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Introduction

The basic nonparametric model in this note is a statistical model with the family

F of all continuous and strictly increasing distribution functions. In abundant literature

of the subject, there are many proposals for nonparametric estimators of quantiles, for

example simple order statistics or convex combination of two consecutive order statistics

[Davis and Steinberg (1986)], some more sophisticated L-statistics such as Harrell and

Davis (1982) or Kaigh and Chen(1991), etc. Asymptotically the estimators do not differ

substantially but if the sample size n is fixed, which is the case of our concern, differences

may be serious. It appears that in the nonparametric statistical model with the family F

of possible distributions nontrivial L-statistics (the L-statistics which are not single order

statistics) are highly unsatisfactory. For example [Zieliński 1995)] take the well known

estimator of the median m(F ) of an unknown distribution F ∈ F from a sample of size 2n,

defined as the arithmetic mean of two central observations M2n = (Xn:2n + Xn+1:2n)/2.

Let Med(F, M2n) denote a median of the distribution of the statistic M2n if the sample

comes from the distribution F . Then for every C > 0 there exists F ∈ F such that

Med(F, M2n)−m(F ) > C.
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A numerical study (simulations)

To demonstrate that L-statistics are useless for estimating quantiles in the nonpara-

metric model F with all continuous and strictly increasing distribution functions we decided

to present the problem of estimating the median of an unknown F ∈ F with the following

well known estimators:

Davis and Steinberg (1986)

X(n+1)/2:n, if n is odd;
(

Xn/2:n + Xn/2+1:n
)

/2, if n is even,

Harrell and Davis (1982)

HD =
n!

[(n−1
2 )!]2

n
∑

j=1

[

∫ j/n

(j−1)/2
[u(1− u)](n−1)/2du

]

Xj:n,

Kaigh and Cheng (1991) for n odd

KC =
1

(2n−1
n

)

n
∑

j=1

(n−3
2 + j
n−1

2

)( 3n−1
2 − j
n−1

2

)

Xj:n.

As the distributions for studying our problem we have chosen

Pareto with cdf

1− 1
xα , x > 1, heavy tails, no moments of order k ≥ α,

Power (special case of Beta) with cdf

xα, x ∈ (0, 1), no tails, all moments ,

Exponential with cdf

1−Exp{−αx}, x > 0, very regular ,

all distributions for α = 1/2, 1/4, and 1/8.
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If T is an estimator of the quantile xq(F ) of order q ∈ (0, 1) of an unknown distribution

F ∈ F then assessing the quality of the estimator in terms the bias EF T − xq(F ), Mean

Square Error EF
(

T − xq(F )
)2

, etc, is impossible because the moments of F ∈ F may not

exist.

We decided to study the differences bF (T ) = Med(F, T )−xq(F ), where Med(F, T ) is

a median of estimator T if the sample comes from the parent distribution F . The quantity

bF (T ) is known as the bias in the sense of median, or median-bias, or shortly bias in

this note. Observe that Med(F, T ) always exists and is finite. Results of our numerical

investigations for samples of size n = 9 (Harrell-Davis, Kaigh-Cheng, and Davis-Steinberg

statistic X5:9) or for samples of size n = 10 (Davis-Steinberg statistic (X5:10 + X6:10)/2)

are presented in Table 1. The number of simulated samples, and consequently the number

of simulated values of the estimator under consideration, was N = 9, 999, and the median

from the sample of size N = 9, 999 has been taken as an estimator of the median of the

distribution of the estimator under consideration.

Table 1. Medians of estimators (simulated)

Distribution Median HD KC X5:9
X5:10 + X6:10

2

Pareto

α = 1/2 4 7.72 13.71 4.03 4.13
α = 1/4 16 255 1107 15.93 18.45
α = 1/8 256 3.3× 106 2.8× 107 265 383

Power

α = 1/2 0.25 0.2780 0.2919 0.2508 0.2535
α = 1/4 0.0625 0.1055 0.1286 0.0629 0.0692
α = 1/8 0.0039 0.0241 0.0432 0.0039 0.0053

Exponential

α = 1/2 1.3863 1.5138 1.6235 1.3805 1.4079
α = 1/4 2.7726 3.0571 3.2731 2.7718 2.8036
α = 1/8 5.5452 6.0595 6.4897 5.5426 5.6143
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To assess the exactness of the simulation we may compare columns ”Median” and ”X5:9”;

the latter is an unbiased estimator of the median so that the entries of both columns should

be approximately equal.

It seems however that absolute differences bF (T ) = Med(F, T )−xq(F ) are not suitable

measures of quality of an estimator (is the bias of HD really smaller when estimating

median of the Power distribution than that for Exponential distribution?)

To ”normalize” the bias we may argue as follows. If T is an estimator of the qth

quantile xq(F ) then F (T ) may be considered as an estimator of the (known!) value q (see

Figure 1).

0.0

1.0

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
....
....
....
....
....

....
.....

.....
.....

.....
.....

......
......

......
.......

.......
........

........
.........

..........
............

..............
..............

......................
............
...........
..........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
...........
...........
...........
...........
...........
............
............
............
.............
.............
..............
..............
...............

................
..................

...................
.....................

.......................
............................

................................
.........................................

.........................................................
................................................................................

x

F (x)

Figure 1

q

xq(F ) T

F (T )=F (T ′)

T ′

4



”Normalized” medians Med(F, F (T )) are presented in Table 2. Now for every F ∈ F the

median of F (T ) is obviously equal to q = 0.5 and differences between the entries of column

X5:9 and q = 0.5 illustrate the exactness of the results of simulations.

Table 2. F–medians of estimators (simulated)

Distribution Median HD KC X5:9
X5:10 + X6:10

2

Pareto

α = 1/2 0.5 0.6401 0.7299 0.5016 0.5132
α = 1/4 0.5 0.7498 0.8265 0.4995 0.5175
α = 1/8 0.5 0.8471 0.8830 0.5022 0.5245

Power

α = 1/2 0.5 0.5272 0.5403 0.5008 0.5035
α = 1/4 0.5 0.5700 0.5988 0.5008 0.5128
α = 1/8 0.5 0.6276 0.6752 0.5004 0.5197

Exponential

α = 1/2 0.5 0.5308 0.5559 0.4986 0.5054
α = 1/4 0.5 0.5343 0.5588 0.4999 0.5039
α = 1/8 0.5 0.5319 0.5557 0.4998 0.5043

Theoretical results

A general result concerning the bias bF (T ) of estimation of the median m(F ) of an unknown

distribution F ∈ F is given in the following Theorem 1.

Theorem 1. Let T be the Harrell-Davis, or Kaigh-Cheng, or any L-estimator
∑n

j=1 λjXj:n

such that λn > 0. Then for every C > 0 there exists a distribution F ∈ F such that

Med(F, T )−m(F ) > C.
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Proof. Observe that T ≥ λnXn:n a.s. and in consequence Med(F, T ) ≥ λnMed(F,Xn:n).

Consider the family

FM,α(x) =
( x− 1

M − 1

)1/α
, 1 < x < M, M > 1, α > 0.

The median of the distribution is

m(FM,α) = 1 + (M − 1)2−α

The distribution function of Xn:n is Fn
M,α(x) and the median of that distribution is

Med(FM,α, Xn:n) = 1 + (M − 1)2−α/n

Now
Med(FM,α, T )−m(FM,α) ≥ λnMed(FM,α, Xn:n)−m(FM,α)

= (M − 1)
[

λn2−α/n − 2−α
]

− (1− λn)

Choosing any α > − n
n− 1

Log2λn (then λn2−α/n − 2−α is positive) and any M satisfying

M > 1 +
C + (1− λn)

λn2−α/n − 2−λ

we obtain Med(FM,α, T )−m(FM,α) > C.

A general result concerning the bias of F (T ) when estimating a quantile of any order

q ∈ (0, 1) may be easily concluded from the following bounds for Med(F, F (T ).

Theorem 2. If T =
∑m

j=k λjXj:n is an L-statistic such that λk > 0, λm > 0, and

λk + λk+1 + . . . + λm = 1, then

m(Uk:n) ≤ Med
(

F, F (T )
)

≤ m(Um:n)

where m(Uk:n) and m(Um:n) are the medians of order statistics Uk:n and Um:n from a sam-

ple of size n from the uniform U(0, 1) parent distribution. The bounds are sharp in the

sense that for every ε > 0 there exists F ∈ F such that Med(F, T ) > m(Um:n)− ε and for

every η > 0 there exists G ∈ F such that Med(G, T ) < m(Uk:n) + η.

6



Proof. The first statement follows easily from the fact that Xk:n < T < Xm:n and

hence for every F ∈ F we have Uk:n = F (Xk:n) < F (T ) < F (Xm:n) = Um:n. To prove the

second part of the theorem it is enough to construct families of distributions Fα, α > 0,

and Gα, α > 0, such that Med(Fα, Fα(T )) → m(Um:n) and Med(Gα, Gα(T )) → m(Uk:n),

as α → 0.

Consider the family of power distributions Fα(x) = xα, 0 < x < 1, α > 0. Then

Xj:n = F−1
α (Uj:n) = U1/α

j:n and

Fα(T ) =
(

λkU1/α
k:n + λk+1U

1/α
k+1:n + . . . + λm−1U

1/α
m−1:n + λmU1/α

m:n

)α

= Um:n

[

λk

( Uk:n

Um:n

)1/α
+ λk+1

(Uk+1:n

Um:n

)1/α
+ . . . + λm−1

(Um−1:n

Um:n

)1/α
+ λm

]α

If α → 0 then Fα(T ) → Um:n and Med(Fα, Fα(T )) → m(Um:n).

Now consider the family Gα with Gα(x) = 1− (1− x)α; in full analogy to the above

we conclude that then Gα(T ) → Uk:n and Med(Gα, Gα(T )) → m(Uk:n) as α → 0.

Example. For any estimator T =
∑n

i=1 λiXi:n with λ1, λn > 0, for n = 9 we have

0.074 ≤ Med(F, F (T )) ≤ 0.926

Note that the bounds do not depend of the order q of the quantile to be estimated. It

follows that the normalized bias Med(F, F (T )) − q of the estimator when estimating a

quantile of order close to zero may be close to 0.926. By Theorem 1 the absolute bias

Med(F, T ))− xq(F ) may be arbitrarily large.

Conclusions

A reason for the strange behavior of nontrivial L-statistics as quantile estimators is

that they are not equivariant under monotonic transformation of data while the class F of

all continuous and strictly increasing distribution functions is closed under such transfor-

mations: if X is a random variable with distribution F ∈ F and g is any strictly monotonic

transformation then the distribution of g(X) also belongs to F . The class of all statis-

tics which are equivariant with respect to monotonic transformations of data is identical
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with the class of all order statistics XJ:n, where J is a random index: P{J = j} = pj ,

pj ≥ 0,
∑n

j=1 pj = 1. Observe that if the sample comes from a distribution F ∈ F then

F (XJ:n) = UJ:n and the distribution of F (XJ:n) does not depend of a specific F ∈ F .

In the tables above only X5:9 is an equivariant statistic. It appears that in the large

nonparametric statistical model with the class F of all continuous and strictly increasing

distribution functions the only reasonable estimators of quantiles are single order statistics

XJ:n with suitably chosen random index J . The index may bo chosen in such a way that

F (XJ:n) is an estimator of q which is uniformly minimum variance unbiased, or minimizes

Mean Square Error, or minimizes Mean Absolute Error, etc. (Zieliński 2004).
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