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Abstract

A market with defaultable bonds modelled by equations with Lévy noise is considered. Conditions
under which the market is free of arbitrage are derived.

1 Introduction

The paper is concerned the market containing defaultable bondes issued by companies. The probabilities
of deafaults depend on economic conditions of the firms and are reflected by rating classes designated
by rating agencies. Contrary to majority of the papers on the subject see [1], which use for modelling
Brownian motion, we apply the theory of Lévy processes with discontinuous trajectories. Credit risk
models with Lévy noise have been recently considered by Eberline and Özkan [6] and by Özkan and
Schmidt [12].

Our main aim is to derive conditions under which the market with defaultable bonds, issued by firms
with time dependent and random rating classes is free of arbitrage. Three types of recovery payments
are considered: fractional recover of market value, fractional recovery of treasury value and fractional
recovery of par value. The retaing classes change according to a conditional, continuous time Markov
chains and the default time is equal to the moment of entering by the firm the worst rating class.

The paper starts from recalling basic facts on default-free bond market and on Lévy processes, in
general, infinite dimensional. The case of two rating classes is considered in Section 3 and the general
case in Section 4. Obtained theorems provide HJM conditions for the arbitrage- free property. The final
section introduces the the market description in the Musiela parameterization and inbdicates how the
results from earlier chapters can be applied to to the Musiela framework.

The results of the present paper extend those obtained by Özkan and Schmidt [12] for the fractional
recovery case. Özkan and Schmidt approach is based on Musiela parameterization and requires more
stringent conditions than ours.

2 Preliminaries

We will consider processes on a complete probability space(Ω,F ,P). We take Levy processZ(t)
with values inU as source of uncertainty in model. This means thatZ(t) is process with independent
and stationary increments having values inU which is some abstract separable Hilbert space with inner
product denoted by〈·, ·〉U . We can associate withZ(t) measure of its jumps, denoted byµ i.e. for any
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A ∈ B(U) such thatA ⊂ U\{0} we have :

µ([0, t], A) =
∑

0<s≤t

11A(∆Z(s)).

The measureν defined by:
ν(A) = E(µ([0, 1], A)),

is called Levy measure of processZ, stationarity of increments implies that we have also:

E(µ([0, t], A)) = tν(A).

The Lévy-Khintchine formula shows that characteristic function of Lévy process has a form:

Eei〈λ,Z(t)〉U = etψ(λ),

where

ψ(λ) = i〈a, λ〉U − 1
2
〈Qλ, λ〉U +

∫

U
(ei〈λ,x〉U − 1− i〈λ, x〉U11{|x|U≤1}(x))ν(dx),

anda ∈ U , Q is symmetric non negative nuclear operator onU , ν is a measure onU with ν({0}) = 0
and ∫

U
(|x|2U ∧ 1)ν(dx) < ∞.

MoreoverZ has a well known Lévy-Ito decomposition:

Z(t) = at + W (t) +
∫ t

0

∫

|y|U≤1
y(µ(ds, dy)− dsν(dy)) +

∫ t

0

∫

|y|U>1
yµ(ds, dy),

whereW is a Wiener process with values inU and covariance operatorQ.

Let r(t), t ≥ 0 be the short rate process. If at moment0 one puts into the bank account1 then at
momentt one has

Bt = e
R t
0 r(σ)dσ.

Let B(t, θ), 0 ≤ t ≤ θ be the market price at momentt of a bond paying1 at the maturity timeθ. The
forward rate curve is a functionf(t, θ) defined for t ≤ θ and such that

B(t, θ) = e−
R θ

t f(t,s)ds. (1)

It is convenient to assume that once a bond has matured its money equivalent goes to the bank account.
ThusB(t, θ), the market price at momentt of a bond paying1 at the maturity timeθ, is defined also for
t ≥ θ by the formula

B(t, θ) = e
R t

θ r(σ)dσ. (2)

We postulate here the following dynamic for forward rates

df(t, θ) = α(t, θ)dt + 〈σ(t, θ), dZ(t)〉U , (3)

Sometimes we use another form of SDE for forward rates

df(t) = α̃(t)dt + σ̃(t)dZ(t),

whereα̃(t) is a function on[t, T ] given byα̃(t)(θ) = α(t, θ) and σ̃(t) is linear operator fromU into
L2[0, T ∗] defined by

(σ̃(t)u)(θ) = 〈σ(t, θ), u〉U .
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For t > θ we put:
α(t, θ) = σ(t, θ) = 0. (4)

It follows from (3) that fort ≤ θ:

f(t, θ) = f(0, θ) +
∫ t

0
α(s, θ)ds +

∫ t

0
〈σ(s, θ), dZ(s)〉U ,

and fort ≥ θ according to (4):

f(t, θ) = f(0, θ) +
∫ θ

0
α(s, θ)ds +

∫ θ

0
〈σ(s, θ), dZ(s)〉U .

Thus the processf(t, θ) for t ≥ θ is constant for eachθ > 0, say equal tof(θ, θ), and it can be identified
with the short rate process:

r(θ) = f(θ, θ) = f(0, θ) +
∫ θ

0
α(s, θ)ds +

∫ θ

0
〈σ(s, θ), dZ(s)〉U .

HJM postulatestates that discounted bond prices:

B̂(t, θ) =
B(t, θ)

Bt
,

are local martingales for eachθ ∈ [0, T ∗]. Since fort > u we havef(u, u) = f(t, u), then

Bt = e
R t
0 f(u,u)du = e

R t
0 f(t,u)du,

and thus discounted bond prices can be written as:

B̂(t, θ) =
B(t, θ)

Bt
= e−

R θ
t f(t,u)due−

R t
0 f(t,u)du = e−

R θ
0 f(t,u)du,

and hence HJM postulate is that processesB̂(·, θ) , θ ∈ [0, T ∗] given by equation

B̂(t, θ) = e−
R θ
0 f(t,u)du,

are local martingales. Jakubowski and Zabczyk show in [9] that under mild conditions the HJM postulate
implies existence of exponential moments of Levy measure

∫

|y|U>1
e〈c,y〉U ν(dy) < ∞, ∀c ∈ U. (5)

The following theorem, under different type of conditions, goes back to the paper [2] by Björk, Di Massi,
Kabanov and Runggaldier.
Theorem A. ([8]) Assume that the Lévy measureν satisfies condition (5). Discounted bond prices are
local martingales if and only if the following HJM-type condition holds for eachθ ∈ [0, T ∗] and∀t ≤ θ:

∫ θ

t
α(t, v)dv = −〈σ̃∗(t)11[0,θ], a〉U +

1
2
〈Qσ̃∗(t)11[0,θ], σ̃

∗(t)11[0,θ]〉U ,

+
∫

U

(
e−〈σ̃

∗(t)11[0,θ],y〉U − 1 + 11{|y|U≤1}(y)〈σ̃∗(t)11[0,θ], y〉U
)

ν(dy). (6)

It is convinient to express HJM condition in terms of logaritm of moment generating function of Levy
processZ i.e. in terms of the functionalJ : U → R:

J(u) = −〈u, a〉U +
1
2
〈Qu, u〉U +

∫

|y|U≤1
e−〈u,y〉U − 1 + 〈u, y〉Uν(dy)

+
∫

|y|U>1

(
e−〈u,y〉U − 1

)
ν(dy),
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Now we can useJ to express “dirft vanishing” condition as:
∫ θ

t
α(t, v)dv = J

(
11[0,θ](t)

∫ θ

t
σ(t, v)dv

)
∀t ≤ θ and ∀θ ∈ [0, T ∗]. (7)

This transparent condition was first formulated by Eberlein and Raible in [5] for deterministic functions
σ(t, θ) in finite dimensional setting, and under mild assumptions onσ(t, θ) in infinite dimensional setting
by Jakubowski and Zabczyk in [8].

In what follows we assume that condition (7) is fulfilled.

Remark 1. It follows from (4) that we can write (7) as
∫ θ

0
α(t, v)dv = J

( ∫ θ

0
σ(t, v)dv

)
∀t ≤ θ and ∀θ ∈ [0, T ∗]. (8)

Using integration by parts formula and the dynamic of discounted bond i.e.dMθ
t = dB̂(t, θ) (see [8]),

we obtain

Theorem 1. The process of price of bond solves the following stochastic differential equation:

dB(t, θ) = B(t−, θ)
( (

f(t, t) + ā(t, θ)
)
dt +

∫

U

[
e−〈σ̃

∗(t)11[0,θ],y〉U − 1
]
(µ(dt, dy)− dtν(dy))

−〈σ̃∗(t)11[0,θ], dW (t)〉U
)

,

whereā(t, θ) has form

ā(t, θ) = −〈11[0,θ], α̃(t)〉+ J(σ̃∗(t)11[0,θ])

and〈·, ·〉 denotes the scalar product inL2([0, T ∗]).

Corrolary 1. Solution of above equation can be writen as

B(t, θ) = B(0, θ) exp
( ∫ t

0
f(s, s)ds−

∫ t

0
〈11[0,θ], α̃(s)〉ds−

∫ t

0
〈σ̃∗(s)11[0,θ], dZ(s)〉U

)
,

and if HJM-type condition (7) holds, then

B(t, θ) = B(0, θ) exp
( ∫ t

0
f(s, s)ds−

∫ t

0
J(σ̃∗(s)11[0,θ])ds−

∫ t

0
〈σ̃∗(s)11[0,θ], dZ(s)〉U

)
.

3 HJM conditions for credit risk models

In default-free world by bond maturing atθ with face value1 we mean financial instrument whose payoff
is 1 at timeθ. In defaultable case we have several variants describing amount and timing of so called
recovery paymentwhich is paid to bond holders if default has occurred before bond’s maturity. If by
τ we denote the moment of default, then, generally speaking, the payoff of the defaultable bond is as
follows:

D(θ, θ) = 11{τ>θ} + 11{τ≤θ} · recovery payment.

If δ is a recovery rate process, thenrecovery paymentcan take different forms (see eg. [1]):

• δtD(τ−, θ)Bθ
Bτ

- fractional recovery of market value- at time of default bondholders receive a
fraction of pre-default market value of defaultable bond (i.e.D(τ−, θ)):

D(θ, θ) = 11{τ>θ} + 11{τ≤θ} · δtD(τ−, θ)
Bθ

Bτ
.
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• δ - fractional recovery of Treasury value- fixed fractionδ of bond’s face value is paid to bond-
holders at maturityθ:

Dδ(θ, θ) = 11{τ>θ} + 11{τ≤θ} · δ.

• δBθ
Bτ

- fractional recovery of par value- fixed fractionδ of bond’s face value is paid to bondholders
at default timeτ :

D∆(θ, θ) = 11{τ>θ} + 11{τ≤θ} · δ
Bθ

Bτ
.

The values of defaultable bonds fort ≤ θ are given by (11),(15) and (20) respectively.

We assume that the moment of defaultτ is aG stopping time, and that our filtrationG = F ∨ H,
whereF = (Ft)t≥0 andH = (Ht)t≥0 are filtrations generated by observing market and observing
default time i.e.Ht = σ(τ ≤ u : u ≤ t), respectively. Let(Ht)t≥0 be a default indicator process i.e.
Ht = 11{τ≤t}. We assume thatτ admits anF intensity(λt)t≥0 which is anF adapted process such that
Mt given by the formula

Mt = Ht −
∫ t∧τ

0
λudu = Ht −

∫ t

0
(1−Hu)λudu

follows aG–martingale.

We denote byg1(t, u) the pre-default forward rate corresponding to pre-default term structure ob-
served on the market. We postulate here that

dg1(t, θ) = α1(t, θ)dt + 〈σ1(t, θ), dZ1(t)〉U ,

whereZ1 is Lévy process with values inU which has the following Lévy-Ito decomposition:

Z1(t) = a1t + W1(t) +
∫ t

0

∫

|y|U≤1
y(µ1(ds, dy)− dsν1(dy)) +

∫ t

0

∫

|y|U>1
yµ1(ds, dy).

If D1(t, θ) = e−
R θ

t g1(t,u)du, then by applying Itò lemma in analogous way as in the default free case we
have (in theoremJ1 corresponds toZ1 in the same way asJ corresponds toZ)

Theorem 2. Dynamic of the processD1(t, θ) is given by

dD1(t, θ) = D1(t−, θ)
((

g1(t, t) + ā1(t, θ)
)
dt +

∫

U

[
e−〈σ̃

∗
1(t)11[0,θ],y〉U − 1

]
(µ1(dt, dy)− dtν1(dy))

−〈σ̃∗1(t)11[0,θ], dW1(t)〉U
)

,

whereā1(t, θ) satisfies

ā1(t, θ) = −〈11[0,θ], α1(t)〉+ J1(σ̃∗1(t)11[0,θ]).

In what follows we use the following technical lemma:

Lemma 1. Let τ andHt be as above andDt be a process of the form:

Dt = (1−Ht)Xt + HtYt + HtZτ ,

where processesXt, Yt have local martingale partsMX
t and MY

t and absolutely continuous drifts
αX

t , αY
t , which means that processesXt, Yt have decompositions:

dXt = αX
t dt + dMX

t ,

dYt = αY
t dt + dMY

t .
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ThenDt is local martingale if and only if for eacht ∈ [0, T ∗] the following conditions hold:

αX
t = λt(Xt− − Yt− − Zt) on the set{τ > t} (9)

αY
t = 0 on the set{τ ≤ t} (10)

Proof. By definition ofHt

Dt = (1−Ht)Xt + HtYt + HtZτ = (1−Ht)Xt + HtYt +
∫ t

0
ZudHu.

SinceHt is a finite variation process, the integration by parts formula implies

dDt = (1−Ht)dXt −Xt−dHt + HtdYt + Yt−dHt + ZtdHt

= (1−Ht)dMX
t + HtdMY

t

+(1−Ht)αX
t dt + Htα

Y
t dt + (−Xt− + Yt− + Zt)dHt

= (1−Ht)dMX
t + HtdMY

t + (−Xt− + Yt− + Zt)dMt

+(1−Ht)(αX
t + λt(−Xt− + Yt− + Zt))dt + Htα

Y
t dt,

and hence the result follows.

Remark 2. In the next sections, the processXt will correspond to predefault value,Yt value of payments
after default, andZt value of payments at default timeτ .

3.1 Fractional recovery of market value

Let us focus on defaultable bonds with fractional recovery of market valueD(t, θ) . This kind of bonds
pays1-unit cash if default didn’t occurred before maturityθ i.e. if default momentτ > θ, and if bond
defaults beforeT we have recovery payment at default time which is a fractionδt of it’s market value
just before default time, so the recovery payment is equal toδτD(τ−, θ). Therefore

D(θ, θ) = 11{τ>θ} + 11{τ≤θ}δτD(τ−, θ)
Bθ

Bτ

and fort ≤ θ we model a value of defaultable bond by

D(t, θ) = 11{τ>t}e−
R θ

t g1(t,u)du + 11{τ≤t}δτD(τ−, θ)
Bt

Bτ
, (11)

whereg1(t, u) is the pre-default forward rate corresponding to pre-default term structure. Our first
objective is to derive the HJM drift condition in the case of defaultable bonds with fractional recovery
of market value given by (11). Using the processHt we can representD as

D(t, θ) = (1−Ht)D1(t, θ) + HtδτD1(τ−, θ)
Bt

Bτ
.

Theorem 3. (HJM drift condition forD(t, θ)) Discounted prices of defaultable bonds with fractional
recovery of market value are local martingales if and only if the following conditions hold on set{τ >
t}:
∀ θ ∈ [0, T ∗] and for eacht ≤ θ

g1(t, t) = f(t, t) + (1− δt)λt, (12)∫ θ

0
α1(t, v)dv = J1

(
11[0,θ](t)

∫ θ

t
σ1(t, v)dv

)
. (13)
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Proof. Denoting byD̂(t, θ) the discounted value ofD(t, θ) we have

D̂(t, θ) =
D(t, θ)

Bt
= (1−Ht)

D1(t, θ)
Bt

+ Htδτ
D1(τ−, θ)

Bτ
.

We see that this process has structure as in Lemma 1. Therefore we can apply lemma with

Xt =
D1(t, θ)

Bt
, Yt = 0, Zt = δt

D1(t−, θ)
Bt

,

where, by Itò lemma , drift ofX is given by

µX
t =

D1(t−, θ)
Bt

(g1(t, t)− f(t, t)− 〈11[0,θ], α1(t)〉+ J1(σ̃∗1(t)11[0,θ])).

>From lemma 1 we see that̂D(t, θ) is martingale if and only if (9) holds on the set{τ > t} for for all
θ ∈ [0, T ∗] and allt ≤ θ:

D1(t−, θ)
Bt

(g1(t, t)− f(t, t)− 〈11[0,θ], α1(t)〉+ J1(σ̃∗1(t)11[0,θ])) = λt

(
D1(t−, θ)

Bt
− δt

D1(t−, θ)
Bt

)
,

and this is equivalent to :

g1(t, t)− f(t, t)− 〈11[0,θ], α1(t)〉+ J1(σ̃∗1(t)11[0,θ]) = λt(1− δt). (14)

(12) and (13) imply (14), sôD(t, θ) is a local martingale underP.
If D̂(t, θ) are local martingales underP, then equality (14) holds on the set{τ > t} for all t ≤ θ and
for all θ ∈ [0, T ∗]. (12) follows from equality (14) taking forθ = t and from the fact that forθ = t we
have:

〈11[0,t], α1(t)〉 = 0, J1(σ̃∗1(t)11[0,t]) = 0.

(13) follows immediately from (14) and (12).

3.2 Fractional recovery of treasury

The holder of defaultable bond with fractional recovery of treasury receives1 if there is no default by
θ, and if default has occurred before maturityθ, then the fixed amountδ ∈ [0, 1] is paid at maturity to
bondholder. Therefore, we have the following payoff at maturity :

Dδ(θ, θ) = 11{τ>θ} + 11{τ≤θ} · δ.
Since payingδ at maturityθ is equivalent to payingδB(τ, T ) at default timeτ , we can write

Dδ(t, θ) = 11{τ>t}e−
R θ

t g1(t,u)du + 11{τ≤t} · δ ·B(t, θ),

so using introduced notation we have

Dδ(t, θ) = (1−Ht)D1(t, θ) + HtδB(t, θ). (15)

Theorem 4. (HJM drift condition forDδ(t, θ)) The processes of discounted defaultable bond prices
with fractional recovery of treasury are local martingales if and only if the following condition holds:

on the set{τ > t} for eacht ∈ [0, θ] and for allθ ∈ [0, T ∗] we have:

g1(t, t) = f(t, t) + (1− δ)λt (16)∫ θ

0
α1(t, v)dv = J1

(
11[0,θ](t)

∫ θ

t
σ1(t, v)dv

)
+ δ

(
B(t−, θ)
D1(t−, θ)

− 1
)

λt. (17)
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Proof. From (15) we have

D̂δ(t, θ) =
Dδ(t, θ)

Bt
= (1−Ht)

D1(t, θ)
Bt

+ Htδ
B(t, θ)

Bt
.

Again, we can see that we can apply Lemma 1 with

Xt =
D1(t, θ)

Bt
, Yt = δ

B(t, θ)
Bt

, Zt = 0,

where drift ofX is given by

µX
t =

D1(t−, θ)
Bt

(g1(t, t)− f(t, t)− 〈11[0,θ], α1(t)〉+ J1(σ̃∗1(t)11[0,θ])),

and drift ofY is given by

µY
t =

B(t−, θ)
Bt

(−〈11[0,θ], α(t)〉+ J(σ̃∗(t)11[0,θ])).

Condition (10) of Lemma 1 is equivalent to
∫ θ

0
α(t, v)dv = J

(
11[0,θ](t)

∫ θ

t
σ(t, v)dv

)
. (18)

on the set{τ ≤ t} for eacht ∈ [0, θ] and for allθ ∈ [0, T ∗]. One recognize this equality as HJM type
condition for default-free bonds (condition 7), and we assume this condition is fulfilled. Hence the local
martingale property for̂Dδ(t, θ) is equivalent to occurrence on the set{τ > t} for all t ≤ θ and for all
θ ∈ [0, T ∗] of the equality

D1(t−, θ)
Bt

(g1(t, t)− f(t, t)− 〈11[0,θ], α1(t)〉+ J1(σ̃∗1(t)11[0,θ])) = λt

(
D1(t−, θ)

Bt
− δ

B(t−, θ)
Bt

)
,

which in turn is equivalent to

g1(t, t)− f(t, t)− 〈11[0,θ], α1(t)〉+ J1(σ̃∗1(t)11[0,θ]) = λt

(
1− δ

B(t−, θ)
D1(t−, θ)

)
. (19)

Since conditions (16) and (17) imply (19), then they imply thatD̂δ(t, θ) are local martingales underP.
Conversely, ifD̂δ(t, θ) are local martingales underP, then (19) holds. Takingθ = t we obtain from
(19)

(
g1(t, t)− f(t, t)− (1− δ)λt

)− 〈11[0,t], α1(t)〉+ J1(σ̃∗1(t)11[0,t]) + δ

(
B(t−, t)
D1(t−, t)

− 1
)

λt = 0

which implies (16), sinceB(t−,t)
D1(t−,t) = 1. From (16) and (19) we have (17).

3.3 Fractional recovery of par

In the case of fractional recovery of par value the holder of defaultable bond receives 1 unit cash if there
is no default prior to maturity and if bond has defaulted a fixed fractionδ of par value is paid at default
time. Therefore the payoff at maturity has form

D∆(θ, θ) = 11{τ>θ} + 11{τ≤θ} · δ
Bθ

Bτ
,

and before maturity has form

D∆(t, θ) = 11{τ>t}D1(t, θ) + 11{τ≤t} · δ
Bt

Bτ
,

which is equal to

D∆(t, θ) = (1−Ht)D1(t, θ) + Htδ
Bt

Bτ
. (20)
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Theorem 5. (HJM drift condition forD∆(t, θ))
Discounted prices of defaultable bond with fractional recovery of par are local martingales if and only
if the following conditions hold on set{τ > t} for eacht ∈ [0, θ] and allθ ∈ [0, T ∗]:

g1(t, t) = f(t, t) + (1− δ)λt, (21)∫ θ

0
α1(t, v)dv = J1

(
11[0,θ](t)

∫ θ

t
σ1(t, v)dv

)
+ δ

(
1

D1(t−, θ)
− 1

)
λt. (22)

Proof. By (20) we have

D̂∆(t, θ) =
D∆(t, θ)

Bt
= (1−Ht)

D1(t, θ)
Bt

+ Htδ
1

Bτ

Again, we see that this process has structure as in Lemma 1, therefore we can apply it with

Xt =
D1(t, θ)

Bt
, Yt = 0, Zt = δ

1
Bt

.

By Lemma 1 we see that̂D∆(t, θ) is martingale if and only if on the set{τ > t} for all t ≤ θ and for
all θ ∈ [0, T ∗]:

D1(t−, θ)
Bt

(g1(t, t)− f(t, t)− 〈11[0,θ], α1(t)〉+ J1(σ̃∗1(t)11[0,θ])) = λt

(
D1(t−, θ)

Bt
− δ

1
Bt

)

(it is condition (9)). In turn, this equality is equivalent to

g1(t, t)− f(t, t)− 〈11[0,θ], α1(t)〉+ J1(σ̃∗1(t)11[0,θ]) = (1− δ)λt − δλt

(
1

D1(t−, θ)
− 1

)
. (23)

(21) and (22) imply (23), so they imply that̂D∆(t, θ) are local martingales. Conversely, ifD̂∆(t, θ) are
local martingales, then (23) holds on the set{τ > t} for t ≤ θ and for allθ ∈ [0, T ∗]. Hence, taking
θ = t, we conclude (21), and finally (22).

4 Credit rating migration case

Our objective is to generalize results of the previous section and derive HJM drift condition for models
with the processC1(t) describing migration of credit ratings of bonds with different kind of recovery.
Credit rating migration processC1 which is modelled by the conditional Markov chain with values in
K = {1, . . . , K} with absorbtion stateK (for details see Bielecki, Rutkowski [1]). With the statei it is
associated the term structuregi. It is reasonable to avoid arbitrage to assume that

gK−1(t, θ) > gK−2(t, θ) > . . . > g1(t, θ) > f(t, θ)

for all t ∈ [0, θ] and allθ ∈ [0, T ∗].
Conditional infinitesimal generator of the processC1 at t givenGt has the form

Λ(t) =




λ1,1(t) λ1,2(t) · · · λ1,K−1(t) λ1,K(t)
λ2,1(t) λ2,2(t) · · · λ2,K−1(t) λ2,K(t)

...
...

...
...

...
λK−1,1(t) λK−1,2(t) · · · λK−1,K−1(t) λK−1,K(t)

0 0 · · · 0 0




where off-diagonal processesλi,j(t), i 6= j are nonnegative processes adapted toG and diagonals
elements are negative and are determined by off-diagonals by the formula

λi,i(t) = −
∑

j∈K\{i}
λi,j(t)

9



We can thought of−λi,i(t) as stochastic intensities of jumping off thei-state, andpi,j(t) = λi,j(t)
λi,i(t)

as a
probability of jumping from the statei to the statej given that we jump-off statei. With slight abuse of
notation and we can write conditional infinitesimal generator ofC1 in an equivalent form as

Λ(t) =




−λ1,1(t) λ1,1(t)p1,2(t) · · · λ1,1(t)p1,K−1(t) λ1,1(t)p1,K(t)
λ2,2(t)p2,1(t) −λ2,2(t) · · · λ2,2(t)p2,K−1(t) λ2,2(t)p2,K(t)

...
...

...
...

...
λK−1,K−1(t)pK−1,1(t) λK−1,K−1(t)pK−1,2(t) · · · −λK−1,K−1(t) λK−1,K−1(t)pK−1,K(t)

0 0 · · · 0 0




For any functionh : K → R we introduce the shorthand notation:

Λ(u)h(i) =
K∑

j=1

λij(u)h(j).

From Bielecki, Rutkowski [1] we quote the following theorems and corollary which will be frequently
used.
Theorem B. For every functionh : K → R the processMh, given by the formula

Mh(t) = h(C1(t))−
∫ t

0
Λ(u)h(C1(u))du, ∀t ∈ R+,

is aGmartingale.
Theorem C. Leth be a real valued functionh : K×K → R, then the processNh, given by the formula

Nh(t) =
∑

0<u≤t

h(C1(u−), C1(u))−
∫ t

0

∑

k 6=C1(u)

λC1(u),k(u)h(C1(u), k)du, ∀t ∈ R+,

is aGmartingale.
Corrolary A. Define the auxiliary processHi(t) = 11{i}(C1(t)). By Theorem 4

Mi(t) = Hi(t)−
∫ t

0
λC1(u),i(u)du

is aG -martingale.
Corrolary B. For i 6= j we define auxiliary processHi,j(t) by the formula

Hi,j(t)
∆=

∑

0<u≤t

H i(u−)Hj(u), ∀t ∈ R+.

This processHi,j counts the number of jumps of migration processC1(t) from the statei to the statej
up to time t. For arbitraryi, j ∈ K, i 6= j, the processes

Mi,j(t) = Hi,j(t)−
∫ t

0
λi,j(u)Hi(u)du = Hi,j(t)−

∫ t

0
λC1(u),j(u)Hi(u)du,

and

MK(t) = HK(t)−
∫ t

0

K−1∑

i=1

λi,KHi(u)du = HK(t)−
∫ t

0
λC1(u),K(1−HK(u))du,

areGmartingales.

To describe the credit risk we need also, beside the credit migration processC1 defined above, the
processC2(t) of previous rating. If byτ1, τ2, τ3, . . . we denote the consecutive moments of jumps of
credit migration processC1, then for t ∈ [τk, τk+1)

C1(t) = C1(τk), C2(t) = C1(τk−1).

10



We denote byC(t) the two dimensional credit rating process defined by

C(t) = (C1(t), C2(t)).

Therefore the pre-default term structure depending onC(t) is given by the formula

g(t, u) = gC1(t)(t, u) = 11{C1(t)=1}g1(t, u) + 11{C1(t)=2}g2(t, u) + . . . + 11{C1(t)=K−1}gK−1(t, u).

We sum up here toK − 1, since the lastK-th rating corresponds to default event

τ = inf
{
t > 0 : C1(t) = K

}

It is obvious that each recovery payment depends on credit rating before default i.e.

δt = δC2(t)(t) = 11{C2(t)=1}δ1(t) + 11{C2(t)=2}δ2(t) + . . . + 11{C2(t)=K−1}δK−1(t),

whereδi is a recovery payment connected withi−th rating.
Moreover, we assume that the givenK − 1 defaultable forward rates have dynamicsgi(t, θ) given by

dgi(t, θ) = αi(t, θ)dt + 〈σi(t, θ), dZi(t)〉U , i ∈ {1, . . . , K},
whereZi(t) are Lévy processes with values inU . By Lévy-Ito decomposition, eachZi(t) has the form

Zi(t) = ait + Wi(t) +
∫ t

0

∫

|y|U≤1
y(µi(ds, dy)− dsνi(dy)) +

∫ t

0

∫

|y|U>1
yµi(ds, dy).

Denote byDi(t, θ) = e−
R θ

t gi(t,u),du, and discounted values ofDi by D̂i(t, θ) = Di(t,θ)
Bt

. As in previous
section we consider three types of recovery payment. We investigate them separately and we use the
same notionD for process of recovery payment (previously we useD, Dδ, D∆).

4.1 Fractional recovery of market value with ratings migrations

The price process of defaultable bond with credit migrations and fractional recovery of market value
should satisfy

D(θ, θ) = 11{τ>θ} + 11{τ≤θ}δC2(τ)(τ)D(τ−, θ)
Bθ

Bτ
,

whereτ = inf{t > 0 : C1(t) = K}. Hence we have

D(t, θ) = 11{C1(t)6=K}DC1(t)(t, θ) + 11{C1(t)=K}δC2(τ)(τ)DC2(τ)(τ, θ)
Bt

Bτ

=
K−1∑

i=1

11{C1(t) 6=K}11{C1(t)=i}Di(t, θ) +
K−1∑

i=1

11{C1(t)=K}11{C2(t)=i}δi(τ)Di(τ−, θ)
Bt

Bτ

or equivalently

D(t, θ) =
K−1∑

i=1

(
Hi(t)Di(t, θ) + Hi,K(t)δi(τ)Di(τ−, θ)

Bt

Bτ

)
.

Theorem 6. The processes of discounted prices of defaultable bond with credit migrations and frac-
tional recovery of market value are local martingale if and only if following conditions hold on the set
{C1(t) 6= K}

gC1(t)(t, t) = f(t, t) + (1− δC1(t)(t))λC1(t),K(t)), (24)
∫ θ

0
αC1(t)(t, v)dv = JC1(t)

(
11[0,θ](t)

∫ θ

t
σC1(t)(t, v)dv

)

+
K−1∑

i=1,i6=C1(t)

[
Di(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),i(t). (25)
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Proof. We have

d
(D(t, θ)

Bt

)
=

K−1∑

i=1

(
d
(
Hi(t)

Di(t, θ)
Bt

)
+ d

(
Hi,K(t)δi(τ)

Di(τ−, θ)
Bτ

))
. (26)

Notice that the differential of the second term in this sum has the form

d
(
Hi,K(t)δi(τ)

Di(τ−, θ)
Bτ

)
= δi(t)

Di(t−, θ)
Bt

d
(
Hi,K(t)

)
.

Since the process

Mi,K(t) = Hi,K(t)−
∫ t

0
λi,K(u)Hi(u)du

followsG - martingale, then we have

δi(t)
Di(t−, θ)

Bt
d
(
Hi,K(t)

)
=

Di(t−, θ)
Bt

δi(t)dMi,K(t) +
Di(t−, θ)

Bt
δi(t)λi,K(t)Hi(t)dt.

The first term in the sum in (26) is equal to

d
(
Hi(t)

Di(t, θ)
Bt

)
= d

(
Hi(t)

)Di(t−, θ)
Bt

+ Hi(t)d
(Di(t, θ)

Bt

)
+ d

[
Hi(·), Di(·, θ)

B·

]c

t︸ ︷︷ ︸
=0

,

and since the process

Mi(t) = Hi(t)−
∫ t

0
λC1(u),i(u)du

followsG-martingale, then we have

d
(
Hi(t)

Di(t, θ)
Bt

)
=

Di(t−, θ)
Bt

(
dMi(t) + λC1(t),i(t)dt

+ Hi(t)(gi(t, t)− f(t, t) + ai(t, θ))dt

+ Hi(t)
∫

U

[
e〈σ̃

∗
i (t)11[0,θ],y〉U − 1

]
(µi(dt, dy)− dtνi(dy))

− Hi(t)〈σ̃∗i (t)11[0,θ], dWi(t)〉U
)

.

If we gather these results we obtain that differential of the single term in the sum in (26) is given by

d

(
Hi(t)

Di(t, θ)
Bt

+ Hi,K(t)δi(τ)
Di(τ, θ)

Bτ

)

=
Di(t−, θ)

Bt

(
dMi(t) + δi(t)dMi,K(t) + λC1(t),i(t)dt

+ Hi(t)(gi(t, t)− f(t, t) + ai(t, θ) + δi(t)λi,K(t))dt

+ Hi(t)
∫

U

[
e〈σ̃

∗
i (t)11[0,θ],y〉U − 1

]
(µi(dt, dy)− dtνi(dy))

− Hi(t)〈σ̃∗i (t)11[0,θ], dWi(t)〉U
)

.

Therefore the drift term of the sum in (26) is given by

I =
K−1∑

i=1

Hi(t)
Di(t−, θ)

Bt
(gi(t, t)− f(t, t) + ai(t, θ) + δi(t)λi,K(t))dt +

K−1∑

i=1

Di(t−, θ)
Bt

λC1(t),i(t)dt.

12



We can representI in the following way

I = (1−HK(t))
DC1(t)(t−, θ)

Bt
(gC1(t)(t, t)− f(t, t) + aC1(t)(t, θ) + δC1(t)(t)λi,K(t))dt

+
K−1∑

i=1

Di(t−, θ)
Bt

λC1(t),i(t)dt,

SinceDC1(t) > 0 (it has exponential form) and

K−1∑

i=1

Di(t−, θ)
DC1(t)(t−, θ)

λC1(t),i(t) =
K−1∑

i=1,i6=C1(t)

Di(t−, θ)
DC1(t)(t−, θ)

λC1(t),i(t) + λC1(t),C1(t)(t)

=
K−1∑

i=1,i6=C1(t)

[
Di(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),i(t)− λC1(t),K(t)

we can write

I = (1−HK(t))
DC1(t)(t−, θ)

Bt

(
gC1(t)(t, t)− f(t, t) + aC1(t)(t, θ) + (δC1(t)(t)− 1)λC1(t),K(t)

+
K−1∑

i=1,i6=C1(t)

[
Di(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),i(t)

)
dt.

Now we splitI into two parts, the first oneI1(t), which is not depending onθ and the second oneI2(t, θ)
depending on botht andθ i.e. we have

I = (1−HK(t))
DC1(t)(t−, θ)

Bt
(I1(t) + I2(t, θ))dt,

where

I1(t) =
(

gC1(t)(t, t)− f(t, t)− (1− δC1(t)(t))λC1(t),K(t)
)

,

and

I2(t, θ) =
(

aC1(t)(t, θ) +
K−1∑

i=1,i 6=C1(t)

[
Di(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),i(t)

)
.

If (24) and (25) hold, thenI1(t) = 0 andI2(t, θ) = 0, which implies that the drift termI vanish.

Conversly, if the drift termI vanish, then on the set{C1(t) 6= K}:
I1(t) + I2(t, θ) = 0 ∀t ≤ θ and∀θ ∈ [0, T ∗].

Since forθ = t we haveI2(t, t) = 0, then we obtain thatI1(t) = 0 which is equivalent to (24), and if
I1(t) = 0 then we must haveI2(t, θ) = 0 which is equivalent to (25).

4.2 Fractional recovery of treasury value with ratings migrations

In the case of fractional recovery of treasury value with ratings migrations we have

D(θ, θ) = 11{τ>θ} + 11{τ≤θ}δC2(t),

hence

D(t, θ) = 11{C1(t)6=K}DC1(t)(t, θ) + 11{C1(t)=K}δC2(t)B(t, θ)

=
K−1∑

i=1

11{C1(t) 6=K}11{C1(t)=i}Di(t, θ) +
K−1∑

i=1

11{C1(t)=K}11{C2(t)=i}δiB(t, θ)
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or equivalently

D(t, θ) =
K−1∑

i=1

(
Hi(t)Di(t, θ) + Hi,K(t)δiB(t, θ)

)
.

Theorem 7. The process of discounted prices of defaultable bond with fractional recovery of treasury
value are local martingales if and only if the following two conditions hold:

on the set{C1(t) 6= K} for all t ≤ θ and for allθ ∈ [0, T ∗] we have :

gC1(t)(t, t) = f(t, t) + (1− δC1(t))λC1(t),K (27)
∫ θ

0
αC1(t)(t, u)du = JC1(t)

(
11[0,θ](t)

∫ θ

t
σC1(t)(t, v)dv

)
(28)

+ δC1(t)

[
B(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),K(t) +

K−1∑

j=1,j 6=C1(t)

[
Dj(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),j(t).

Proof. Discounted value of defaultable bonds with fractional recovery of market value equals

D(t, θ)
Bt

=
K−1∑

i=1

(
Hi(t)

Di(t, θ)
Bt

+ Hi,K(t)δi
B(t, θ)

Bt

)
.

By integration by parts formula we have:

d

(
Hi,K(t)δi

B(t, θ)
Bt

)

= δi
B(t−, θ)

Bt

(
dMi,K(t) +

(
λi,K(t)Hi(t) + ā(t, θ)Hi,K(t)

)
dt

+Hi,K(t)
( ∫

U

[
e−〈σ̃

∗(t)11[0,θ],y〉U − 1
]
(µ(dt, dy)− dtν(dy))− 〈σ̃∗(t)11[0,θ], dW (t)〉U

))

and

d
(
Hi(t)

Di(t, θ)
Bt

)
=

Di(t−, θ)
Bt−

(
dMi(t) + λC1(t),i(t)dt

+ Hi(t)(gi(t, t)− f(t, t) + ai(t, θ))dt

+ Hi(t)
∫

U

[
e〈σ̃

∗
i (t)11[0,θ],y〉U − 1

]
(µi(dt, dy)− dtνi(dy))

− Hi(t)〈σ̃∗i (t)11[0,θ], dWi(t)〉U
)

.

Therefore the drift termI is given by

I =
K−1∑

i=1

Di(t−, θ)
Bt

(
λC1(t),i(t) + Hi(t)(gi(t, t)− f(t, t) + ai(t, θ))

)
dt

+
K−1∑

i=1

B(t−, θ)
Bt

δi

(
λi,K(t)Hi(t) + ā(t, θ)Hi,K(t)

)
dt = I1 + I2 + I3,

where

I1 =
K−1∑

i=1

Hi(t)
Di(t−, θ)

Bt

(
(gi(t, t)− f(t, t) + ai(t, θ)) + δi

B(t−, θ)
Di(t−, θ)

λi,K(t)
)

dt,
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I2 =
K−1∑

j=1

Dj(t−, θ)
Bt

λC1(t),j(t)dt =
K−1∑

j=1

Dj(t−, θ)
Bt

K−1∑

i=1

Hi(t)λi,j(t)dt

=
K−1∑

i=1

Hi(t)
Di(t−, θ)

Bt

( K−1∑

j 6=i

Dj(t−, θ)
Di(t−, θ)

λi,j(t) + λi,i(t)
)

dt

=
K−1∑

i=1

Hi(t)
Di(t−, θ)

Bt

( K−1∑

j 6=i

[
Dj(t−, θ)
Di(t−, θ)

− 1
]
λi,j(t)− λi,K(t)

)
dt,

I3 =
B(t−, θ)

Bt
ā(t, θ)

K−1∑

i=1

δiHi,K(t)dt = HK(t)
(

B(t−, θ)
Bt

ā(t, θ)
K−1∑

i=1

δi11{C2(t)=i}dt

)
.

We assume HJM type condition for default-free bonds (condition 7), soI3 = 0. It is easy to see that

I1 + I2 =
K−1∑

i=1

Hi(t)
Di(t−, θ)

Bt

(
(gi(t, t)− f(t, t) + ai(t, θ)) + δi

[
B(t−, θ)
Di(t−, θ)

− 1
]
λi,K(t)

+
K−1∑

j 6=i

[
Dj(t−, θ)
Di(t−, θ)

− 1
]
λi,j(t)− (1− δi)λi,K(t)

)
dt.

SinceHi(t) = 1 on the set{C1(t) = i} and zero on its complement we can write this as:

I1 + I2 = (1−HK(t))
DC1(t)(t−, θ)

Bt

(
gC1(t)(t, t)− f(t, t)− (1− δC1(t))λC1(t),K(t) + aC1(t)(t, θ)

+ δi

[
B(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),K(t)

+
K−1∑

j 6=C1(t)

[
Dj(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),j(t)

)
dt,

where we have also used a fact that we have summation only up toK − 1. Arguing as before we obtain
thesis of theorem.

4.3 Fractional recovery of par value with ratings migrations

In the case of fractional recovery of par value with ratings migrations we have

D(θ, θ) = 11{τ>θ} + 11{τ≤θ}δC2(t)
Bθ

Bτ
,

hence

D(t, θ) = 11{C1(t)6=K}DC1(t)(t, θ) + 11{C1(t)=K}δC2(t)
Bt

Bτ

=
K−1∑

i=1

11{C1(t)6=K}11{C1(t)=i}Di(t, θ) +
K−1∑

i=1

11{C1(t)=K}11{C2(t)=i}δi
Bt

Bτ

or equivalently

D(t, θ) =
K−1∑

i=1

(
Hi(t)Di(t, θ) + Hi,K(t)δi

Bt

Bτ

)
.
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Theorem 8. The processes of discounted prices of defaultable bond with fractional recovery of par
value are local martingales if and only if the following two conditions hold:

on the set{C1(t) 6= K} for all t ≤ θ and for allθ ∈ [0, T ∗] we have :

gC1(t)(t, t) = f(t, t) + (1− δC1(t))λC1(t),K(t), (29)
∫ θ

0
αC1(t)(t, u)du = JC1(t)

(
11[0,θ](t)

∫ θ

t
σC1(t)(t, v)dv

)
(30)

+ δC1(t)

[
1

DC1(t)(t−, θ)
− 1

]
λC1(t),K(t) +

K−1∑

j=1,j 6=C1(t)

[
Dj(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),j(t).

Proof. We have that discounted value of this bond is given by:

D(t, θ)
Bt

=
K−1∑

i=1

(
Hi(t)

Di(t, θ)
Bt

+ Hi,K
δi

Bτ

)
=

K−1∑

i=1

(
Hi(t)

Di(t, θ)
Bt

+
∫ t

0

δi

Bu
dHi,K(u)

)
.

The differential of the first part was calculated before, and the differential of the second part can be
written using martingaleMi,K :

δi

Bt
dHi,K(t) =

δi

Bt
dMi,K(t) +

δi

Bt
Hi(t)λi,K(t)dt.

Hence drift termI is given by

I =
K−1∑

i=1

(
Di(t−, θ)

Bt

(
λC1(t),i(t) + Hi(t)(gi(t, t)− f(t, t) + ai(t, θ))

)
dt +

δi

Bt
Hi(t)λi,K(t)dt

)
.

The sum
∑K−1

j=1
Dj(t−,θ)

Bt
λC1(t),j(t)dt we calculate in the proof of previous theorem, so we write the

drift term I in the form

I =
K−1∑

i=1

Hi(t)
Di(t−, θ)

Bt

(
gi(t, t)− f(t, t) + ai(t, θ) + δi

[
1

Di(t−, θ)
− 1

]
λi,K(t)

+
K−1∑

j 6=i

[
Dj(t−, θ)
Di(t−, θ)

− 1
]
λi,j(t)− (1− δi)λi,K(t)

)
dt.

By similar arguments as before

I = (1−HK(t))
DC1(t)(t−,θ)

Bt

(
gC1(t)(t, t)− f(t, t) + aC1(t)(t, θ) +

+δC1(t)

[
1

DC1(t)(t−,θ) − 1
]
λC1(t),K(t) +

∑K−1
j 6=i

[
Dj(t−,θ)

DC1(t)(t−,θ) − 1
]
λC1(t),j(t)− (1− δC1(t))λC1(t),K(t)

)
dt.

Arguing as before we obtain thesis of theorem.

4.4 HJM condition in terms of derivative of functional J

In the series of lemmas we present the form of derivative of functional J. First we recall the well known
lemma

Lemma 2. LetJ be a linear-quadratic functional i.e.

J(x) = −〈a, x〉U +
1
2
〈Qx, x〉U ,

wherea ∈ U , Q is a linear symmetric bounded linear operator, thenJ is differentiable for eachx ∈ U
and

DJ(x) = −a + Qx.
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Lemma 3. LetJ be a functional of the form :

J(x) =
∫

U

(
e−〈x,y〉U − 1 + 11|y|U≤1(y)〈x, y〉U

)
ν(dy),

whereν is a Levy measure which has exponential moments, thenJ is differentiable at eachx ∈ U and

DJ(x) = −
∫

U

(
e−〈x,y〉U − 11|y|U≤1(y)

)
y ν(dy).

Proof. The proof is straightforward. We use the existence of exponential moments of Levy measureν
.

Lemma 4. LetJ : U → R be a differentiable functional andu be a smooth curve i.e. smooth mapping
u : R→ U , then the mappingJ(u(·)) : R→ R is differentiable and

∂J(u(θ))
∂θ

∣∣∣∣
θ=θ0

= 〈DJ(u(θ0)), du(θ0)〉U ,

where bydu we denote differential of curvesu : R→ U .

Corrolary 2. In a view of above lemmas HJM type condition (7) can be written as

α(t, θ) =
〈
DJ

( ∫ θ

0
σ(t, v)dv

)
, σ(t, θ)

〉
U
,

whereDJ(x) is given by:

DJ(x) = −a + Qx−
∫

U

(
e−〈x,y〉U − 11|y|U≤1(y)

)
y ν(dy),

so HJM type condition has the following form:

α(t, θ) = −〈a, σ(t, θ)〉U +
〈
Q

∫ θ

0
σ(t, v)dv, σ(t, θ)

〉
U

−
∫

U

(
e−〈

R θ
0 σ(t,v)dv,y〉U − 11|y|U≤1(y)

)〈y, σ(t, θ)〉Uν(dy).

Remark 3. For calculating HJM type conditions for models with credit risk we will also need the
following derivatives:
i) for fractional recovery of treasury

∂

∂θ

(
B(t−, θ)
D1(t−, θ)

− 1
)

=
(
g1(t−, θ)− f(t−, θ)

)
e
R θ

t (g1(t−,u)−f(t−,u))du,

ii) for fractional recovery of par value

∂

∂θ

(
1

D1(t−, θ)
− 1

)
= g1(t−, θ)e

R θ
t g1(t−,u)du,

iii) for fractional recovery of market value with rating migrations

∂

∂θ

(
Di(t−, θ)

DC1(t)(t−, θ)
− 1

)
=

(
gC1(t)(t−, θ)− gi(t−, θ)

)
e
R θ

t (gC1(t)(t−,u)−gi(t−,u))du
,

iv) for fractional recovery of treasury value with rating migrations

∂

∂θ

(
B(t−, θ)

DC1(t)(t−, θ)
− 1

)
=

(
gC1(t)(t−, θ)− f(t−, θ)

)
e
R θ

t (gC1(t)(t−,u)−f(t−,u))du
,

v) for fractional recovery of par value with rating migrations

∂

∂θ

(
1

DC1(t)(t−, θ)
− 1

)
= gC1(t)(t−, θ)e

R θ
t gC1(t)(t−,u)du

.
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From these lemmas and previous results we obtain a series of propositions. For models without
ratings we have

Theorem 9. i) Condition (13) for fractional recovery of market value has the form

α1(t, θ) =
〈
DJ1

(∫ θ

0
σ1(t, v)dv

)
, σ1(t, θ)

〉
U
.

ii) Condition (17) for fractional recovery of treasury has the form

α1(t, θ) =
〈
DJ1

(∫ θ

0
σ1(t, v)dv

)
, σ1(t, θ)

〉
U

+ δλt

(
g1(t−, θ)− f(t−, θ)

)
e
R θ

t (g1(t−,u)−f(t−,u))du.

iii) Condition (22) for fractional recovery of par value has the form

α1(t, θ) =
〈
DJ1

(∫ θ

0
σ1(t, v)dv

)
, σ1(t, θ)

〉
U

+ δλtg1(t−, θ)e
R θ

t g1(t−,u)du.

And for models with ratings we have:

Theorem 10. i) Condition (25) for fractional recovery of market value has the form

αC1(t)(t, θ) =
〈
DJC1(t)

( ∫ θ

0
σC1(t)(t, v)dv

)
, σC1(t)(t, θ)

〉
U

+
K−1∑

i=1,i 6=C1(t)

λC1(t),i(t)
(
gC1(t)(t−, θ)− gi(t−, θ)

)
e
R θ

t (gC1(t)(t−,u)−gi(t−,u))du
.

ii) Condition (28) for fractional recovery of treasury has the form

αC1(t)(t, θ) =
〈
DJC1(t)

(∫ θ

0
σC1(t)(t, v)dv

)
, σC1(t)(t, θ)

〉
U

+
K−1∑

i=1,i6=C1(t)

λC1(t),i(t)
(
gC1(t)(t−, θ)− gi(t−, θ)

)
e
R θ

t (gC1(t)(t−,u)−gi(t−,u))du

+ δC1(t)λC1(t),K

(
gC1(t)(t−, θ)− f(t−, θ)

)
e
R θ

t (gC1(t)(t−,u)−f(t−,u))du
.

iii) Condition (30) for fractional recovery of par value has the form

αC1(t)(t, θ) =
〈
DJC1(t)

(∫ θ

0
σC1(t)(t, v)dv

)
, σC1(t)(t, θ)

〉
U

+
K−1∑

i=1,i6=C1(t)

λC1(t),i(t)
(
gC1(t)(t−, θ)− gi(t−, θ)

)
e
R θ

t (gC1(t)(t−,u)−gi(t−,u))du

+ δC1(t)λC1(t),KgC1(t)(t−, θ)e
R θ

t gC1(t)(t−,u)du
.

5 Musiela parameterization and HJM equations

Results similar to those of Section 3.1 were obtained by Özkan and Schmidt in [12]. In [12] HJM
conditions are formulated in terms of Musiela parameterization and to obtain them the authors used an
Ito formula in Hilbert spaces. To do so some technical conditions were needed which are not required
in the direct approach presented here. In this final section we clarify a connection between direct and
Musiela approaches and give some additional information on the latter.
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Assume thatT ∗ = +∞ and start with the following form of HJM equation:

f(t, T ) = f(0, T ) +
∫ t

0
α(s, T )ds +

∫ t

0
〈σ(s, T ), dZ(s)〉U . (31)

If we want to work under Musiela parametrization we have to putT = t + x in (31), and then we have

f(t, t + x) = f(0, t + x) +
∫ t

0
α(s, t + x)ds +

∫ t

0
〈σ(s, t + x), dZ(s)〉U .

Therefore for eacht we have defined the real functionf(t, t + ·) which is the current forward curve. If
we introduce right-shift operatorS(t):

S(t)φ(x) = φ(t + x), t ≥ 0, x ≥ 0.

then we can write equation (31) in the form

f(t, t + x) = S(t)f(0, x) +
∫ t

0
S(t− s)α(s, s + x)ds +

∫ t

0
〈S(t− s)σ(s, s + x), dZ(s)〉U .

Introducing new objects:

f̂t(x) = f(t, t + x)
α̂s(x) = α(s, s + x)[

σ̂s(u)
]
(x) = 〈σ(s, s + x), u〉U ∀u ∈ U,

note that̂αs is a process with values in the space of curves andσ̂s is a process with values in the space of
operators acting from the space whereZ(s) lives into the space of forward curves. We obtain equation
in the space of forward curves:

f̂t = S(t)f̂0 +
∫ t

0
S(t− s)α̂sds +

∫ t

0
S(t− s)σ̂sdZ(s). (32)

The formulea defininĝf , α̂ and
[
σ̂(u)

]
establish a one-to-one correspondence between the classical and

Musiela parameterization and the HJM conditions formulated in one language can be rewritten in the
other one.

We give now some background material to treat equation (32) in a precise way. We start from
a relationship between Hilbert-Schmidt operators and integral operators with square integrable kernel
(see [4] Sect II.2):
Theorem D. A linear operatorB : L2(Θ1, µ1) → L2(Θ2, µ2), is Hilbert-Schmidt operator if and only
if it is an integral operator with square integrable kernel i.e.

Bh(y) =
∫

Θ1

b(x, y)h(x)µ1(dx), ‖B‖HS =
(∫

Θ1

∫

Θ2

b2(x, y)µ1(dx)µ2(dy)
) 1

2

< ∞.

It is easy to see that to a given HS operatorB corresponds kernelb(z, x) with the following series
representation

b(z, x) =
∑

n

[B∗(en)](z)en(x),

whereB∗ is adjoint operator ofB. Indeed. For any orthonomal basis{en} of L2(Θ, µ) we have for
h ∈ L2(Θ, µ) andx ∈ R:

[B(h)](x) =
∑
n

en(x)
∫

Θ
[B∗(en)](z)h(z)µ(dz) =

∫

Θ

( ∑
n

[B∗(en)](z)en(x)
)

h(z)µ(dz).
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Therefore, ifσ̂s is a Hilbert-Schmidt operator fromU = L2(Θ1, µ1) intoL2(Θ2, µ2) with the kernelbs

we have ∫

Θ1

bs(x, v)u(v)µ1(dv) =
[
σ̂s(u)

]
(x) = 〈σ(s, s + x), h〉U .

To move from Musiela parametrization (32) to classical HJM equation (31) we identify:

σ(s, s + x, ξ) = bs(x, ξ),

hence
σ(t, T, ξ) = bt(T − t, ξ).

For any sequence(ρ̃k) of positive numbers denote byU = l2(ρ̃) the Hilbert space of all sequences
u = (uk) such that

|u|U =
∞∑

k=1

u2
kρ̃k < ∞

If ρ̃k = 1, k = 1, . . . one writes simplyl2.
Assume thatZ1(t), Z2(t), . . . are zero mean, uncorrelated, real Lévy processes such that:

E|Zi(t)|2 = t, i = 1, 2 . . .

ThenZ(t) = (Z1(t), Z2(t), . . .) is a Lévy process in any spaceU = l2(ρ̃) where
∑∞

k=1 ρ̃k < ∞.
(In fact, by considering expansions with respect to eigenvectors of the covariance operator, arbitrary
Hibert space valued Lévy process, with finite second moments, can be identified with a sequence
Z1(t), Z2(t), . . .). If H is an arbitrary Hilbert space then

E
∣∣∣∣
∫ T

0
φ(s)dZ(s)

∣∣∣∣
2

H

= E
∫ T

0
‖φ(s)‖2

HS ds

where‖·‖HS denotes the Hilbert-Schmidt norm froml2 to H. Note that any Hilbert-Schmidt operator
φ : l2 → H is of the form

φ(u) =
∞∑

i=1

uihi, u = (ui) ∈ l2

where

‖φ‖HS =
∞∑

i=1

|hi|2

in particular ifH = L2([0,∞), ρ), whereρ is positive weight, thenhi = hi(θ), i = 1, 2, . . . , θ ≥ 0,
and ∞∑

i=1

|hi|2H =
∫ ∞

0

∞∑

i=1

|hi(θ)|2ρ(θ)dθ

and

φ(u)(θ) =
∞∑

i=1

hi(θ)ui, u ∈ l2, θ ≥ 0.

Assume in particulary, that the positive functionρ is such that for eacht ≥ 0

sup
x≥0

ρ(x)
ρ(x + t)

= M(t) < +∞, t ≥ 0,

whereM(t) ≤ M0e
wt, t ≥ 0 for someM0 > 0 andw > 0.

20



Then(S(t), t ≥ 0) is aC0 - semigroup onL2([0,∞), ρ). In fact :

|S(t)h|2H =
∫ ∞

0
|h(t + x)|2ρ(x)dx =

∫ ∞

0
|h(t + x)|2 ρ(x)

ρ(x + t)
ρ(t + x)dx

≤ M(t)
∫ ∞

0
|h(t + x)|2ρ(t + x)dx ≤ M(t)|h|2H

and therefore
|S(t)| ≤ M

1
2 (t), t ≥ 0.

The generatorA of S is of the form

Ah(θ) =
∂h

∂θ
,

andh ∈ D(A) if and only if h absolutely continuous on[0, +∞) and
∫∞
0 |∂h

∂θ |2ρ(θ)dθ < ∞. Thus (32)
can be written in the mild form:

df̂t =
(

∂

∂θ
f̂t + α̂t

)
dt + σ̂tdZ(t).

If α̂t = F (f̂t), σ̂t = G(f̂t), then(f̂t) is a solution of the stochastic evolution equation:

df̂ = (Af̂ + F (f̂))dt + G(f̂)dZ(t)

For some information about the proper state space for the bond (LIBOR) curves, see e.g. [15].
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