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Abstract

A market with defaultable bonds modelled by equations with Lévy noise is considered. Conditions
under which the market is free of arbitrage are derived.

1 Introduction

The paper is concerned the market containing defaultable bondes issued by companies. The probabilities
of deafaults depend on economic conditions of the firms and are reflected by rating classes designated
by rating agencies. Contrary to majority of the papers on the subject see [1], which use for modelling
Brownian motion, we apply the theory of Lévy processes with discontinuous trajectories. Credit risk
models with Lévy noise have been recently considered by Eberline and Ozkan [6] and by Ozkan and
Schmidt [12].

Our main aim is to derive conditions under which the market with defaultable bonds, issued by firms
with time dependent and random rating classes is free of arbitrage. Three types of recovery payments
are considered: fractional recover of market value, fractional recovery of treasury value and fractional
recovery of par value. The retaing classes change according to a conditional, continuous time Markov
chains and the default time is equal to the moment of entering by the firm the worst rating class.

The paper starts from recalling basic facts on default-free bond market and on Lévy processes, in
general, infinite dimensional. The case of two rating classes is considered in Section 3 and the general
case in Section 4. Obtained theorems provide HIM conditions for the arbitrage- free property. The final
section introduces the the market description in the Musiela parameterization and inbdicates how the
results from earlier chapters can be applied to to the Musiela framework.

The results of the present paper extend those obtained by Ozkan and Schmidt [12] for the fractional
recovery case. Ozkan and Schmidt approach is based on Musiela parameterization and requires more
stringent conditions than ours.

2 Preliminaries

We will consider processes on a complete probability sgécer, P). We take Levy procesf(t)

with values inU as source of uncertainty in model. This means @ is process with independent
and stationary increments having valueg/invhich is some abstract separable Hilbert space with inner
product denoted by, -);7. We can associate with (¢) measure of its jumps, denoted py.e. for any
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A € B(U) such thatd c U\{0} we have :
0<s<t

The measure defined by:
v(A) = E(u([0,1], 4)),

is called Levy measure of proceg&s stationarity of increments implies that we have also:
E(u([0,1], A)) = tv(A).
The Lévy-Khintchine formula shows that characteristic function of Lévy process has a form:

EciMZM)u — etw(k)’
where

P(A) =i{a, Ny — %(Q)\, N + /U(e“WU — 1= i\ )l g, <1y (2))v(da),

anda € U, Q is symmetric non negative nuclear operatorlorv is a measure oty with »({0}) = 0
and

/ (Jz|% A Dv(dz) < oco.
U

MoreoverZ has a well known Lévy-Ito decomposition:

t t
2() = at + W(t) + /0 / Wt dy) — dsvly) + /0 / s, dy),
ylu< Yylu>

whereWW is a Wiener process with valueslihand covariance operatq.

Let r(¢), t > 0 be the short rate process. If at momérdne puts into the bank accouhthen at
momentt one has R,
Bi=¢o0 r(cr)do.

Let B(t,0), 0 < t < 0 be the market price at momenof a bond payind at the maturity time&). The
forward rate curve is a functiofi(¢, #) defined for¢ < ¢ and such that

R
B(t,0) = e~ 7 f(t,s)ds 1)

It is convenient to assume that once a bond has matured its money equivalent goes to the bank account.
ThusB(t, ), the market price at momenbf a bond payind at the maturity time, is defined also for
t > 6 by the formula

B(t,6) = ¢ 5 7). @
We postulate here the following dynamic for forward rates

df (t,0) = a(t,0)dt + (o(t,0),dZ(t))v, (3)
Sometimes we use another form of SDE for forward rates
df (t) = a(t)dt + a(t)dZ(t),

wherea(t) is a function onft, T'] given bya(t)(0) = «(t,6) anda(t) is linear operator frond/ into
L?[0, T*] defined by
(@(t)u)(0) = (a(t,0), u)u-



Fort > 6 we put:
at,0) = o(t,0) =0. (4)

It follows from (3) that fort < 6:
t t
f(t,0) :f(0,0)+/0 a(s,@)der/o (0(s,0),dZ(s))u,

and fort > 6 according to (4):

] 9
f(t,&):f(0,9)+/0 a(s,&)ds+/0 (0(s,0),dZ(s))u.

Thus the process(t, 6) for t > 6 is constant for each > 0, say equal tgf (6, 6), and it can be identified
with the short rate process:

0 0
r(0) = f(0,6) = £(0,6) —I—/O a(s,@)ds—{—/o (0(s,60),dZ(s))u.

HJM postulatestates that discounted bond prices:
B(t,0)
B, '’

are local martingales for ea¢he [0, 7*]. Since fort > u we havef (u,u) = f(t,u), then

B(t,0) =

Ry R,
By=eo fluu)du _ e o ftu)du

)

and thus discounted bond prices can be written as:

R B(t. 0 R R R
B(t, 9) _ (B; ) — e~ te f(t,u)due— gf(t,u)du — e~ ng(t,u)du

and hence HIJM postulate is that procesBés?) , 0 € [0, 7] given by equation
R
B(t,0) = e o ftwdu

are local martingales. Jakubowski and Zabczyk show in [9] that under mild conditions the HIM postulate
implies existence of exponential moments of Levy measure

/ eV (dy) < 0o, Veel. (5)

lylu>1

The following theorem, under different type of conditions, goes back to the paper [2] by Bjork, Di Massi,
Kabanov and Runggaldier.

Theorem A. ([8]) Assume that the Lévy measuresatisfies condition (5). Discounted bond prices are
local martingales if and only if the following HIM-type condition holds for e&eh|[0, 7] andVt < 0:

0
/t oft,0)dy = (3" (1) g a)o + 3 (05" (1) 1ng 6 (o),
+ / <e—<5*<ﬂﬂw’y> Ly (y )<~*(t)11[0,9},y>U)V(dy)- 6)
U

It is convinient to express HIM condition in terms of logaritm of moment generating function of Levy
process” i.e. in terms of the functional : U — R:

T) = ~{ua)y + {Qu )y + / L vty

+ / (e_<”’y>U - 1)v(dy),
lylu>1



Now we can use to express “dirft vanishing” condition as:

0 [%
/ a(t,v)dv = J(]l[oﬂ] (t)/ a(t,v)dv) Vi<60 and VOe€][0,T7]. (7)
t t

This transparent condition was first formulated by Eberlein and Raible in [5] for deterministic functions
o(t,0) infinite dimensional setting, and under mild assumptions@r¥) in infinite dimensional setting
by Jakubowski and Zabczyk in [8].

In what follows we assume that condition (7) is fulfilled.

Remark 1. It follows from (4) that we can write (7) as
0 0
/ at,v)dv = J(/ U(t,v)dv) Vt<60 and VOe€][0,T7]. (8)
0 0

Using integration by parts formula and the dynamic of discounted bond /#. = dé(t, 0) (see [8]),
we obtain

Theorem 1. The process of price of bond solves the following stochastic differential equation:

dB(t,0) = B(t—, 0) < (f(t,t)+a(t,9))dt+/ [e“*(““wwwv — 1| (u(dt, dy) — dtv(dy))

U
—<5*(t)11[0,9}7dW(t)>U) ,
wherea(t, #) has form
a(t,0) = —(Lpg,a(t)) +J(G () pe)
and (-, -) denotes the scalar product it? ([0, T*]).

Corrolary 1. Solution of above equation can be writen as

5(6.0) = 0.0 exp ([ fts.5)0s~ [ oaaleis = [ 6002

and if HIM-type condition (7) holds, then

8(0.0) = B0 [ s~ [ 9 upmas - [ @z

3  HJM conditions for credit risk models

In default-free world by bond maturing @tvith face valuel we mean financial instrument whose payoff
is 1 at timed. In defaultable case we have several variants describing amount and timing of so called
recovery paymenivhich is paid to bond holders if default has occurred before bond’s maturity. If by
7 we denote the moment of default, then, generally speaking, the payoff of the defaultable bond is as
follows:

D(0,0) = N7~ + li-<gy - recovery payment

If 0 is a recovery rate process, thextovery paymertan take different forms (see eg. [1]):

* :D(1—, 9)% - fractional recovery of market valueat time of default bondholders receive a
fraction of pre-default market value of defaultable bond ([Dé7—, )):

By

D(0,0) = ]1{.,->9} + H{ng} - 0¢D(1—, H)B—



 § - fractional recovery of Treasury valuefixed fractiond of bond’s face value is paid to bond-
holders at maturity:
D°(6,0) = L{rg) + Lr<py - 0.

. ‘53%9 - fractional recovery of par valudixed fractiond of bond’s face value is paid to bondholders
at default timer:

B
DA(Q, 0) = ]1{7>9} + H{ng} . (SB—G.

The values of defaultable bonds fox 6 are given by (11),(15) and (20) respectively.

We assume that the moment of defatlis aG stopping time, and that our filtratiogt = F v H,
whereF = (F)w>0 andH = (H:):>0 are filtrations generated by observing market and observing
default time i.e.H; = o(7 < u : u < t), respectively. LetH;):>o be a default indicator process i.e.
H; = ;<. We assume that admits anF intensity (\;);>o which is an adapted process such that
M, given by the formula

tAT t
Mt = Ht — / )\udu = Ht — / (1 — Hu))\udu
0 0
follows aG—martingale.

We denote by (¢, ) the pre-default forward rate corresponding to pre-default term structure ob-
served on the market. We postulate here that

dg1(t,0) = a1 (t,0)dt + (o1(t,0),dZ(t))v,

whereZ; is Lévy process with values iti which has the following Lévy-Ito decomposition:
t t
Zi(t) = a1t + Wi(t) + / / y(p1(ds, dy) — dsvy(dy)) +/ / yu1(ds, dy).
0 Jlylu<i 0 Jlylu>1

R
If Dy(t,0) = e~ + 91(tw)du then by applying Itd lemma in analogous way as in the default free case we
have (in theoreny; corresponds t&; in the same way a$ corresponds t&)

Theorem 2. Dynamic of the procesB; (¢, 0) is given by

dD1(t,0) = D1(t—,0) <(gl(t,t)+&1(t,9))dt+/

[B—Gf(t)]l[o,e],ym _ 1} (pa (dt, dy) — dtv (dy))
U

(GO, WO} ).
wherea, (¢, 0) satisfies
a1(t,0) = —(Lpg,on(t) + J1(67() )
In what follows we use the following technical lemma:
Lemma 1. LetT and H; be as above and); be a process of the form:
Dy=(1-H)X+ HY, + H Z,

where processeX;, Y; have local martingale parts/;X and M} and absolutely continuous drifts
aX, o), which means that process&s, Y; have decompositions:

dX; = afdt+dM;x,
dY; = o) dt +dM,).



ThenD; is local martingale if and only if for eache [0, 7] the following conditions hold:

o = MX,_-Y._—Z2,) onthesefr >t} (9)
af = 0 onthe sefr <t} (10)

Proof. By definition of H;
t
D: = (1-H)Xie+HY:+HZ, =(1—H)X: + HY; + / ZydH,.
0

SinceH; is a finite variation process, the integration by parts formula implies

dD; = (1-H,)dX,— X;_dH; + H,dY; +Y,_dH, + Z;dH,
= (1 - Hy)dM{ + H;dM}
+(1 — Hy)oi“dt + Hyof dt + (—X¢— +Ys_ + Zy)dH,
= (1— H)dM* + HidM} + (=X + Yi_ + Z;)dM,;
+(1 = Hy) (0" + M(—=Xi— + Vi + Zy))dt + Hyaf dt,

and hence the result follows. O
Remark 2. In the next sections, the proceXswill correspond to predefault valu&; value of payments
after default, andZ; value of payments at default time

3.1 Fractional recovery of market value

Let us focus on defaultable bonds with fractional recovery of market valued) . This kind of bonds
pays1-unit cash if default didn’t occurred before maturdty.e. if default moment > 6, and if bond
defaults beford” we have recovery payment at default time which is a fracioof it's market value
just before default time, so the recovery payment is equ&! f(7—, §). Therefore

B
D(0,0) = Liy~py + Lr<y0-D(7—, e)Bi
and fort < 6 we model a value of defaultable bond by
R (b By
D(t, 6) = ]1{7>t}e t gl( ,u) U =+ ﬂ{‘rgt}dTD(T_v G)Bi, (11)

whereg; (t,u) is the pre-default forward rate corresponding to pre-default term structure. Our first
objective is to derive the HIM drift condition in the case of defaultable bonds with fractional recovery
of market value given by (11). Using the procésgswe can represerid as
By

D(t,0) = (1 — Hy)D1(t,0) + Hi6: Dy (T—,G)B—.
Theorem 3. (HIM drift condition for D(¢, #)) Discounted prices of defaultable bonds with fractional
recovery of market value are local martingales if and only if the following conditions hold drrset
t}:
V0 € [0,7*] and for eacht < @

gi(t,t) = f(t,t)+ (1 =), 12)
0 0
/0 ay(t,v)dv = Jp <]1[0’9] (t) /t o1(t, v)dv). (13)



Proof. Denoting byD(t, #) the discounted value db(t, §) we have

D(tae) _ Dl(t7 9) D1(7_79)
B (1—Hy) B, + Hié, B

D(t,0) =

We see that this process has structure as in Lemma 1. Therefore we can apply lemma with

Dq(t,0 Dy(t—,0
SECGL A T A el

X
t Bt ) Bt )

where, by Itd lemma , drift o is given by

Mt)( _ D1<t_79)

5, @t = f(t1) = (I, 01 (1) + Ji(01() L)

>From lemma 1 we see thal(t, §) is martingale if and only if (9) holds on the sgt > ¢} for for all
6 € 10,7* and allt < 0:

Dl (t_v 9)
By

(g1(t,1) — f(t,8) — (Lo, 1 (t)) + J1(1(E) Ly 1)) =
and this is equivalent to :
gi1(tt) — f(t.t) — (L ,gp, a(t)) + J1(57 (1) Ljo,9) = Ae(1 — ). (14)

(12) and (13) imply (14), sdf)(t, 0) is a local martingale undép.
If D(t,@) are local martingales und#*, then equality (14) holds on the sgt > ¢} forall t < 6 and
for all & € [0, 7*]. (12) follows from equality (14) taking fa# = ¢ and from the fact that fof = ¢ we
have:

(Lo, n(t)) =0,  Ji(67 (1)) = 0.

(13) follows immediately from (14) and (12).

3.2 Fractional recovery of treasury

The holder of defaultable bond with fractional recovery of treasury recéiviethere is no default by
6, and if default has occurred before matutythen the fixed amourit € [0, 1] is paid at maturity to
bondholder. Therefore, we have the following payoff at maturity :

D°(0,0) = Lgr~gy + Lir<gy - 0.
Since paying at maturityf is equivalent to payingB(r, T') at default timer, we can write
D°(t,6) = ]1{T>t}e*Rt9 gtude 4 8- B(t,0),
so using introduced notation we have
DO(t,0) = (1 — H,)D:(t,0) + Hi6B(t,0). (15)

Theorem 4. (HIM drift condition for D°(¢, #)) The processes of discounted defaultable bond prices
with fractional recovery of treasury are local martingales if and only if the following condition holds:

on the sefr > t} for eacht € [0, #] and for all® € [0, T™] we have:

g1 (tv t) = f(t, t) + (1 - 6))‘7? (16)
o B o B(t—,0)
/0 oty = <11[079] ) /t al(t,v)dv> + 5<D1(t—ﬁ) _ 1) M. (17)



Proof. From (15) we have

. D(t,0) Dy (t,0) B(t,0)
4 _ ) _ o ) ’
D°(t,0) = B (1 — Hy) B, + Hyé B,
Again, we can see that we can apply Lemma 1 with
_ Dy(t,0) _ B(t,0) B
X = B, Y, =96 B, Zy =0,

where drift of X is given by
Dy (t—,0)
X _ 1 )
My = Bt
and drift of Y is given by

(g1(t,t) — f(t,t) — (g, a1(t)) + J1 (a7 (t) N q7)),

i = 2O .00 + 56 010

Condition (10) of Lemma 1 is equivalent to

/Oea(t,v)dv = J<]1[0’9](t) /t9 a(t,v)dv). (18)

on the sef{r < t} for eacht € [0, 6] and for alld € [0,7*]. One recognize this equality as HIM type
condition for default-free bonds (condition 7), and we assume this condition is fulfilled. Hence the local
martingale property fof)é(t, 0) is equivalent to occurrence on the $et> ¢} for all t < 6 and for all

0 € [0,T*] of the equality

PO ga(0.0) - £00) ~ (g (0) + (61 O1ga) = A 220 g 200,
which in turn is equivalent to
n(t.0) = £00) = (Lo (D) + G OUea) = A(1-05 ). a9)

Since conditiops (16) and (17) imply (19), then they imply thétt, 0) are local martingales undér.
Conversely, ifD?(t, 0) are local martingales und@&, then (19) holds. Taking = ¢ we obtain from
(19)

(9200) = F(8.0) = (1= 0)0) = (Mg a0+ AT (o) + 3 1 = 1) A =0

which implies (16), sincegl(@%% — 1. From (16) and (19) we have (17). O

3.3 Fractional recovery of par

In the case of fractional recovery of par value the holder of defaultable bond receives 1 unit cash if there
is no default prior to maturity and if bond has defaulted a fixed fracfiohpar value is paid at default
time. Therefore the payoff at maturity has form

B
D2(0,0) = Lgr~gy + Lir<gy - 5Bi’
and before maturity has form
B
DA(t, 9) = ]l{T>t}D1(t, 9) + H{Tgt} . 5§t’

which is equal to
DA(t,0) = (1 — Hy)Dy(t,0) + Ht(s%. (20)

T



Theorem 5. (HIM drift condition for DA (¢, )
Discounted prices of defaultable bond with fractional recovery of par are local martingales if and only
if the following conditions hold on sét- > ¢} for eacht € [0, 6] and all® € [0,T*]:

gl(ta t) = f(tat) + (1 - 5))\157 (21)
0 0 1
ai(t,v)dv = Ji( 1 t/ o1(t,v dv)—i—&(—l)A. 22
[t = 5 (1p0® [ oo g @
Proof. By (20) we have
A DA(t,0) Dy (t,0) 1
A _ ) ’ il
D= (t,0) = B, (1 — Hy) B, + Ht(SBT
Again, we see that this process has structure as in Lemma 1, therefore we can apply it with
Dy (t, ) 1
X = Y, = Zy=0—.
t Bt ) t 07 t 6Bt

By Lemma 1 we see thdd (¢, ) is martingale if and only if on the sét- > ¢} for all t < 6 and for
allg [0, 7%]:

Dy (t—,0)

Dl(t_a 0) o 6i
By

(91(6,1) = F(t,1) — (g g1 01 (1)) + 1 (55 () o g1)) = &(Bt .

(it is condition (9)). In turn, this equality is equivalent to

g1 (6,1) — F(t,8) — (L 01 (D) + I (GO0 g) = (1= 6)Ac — O (D(j_m - 1). (23)

(21) and (22) imply (23), so they imply thﬁIA(t, 0) are local martingales. Conversely,DfA(t, 0) are
local martingales, then (23) holds on the §et> ¢} for ¢ < 6 and for allé € [0,7*]. Hence, taking
0 = t, we conclude (21), and finally (22). O

4 Credit rating migration case

Our objective is to generalize results of the previous section and derive HIM drift condition for models
with the proces€! (¢) describing migration of credit ratings of bonds with different kind of recovery.
Credit rating migration process! which is modelled by the conditional Markov chain with values in

K ={1,..., K} with absorbtion stat&’ (for details see Bielecki, Rutkowski [1]). With the stalti is
associated the term structuye It is reasonable to avoid arbitrage to assume that

gK—l(ta 0) > gK—2<ta 0) >z gl(t7 9) > f(t,@)

forall t € [0,0] and all§ € [0, T™].
Conditional infinitesimal generator of the procéssatt giveng; has the form

A1,1(1) Ag(t) o Anr—1(t) A,k ()
A2,1(1) Aoa(t) o A r—1(t) A2,k (1)
A(t) = : : : :
Ak—11(t) Ax—12(t) -+ Ax_1x-1(t) Ag—1,K(%)
0 0 . 0 0

where off-diagonal processes ;(t), i # j are nonnegative processes adaptedstand diagonals
elements are negative and are determined by off-diagonals by the formula

Aiat) == Y (D)

JER\{i}



We can thought of-); ;(¢) as stochastic intensities of jumping off thetate, ang; ;(t) = i ((tg as a

probability of jumping from the statéto the statej given that we jump-off state With slight abuse of
notation and we can write conditional infinitesimal generataf'bin an equivalent form as

—A1,1(t) A1,1(t)p1,2(t) c Aa(®)prr-a(t) A1,1(t)pr,x (t)
X2 2(t)p2,1(t) —A22(1) o Xoa(t)p2,r—1(t) X2 (t)p2, K (t)
A(t) = : : . : :
A1, Kk-1(O)pr—11(t) Ax—1,xk—1(t)pr—12(t) -+ —Ax—1,xk-1(t) Ax—1,Kk-1(t)Pr—1,K (1)
0 0 s 0 0

For any functiom: : K — R we introduce the shorthand notation:

K
(i) = Z Aij(w)h(j)
=1

From Bielecki, Rutkowski [1] we quote the following theorems and corollary which will be frequently
used.
Theorem B. For every functiorh : K — R the process\/”, given by the formula

M"Mt) = h(CY(t)) — /tA(u)h(C’l(u))du, Vt € Ry,
0

is aG martingale.
Theorem C. Leth be a real valued functioh : IC x K — R, then the procesd", given by the formula

=) h(Cl(u—),Cl(u))—/ > Acl(u wh(CY(u), k)du, ¥t e Ry,
O<u<t 0 k£Cl(u

is aG martingale.
Corrolary A. Define the auxiliary procesH;(t) = 1;;(C(t)). By Theorem 4

Mi(0) = H(0) = [ Argitwhiu

is aG -martingale.
Corrolary B. For i # j we define auxiliary process; ;(t) by the formula

Hi;(02 . H'(u-)Hi(u), VteR,.
O0<u<t

This procesdd; ; counts the number of jumps of migration procésst) from the state to the statej
up to time t. For arbitraryi, j € K,i # j, the processes

My j(t) = Hij(t) - /0 Mo () Hy () du = Hy (1) — /OAa(u),j(u)Hi(u)du,

and
t K—1

MK(t):HK(t)—/ ZA”{H Vdu = Hi(t /Acl e (1 — Hie(u))d,

are G martingales.

To describe the credit risk we need also, beside the credit migration pro¢egefined above, the
processC?(t) of previous rating. If byr, 7,73, ... we denote the consecutive moments of jumps of
credit migration proces§', then for ¢ € [14, T4 1)

Cl(t) = Cl(mp), C?(t) = C(1p_1).



We denote by’ (¢) the two dimensional credit rating process defined by
C(t) = (C* (1), C2(1)).
Therefore the pre-default term structure depending'é) is given by the formula
g(t,u) = gory(t,u) = Licry—py g1 (8, u) + Lycry—ay 92 (t,w) + .. + Lyory—x -1y 9K 1 (¢, w).
We sum up here t& — 1, since the lasf{-th rating corresponds to default event
T=inf{t>0: C'(t)= K}
It is obvious that each recovery payment depends on credit rating before default i.e.
0t = oy (t) = Loz ny=1301() + Ly (=21 02(t) + - .. + Lyc2 (= —1)0K-1(1),

whered; is a recovery payment connected withth rating.
Moreover, we assume that the givEh— 1 defaultable forward rates have dynamigé&, 8) given by

dg;(t,0) = a;(t,0)dt + (04(t,0),dZ;(t)y, i€{l,...,K},

whereZ;(t) are Lévy processes with valueslin By Lévy-Ito decomposition, each;(¢) has the form

Z;i(t) = a;t + W(t / / y(pi(ds, dy) — dsvi(dy)) / / yui(ds, dy).
lylr<1 lylu>1

Denote byD;(t,0) = e~ " it , and discounted values &; by D;(t,6) = 2 (t % . Asin previous
section we consider three types of recovery payment. We investigate them separately and we use the
same notiorD for process of recovery payment (previously we fiseD?, D).

4.1 Fractional recovery of market value with ratings migrations

The price process of defaultable bond with credit migrations and fractional recovery of market value
should satisfy

B
D(0,0) = Trs0y + Lircoyd02(m) (T)D(T—, 9)3*97
wherer = inf{t > 0 : C'(¢) = K}. Hence we have
B
D(t, 9) = H{Cl(t);éK}DCq (t) (t7 9) + H{Cl(t):K}éCQ(T) (T)DCQ(T) (T, Q)Ft

B
K—1 K—1
B,

= > Iyoperylicrg=nDi(t,0) + > Lier=ryLic2 =iy 0i(m) Di(m—, ) 5=
i=1 i=1 T
or equivalently

K-1

B
(H:()Di(t.0) + Hi i (D3:(7) Dilr—, 0) 2 ).
=1 T
Theorem 6. The processes of discounted prices of defaultable bond with credit migrations and frac-
tional recovery of market value are local martingale if and only if following conditions hold on the set

{CH(t) # K}

gorw(t,t) = f(t, 1) + (1 —dcre () Acrw),x (1)), (24)
% 0
/ acipy(t,v)dv = Joy (11[0,9} (75)/ UCl(t)(t7U)dU>
0 t
Di(t—. 0
+ Z [ Dere (—.0) ((t) (t—,)e) - 1} Aci(p),i(t)- (25)

1=1,i#£CL(t)



Proof. We have

d(D%te)) - Kzl (a(m) Digt’ 9)) + d(Hi,K(t)ai(r)Di(;:’ 9))). (26)

Notice that the differential of the second term in this sum has the form

Di(T—, 9)) _ 5Z(t) Di(t—, 9)

d(Hi,K(t)(si(T) = 5,

a(Hix (1))
Since the process
t
Mg (t) = Hy () / Nsc () Hi(w)du
0
follows G - martingale, then we have

By

d(Hire() = Di(tB_t’g)éi(de@K(t) +

D;(t—,0)

3i(t) B,

8;(t)Ni i (8) H; (t)dt.
The first term in the sum in (26) is equal to

d(Hi(t)Di(Bf; 0)) = d(Hz(t))D’(tB_t’e) —I—Hi(t)d<Di(t’ 9)) td |:Hz(), Di(',e)]c’

and since the process
t
Mi(t) = Hilt) = [ Aoruya(u)du
0

follows G-martingale, then we have

d(Hi(t) Dlg; 6)> = Di (tB_t, ) ( dM;(t) + Ao i (t)dt
HL(1) (gi(t, 1) — F(1,8) + as(t, 0))dt

Hi(t) / {e@f(t)ﬂ[o,e]vyw — 1] (wi(dt, dy) — divi(dy))
U
— HOE OV, V(0 )

If we gather these results we obtain that differential of the single term in the sum in (26) is given by

im0 5+ Hxonm e

_ Dit=,9) ( dAM;(t) + 8 (£)dM; 1 (t) + Aoy 4(t)dt
+ H;(t)(gi(t, 1) — f(t, 1) + ai(t,0) + () Ak (2))dl

+ H;(t) / [e@‘ QR ORY —1] (i(dt, dy) — dtv;(dy))
U
— HOE O, V) )

Therefore the drift term of the sum in (26) is given by

I= Z Hi(t 9>( (1) — (6, 1) + ai(t, 0) + 6;(t ))dt + Z Acl(t) (t)dt.



We can represeritin the following way
Dol(t) (t_, 9)

I'= (11— Hg(t)) B, (9o (1) — f(E, 1) + acr ) (t,0) + g ()i ke (2))dl
K-1
D
+ il /\Cl () (t)dt,
=1

SinceD¢n () > 0 (it has exponential form) and

K—1 K—1
D;(t—,0) D;(t—,0)
e Aciw.ilt) = —/\01 (1) + Acr),cr e (t)
Z . Dne(i—,0) "0 Z’:l’;ﬂ(t) D ) (1—,8) € @ .01
K-1
D;(t—,0
= Z |:D1((t—)0) - 1} Actw)i(t) = Acr ),k (1)
i—1,i2C1 () L CT OV
we can write
Deip(t—,0)
I'=(1- HK(t))(ﬂBt< gerw () — f(t1) + acryy(t,0) + (6cr)(t) — DAcr 1), 1 (1)
K-—1
+ [M — 1} Acl(t),i(t)>dt.
i—1,i2C1 () - O (t=.0)

Now we split/ into two parts, the first ong (¢), which is not depending ahand the second onfg(¢, )
depending on bothandé i.e. we have

Dery(t=,6)
t

I'=(1-Hg(1)) (11(t) + Ix(¢,0))dt,

where
10 = (g010(8:0) = £.0) = (1= dong N (0 )
and ot
— D,(t—,0)
I(t,0) = (acl(t) (t,0) + | Z |:Dcl(t)(t—,9) - 1] Acl(t),i(t)>'
i=1,i£CL(t)
If (24) and (25) hold, thetd; (t) = 0 andI:(¢,0) = 0, which implies that the drift terni vanish.
Conversly, if the drift term¥ vanish, then on the s¢C* (¢) # K}:

L(t)+ Ix(t,0) =0 Vit < 6andVe € [0,T7].
Since for§ = t we havel,(¢,t) = 0, then we obtain thaf; (¢) = 0 which is equivalent to (24), and if
I, (t) = 0 then we must havé, (¢, §) = 0 which is equivalent to (25). O
4.2 Fractional recovery of treasury value with ratings migrations
In the case of fractional recovery of treasury value with ratings migrations we have
D(0,0) = Loy + Lirco102(p),

hence

D(t,0) = LicrprryDPore(t:0) + Licr=rydc2 ) B(t, 0)
K-—1 K-—1

= > Uopeilici=nDi(t,0) + > Loy icz=iy6:B(t, 0)
i—1 i=1



or equivalently
K—1

D(t,0) = " (Hit)Di(t, 0) + Hy ()3 B(t,6) ).
i=1
Theorem 7. The process of discounted prices of defaultable bond with fractional recovery of treasury
value are local martingales if and only if the following two conditions hold:
onthe se{C'(t) # K} forall ¢ < 6 and for all§ € [0, T*] we have :

gorwy(t,t) = f(t1) + (1 = dory) Aer ),k (27)
0 0
/0 Oécl(t) (t, u)du = Jcl(t) <]1[0’9} (t) ) UCl(t) (t, 'l))d'l)) (28)
B(t—,0) } = [ D.(t—,0) }
+ 6 1 |:’ - 1 )\ 1 t + j—7 - 1 )\ 1 . t .
O | Do 1= ) o),k (1) j1,§01(t) Do o) (11 0) o115 (t)

Proof. Discounted value of defaultable bonds with fractional recovery of market value equals

K-1

= (Hi(t)Di](;;e) + Hi,K(t)aiB%’te) ).
=1

By integration by parts formula we have:

d(HZ-,K(t)ai B(, 9>>

By
B(t_v 6)
By

+Hire (1) /U [e_<&*(t)]l[0,9]vy>U - 1] (uldt, dy) — div(dy)) <5*(t)n[0,9},dW(t)>U)>

(dMi,Ka) T (i (O Hi(8) + alt, 0) H (1)) dt

() = PO (v + a0
Hi(t)(gi(t, 1) — f(t, 1) + ai(t, 0))dt
Hl(t)/ [e@?(t)l[o,e],y)r] _ 1] (ui(dt, dy) — dtv;(dy))
U

- HOE OV, W0 )
Therefore the drift ternd is given by

& Dit—,0
I= 2 (tBt) <)\Cl(t),i(t) + H;(t)(gi(t, t) — f(t, 1) + ai(t, 9))>dt
1
+ B(E, O) s, (hwsc () Hit) + (4, 0) Hoc (0)dt = I + I + I,

=1

where



K-1 K-1 K-1
D;(t—,0 D;(t—,0
L = J(Bt)kcl(t)d(t)dt = J(Bt) H;(t) A (t)dt
j=1 j=1 i=1
K-1 K-1
D;(t—,0) Dj(t—,0)
= Hz 7 1,0
' (t) o <Z Di(t_’e)/\ () F Nia(t) ) at
i=1 J#
K-1 K-1
— Di(t—,0) Dj(t—,@) . )
= Hi(t) =% <Z [Di ) PO = A )t
i=1 J#i
K-1 K-1
B(t—,9)7 B(t_ve)—

We assume HJIM type condition for default-free bonds (condition 73 se0. It is easy to see that

( (Gi(t.1) — F(0.1) + as(t.0)) + 6 [m - 1] Ak ()

K-1
D;(t—,0
L+ 1, = E Hz(t) (B )
i=1 t

> A 1 h0 - 0= 8o ) ar

SinceH;(t) = 1 on the se{ C''(¢) = i} and zero on its complement we can write this as:

/ Deny(t—,0)
1+ L=(01-Hg(t)—FH— gorwy(t,t) — f(tt) — (1 = dcr () Ao o),k (1) + acr (s (¢, 6)

B,
B(t—,0)
ff U LA
i Dy (t—,0) })\Cl(t)’K(t)

K-1
= 1 A
" £CL(t) [D(Jl(t)(t—,@) ])‘Cl(t),y(t)>dt,
j

where we have also used a fact that we have summation only &iptd. Arguing as before we obtain
thesis of theorem. O]

4.3 Fractional recovery of par value with ratings migrations
In the case of fractional recovery of par value with ratings migrations we have

By

D(8,6) = Lirsgy + Lir<aydcz 5

hence

B
D(t,0) = ﬂ{Cl(t);éK}Dcl(t)(tae)+H{Cl(t):K}502(t)Ft

K-1 K—-1

By
= D ey lerm=o Dilt0) + Y Lorw-mlicaw-ndi5-
i=1 i=1 T

or equivalently
K-1

Dt0) =Y (Hult)Di(t,0) + Hise()ii ).

=1



Theorem 8. The processes of discounted prices of defaultable bond with fractional recovery of par
value are local martingales if and only if the following two conditions hold:

onthe se{C'(t) # K} forall ¢ < 6 and for all§ € [0, T*] we have :

gory(t:t) = f(t1) + (1 = derpy) Ao ),k (1) (29)
0 0
/O o) (t, u)du = JCI(t)<]1[0,9}(t)/ UCI(t)(t7U)dU> (30)
t
K-1
| Di(t—,6)
0, _— — 1A t I QA ().
+ dcn ) Den oy (t—.6) } o+ ) Do) (1—,0) } (1), (1)

J=1,j#C(t)
Proof. We have that discounted value of this bond is given by:

D(t,6) ‘= Dy(t,0) 5\
5 —; (#:t) 5 +Hi,KBT)—; (e /dHZK

The differential of the first part was calculated before, and the differential of the second part can be
written using martingal@/;

O 4l 1 (8) = LM, e (1) + 2L Hy () g (D)t
Bt i, K - Bt i, K Bt i i, K .

Hence drift term/ is given by
K—1
D;(t—,0) 0
I= ; <Bt ()‘Cl(t),i(t) + Hi(t)(gi(t, 1) — f(L, 1) + ai(t, 9)))dt + EHi(t)Ai,K(t)dt >

The sumZK 1D ( ))\ c1(1),j(t)dt we calculate in the proof of previous theorem, so we write the
drift term I in the form

=3 mnPe=0 ( gi(t 1) — F(t.1) + ai(t.0) + 5, [D(tl_e) - 1] Nt
i=1 S
K-1
=30 | - 1t - @ - st Jar

By similar arguments as before

Dt (t—0)
I=(1-Hg(t) -4 —— (901(t)(75,t) — f(t:t) + acry (L, 0) +

(t—,0)
+6c1 ) [Dcl(t)l(tg) ]/\cl x(t)+ Zﬁez [Cl(t)(te) - 1} Aty ,j(t) — (1= 5Cl(t)))‘01(t),K(t)>dt-

Arguing as before we obtain thesis of theorem. O

4.4 HJIM condition in terms of derivative of functional J

In the series of lemmas we present the form of derivative of functional J. First we recall the well known
lemma

Lemma 2. LetJ be a linear-quadratic functional i.e.

J(z) = —{a,z)y + = <Q:c ),

wherea € U, Q is a linear symmetric bounded Iinear operator, théis differentiable for eaclr € U
and
DJ(x) =—a+ Q.



Lemma 3. LetJ be a functional of the form :

J(z) = /U (e — 1+ Uy, <1 (y){z, y)v) v(dy),

wherev is a Levy measure which has exponential moments, fhiemlifferentiable at each € U and

DJ(x) = _/U (e — Wy, <1 (y)y v(dy).

Proof. The proof is straightforward. We use the existence of exponential moments of Levy measure
O

Lemma4. LetJ : U — R be a differentiable functional and be a smooth curve i.e. smooth mapping
u: R — U, then the mappindg (u(-)) : R — R is differentiable and
9J (u(h))
00

= (DJ(u(b0)), du(bo))v
0=0q

where bydu we denote differential of curves: R — U.

Corrolary 2. In a view of above lemmas HJM type condition (7) can be written as

a(t,0) = <DJ(/Oea(t,v)dv),a(t, 9)>U,

whereDJ(x) is given by:

DJ(z)=—a+ Qr — /U (e_<z’y>U — ]l\y|U§1(y))y v(dy),

so HJM type condition has the following form:

U
R0
_/U (e’< o o(tw)dvyyy _ ]1|y\U§1(y))<yaU(t,9)>UV(dy)-

Remark 3. For calculating HIM type conditions for models with credit risk we will also need the
following derivatives:
i) for fractional recovery of treasury

0 ( B(t—,0) B R"(gl(t_,u)—f(t—,u))du
(o =1) = (-0 - ra-0)e ,

ii) for fractional recovery of par value

0 1 Ry
- _ - g1(t—,u)du

iii) for fractional recovery of market value with rating migrations

o ( Di(t—,0) " (9 o (=) =91 (1= )
_ B e J— J— . _ (z) El (3 ’

a0 (Dcl(w (t—,0) 1) (gcl(t) (=,0) ~ ailt ’0)) ‘ ’
iv) for fractional recovery of treasury value with rating migrations

0 ( B(t-,0) " (9 oyt )= () du
RS . S A A—— = — _ _ t (t) ) )
(.%,(Dw(t)(t_’e) 1) (901 (t=.0) = £(t=.0))e ,
v) for fractional recovery of par value with rating migrations

g ;_1 — L (t— g)eRtegcl(t)(t—,u)du
96 \ Dea gy (i—, 0) germ '

a(t,0) = —{(a,0(t,0))y + <Q /00 o(t,v)dv,o(t, 9)>



From these lemmas and previous results we obtain a series of propositions. For models without
ratings we have

Theorem 9. i) Condition (13) for fractional recovery of market value has the form

al(t,0) = <DJ1(/Oeal(t,v)dv>,al(t,9)>[].

if) Condition (17) for fractional recovery of treasury has the form
0 Ry
ai(t,9) = (DJy ( / ot v)dv) o1(,0)) 40X (g1(t=,0) = (1,0 )e ¢ (@ Umm=mad,
0 U
iif) Condition (22) for fractional recovery of par value has the form
0 R,
al(tve) = <DJ1 </ Ul(tvv)dv)aal(t50)>[] +6>\tgl(t_’9)e ¢ gl(t_M)du'
0

And for models with ratings we have:

Theorem 10. i) Condition (25) for fractional recovery of market value has the form

o
aciyy(t,b) = <DJ01(t)</O GCl(t)(tvv)dv>7001(t)(t79)>U

K-1 R
+ )‘Cl(t),i(t)(gcl(t)(t—,e)_gi(t—,9)>€te(gcl(f)(t_7u)_gi(t_’u))du.
i=1,i#C1(t)
if) Condition (28) for fractional recovery of treasury has the form
0
aciy(t,b) = <DJ01(t)</ 001@)(@U)dv>,001(t)(t79)>
0 U
K-1 Ry
D Acpa®) (gCl(t) (t—,0) — gi(t—,G))e ¢ G0t (o (=) =g (= u))du
i=1,i£C(t)

R
+ a1 Act ),k (901(t) (t—,0) — f(t—, 9))6 ¢ G (=) =S (=w)du

iii) Condition (30) for fractional recovery of par value has the form

o
aciy(t,0) = <DJcl(t)</0 UCl(t)(taU)dv>>0'()1(t)(t70>>U
K-1

Ro —u)—g;(t—u))du
+ Z /\cl(t),i(t)(gcl(t)(t—ﬁ)—gz‘(t—ﬁ))e ¢ et (tmw)mgilt=w)d
i=1,i£CL(t)
R

S A t—,0)e ¢ 9orw
+ dcr A @),k 9ot 1) (t—, 0)e ~

5 Musiela parameterization and HIJM equations

Results similar to those of Section 3.1 were obtained by Ozkan and Schmidt in [12]. In [12] HIM
conditions are formulated in terms of Musiela parameterization and to obtain them the authors used an
Ito formula in Hilbert spaces. To do so some technical conditions were needed which are not required
in the direct approach presented here. In this final section we clarify a connection between direct and
Musiela approaches and give some additional information on the latter.



Assume thafl™ = +oco and start with the following form of HIM equation:

t t
f@&,T)= f(0,T) +/ a(s,T)ds +/ (o(s,T),dZ(s))u- (31)
0 0
If we want to work under Musiela parametrization we have topst ¢t + = in (31), and then we have
t t
ft,t+x)= f(0,t +z)+ / a(s,t+x)ds + / (o(s,t+x),dZ(s))u.
0 0

Therefore for each we have defined the real functigitz, ¢ + -) which is the current forward curve. If
we introduce right-shift operatdt(¢):

St)p(x)=¢(t+x), t>0, x>0.
then we can write equation (31) in the form
t t
flt,t+x) = S)f(0,z)+ / S(t — s)a(s,s + x)ds + / (S(t—s)o(s,s+x),dZ(s))u.
0 0

Introducing new objects:

fx) = fltt+a)
as(z) = a(s,s+x)
[Gs(w)](z) = (o(s,s+2),w)y VueU,

note that, is a process with values in the space of curvesarid a process with values in the space of
operators acting from the space whefes) lives into the space of forward curves. We obtain equation
in the space of forward curves:

N t t
o= SOfo+ /0 S(t — 8)a,ds + /0 S(t — 5)6,dZ(s). (32)

The formulea defining, @ and [5(u)] establish a one-to-one correspondence between the classical and
Musiela parameterization and the HIM conditions formulated in one language can be rewritten in the
other one.

We give now some background material to treat equation (32) in a precise way. We start from
a relationship between Hilbert-Schmidt operators and integral operators with square integrable kernel
(see [4] Sect 11.2):
Theorem D. A linear operatorB : £2(01, 1) — £2(0s, uo), is Hilbert-Schmidt operator if and only
if it is an integral operator with square integrable kernel i.e.

Bh(y) = [ dehm e, 1Blgs = ([ [ Feamnm) <

It is easy to see that to a given HS operalbrorresponds kernél(z, z) with the following series
representation
b(z,2) = Y [B(en)](2)en(®),
where B* is adjoint operator of3. Indeed. For any orthonomal badis,} of £2(0, 1) we have for
h € £L?(©, ) andx € R:

BWIE) = o) [[[Bel@heInta) = |

S}

(ZiE @lerento) ) utaz).

n



Therefore, if7, is a Hilbert-Schmidt operator frofi = £2(01, u1) into £2(04, u2) with the kerneb;
we have

/@ bs(z, v)u(v)p (dv) = [G5(u)] () = (o(s,s +x),h)v.
1
To move from Musiela parametrization (32) to classical HIM equation (31) we identify:

O'(S,S +l’,§) = bs(x7§)7

hence
U(ta T7 g) = bt(T —t, 5)

For any sequencgy,) of positive numbers denote iy = 12(5) the Hilbert space of all sequences
u = (uy) such that

o0
luly = Zuiﬁk < 00
k=1

If 5 =1, k=1,...one writes simply?.
Assume thatZ; (t), Z»(t), . . . are zero mean, uncorrelated, real Lévy processes such that:

E|Z(t)?=t, i=1,2...

ThenZ(t) = (Z:1(t), Z2(t),...) is a Lévy process in any spaéé = [*(p) where> 7, pr < oo.

(In fact, by considering expansions with respect to eigenvectors of the covariance operator, arbitrary
Hibert space valued Lévy process, with finite second moments, can be identified with a sequence
Z1(t), Zo(t),...). If H is an arbitrary Hilbert space then

E‘ /0 " o(s)az(s H —E /0 6 s ds

where||-|| ;5 denotes the Hilbert-Schmidt norm froi to H. Note that any Hilbert-Schmidt operator
¢ : 1> — His of the form

o(u) = Zuihi, u = (u;) €12
i=1

where oo
161l s = > [hal®
=1

in particular if H = L?([0, o), p), Wherep is positive weight, theh; = h;(0), i =1,2,..., 8 >0,
and - -

S inly = [ 3 o) o)

i=1 0 =1
and

$(w)(0) =Y hi(O)ui, uel? 0>0.
=1
Assume in particulary, that the positive functipiis such that for each> 0

p(x)
sup
>0 p(x + t)

= M(t) < +oc0, t2>0,

whereM (t) < Mpe®t, t >0 for someM, > 0 andw > 0.



Then(S(t),t > 0) is aCp - semigroup on.2([0, 00), p). In fact :

SO = [t oPotds = [Tt P L8 ot 4 a)ds

p(z +1)
M(t)/o |h(t + 2)|?p(t + z)dx < M(t)|h|%

IN

and therefore

The generatoA of S is of the form

andh € D(A) if and only if  absolutely continuous o), +oc) and [ \‘g—ZPp(G)dQ < 0. Thus (32)
can be written in the mild form:

. o -
df, = <69ft + dt> dt + 6,dZ(1).
If & = F(f,), 61 = G(f1), then(f,) is a solution of the stochastic evolution equation:

df = (Af + F(f))dt + G(f)dZ(t)

For some information about the proper state space for the bond (LIBOR) curves, see e.g. [15].
Acknowledgement We thank Dr Thorston Schmidt for sending the paper [12].
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