that

1
ν(u)

λH + f(u)
λ+ β

is decreasing inu then the equation (16) has at most one solution. We recall thatf ≥ 0 which makes
the expression under integral non-negative.

Similar, but more complicated equations can be obtained if[b1, b0] is replaced by[bk+1, bk].

4.2. Impulse regions

In this section we will show that for any reasonable regionJ in [0,1] there exist an evaluation function
f such that the optimal control impulse region is exactlyJ .

We introduce a family of functions:

•
(
g
(1)
b

)
b∈[0,1)

⊂ C1([0,1]), g
(1)
b

∣∣∣
(b,1]

∈ [a,1), g
(1)
b (b) = 1, d

dwg
(1)
b (b) = 0,

•
(
g
(2)
l,r,α

)
0≤l<r≤1,α∈R+

⊂ C1([0,1]), g
(2)
l,r,α

∣∣∣
(l,r)

∈ [a,1), g
(2)
l,r,α(l) = g

(2)
l,r,α(r) = 1,

d
dwg

(2)
l,r,α(l) = 0, d

dwg
(2)
l,r,α(r) = α,
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•
(
g
(3)
r,α
)
0≤r≤1,α∈R+

⊂ C1([0,1]), g
(3)
r,α

∣∣∣
[0,r)

∈ [a,1), g
(3)
r,α(r) = 1, d

dwg
(3)
r,α(r) = α,

for somea ∈ (0,1).
Now, we proceed with the construction of the functionf starting from the right end. We assume

that on the impulse region the value functionv is equal to1. We will grant that the value function
is bounded by1. Hence, by setting the impulse costK = 1 − min v, we obtain the solution to the
QVI. The following lemma shows how to extend the functionf so as to keep to the required impulse
region. Before, we introduce a notation:[a, b] ≺ c if a < c andb < c. Analogously,[a, b] ≺ [c,d] if
[a, b] ≺ c and[a, b] ≺ d.

LEMMA 4.7. Assume that the value functionv andf are defined on[b,1] andv
∣∣
[b,̃b] = 1, for some

b̃ > b. For any interval0 � [l, r] ≺ b there exists an extension off to [l,1] such thatv is the
solution to the QVI on[l,1] with [l, r] being a part of the impulse region and]r, b[ – a part of a
continuation region.

v
∣∣
(r,b) < 1, v

∣∣
[l,r] = 1, f(w)− (β + λ) + λv

( 2w
1 + w

)
≥ 0, w ∈ [l, r].

Proof. We set

α =
λ+ β − λv

(
2b

1+b

)
− f(b)

γb(1− b)
.

We extendf on [r, b) in such a way thatv
∣∣
[r,b) = g

(2)
r,b,α

∣∣
[r,b) i.e.

f(w) = γv′(w)w(1− w) + βv(w) + λ
(
v(w)− v

( 2w
1 + w

))
, w ∈ [r, b).

The functionf is continuous on[r, b). Moreover, the condition on the derivativev′(b) = α implies
continuity inb.

To definef on [l, r) we have to assure that

f(w)− (β + λ) + λv
( 2w
1 + w

)
≥ 0, w ∈ [l, r]. (17)

We check that

f(r)− (β + λ) + λv
( 2r
1 + r

)
= 0,

sincev′(r) = 0. We extendf to [l, r) in any way that grants the inequality (17) and continuity off .

THEOREM 4.8. Let (In)n=1,...,N be a family of closed intervals in[0,1] with non-void interior sat-
isfying In+1 ≺ In. There exists a functionf and the impulse costK > 0 such that

⋃
n=1,...,N In

is the impulse region of the optimal strategy.

Proof. If I1 = [b,1] we setv
∣∣
[b,1]=1

, f
∣∣
[b,1] = β. Otherwise,I1 = [l, r] ≺ 1. We put

v
∣∣
[r,1] = g(1)

r , v
∣∣
[l,r] = 1,
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taking appropriatef as in the above lemma. For next intervals, excluding the last, we apply the
lemma. LetIN = [l, r] be the last interval. Ifl = 0 then we apply the lemma. Otherwise, we proceed
as follows. We take

v
∣∣
[0,l) = g

(3)
l,α , α =

λ+ β − λv
(

2l
1+l

)
− f(l)

γl(1− l)
.

We definef appropriately, as in the lemma. Forv to be the solution to the QVI, we have to specify
the impulse costK. We putK = 1 − min v. Now, we observe thatf is a continuous function on
[0,1], v ∈ [a,1] andv is a solution to the QVI.

The above theorem can be generalized to the case of infinite number of disjoint intervals with
nonempty interior converging to0.

5. Appendix A

We state and prove here an auxiliary result needed in the proof of the theorem 4.1.
Let X(t,x) be a Markov process on the space(E,E) with respect to the filtration(Ft) and a

semigroup(Pt). By (A,D(A)) we denote its generator. We formulate and prove a general result
giving the probabilistic interpretation of the solution (in some sense, specified later) to the equation

Av(w)− βv(w) + f(w) = 0(≥ 0,≤ 0).

DEFINITION 5.1. A setB ∈ E is of null A-measureif

∀x ∈ E ∀t > 0 Pt1B(x) = 0.

THEOREM 5.2. Let v : E → R be a continuous function such that there exists a sequence of
functionsvn ∈ D(A) and a functionh satisfying

i) vn → v in sup-norm,

ii) h is definedA-a.s.,

iii)

E
∫ t

0
e−βsAvn

(
X(s,x)

)
ds→ E

∫ t

0
e−βsh

(
X(s,x)

)
ds,

iv) h(x)− βv(x) + f(x) ≥ 0 A-a.s., for a continuous functionf : E → R.

Then

Y (t,x) := e−βtv
(
X(t,x)

)
− v(x) +

∫ t

0
e−βsf

(
X(x,s)

)
ds

is a submartingale (if it is well-defined and integrable).

For the proof of the theorem we will need the well-known lemma

LEMMA 5.3. Let Z(t), t ≥ 0 be an adapted and measurable process inRd. For any Borel function
f : R+ × Rd → R

E
(∫ b

a
f(u,Z(u))du

∣∣∣Fa

)
=
∫ b

a
E
(
f(u,Z(u))

∣∣Fa

)
du

if left- or right-hand side exists.
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Proof of the theorem. The proof consists of two parts. First we show thatEY (t,x) > 0. Then we
exploit Markov property ofX(t,x) to show that it is a submartingale. We have

d

dt
Ptvn = PtAvn,

sincevn is in the domain ofA. Hence

d

dt
e−βtPtvn = e−βtPtAvn − βe−βtPtvn.

We integrate above equation and we obtain

e−βtPtvn − vn =
∫ t

0
e−βsPsAvnds− β

∫ t

0
e−βsPsvnds.

We change the order of integration and get

E
(
e−βtvn

(
X(t,x)

)
− vn(x)−

∫ t

0
e−βs

(
Avn

(
X(s,x)

)
− βvn

(
X(s,x)

))
ds

)
= 0.

We letn→∞ and by i), iii) we get

E
(
e−βtv

(
X(t,x)

)
− v(x)−

∫ t

0
e−βs

(
h
(
X(s,x)

)
− βv

(
X(s,x)

))
ds

)
= 0.

¿From condition iv) we have−(h− βv) ≤ f , so

EY (t,x) = E
(
e−βtv

(
X(t,x)

)
− v(x) +

∫ t

0
e−βsf

(
X(x,s)

)
ds

)
≥ 0,

that can be written equivalently

e−βtPtv(x)− v(x) +
∫ t

0
e−βuPuf(x)du ≥ 0. (18)

We shall show thatY (t,x) is a submartingale. We take0 ≤ s < t and write

E
(
Y (x, t)− Y (x,s)

∣∣Fs

)
=

= E
(
e−βtv

(
X(t,x)

)
− e−βsv

(
X(s,x)

)
+
∫ t

s
e−βuf

(
X(u,x)

)
du|Fs

)
= E

(
e−βtv

(
X(t,x)

) ∣∣Fs

)
− E

(
e−βsv

(
X(s,x)

) ∣∣Fs

)
+ E

(∫ t

s
e−βuf

(
X(u,x)

)
du
∣∣∣Fs

)
.

¿From Markov property ofX(t,x) we get

E
(
e−βtv

(
X(t,x)

) ∣∣Fs

)
= e−βtPt−sv

(
X(s,x)

)
.

Lemma 5.3 implies

E
(∫ t

s
e−βuf

(
X(u,x)

)
du
∣∣∣Fs

)
=
∫ t

s
e−βuPu−sf

(
X(s,x)

)
du.
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Combining the above results leads to

E
(
Y (x, t)− Y (x,s)

∣∣Fs

)
= e−βs

(
e−β(t−s)Pt−sv

(
X(s,x)

)
− v
(
X(s,x)

)
+
∫ t

s
e−βuPu−sf

(
X(s,x)

)
du

)
≥ 0

from (18).

COROLLARY 5.4. Under the assumptions of the above theorem, ifh(x) − βv(x) + f(x) ≤ 0
(= 0) A-a.s. thenY (t,x) is a supermartingale (martingale).
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