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Institute of Mathematics Polish Acad. Sc.
Department of Mathematical Statistics

E-MAIL: aborata@sgh.waw.pl

Abstract. The problem of prediction of a random variable Y , distri-

bution of which belongs to the one parameter exponential family with the

quadratic variance function is considered. The knowledge about priors is in-

troduced by a class Γ of all distributions, where the first two moments are

within some given convex and compact set. The Γ-minimax predictor under

the squared error loss is obtained.

1. Introduction and notation. The problem considered in this paper

belongs to a class of estimation problems for which the aim is to predict

the value of a random variable Y on the basis of the observation of a ran-

dom variable X = (X1, X2, . . . , Xn), where X and Y have a distribution

dependent on the same unknown parameter θ. We consider the quadratic

loss function

L(y, a) = (y − a)2,

where y is a value of Y and a is a value of a predictor.
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A gamma-minimax approach is used which allows to take into account

vague prior information on the distribution of the unknown parameter θ.

The uncertainty about a prior is assumed by introducing a class Γ of priors.

If prior information is scarce, the class Γ under consideration is large and a

decision is close to a minimax decision. In the extreme case when no infor-

mation is available the Γ-minimax setup is equivalent to the usual minimax

setup. If, on the other hand, the statistician has an exactly prior information

and the class Γ contains a single prior, then the Γ-minimax decision is an

usual Bayes decision. So it is a middle ground between the subjective Bayes

setup and full minimax. For a discussion on the Γ-minimax approach see

for example Berger (1985), Brown (1994), Strawderman (2000), Vidakovic

(2000).

In this paper a class ΓG of priors consists of all distributions, where the

first two moments are within some given convex and compact set G. We deal

with a one-parameter exponential family with quadratic variance functions,

which has been characterized by Morris (1982). The popular exponential

families like normal, Poisson, Gamma, binomial are examples. This family

and problems of estimation of a parameter were considered by Eichenauer-

Herrmann (1991), Boratyńska (1997) among others.

Let v1, v2, v3 be fixed real numbers such that the set Θ+ = {θ ∈ R :

v1θ
2 +v2θ+v3 > 0} is non-empty. Let h and q be continuously differentiable

real-valued functions satisfying the differential equations

h′(θ)

h(θ)
=

−θ

v1θ2 + v2θ + v3

and q′(θ) =
1

v1θ2 + v2θ + v3

.

Let Θ be an interval (θ0, θ1) such that Θ ⊂ {θ ∈ Θ+ : h(θ) > 0}. Let

{Pθ : θ ∈ Θ} be a one parameter exponential family of probability measures

on R with densities of the form

l(z|θ) = B(z)h(θ)eq(θ)z, z ∈ R

with respect to some σ-finite measure onR. Note that if Z has a distribution

Pθ then the expected value is EθZ = θ and the variance is V arθZ = v1θ
2 +

v2θ + v3.
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Let X1, X2, . . . , Xn, Y be i.i.d. random variables with a distribution Pθ.

The vector X = (X1, X2, . . . , Xn) is observed. A random variable Y is pre-

dicted under the quadratic loss function, thus the risk function of a predictor

d = d(X) is equal

R(θ, d) = Eθ(Y − d(X))2,

where the operator Eθ emphasizes the expectation with respect to the joint

probability distribution of random variables X and Y , if the value of a

parameter is θ.

Let

M =
{
m = (m1, m2) ∈ R2 : m1 ∈ Θ ∧m2 ≥ m2

1 ∧ v1m2 + v2m1 + v3 > 0
}

and G be non-empty convex and compact subset of M. Let Θ∗ be a family

of all probability distributions on Θ and

ΓG =
{
Π ∈ Θ∗ : EΠθ = m1 ∧ EΠθ2 = m2 ∧m = (m1, m2) ∈ G

}
be a family of priors of a parameter θ. If m2 = m2

1, then Π is a one-point

measure on m1. The Bayes risk of a predictor d under a prior Π is

r(Π, d) = E(Y − d(X1, X2, . . . , Xn))2 = EV ar(Y |θ) + E(d− E(Y |θ))2

= v1m2 + v2m1 + v3 + E(d− E(Y |θ))2,

where EΠθ = m1, EΠθ2 = m2 and the operator E emphasizes the expectation

with respect to the joint probability distribution of all random variables θ,

X, Y .

Our objective is to find the ΓG-minimax predictor, thus the predictor dΓG

satisfying

inf
d∈D

sup
Π∈ΓG

r(Π, d) = sup
Π∈ΓG

r(Π, dΓG),

where D is a class of all predictors d (measurable functions of the observed

random variables) with finite risk function R(θ, d).
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2. The ΓG-minimax predictor. The probability distribution on the

interval Θ with the Lebesgue density

πα,β(θ) = C−1hα(θ)eβq(θ), θ ∈ Θ,

where C =
∫

Θ
hα(θ)eβq(θ)dθ and α, β are real parameters satisfying

α > 3v1 and β > θ0(α− 2v1)− v2 and β < θ1(α− 2v1)− v2

(see Chen i in. (1991)) is a conjugate prior. For every pair (m1, m2) ∈ M,

m2 > m2
1, there exists a conjugate prior Πα,β satisfying conditions EΠα,β

θ =

m1 i EΠα,β
θ2 = m2, and α and β are equal

α = 2v1 +
v1m2 + v2m1 + v3

m2 −m2
1

,

β = −v2 + m1
v1m2 + v2m1 + v3

m2 −m2
1

(see Lemmas 3 and 4 in Chen (1991)). Denote the conjugate prior corre-

sponding to m = (m1, m2) as Πm, note, that if m2 = m2
1 then Πm satisfies

Πm{m1} = 1. If X = x then the Bayes predictor with respect to the prior

Πm is equal to the Bayes estimator of a parameter θ under the quadratic

loss function and for m2 > m2
1

dB
m = EΠm(θ|x) =

β + v2 +
∑n

i=1 xi

α + n− 2v1

=
m1(v1m2 + v2m1 + v3) + (m2 −m2

1)
∑n

i=1 xi

v1m2 + v2m1 + v3 + n(m2 −m2
1)

.

Its Bayes risk under a prior Π is equal

r(Π, dB
m) = Ξ(m)

[(
Ω(m) +

v1

Ξ(m)

)
EΠθ2 +

(
Φ(m) +

v2

Ξ(m)

)
EΠθ + Λ(m)

]
+v3,

where

Ω(m) = v1n(m2 −m2
1)

2 + (v1m2 + v2m1 + v3)
2,

Φ(m) = v2n(m2 −m2
1)

2 − 2m1(v1m2 + v2m1 + v3)
2,

Λ(m) = v3n(m2 −m2
1)

2 + m2
1(v1m2 + v2m1 + v3)

2,
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Ξ(m) = (n(m2 −m2
1) + v1m2 + v2m1 + v3)

−2,

and

r(Πm, dB
m) =

(v1m2 + v2m1 + v3)((n + 1)(m2 −m2
1) + v1m2 + v2m1 + v3)

n(m2 −m2
1) + v1m2 + v2m1 + v3

.

Let

ρ(m) =
1

r(Πm, dB
m)

=
1

n + 1

(
n

v1m2 + v2m1 + v3

+
1

(n + 1)(m2 −m2
1) + v1m2 + v2m1 + v3

)
.

Straightforward calculations show that ρ is strictly convex.

To find ΓG-minimax predictor we will apply two following theorems: the

first one is the well known theorem about a saddle point in the statistical

game (ΓG, D, r), and the second one is the Fan theorem about minimax

inequality. The method of the proof of Theorem 3 is similar to the method

presented in Eichenauer-Herrmann (1991).

Theorem 1. The following conditions are equivalent:

a) (Π∗, d∗) is a saddle point in (ΓG, D, r);

b) infd∈D r(Π∗, d) ≥ supΠ∈ΓG
r(Π, d∗);

c) (Π∗, d∗) is a saddle point and d∗ is a Bayes decision rule with respect to

the prior Π∗;

d) Π∗ is the least favourable prior, d∗ is the Γ-minimax and the Bayes decision

rule with respect to Π∗ and the game (ΓG, D, r) has a value.

Theorem 2. (Fan (1972)) Let X be a compact convex set in a Hausdorff

topological vector space. Let f be a real valued function defined on X × X
such that:

(a) for every x ∈ X , f(x, y) is a continuous function of y,

(b) for every y ∈ X , f(x, y) is a quasi-concave function of x.

Then

min
y∈X

sup
x∈X

f(x, y) ≤ sup
x∈X

f(x, x).
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We prove the following theorem.

Theorem 3.

Let m̃ ∈ G. Then (Πm̃, dB
m̃) is a saddle point in the statistical game

(ΓG, D, r) iff

ρ(m̃) = min
m∈G

ρ(m). (∗)

There exists exactly one m̃ ∈ G satisfying (∗) and the predictor dB
m̃ is the

ΓG-minimax predictor.

Proof. (=⇒) If (Πm̃, dB
m̃) is a saddle point, then

r(Πm̃, dB
m̃) = sup

Π∈ΓG

inf
d∈D

r(Π, d) ≥ sup
m∈G

r(Πm, dB
m) ≥ r(Πm̃, dB

m̃).

Since

ρ(m) =
1

r(Πm, dB
m)

,

thus we obtain (∗).

(⇐=) First we show that there exists m̃ such that (Πm̃, dB
m̃) is a saddle

point. Let

EΠθ = µ1, EΠθ2 = µ2, µ = (µ1, µ2),

Z(m, µ) =

(
Ω(m) +

v1

Ξ(m)

)
µ2 +

(
Φ(m) +

v2

Ξ(m)

)
µ1.

Then

r(Π, dB
m) = Ξ(m) (Z(m, µ) + Λ(m)) + v3

and (Πm, dB
m) is a saddle point iff

r(Πm, dB
m) = sup

Π∈ΓG

r(Π, dB
m) = Ξ(m)

(
max
µ∈G

Z(m,µ) + Λ(m)

)
+ v3

⇐⇒ Z(m,m) = max
µ∈G

Z(m, µ). (∗∗)

The existence of a solution of the equation (∗∗) follows from Theorem 2.

The set G is non-empty, convex and compact. Define f : G × G −→ R

and f(m,µ) = Z(m,µ) − Z(m,m). The function f satisfies conditions (a)

and (b) of Theorem 2 and f(m, m) = 0. Thus there exists m̃ such that

supµ∈G f(m̃, µ) ≤ 0, hence maxµ∈G Z(m̃, µ) = Z(m̃, m̃).
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Assume that m1 satisfies (∗). The pair (Πm̃, dB
m̃) is a saddle point, hence

m̃ satisfies (∗) too, and the function ρ has only one minimum on G (ρ is

strictly convex). Thus m1 = m̃. The remaining part of the proof follows

from Theorem 1.

Example. Let X1, X2, . . . , Xn, Y be i.i.d. random variables from Poisson

distribution Poiss(θ). Then v1 = v3 = 0 and v2 = 1. Let G = [m1,1, m1,2]×
[m2,1, m2,2] ∩M and

0 < m1,1 < m1,2 < +∞, 0 < m2,1 < m2,2 < +∞, m1,1 <
√

m2,2.

The function ρ is equal

ρ(m1, m2) =
1

n + 1

(
n

m1

+
1

(n + 1)(m2 −m2
1) + m1

)
and

∂

∂m1

ρ(m1, m2) =
1

n + 1

(
− n

m2
1

+
2(n + 1)m1 − 1

((n + 1)(m2 −m2
1) + m1)2

)
,

∂

∂m2

ρ(m1, m2) = − 1

((n + 1)(m2 −m2
1) + m1)2

< 0

and ∂ρ
∂m1

is an increasing function of m1. Table 1 present ΓG-minimax pre-

dictors for different values of mi,j, i, j = 1, 2.

Table 2 presents the ΓG-minimax estimators of a parameter θ in the same

model (for details see Chen (1991)). Note that the Bayes estimator of θ and

the Bayes predictor of Y are equal, but the ΓG-minimax rules are not equal.

They are equal if m1,1 = m1,2. It is a situation, when we know the expected

value of a prior and the variance belongs to the fixed interval.
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Table 1.

Conditions for mi,j, i, j = 1, 2 dΓG

(2(n+1)m1,1−1)m2
1,1

((n+1)(m2,2−m2
1,1)+m1,1)2

≥ n
m2

1,1+(m2,2−m2
1,1)

∑n
i=1 xi

m1,1+n(m2,2−m2
1,1)

(2(n+1)m1,2−1)m2
1,2

((n+1)(m2,2−m2
1,2)+m1,2)2

≤ n
m2

1,2+(m2,2−m2
1,2)

∑n
i=1 xi

m1,2+n(m2,2−m2
1,2)

and m2,2 ≥ m2
1,2

∃ν ∈ [m1,1, min(m1,2,
√

m2,2)]

such that (2(n+1)ν−1)ν2

((n+1)(m2,2−ν2)+ν)2
= n

ν2+(m2,2−ν2)
∑n

i=1 xi

ν+n(m2,2−ν2)

m2,2 < 0.25 and m2,2 < m2
1,2

√
m2,2

Table 2.

Conditions for mi,j, i, j = 1, 2 ΓG-minimax estimator of θ

n
2
≤ m1,1(

m1,1

m2,2−m2
1,1

)2 m2
1,1+(m2,2−m2

1,1)
∑n

i=1 xi

m1,1+n(m2,2−m2
1,1)

n
2
≥ m2

1(
m1,2

m2,2−m2
1,2

)2 m2
1,2+(m2,2−m2

1,2)
∑n

i=1 xi

m1,2+n(m2,2−m2
1,2)

∃ν ∈ [m1,1, min(m1,2,
√

m2,2)]
ν2+(m2,2−ν2)

∑n
i=1 xi

ν+n(m2,2−ν2)

such that n(m2,2 − ν2)2 = 2ν3
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