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Abstract

The paper is concerned with the problem of reconstruction of
acoustic or electromagnetic field from unexact data given on an open
part of the boundary of a given domain. A regularization concept is
presented for the ill-posed moment problem equivalent to a Cauchy
problem for the Helmholtz equation. A method of regularization by
projection with application of Meyer wavelet subspaces is introduced
and analyzed. The derived formula, describing the projection level
in terms of the error bound of unexact Cauchy data, allows to prove
convergence and stability of the method.

1 Introduction

Let Ω be a simply connected domain in Rd, d = 2, 3 with a sufficiently
regular boundary ∂Ω and, moreover, let Γ ⊂ ∂Ω be an open and connected
part of the boundary. We consider the problem of reconstruction of acoustic
or electromagnetic field from unexact data given on Γ. Let u denote a certain
component of the considered field. Let us assume further that the field is
harmonic with the constant wave number k. In this case the scalar function
u satisfies in Ω the Helmholtz equation

Lu := ∆u + k2u = 0, on Ω. (1.1)
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With respect to applications we have some freedom in choice of domain Ω:
namely, only the part Γ of the boundary ∂Ω is given a priori (indicated
by measurement possibilities), and in particular we may assume the same
regularity of ∂Ω as of Γ.

Direct problems connected with this equation are typically defined by
Dirichlet or Neumann conditions on ∂Ω, or by Dirichlet conditions on a one
part of boundary (i.e. Γ) and Neumann conditions on the second one. The
inverse problem considered in this paper consists in solving the equation (1.1)
under the both Dirichlet and Neumann conditions posed on the same part Γ
of the boundary ∂Ω. That means that we deal with the Cauchy problem for
the Helmholts equation





Lu := ∆u + k2u = 0, on Ω
u = f on Γ,
∂u
∂ν

= g on Γ,
(1.2)

where ν is the outer unit normal to ∂Ω. In all parts of the paper we assume,
that k2 is not an eigenvalue of the Neumann problem for −∆, i.e. that
v ≡ 0 is the unique solution to the following homogeneous boundary-value
problem ∆v + k2v = 0 in Ω, ∂v

∂ν
= 0 on ∂Ω. We assume that f ∈ H1(Γ)

and g ∈ L2(Γ) are such that there exists the unique solution u ∈ H3/2(Ω). It
is known that the Cauchy problem for elliptic equations is ill-posed, which
means that the solutions do not depend continuously on Cauchy data, see
e.g. [10], [7], [9]. This implies serious numerical difficulties in solving of
these problems, especially in the case of perturbed data. However, just this
case is important from the point of view of real applications for acoustic and
electromagnetic fields (cf. [12], [9], [6], [1], [14]) where the exact Cauchy data
are approximated by their measurements.

For a stable solving of ill-posed problems, regularization techniques are
required (cf. [8], [15]). Numerical analysis of the Cauchy problem for the
Laplace equation is a topic of several papers where different regularization
methods were proposed ( [2], [13], [3]). Unfortunately, their application to
Helmholtz equation requires some modifications and additional analysis be-
cause of essential differences between these two problems.

In this paper is developed the idea of a numerical method based on a
transformation of the Cauchy problem to a generalized moment problem:
find ϕ ∈ L2(∂Ω \ Γ) such that

∫

∂Ω\Γ
ϕvdσ = µ(v) ∀v ∈ V (Ω), (1.3)

where V (Ω) is a certain subspace of L2(Ω) and µ a linear functional on V (Ω)
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which will be defined later. This idea was proposed by J. Cheng et al. in [3]
for the Cauchy problem for Laplace equation.

The paper is organized as follows. In section 2 the equivalence between
the Cauchy problem (1.2) and a moment problem on the boundary ∂Ω \Γ is
proved according to idea in [3]. The rest of the paper is devoted to a regu-
larization method for solving the obtained moment problem in the particular
case of two-dimensional domain Ω. In Section 3 a characterization of a dense
subspace of the space is given. In conclusion, in Section 4, Meyer wavelet
projections are choosen for convergent approximation of the solution in the
case of the exact data. In Section 5 stability of the method is considered with
respect to perturbations of the boundary value functions. Finally, in Section
6 the regularization property of defined wavelet-projection method for the
moment problem is established and, as consequence, a stable approximation
of the Cauchy problem (1.2) is obtained.

2 Moment problem, general case

Let v be an arbitrary H1(Ω) weak solution to the equations

{
Lv = 0, on Ω
∂v
∂ν

= 0 on ∂Ω \ Γ.
(2.1)

Applying Green’s formula to the solution u of (1.2) and to v

∫

Ω

[vLu− uLv]dx =

∫

∂Ω

[
v
∂u

∂ν
− u

∂v

∂ν

]
dσ, (2.2)

where σ is the Lebesgue measure on ∂Ω, we get

∫

∂Ω\Γ
v
∂u

∂ν
dσ +

∫

Γ

vgdσ −
∫

Γ

f
∂v

∂ν
dσ = 0. (2.3)

Let us define a test space V (Ω) as follows

V (Ω) :=

{
v ∈ H3/2(Ω) : Lv = 0 on Ω and

∂v

∂ν
= 0 on ∂Ω \ Γ

}
. (2.4)

Corollary 2.1 If there exists the solution of (1.2) such that

ϕ :=

{
∂u

∂ν

}

∂Ω\Γ
∈ L2(∂Ω \ Γ) (2.5)
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then ϕ is the solution to the following moment problem
∫

∂Ω\Γ
ϕvdσ =

∫

Γ

[
f

∂v

∂ν
− gv

]
dσ ∀v ∈ V (Ω). (2.6)

Going into lines of Cheng et al. reasoning [3] we prove

Theorem 2.2 Let g ∈ L2(Γ) and f ∈ H1/2(Γ) and let k2 does not be an
eigenvalue of the Neumann problem for −∆. If ϕ ∈ L2(∂Ω \ Γ) is a solution
to the moment problem (2.6) and ∂Ω ∈ C1+ε 1, then there exists a solution
u to the Cauchy problem (1.2) such that ∂u

∂ν
∈ L2(∂Ω \ Γ) and ∂u

∂ν
= ϕ.

Proof: Let us consider the following Neumann problem




∆α + k2α = 0, on Ω
∂α
∂ν

= ϕ on ∂Ω \ Γ,
∂α
∂ν

= g on Γ.
(2.7)

It is known (cf. [5], § 3 of Chapter XI) that for ∂Ω ∈ C1+ε the Neumann

problem (2.7) for ϕ ∈ H− 1
2 (∂Ω \ Γ), g ∈ H− 1

2 (Γ) admits a unique solution
in H1(Ω) under Theorem 2.2 assumptions. Classical regularity arguments

imply that there exists a unique α in H
3
2 (Ω) for ϕ ∈ L2(∂Ω \ Γ), g ∈ L2(Γ)

2.
We are going to prove that

∫

Γ

(α− f)2dσ = 0. (2.8)

From (2.6) it follows that for any v ∈ V (Ω)
∫

∂Ω\Γ

∂α

∂ν
vdσ =

∫

Γ

[
f

∂v

∂ν
− v

∂α

∂ν

]
dσ,

i.e. ∫

∂Ω

v
∂α

∂ν
dσ =

∫

Γ

f
∂v

∂ν
dσ. (2.9)

1We say that a regular open set Ω has a boundary ∂Ω of class C1+ε if in the neigh-
borhood of every point x ∈ ∂Ω there exists a normal parametric representation σ and an
increasing function ε ∈ C(R+, R+) with

∫
R+

ε(r)dr
r < ∞ such that for any pair (x̃, x̂) in

the neighborhood of x, where the parametric representation is given,

|gradσ(x̃)− gradσ(x̂)| ≤ ε(|x̃− x̂|).
One can see that Lyapunov surfaces (curves) are in C1+ε.

2A similar result can be obtained for ∂Ω beeing Lipschitz continuous under additional
assumptions on the geometry of Ω, (cf. [11])
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On the other hand, Green’s formula gives

0 =

∫

Ω

[vLα− αLv]dx =

∫

∂Ω

[
v
∂α

∂ν
− α

∂v

∂ν

]
dσ,

which implies ∫

∂Ω

v
∂α

∂ν
dσ =

∫

∂Ω

α
∂v

∂ν
dσ.

the formula above and (2.9) yields

∫

Γ

(α− f)
∂v

∂ν
dσ = 0. (2.10)

Now, let us take a special element ṽ of V (Ω) defined as follows





∆ṽ + k2ṽ = 0, in Ω
∂ev
∂ν

= 0 in ∂Ω \ Γ,
∂ev
∂ν

= α− f in Γ,
(2.11)

Since (α− f) ∈ L2(Γ), we have by the same arguments as used for (2.7),
that there exists a unique solution ṽ to (2.11) belonging to H3/2(Ω). Thus,
by (2.10) ∫

Γ

(α− f)2dσ = 0,

i.e α = f almost everywhere on Γ. It means that α is a solution to the
Cauchy problem (1.2).

Due to Corollary 2.1 and Theorem 2.2 the problem (1.2) can be equiva-
lently formulated as the following moment problem

∫

∂Ω\Γ
ϕvdσ = µ(v) ∀v ∈ V (Ω). (2.12)

where

µ(v) =

∫

Γ

[
f

∂v

∂ν
− gv

]
dσ, (2.13)

which has at most one solution. In the equation (2.12) we can replace the
space V by any dense subset of V , for instance by a dense sequence.
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3 Moment problem, for Ω ⊂ R2

Now, our consideration is restricted to the case Ω ⊂ R2. Let us introduce
the subdomain Ω1 ⊂ Ω with the boundary given by Γ and the closed interval
connecting the ends of Γ. The problem of reconstruction u in Ω1 is now
considered. Without lost of generality we may assume that

∂Ω1 \ Γ = {(x1, x2) : x1 ∈ [0, 1], x2 = 0} (3.1)

and Γ ⊂ R×R+ is a sufficiently regular curve which connects the two points
(0, 0) and (1, 0). Let

γ = max{x2 : (x1, x2) ∈ Γ}. (3.2)

Let us denote Ω′
1 := R× (0, γ) and introduce the space W

W :=

{
w ∈ H2(Ω′

1) : Lw = 0 on Ω′
1 and

∂w

∂x2

(x, 0) = 0 for x ∈ R

}
.

(3.3)
If w ∈ W , then w|Ω1 ∈ V (Ω1).

Remark 3.1 The set W (Ω1) = {w|Ω1 : w ∈ W} is dense in V (Ω1).

Remark 3.2 In the moment problem (2.12) the space V (Ω1) can be replaced
by W (Ω1).

We are going to define such a basis in the space W which will allow us to
formulate a stable approximation method of solving the problem over con-
sideration. For this reason we should describe elements of W more precisely.
Let us introduce an auxiliary space U

U =
{

β ∈ L2(R) : β̂(ξ)ξ2 cosh(γ
√

ξ2 − k2) ∈ L2(R)
}

, (3.4)

where β̂ denotes the Fourier transform of β.

Proposition 3.3 Function w belongs to W if and only if ∃β ∈ U such that
∀(x1, x2) ∈ Ω′

1

w(x1, x2) = wβ(x1, x2) :=
1√
2π

∫

R

β̂(ξ) cosh(x2

√
ξ2 − k2)eiξx1dξ. (3.5)
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Proof: Applying Fourier transform to w ∈ W with respect to the
variable x1 ∈ R we easy state that ŵ(ξ, x2) is a solution to the following
problem

{
∂2 bw
∂x2

2
(ξ, x2) = (ξ2 − k2)ŵ(ξ, x2) for ξ ∈ R, x2 ∈ (0, γ),

∂ bw
∂x2

(ξ, 0) = 0 for ξ ∈ R.
(3.6)

The general solution of this problem has the form

ŵ(ξ, x2) = h(ξ) cosh(x2

√
ξ2 − k2).

If w ∈ W , then

∂̂2w

∂x2
1

(·, x2) = −ξ2ŵ(·, x2) ∈ L2(R),

and thus, the function h appearing in the formula above has to be such,
that ξ2ŵ(ξ, x2)belongs to L2(R) as a function of ξ. So, h = β̂ where β ∈ U

and w is the inverse Fourier transform of β̂ cosh(x2

√
ξ2 − k2). Inversely, if

ŵ is given by (3.5),where h = β̂ and β ∈ U then ŵ satisfies the equations
(3.6). Since ξ2ŵ(ξ, x2) ∈ L2(R), w(·, x2) ∈ H2(R) and Lw = 0 on R× (0, γ),
∂w
∂x2

(x, 0) = 0 for x ∈ R. This ends the proof.

Remark 3.4 If w(x1, x2) = wβ(x1, x2) then w(x1, 0) = β(x1) for almost all
x1 ∈ R.

Remark 3.5 The moment problem (2.12) can be now formulated as follows:
find ϕ ∈ L2(0, 1) such that

∫ 1

0

ϕ(x)β(x)dx = η(β), ∀β ∈ U. (3.7)

where

η(β) := µ(wβ) =

∫

Γ

[
f

∂wβ

∂ν
− gwβ

]
dσ (3.8)

and wβ is given by (3.5).

4 Meyer wavelet projections

Following [4], formula (4.2.3), the Meyer wavelet ψ is a function from C∞(R)
defined by its Fourier transform as follows

ψ̂(ξ) = ei ξ
2 b(ξ),
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where

b(ξ) =





1√
2π

sin
[

π
2
ν

(
3
2π
|ξ| − 1

)]
, for 2π

3
≤ |ξ| ≤ 4π

3
,

1√
2π

cos
[

π
2
ν

(
3
4π
|ξ| − 1

)]
, for 4π

3
≤ |ξ| ≤ 8π

3
,

0, otherwise

and ν is a function satisfying

ν(x) =

{
0 if x ≤ 0,
1 if x ≥ 1,

with the additional property

ν(x) + ν(1− x) = 1.

The corresponding scaling function φ is defined by

φ̂(ξ) =





1√
2π

, for |ξ| ≤ 2π
3

,
1√
2π

cos
[

π
2
ν

(
3
2π
|ξ| − 1

)]
, for 2π

3
≤ |ξ| ≤ 4π

3
,

0, otherwise.

(4.1)

Let

ψjk(x) := 2
j
2 ψ(2jx− k), φjk(x) := 2

j
2 φ(2jx− k), j, k ∈ Z, j ≥ 0.

The set of functions {φ0k, ψjk}j∈Z+,k∈Z is the orthonormal basis of L2(R).
To simplify notation, we denote the scaling functions (φ0,k) on the coarse
level by (ψ−1,k). Moreover,we use index λ concatenating the scale and space
indices j and k. Let Λ := {λ = (j, k) : j ≥ −1, k ∈ Z}, ΛJ := {λ = (j, k) :
j < J, k ∈ Z} and |λ| = j.

The set ΛJ determines the subspace VJ ⊂ L2(R)

VJ = span{ψλ}λ∈ΛJ
. (4.2)

The corresponding orthogonal projection from L2(R) on VJ is denoted by
PJ .

From the point of view of an application to our problem (3.7), the crucial
property of Meyer wavelets is compact support of their Fourier transforms.
By the definition

supp(ψ̂) = {ξ; 2

3
π ≤ |ξ| ≤ 8

3
π}. (4.3)

Moreover, for j ≥ 0
ψ̂jl = 2−j/2e−ilξ2−j

ψ̂(2−jξ). (4.4)
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Thus, for any l ∈ Z and j ≥ 0,

supp(ψ̂jl) = {ξ; 2

3
π2j ≤ |ξ| ≤ 8

3
π2j}. (4.5)

For the scaling functions,

supp(ψ̂−1,l) = (−4

3
π,

4

3
π), l ∈ Z. (4.6)

Remark 4.1 From (4.5) and (4.6) it follows, that ∀λ ∈ Λ ψλ ∈ U . More-
over, the set {ψλ}λ∈Λ is dense in U , because it is dense in L2(R) ⊃ U .

Remark 4.2 Due to Remark 4.1 the moment problem (3.7) can be now for-
mulated as follows: find ϕ ∈ L2(0, 1) such that

∫ 1

0

ϕ(x)ψλ(x)dx = ηλ, ∀λ ∈ Λ, (4.7)

where
ηλ := η(ψλ), (4.8)

and η(ψλ) is given by (3.8).

Let

ϕ̃(x) =

{
ϕ(x) x ∈ (0, 1),
0 x ∈ R \ (0, 1)

(4.9)

where ϕ is the exact solution of (4.7). Since ϕ̃ ∈ L2(R) and {ψλ}λ∈Λ is
the basis of L2(R), from (4.7) it follows that ϕ̃ has the following wavelet
representation

ϕ̃(x) =
∑

λ∈Λ

ηλψλ. (4.10)

As approximate solution let us take the orthogonal projection of ϕ̃ onto
VJ , i.e.:

ϕJ(x) =
∑

λ∈ΛJ

ηλψλ(x). (4.11)

It is clear that

‖ϕJ − ϕ‖L2(0,1) ≤ ‖ϕJ − ϕ̃‖L2(R) −→ 0 as J −→∞. (4.12)
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5 Perturbed data

Let fδ, and gδ be perturbed boundary value functions on Γ such that

‖fδ − f‖L2(Γ) + ‖gδ − g‖L2(Γ) ≤ δ. (5.1)

Let

ηδ
λ :=

∫

Γ

[
fδ

∂wλ

∂ν
− gδwλ

]
dσ, (5.2)

where wλ := wψλ
, cf. (3.8). The approximate solution for the perturbed data

let be defined as follows:

ϕδ
J(x) =

∑

λ∈ΛJ

ηδ
λψλ(x). (5.3)

We are going to show, that for any δ it is possible to choose a positive integer
J = J(δ) in such a way that ‖ϕ− ϕδ

J‖L2(0,1) tends to 0 as δ → 0.
The first step is to show that for fixed J the approximate solution is stable

with respect to perturbations of f and g and to derive an error bound. We
have

‖ϕJ − ϕδ
J‖2

L2(R) =
∑

λ∈ΛJ

|ηλ − ηδ
λ|2. (5.4)

Let us introduce two auxiliary functions

Qδ
1(ξ) :=

∫

Γ

(f − fδ)
∂

∂ν

(
cosh(x2

√
ξ2 − k2)eiξx1

)
dσ, (5.5)

Qδ
2(ξ) :=

∫

Γ

(g − gδ) cosh(x2

√
ξ2 − k2)eiξx1dσ. (5.6)

Lemma 5.1

‖ϕJ − ϕδ
J‖2

L2(R) ≤
J−1∑

j=−∞
2j sup

|ξ|∈( 2
3
π, 8

3
π)

∣∣Qδ
1(2

jξ)−Qδ
2(2

jξ)
∣∣2 .

Proof: For the proof the projection PJ onto VJ in terms of the wavelet
basis {ψj,k}j∈(−∞,J−1),k∈Z is used. Applying definitions (3.8) and (5.2) of ηλ

and ηδ
λ, and the formula (3.5) we can write (5.4) in the terms of functions

Qδ
i , i = 1, 2 :

‖ϕJ − ϕδ
J‖2

L2(R) =
J−1∑
−∞

∑

l∈Z

∣∣∣∣
1

2π

∫

R

ψ̂j,l(ξ)
(
Qδ

1(ξ)−Qδ
2(ξ)

)
dξ

∣∣∣∣
2
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Taking into account the compact support of ψ̂λ and the formula (4.4),
and changing the variable under the integral ζ = 2−jξ we get

‖ϕJ−ϕδ
J‖2

L2(R) =
J−1∑

j=−∞
2j

∑

l∈Z

∣∣∣∣∣
1

2π

∫

|ζ|∈( 2
3
π, 8

3
π)

ψ̂(ζ)
(
Qδ

1(2
jζ)−Qδ

2(2
jζ)

)
e−ilζdζ

∣∣∣∣∣

2

.

The integral under the sum is the sum of two integrals: one is over the interval
(−8

3
π,−2

3
π), and the second one over (2

3
π, 8

3
π). So, each of two integrals can

be considered as l-th Fourier coefficient of the function ψ̂(ζ)
(
Qδ

1(2
jζ)−Qδ

2(2
jζ)

)
with respect to orthogonal set {e−ilζ} of 2π periodic functions in L2(−8

3
π,−2

3
π)

and L2(2
3
π, 8

3
π), respectively. Thus

‖ϕJ − ϕδ
J‖2

L2(R) ≤
J−1∑

j=−∞
2j‖ψ̂(·) (

Qδ
1(2

j·)−Qδ
2(2

j·)) ‖2
L2(R).

But

‖ψ̂ (
Qδ

1(2
j·)−Qδ

2(2
j·)) ‖L2(R) ≤ ‖ψ‖L2(R) sup

|ξ|∈( 2
3
π, 8

3
π)

∣∣Qδ
1(2

jξ)−Qδ
2(2

jξ)
∣∣

and ‖ψ‖L2(R) = 1, which ends the proof.

Let k be the positive constant appearing in the Helmholtz equation (1.2).
Let

cj := k
3

8π
2−j, (5.7)

then cj < 1 if and only if k < 8
3
π2j. Let

j0 := j0(k) = max{j : cj ≥ 1}. (5.8)

Lemma 5.2 If |ζ| ∈ (2
3
π, 8

3
π) and the error bound (5.1) holds, then

|Qδ
1(2

jζ)| ≤
{

δ
√
|Γ|k for j ≤ j0

δ
√
|Γ|

(
k
cj

√
2− c2

j

)
cosh

(
k
cj

γ
√

1− c2
j

)
for j > j0

(5.9)

|Qδ
2(2

jζ)| ≤
{

δ
√
|Γ| for j ≤ j0

δ
√
|Γ| cosh

(
k
cj

γ
√

1− c2
j

)
for j > j0

(5.10)

where γ and cj are given by (3.2) and (5.7), respectively and |Γ| denotes
length of the curve Γ.
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Proof: From (5.5) it follows

|Qδ
1(ξ)| ≤ ‖f − fδ‖L2(Γ)

√
|Γ|q1(ξ), (5.11)

where q2
1(ξ) is equal to

sup
(x1,x2)∈Γ

{∣∣∣ξ cosh(x2

√
ξ2 − k2)eiξx1

∣∣∣
2

+
∣∣∣
√

ξ2 − k2 sinh(x2

√
ξ2 − k2)eiξx1

∣∣∣
2
}

.

Similarly, from (5.6) it follows that

|Qδ
2(ξ)| ≤ ‖g − gδ‖L2(Γ)

√
|Γ| sup

(x1,x2)∈Γ

∣∣∣cosh(x2

√
ξ2 − k2)eiξx1

∣∣∣ (5.12)

If j ≤ j0 then for ξ = 2jζ,
√

ξ2 − k2 is an imaginary number and thus

| cosh(x2

√
ξ2 − k2)| as well as | sinh(x2

√
ξ2 − k2)| are less or equal to 1.

Hence
|q1(ξ)| ≤ {ξ2 + (

√
k2 − ξ2)2}1/2,

which proves Lemma 5.2 for j ≤ j0.
Since k = cj

8
3
π2j and cj < 1 for j > j0, we have for ξ = 2jζ

cosh(x2

√
ξ2 − k2) ≤ cosh

(
8

3
π2jγ

√
1− c2

j

)
= cosh

(
k

cj

γ
√

1− c2
j

)
,

which gives (5.10). Taking into account that for α > 0, sinh2 α = cosh2 α−1,
we obtain

q1(ξ) ≤ k

cj

√
2− c2

j cosh

(
k

cj

γ
√

1− c2
j

)
.

Theorem 5.3 If (5.1) holds, then there exist constants C1 and C2 depending
on k such that

‖ϕJ − ϕδ
J‖ ≤

{
C1δ2

1
2
J as J ≤ j0

C2δ2
3
2
Je

4
3
π2Jγ as J > j0.

(5.13)

Proof: Let bk,j := 1 + k
cj

√
2− c2

j . Taking into account (5.9), (5.10) we

get for j ≤ j0

sup
|ξ|∈( 2

3
π, 8

3
π)

∣∣Qδ
1(2

jξ)−Qδ
2(2

jξ)
∣∣ ≤
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≤ sup
|ξ|∈( 2

3
π, 8

3
π)

(|Qδ
1(2

jξ)|+ |Qδ
2(2

jξ)|) ≤ δ
√
|Γ|(k + 1).

Similarly, for j > j0

sup
|ξ|∈( 2

3
π, 8

3
π)

∣∣Qδ
1(2

jξ)−Qδ
2(2

jξ)
∣∣ ≤ δ

√
|Γ|bk,j cosh

(
k

cj

γ
√

1− c2
j

)
.

Since
∑j

l=−∞ 2l = 2j+1, from Lemma 5.1 it follows

‖ϕJ−ϕδ
J‖2 ≤





δ2|Γ|(k + 1)22J as J ≤ j0

δ2|Γ|
{

(k + 1)22j0 +
∑J−1

j=j0+1 2jb2
k,j cosh2

(
k
cj

√
1− c2

jγ
)}

as J > j0

.

According to notation (5.8), for j > j0 cj ∈ (0, 1), and thus 1 <
√

2− cj <√
2. Moreover, by (5.7), k

cj
= 8π

3
2j. Thus

b2
k,j <

(
1 +

8π

3
2j
√

2

)2

≤ ϑ222j,

where ϑ = (2−j0 + 8π
3

√
2). Taking into account that

cosh

(
k

cj

γ
√

1− c2
j

)
< e

8π
3

γ2j

we get

J−1∑
j=j0+1

2jb2
k,j cosh2

(
k

cj

γ
√

1− c2
j

)
≤ ϑ2e2 8π

3
γ2J−1

J−1∑
j=j0+1

23j.

Let η be a constant such that
∑J−1

j=j0+1 23j = 1
7
(23(J)− 23(j0+1)) ≤ η23J . Thus,

for J > j0

‖ϕJ − ϕδ
J‖2 ≤ δ2|Γ|

{
(k + 1)22j0 + ϑ2η23Je2 4π

3
γ2J

}
≤

≤
(
C2δ2

3
2
Je

4
3
π2Jγ

)2

(5.14)

for a certain constant C2 depending on k, which ends the proof.
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6 Projection-regularized moment method

Now, we can formulate the projection-regularized wavelet moment method
for the problem (1.2) in the domain Ω1 ⊂ R2 with the boundary described in
Section 3 (cf. (3.1)). Let ϕδ

J be the approximate solution of moment problem
given by (5.3) with coefficients (5.2). For given perturbed boundary value
functions fδ, gδ we define the regularized solution uδ

J as a solution of the well
posed Neumann problem (for ∂Ω1 sufficiently smooth)





∆uδ
J + k2uδ

J = 0, on Ω1
∂uδ

J

∂ν
= ϕδ

J on ∂Ω1 \ Γ,
∂uδ

J

∂ν
= gδ on Γ,

(6.1)

with additional condition
∫

Γ

(uδ
J − fδ)dσ = 0. (6.2)

Theorem 6.1 Let α and M be fixed constants and 0 < α < 1
γ

for γ given

by (3.2). If

J(δ) :=

[
log2

(
3α

4π
ln

M

δ

)]
(6.3)

then
‖ϕ− ϕδ

J(δ)‖L2(0,1) −→ 0 as δ −→ 0

Proof: Let τ := 4
3
π. From (6.3)

eτ2J ≤ (
M

δ
)α and 2J ≤ 1

τ
ln(

M

δ
)α.

Thus, according to Theorem 5.3 we have

‖ϕJ − ϕδ
J‖ ≤





C1δ
√

α ln(M
δ
) as J(δ) ≤ j0

C2δ
1−γα

(
α ln(M

δ
)
) 3

2 Mαγ as J(δ) > j0.
(6.4)

Since log2(−ln(δ)) −→∞ as δ −→ 0, by (6.3)

J(δ) −→∞ as δ −→ 0. (6.5)

So, for sufficiently small δ, J(δ) > j0 and the second part of estimation (6.4)
occurs. Using the rule of Bernoulli and L’Hospital we see that

lim
δ→0

δ1−γα ln(δ) =
1

γα− 1
lim
δ→0

δ1−γα = 0,
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therefore,

lim
δ→0

δ1−γα

(
α ln(

M

δ
)

) 3
2

= 0.

Thus
‖ϕJ − ϕδ

J‖ −→ 0 as δ −→ 0.

On the other hand, due to (6.5) and (4.12)

‖ϕ− ϕJ(δ)‖ −→ 0 as δ −→ 0,

which ends the proof.

Finally, from the above theorem and the continuous dependence of the so-
lution of the problem (6.1), (6.2) on the boundary conditions we get an
asymptotic convergence of projection-regularized wavelet moment method:

Remark 6.2 If the assumptions of Theorem 6.1 are satisfied, then

‖u− uδ
J(δ)‖H1(Ω1) −→ 0 as δ −→ 0.
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