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Abstract

HJM model driven by Lévy process is considered. Necessary and sufficient
conditions for the market prices of bonds being local martingales are given. HJM
type conditions are derived as well.

0.1 Introduction
Let P (t, θ), 0 ≤ t ≤ θ be the market price at momentt of a bond paying1 at the

maturity timeθ. The forward rate curve is a functionf(t, θ) defined forθ ≥ t and
such that

P (t, θ) = e−
R θ
t f(t,s)ds. (1)

Heath, Jarrow and Morton [6] proposed to model the forward curves as Itô pro-
cesses

df(t, θ) = α(t, θ)dt + < σ(t, θ), dW (t) >, 0 ≤ t ≤ θ, (2)

with W d-dimensional standard Wiener process. For eachθ > 0 the processes

α(t, θ), σ(t, θ), t ≤ θ, are assumed to be adapted processes with respect to a given

filtration (Ft). We consider a generalization of this model by taking, instead of the
processW a Lévy procesZ with values in a separable Hilbert spaceU i.e.

df(t, θ) = α(t, θ)dt+ < σ(t, θ), dZ(t) > . (3)

In books by Bertoin [1] and Sato [9] one can find excellent discussions of Lévy

processes inRd. Models of similar types have already been studied (see [2], [5]).
It is of special interest to find conditions on the forward rate process under

which the discounted bond price processesP̂ (·, θ), θ ∈ [0, T ] are local martingales
(see [4] or [8]).

The aim of our paper is to givenecessary and sufficientconditions, in terms

of characteristics of the Lévy procesZ, implying thatP̂ is a local martingale and
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to derive the HJM type condition. It will turn out that model implies existence of
exponential moments of the noise processes and this is one of our main contribu-
tions.

In a similar way, see [7], we can obtain conditions on existence of exponential
moments for models

df(t, θ) = α(t, θ)dt+ σ(t, θ) dW (t)+Z
|y|≤1

σ0(t, θ, y)(µ(dt, dy)− dtν(dy)) +

Z
|y|>1

σ1(t, θ, y)µ(dt, dy)

with µ a Poissonian random measure with intensityν.
In [2] sufficient, but not necessary, conditions are given and for models with

the compensated jumps part only (Proposition 5.3 and Assumption 5.1). Eberlein
and Raible [5] postulate a very specific form of the forward curve, see section 2,

df(t, θ) =
∂J

∂x
(σ(t, θ))

∂σ

∂θ
(t, θ)dt− ∂σ

∂θ
(t, θ)dZt, (4)

whereσ is a smooth, bounded and deterministic function andJ(x), x ∈ R, is the
Lévy exponent of a1-dimensional Lévy procesZ with Lévy measureν having
exponential moments: Z

|y|>1

ecyν(dy) <∞ (5)

for c ∈ (−γ, γ), γ is a positive number. We derive formula (4) without requiring
thatσ is deterministic and withn-dimensional Lévy procesZ (see Theorem 5) and
show that (5) is, to some extent, necessary.

0.2 Forward rate function
We assume that the basic probability space(Ω,F ,P ) is complete. LetZ be a
Lévy process in a separable Hilbert spaceU i.e. cadlag process with stationary

independent increments having values inU . Let F0
t = σ(Z(s); s ≤ t) be σ-

fields generated byZ(t), t ≥ 0 andF t be the completion ofF0
t by all sets ofP

probability zero. It is known that this filtration is right continuous, so it satisfies
the "usual conditions". Byµ we denote the measure associated to jumps ofZ i.e

for Γ ∈ B(U), Γ ⊂ U r {0}

µ([0, t],Γ) =
X

0<s≤t

1Γ(∆Z(s)).

A measureν such that
E(µ([0, t],Γ)) = tν(Γ)

is called a Lévy measure of the processZ

Through the paper we denote the inner product inU by< · , · > and the norm

in U by | · |.
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The characteristic function ofZ(t) has a form (Lévy-Khintchine formula)

EeiλZ(t) = etψ(λ),

where

ψ(λ) = i < a, λ > −1

2
< Qλ, λ > +

Z
U

(ei〈λ,x〉−1−i < λ, x > 1{|x|≤1})ν(dx),

anda ∈ U , Q is a symmetric non negative nuclear operator onU , ν is a measure

onU with ν({0}) = 0 andZ
U

(|x|2 ∧ 1) ν(dx) <∞. (6)

MoreoverZ has a decomposition

Z(t) =at+W (t) +

Z t

0

Z
|y|≤1

y(µ(ds, dy)− dsν(dy))+ (7)

Z t

0

Z
|y|>1

yµ(ds, dy),

whereW is a Wiener process having values inU with covariance operatorQ.

Let r(t), t ≥ 0 be the short rate process: if at moment0 one puts into the bank
account1 then at momentt one has

Bt = e
R t
0 r(σ)dσ.

It is convenient to assume that once a bond has matured its money equivalent goes

to the bank account. ThusP (t, θ), the market price at momentt of a bond paying
1 at the maturity timeθ, is defined also fort ≥ θ by the formula

P (t, θ) = e
R t
θ r(σ)dσ. (8)

The forward rate curve functionf(t, θ) defined by (1) is usually interpreted as the
anticipated short rate at timeθ as seen by the market at timet.

We consider a generalized Heath, Jarrow and Morton model (2) taking a Lévy

procesZ in U instead ofW = (W1, . . . ,Wd) i.e.

df(t, θ) = α(t, θ)dt+ < σ(t, θ), dZ(t) > . (9)

For simplicity of notation we sometimes used another form of equation (9), namely

df(t) = α(t)dt+ eσ(t)dZ(t), (10)

whereeσ(t) : U → L2[0, T ] is such that

(eσ(t)u)(θ) =< σ(t, θ), u > .
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For eachθ the processesα(t, θ), σ(t, θ), t ≤ θ are assumed to be adapted pro-

cesses with respect to a given filtration(Ft) and such that integrals in (9), therefore
also in (10), are well defined.
Forθ < t we put

α(t, θ) = σ(t, θ) = 0. (11)

It follows from (9) that fort ≤ θ,

f(t, θ) = f(0, θ) +

Z t

0

α(s, θ)ds+

Z t

0

< σ(s, θ), dZ(s) >

and by (11) that fort > θ

f(t, θ) = f(0, θ) +

Z θ

0

α(s, θ)ds+

Z θ

0

< σ(s, θ), dZ(s) > .

Consequently for eachθ > 0, f(t, θ), t > θ, is a process constant int and should
be identified with the short rate:

r(θ) = f(0, θ) +

Z θ

0

α(s, θ)ds+

Z θ

0

< σ(s, θ), dZ(s) > . (12)

From now on we assume (9) and (11) and that the short rate is given by (12).
Let us recall thatHJM postulate is the requirement that the discounted bond

price processeŝP (·, θ), θ ∈ [0, T ]:

P̂ (t, θ) = P (t, θ)/Bt = e−
R θ
t f(t,s)dse−

R t
0 f(t,s)ds = e−

R θ
0 f(t,s)ds

are local martingales.
We are looking for conditions on the forward rate process defined by (9) under

which the HJM postulate is satisfied.
We will assume that for givenT , the integrals in the definition off exist in

the sense of the Hilbert spaceH = L2(0, T ). Denote the scalar product inH

by 〈·, ·〉 and the characteristic function of the interval[0, θ] by 1[0,θ]. One should

distinguish between the scalar product inU denoted by< ·, · > and the scalar

product inL2 denoted by〈·, ·〉.
If

F θ(x) = e−〈x,1[0,θ]〉, x ∈ H = L2(0, T ),

then

P̂ (t, θ) = e−〈f(t),1[0,θ]〉 = F θ(f(t)), t ≥ 0

so the processMθ(t) = P̂ (t, θ), t ≥ 0 is a semi-martingale and one can find its
decomposition using Itô’s formula (see e.g. [3]).

Denotegθ = 1[0,θ]. Then we have

Mθ(t) = e−〈f(t),1[0,θ]〉 = e−〈f(t),gθ〉.
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Since the dynamics of forward rate is given by (10) we see that

d〈gθ, f(t)〉 = 〈gθ, α(t)〉dt+ < eσ∗(t)gθ, dZ(t) > . (13)

The following assumptions are used through this paper:

(H1) For eachθ ∈ [0, T ] the processeseσ∗(t)gθ, t ∈ [0, T ], are locally
bounded.

(H2) for someθ and somes there existsr > 0 such thatB(0, r), the ball

with center in zero and radiusr, is contained insupp (eσ∗(s)gθ),
By supp (X) we denote the support of the distribution of the random variable

X.

Theorem 1 a) Assume (H2). If HJM postulate is satisfied, then

ψ(s) =

Z
|y|>1

e<c,y>ν(dy) <∞ (14)

for c in dense subset ofB(0, r). Moreover,ψ is lower semicontinuous.

b) If HJM postulate is satisfied, then for eachs andθ

〈gθ, α(s)〉+ < eσ∗(s)gθ, a > +
1

2
< Qeσ∗(s)gθ, eσ∗(s)gθ > +Z

U

h
e−<eσ∗(s)gθ,y> − 1− 1{|y|≤1}(y) < eσ∗(s)gθ, y > i

ν(dy) ≡ 0. (15)

Proof. Using (7) we see thatXθ(t) = 〈gθ, f(t)〉 satisfies

dXθ(t) = 〈gθ, α(t)〉dt+ < eσ∗(t)gθ, dZ(t) >

= 〈gθ, α(t)〉dt+ < eσ∗(t)gθ, adt+ dW (t) +Z
U

1{|y|≤1}(y)y(µ(dt, dy)− dtν(dy)) +

Z
U

1{|y|>1}(y) yµ(dt, dy) >

SinceMθ(t) = ϕ(Xθ(t)), applying Itô’s formula to functionϕ(x) = e−x and

processXθ we obtain

Mθ(t) = Nθ(t) +

Z t

0

ϕx(X
θ(s−))〈gθ, α(s)〉ds + (16)

+

Z t

0

ϕx(X
θ(s−)) < eσ∗(s)gθ, a > ds

+

Z t

0

Z
U

ϕ(Xθ(s−))1{|y|>1}(y) < eσ∗(s)gθ, y > µ(ds, dy) +

+
1

2

Z t

0

ϕxx(X
θ(s−)) < Qeσ∗(s)gθ, eσ∗(s)gθ > ds+
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+

Z t

0

Z
U

h
ϕ

`
Xθ(s−)+ < eσ∗(s)gθ, y > ´

−

ϕ(Xθ(s−))− ϕx(X
θ(s−)) < eσ∗(s)gθ, y > i

µ(ds, dy)

= Nθ(t) +

Z t

0

ϕx(X
θ(s−))〈gθ, α(s)〉ds+Z t

0

ϕx(X
θ(s−)) < eσ∗(s)gθ, a > ds

+
1

2

Z t

0

ϕxx(X
θ(s−)) < Qeσ∗(s)gθ, eσ∗(s)gθ > ds +

+

Z t

0

Z
U

h
ϕ

`
Xθ(s−)+ < eσ∗(s)gθ, y > ´

− ϕ(Xθ(s−))−

1{|y|≤1}(y) ϕx(X
θ(s−)) < eσ∗(s)gθ, y > i

µ(ds, dy),

whereNθ is a local martingale.

Now we give the proof of part a). IfMθ is a local martingale with localizing
sequence of stopping timesϑn, thenZ t

0

Z
U

1[0,ϑn](s)
h
ϕ

`
Xθ(s−)+ < eσ∗(s)gθ, y > ´

−

ϕ(Xθ(s−))− 1{|y|≤1}(y) ϕx(X
θ(s−)) < eσ∗(s)gθ, y > i

µ(ds, dy)

is well defined and

E

Z t

0

Z
U

1[0,ϑn](s)
h
ϕ

`
Xθ(s−)+ < eσ∗(s)gθ, y > ´

− (17)

ϕ(Xθ(s−))− 1{|y|≤1}(y) ϕx(X
θ(s−)) < eσ∗(s)gθ, y > i

µ(ds, dy) <∞.

Since the process under integral in (17) is predictable, then

E

Z t

0

Z
U

1[0,ϑn](s)
˛̨̨
ϕ

`
Xθ(s−) + eσ∗(s)gθ, y > ´

− (18)

ϕ(Xθ(s−))− 1{|y|≤1}(y) ϕx(X
θ(s−)) < eσ∗(s)gθ, y > ˛̨̨

dsν(dy) <∞.

Sinceϕ(x) = e−x, we obtain

E
h Z t

0

Z
U

1[0,ϑn](s)1{|y|>1}(y)
˛̨̨
ϕ

`
Xθ(s−)+ < eσ∗(s)gθ, y > ´

−

ϕ(Xθ(s−))
˛̨̨
dsν(dy)

i
= E

h Z t

0

1[0,ϑn](s)e
−Xθ(s−)

“ Z
{|y|>1}

˛̨̨
e−<eσ∗(s)gθ,y> − 1

˛̨̨
ν(dy)

”
ds

i
<∞.
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Hence forP -almost allω ∈ ΩZ ϑn

0

Z
{|y|>1}

e−<eσ∗(s,ω)gθ,y>ν(dy)ds <∞. (19)

Sinceϑn ↑ ∞ asn→∞ for almost alls andP -almost allω,Z
{|y|>1}

e−<eσ∗(s,ω)gθ,y>ν(dy) <∞,

which together with assumption (H2) implies (14).
To prove lower semi-continuity ofψ we use Fatou lemma. Let

lim infcn→c ψ(cn) = γ. If γ <∞, then

lim inf
cn→c

Z
|y|>1

e<cn,y>ν(dy) ≥
Z
|y|>1

lim inf
cn→c

e<cn,y>ν(dy) = ψ(c). (20)

If γ = ∞, then (20) is obvious. Therefore,ψ is lower semi-continuous.
The equation (15) (i.e. point b) of Theorem 1) is a simple consequence of (16),

becauseMθ is a local martingale andϕ(x) = −ϕx(x) = ϕxx(x) = e−x.

Theorem 2 Assume(15) . If for all c ∈ UZ
|y|>1

e<c,y>ν(dy) <∞, (21)

then HJM postulate is satisfied.

Proof. We haveZ
U

h
(e−<eσ∗(s)gθ,y> − 1 + 1{|y|≤1}(y) < eσ∗(s)gθ, y > i

ν(dy) = I1 + I2,

(22)

where

I1 =

Z
{|y|≤1}

“
e−<eσ∗(s)gθ,y> − 1 + < eσ∗(s)gθ, y > ”

ν(dy),

I2 =

Z
{|y|>1}

(e−<eσ∗(s)gθ,y> − 1) ν(dy).

In the neighborhood of zero

e<c,x> − 1− < c, x >≈ (< c, x >)2,

so by (6)

I1 ≤ const

Z
{|y|≤1}

|y|2ν(dy) <∞.
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I2 <∞ by assumption (21) and (6). ThereforeZ t

0

Z
U

h
(e−<eσ∗(s)gθ,y> − 1 + 1{|y|≤1}(y) < eσ∗(s)gθ, y > i

ν(dy)ds

is well defined. This, assumptions (15) and equation (16) imply that

Mθ(t) = Nθ(t) +

Z t

0

Z
U

h
ϕ

`
Xθ(s−)+ < eσ∗(s)gθ, y > ´

−

ϕ(Xθ(s−))− 1{|y|≤1}(y)ϕx(X
θ(s−)) < eσ∗(s)gθ, y > i`

µ(ds, dy)− dsν(dy)
´

=

= Nθ(t) +Nθ
1 (t),

whereNθ
1 is a local martingale, soMθ is a local martingale.

Remark 1 a) If Mθ = e−X
θ

is a local martingale, then (14) implies existence of
Laplace transform of driven Lévy processZ in some neighborhood of zero. Ifν is
a Lévy measure of theα stable symmetric processZ, then

ν(dy) = c|y|−1−αdy and ∀u 6= 0

Z
{|y|>1}

e<u,y>|y|−1−αdy = ∞.

Therefore, as a consequence of Theorem 1 we obtain thatα stable symmetric pro-
cessZ can not be used for modelling forward rate.

b) If U = Rd, then in Theorem 1a we prove in fact that (14) is satisfied for

c ∈
[

θ∈[0,T ]

[
s∈[0,T ]

supp (eσ∗(s)gθ).
c) If the processeseσ∗(s)gθ are bounded (e.g.σ is deterministic and bounded

as in [5]), so there exists a constantKθ such that|eσ∗(s)gθ| ≤ Kθ < ∞, then we
can weaken assumptions of Theorem 2. It is enough to assume that (21) is satisfied

for |c| ≤ K, whereK = supθKθ instead of assumption that (21) is satisfied for
all c.

Proposition 3 LetU = Rd.
a) If Z

|y|>1

eγ |y|ν(dy) <∞ (23)

for γ ∈ R, |γ| ≤ r, then(14) is satisfied forc ∈ B(0, r).

b) If the condition(14) is satisfied forc ∈ B(0, r), then the condition(23) is

satisfied for|γ| ≤ r√
d

.
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Proof. a) Since< c, y > ≤ | < c, y > | ≤ |c| · |y| the condition (23) for|γ| ≤ r

implies (14) forc ∈ B(0, r).

b) Fix |γ| ≤ r√
d

.

Since
dX
j=1

|yj | =
dX
j=1

yjsgnyj ,

so for arbitrary orthantAh = {sgn y1 = e1, . . . , sgn yd = ed} for h =

(e1, . . . , ed), ei ∈ {−1, 1}, takingch = γh we obtain by (14)Z
Ah∩{|y|>1}

eγ |y|ν(dy) ≤
Z
Ah∩{|y|>1}

e<ch,y>ν(dy) ≤Z
{|y|>1}

e<ch,y>ν(dy) <∞

becauseγ|y| ≤ < ch, y > and|ch| ≤ r. HenceZ
|y|>1

eγ |y|ν(dy) ≤
X
h

Z
{|y|>1}

e<ch,y>ν(dy) <∞.

It is convenient to present HJM condition in terms of the functionJ :

J(u) = − < u, a > +
1

2
< Qu, u > + Ĵ(u), (24)

where

Ĵ(u) =

Z
{|y|≤1}

“
e−<u,y> − 1+ < u, y >)ν(dy) (25)

+

Z
{|y|>1}

(e−<u,y> − 1)ν(dy).

Theorem 4 Under the assumptions (H1):

a) If the discounted bond price processesP̂ (·, θ), θ ∈ [0, T ] satisfy HJM postulate,
then HJM type conditionZ θ

0

α(t, v)dv = J
“ Z θ

0

σ(t, v)dv
”

(26)

holds.

b) The HJM type condition(26)and (H2) implies HJM postulate.

Proof. a) By Theorem 1b) HJM postulate implies (15), all factors are well defined
and by definition ofJ we obtain (26).

b) The HJM type condition (26) gives (15), so applying Theorem 2 completes

the proof.

In the next theorem we find the dynamics off in the caseU = Rd.
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Theorem 5 LetU = Rd. Assume that exists a deterministic constantK such that

dX
j=1

〈g, σj(t)〉2 ≤ K <∞ t, θ ∈ [0, T ],

and moreover for someε > 0Z
|y|≥1

e<c,y>ν(dy) <∞ for |c| ≤ K(1 + ε). (27)

Then the HJM type condition(26) implies that the dynamics off has a form

df(t, θ) =

dX
j=1

∂J

∂uj

“ Z θ

0

σ(t, v)dv
”
σj(t, θ)dt+

dX
j=1

σj(t, θ)dZj(t). (28)

Proof. Using assumption (27) one can check differentiability ofJ. So, by (26) we
have

α(t, θ) =

dX
j=1

∂J

∂uj

“ Z θ

0

σ(t, v)dv
”
σj(t, θ).

and (28) follows.
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