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The complex symplectic moduli spaces of uni-modal parametric

plane curve singularities.

Go-o ISHIKAWA∗ and StanisÃlaw JANECZKO

Abstract

Classification of zero-modal singularities of parametric plane curves under diffeomorphism
equivalence is extended to uni-modal singularities. Both the simple and uni-modal singulari-
ties of parametric plane curves are classified further under symplectomorphic equivalence. In
particular the corresponding cyclic symplectic moduli spaces are reconstructed as a canonical
ambient spaces for the diffeomorphism moduli spaces which are no longer Hausdorff spaces.

1 Introduction.

In [3], Bruce and Gaffney classified the simple (0-modal) singularities of parametric plane curves
f : (C, 0) → (C2, 0) under diffeomorphism equivalence (right-left equivalence) in the complex
analytic category into the classes A2`, E6`, E6`+2, W12, W18 and W#

1,2`−1 (` = 1, 2, 3, . . . ). See
also [2] and Table 1. The classification is here extended to the uni-modal singularities:

Theorem 1.1 Under diffeomorphism equivalence the uni-modal singularities of parametric plane
curves f : (C, 0) → (C2, 0) are classified into the following list:

N20 : (t5, t6 + t8 + λt9) (−λ ∼ λ), (t5, t6 + t9), (t5, t6 + t14), (t5, t6),

N24 : (t5, t7 + t8 + λt11), (t5, t7 + t11 + λt13) (−λ ∼ λ),
(t5, t7 + t13), (t5, t7 + t18), (t5, t7),

N28 : (t5, t8 + t9 + λt12), (t5, t8 + t12 + λt14) (−λ ∼ λ),
(t5, t8 + t14 + λt17) (−λ ∼ λ), (t5, t8 + t17), (t5, t8 + t22), (t5, t8),

W24 : (t4, t9 + t10 + λt11) (λ 6= 19
18), (t4, t9 + t10 + 19

18 t11 + λt15),
(t4, t9 + t11), (t4, t9 + t15), (t4, t9 + t19), (t4, t9),

W30 : (t4, t11 + t13 + λt14) (−λ ∼ λ), (t4, t11 + t14 + λt17) (λ 6= 25
22),

(t4, t11 + t14 + 25
22 t17 + λt21) (ωλ ∼ λ, ω3 = 1),

(t4, t11 + t17), (t4, t11 + t21), (t4, t11 + t25), (t4, t11),

W#
2,2`−1 : (t4, t10 + t2`+9 + λt2`+11) (ωλ ∼ λ, ω2`−1 = 1) (` = 1, 2, 3, . . . ).

Key words: symplectomorphism, moduli space, cyclic quotient singularity, Puiseux characteristic, Tyurina number
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In the list, for instance −λ ∼ λ means that (t5, t6 + t8 + λ′t9) is diffeomorphic to (t5, t6 +
t8 + λt9) if and only if λ′ = ±λ.

In [7], motivated by the symplectic bifurcation problem, we gave the symplectic classification
of simple singularities of parametric plane curves in the real case. (For the higher dimensional
case, see [8]). In this paper, we classify symplectically both the simple and uni-modal singular-
ities of parametric plane curves in the complex case.

We call holomorphic parametric curve-germs f, g : (C, 0) → (C2, 0) diffeomorphic (resp.
symplectomorphic) if there exist a bi-holomorphic diffeomorphism σ of (C, 0) and a bi-holomorphic
diffeomorphism τ (resp. a bi-holomorphic symplectomorphism τ) of (C2, 0) (for the holomorphic
symplectic form dx ∧ dy on C2) satisfying τ(g(t)) = f(σ(t)).

Let r be a non-negative integer. A curve-germ f is called r-modal if a finite number of
s-parameter families (0 ≤ s ≤ r) of diffeomorphism classes form a neighborhood of f in the
space of curve-germs. Then we have:

Theorem 1.2 A simple or uni-modal singularity f : (C, 0) → (C2, 0) is symplectomorphic to a
germ which belongs to one of the following families ( called “symplectic normal forms”):

A2` : (t2, t2`+1),
E6` : (t3, t3`+1 + Σ`−1

j=1λjt
3(`+j)−1),

E6`+2 : (t3, t3`+2 + Σ`−1
j=1λjt

3(`+j)+1),
W12 : (t4, t5 + λt7),
W18 : (t4, t7 + λt9 + µt13),
W#

1,2`−1 : (t4, t6 + λt2`+5 + µt2`+9), λ 6= 0, (` = 1, 2, . . . )

N20 : (t5, t6 + λ1t
8 + λ2t

9 + λ3t
14),

N24 : (t5, t7 + λ1t
8 + λ2t

11 + λ3t
13 + λ4t

18),
N28 : (t5, t8 + λ1t

9 + λ2t
12 + λ3t

14 + λ4t
17 + λ5t

22),
W24 : (t4, t9 + λ1t

10 + λ2t
11 + λ3t

15 + λ4t
19),

W30 : (t4, t11 + λ1t
13 + λ2t

14 + λ3t
17 + λ4t

21 + λ5t
25),

W#
2,2`−1 : (t4, t10 + λ1t

2`+9 + λ2t
2`+11 + λ3t

2`+13 + λ4t
2`+17 + λ5t

2`+21), λ1 6= 0(` = 1, 2, . . . )

Moreover we determine their symplectic moduli spaces as listed in Tables 1 and 2:

Theorem 1.3 Let fλ(t) = (tm, tn + λ1t
r1 + λ2t

r2 + · · ·+ λst
rs) be one of the symplectic normal

forms of simple or uni-modal singularities. Then two curve-germs fλ and fλ′ belonging to the
same family are symplectomorphic if and only if there exists an (m + n)-th root ζ ∈ C of unity
satisfying

λ′1 = ζr1−nλ1, λ′2 = ζr2−nλ2, . . . , λ′s = ζrs−nλs.

In particular each symplectic moduli space of a family is a Hausdorff space in the natural topology
and it is extended to a cyclic quotient singularity.

In his lecture notes [18], O. Zariski studied the moduli space of parametric plane curve-
germs, under diffeomorphism equivalence, for a given topological type, or the equi-singularity
class (m,β1, . . . , βg). (See §2). In particular, Zariski determined the moduli spaces for the classes
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(2, 2`+1), (3, 3`+1), (4, 5), (4, 6, 2`+5), (5, 6) and (6, 7). He did not mention symplectomorphic
equivalence at all, but surprisingly, he used, as pre-normal forms, several symplectic normal
forms given in Theorem 1.2. For instance, in [18] page 68, he started with

x = t5, y = t6 + a8t
8 + a9t

9 + a14t
14

in the concrete classification of the case (5, 6).

In this paper, clarifying the role of symplectomorphism equivalence, we proceed Zariski’s
classification via modality: By Bruce-Gaffney’s classification and by Theorem 1.1, we deter-
mine the moduli spaces for the classes (4, 7), (5, 7), (5, 8), (4, 9), (4, 11) and (4, 10, 2`+9) beyond
Zariski’s result, except for the class (6, 7) which is actually bi-modal. Moreover we can treat the
case (6, 7) by the same method developed in this paper.

The first author thanks T. Krasiński for valuable comments, in particular, for information
on the reference [18].

The classification of plane curve singularities is closely related to the classification of Legen-
dre curve singularities and the classification of Goursat distributions ([12][19][13]). Actually P.
Mormul has predicted several forms in Theorem 1.1 from his classification results for uni-modal
singularities of Goursat distributions (private communication to the first author). Note how-
ever, that these classification problems have different features, and therefore, to get the exact
classification, we need a detailed analysis in each case.

In the next section we give an outline of the proofs of Theorem 1.2 and Theorem 1.3. In the
last section we outline the proof of Theorem 1.1.

2 Symplectic normal forms.

Let f : (C, 0) → (C2, 0) be a germ of parametric holomorphic plane curve. Then the following
conditions on f are known to be equivalent ([16][7]):

(i) f has an injective representative.

(ii) f is a normalization onto the image.

(iii) The diffeomorphism class of f is determined by a finite jet of f .

(iv) The symplectomorphism class of f is determined by a finite jet of f .

(v) The quotient vector space O1/f∗O2 is finite dimensional.

We assume f satisfies one (and therefore all) of the above conditions. Here f∗ : O2 =
C{x, y} → O1 = C{t} is defined by composition: f∗(h) = h◦f . Recall that the number of double
points δ(f) = dimCO1/f∗O2 ([11][17]) also has the meaning of the symplectic codimension of f ,
that is, the number of parameters needed to produce its versal unfolding via symplectomorphism
equivalence ([7]).

We briefly recall the theory developed in [7] §7: The symplectic codimension of f is defined
by

sp-cod(f) = dimC
Vf

tf(V1) + wf(V H2)

as an infinitesimal symplectic invariant of Mather’s type. Here Vf is the space of germs of
holomorphic vector fields v : (C, 0) → TC2 along f , the space of infinitesimal deformations of
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DIFF. NORMAL FORM SYM. NORMAL FORM SYM. MODULI SPACE

A2` (t2, t2`+1) (t2, t2`+1)

E6`

(` ≥ 1)

(t3, t3`+1 + t3(`+p)+2)
(0 ≤ p ≤ `− 2)

(t3, t3`+1)

(t3, t3`+1 + Σ`−1
j=1λjt

3(`+j)−1)

C`−1/G, G = Z/(3` + 4)Z
(λ1, . . . , λ`−1) 7→

(ζλ1, . . . , ζ
3j−2λj , . . . , ζ

3`−5λ`−1)

(ζ3`+4 = 1, primitive)

E6`+2

(` ≥ 1)

(t3, t3`+2 + t3(`+p)+4),
(0 ≤ p ≤ `− 2)

(t3, t3`+2)

(t3, t3`+2 + Σ`−1
j=1λjt

3(`+j)+1)

C`−1/G, G = Z/(3` + 5)Z
(λ1, . . . , λ`−1) 7→

(ζ2λ1, . . . , ζ
3j−1λj , . . . , ζ

3`−4λ`−1)

(ζ3`+5 = 1, primitive)

W12
(t4, t5 + t7)

(t4, t5)
(t4, t5 + λt7)

C/G, G = Z/9Z
λ 7→ ζλ, (ζ9 = 1)

W18

(t4, t7 + t9)
(t4, t7 + t13)

(t4, t7)
(t4, t7 + λt9 + µt13)

C2/G, G = Z/11Z
(λ, µ) 7→ (ζλ, ζ3µ), (ζ11 = 1)

W#
1,2`−1

(` ≥ 1)
(t4, t6 + t2`+5)

(t4, t6 + λt2`+5 + µt2`+9)
(λ 6= 0)

(C∗ ×C)/G, G = Z/10Z,

(λ, µ) 7→ (ζ2`−1λ, ζ2`+3µ),
(ζ10 = 1, primitive)

Table 1: The complex symplectic moduli spaces of simple parametric plane curve singularities.

SYM. NORMAL FORM SYM. MODULI SPACE

N20 (t5, t6 + λ1t
8 + λ2t

9 + λ3t
14)

C3/G, G = Z/11Z
(λ1, λ2, λ3) 7→ (ζ2λ1, ζ

3λ2, ζ
8λ3),

(ζ11 = 1)

N24 (t5, t7 + λ1t
8 + λ2t

11 + λ3t
13 + λ4t

18)

C4/G, G = Z/12Z
(λ1, λ2, λ3, λ4) 7→

(ζλ1, ζ
4λ2, ζ

6λ3, ζ
11λ4),

(ζ12 = 1, primitive)

N28 (t5, t8 + λ1t
9 + λ2t

12 + λ3t
14 + λ4t

17 + λ5t
22)

C5/G, G = Z/13Z
(λ1, λ2, λ3, λ4, λ5) 7→

(ζλ1, ζ
4λ2, ζ

6λ3, ζ
9λ4, ζ

14λ5),
(ζ13 = 1, primitive)

W24 (t4, t9 + λ1t
10 + λ2t

11 + λ3t
15 + λ4t

19)

C4/G, G = Z/13Z
(λ1, λ2, λ3, λ4) 7→

(ζλ1, ζ
2λ2, ζ

6λ3, ζ
10λ4),

(ζ13 = 1)

W30
(t4, t11 + λ1t

13 + λ2t
14 + λ3t

17

+λ4t
21 + λ5t

25)

C5/G, G = Z/15Z
(λ1, λ2, λ3, λ4, λ5) 7→

(ζ2λ1, ζ
5λ2, ζ

6λ3, ζ
10λ4, ζ

14λ5),
(ζ15 = 1, primitive)

W#
2,2`−1

(t4, t10 + λ1t
2`+9 + λ2t

2`+11 + λ3t
2`+13

+λ4t
2`+17 + λ5t

2`+21), (λ1 6= 0).

(C∗ ×C4)/G, G = Z/14Z
(λ1, λ2, λ3, λ4, λ5) 7→

(ζ2`−1λ1, ζ
2`+1λ2, ζ

2`+3λ3, ζ
2`+7λ4, ζ

2`+11λ5),
(ζ14 = 1, primitive)

Table 2: The complex symplectic moduli spaces of uni-modal parametric plane curve singulari-
ties.
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f , V1 the space of germs of holomorphic vector fields over (C, 0) and V H2 the space of germs
of holomorphic Hamiltonian vector fields over (C2, 0). The homomorphisms tf : V1 → Vf and
wf : V H2 → Vf are defined by tf(ξ) := f∗(ξ), ξ ∈ V1 and wf(η) := η ◦ f respectively. An
unfolding F : (C × Cr, (0, 0)) → (C2 × Cr, (0, 0)) of f , F (t, u) = (fu(t), u), is symplectically

versal if
∂fu

∂u1
(t, 0), . . . ,

∂fu

∂ur
(t, 0) generate Vf , over R, up to the space tf(V1) + wf(V H2) of

deformations which are covered by symplectomorphisms ([7], Proposition 7.1).

Set f(t) = (x(t), y(t)). For an infinitesimal deformation v(t) = a(t)
∂

∂x
+ b(t)

∂

∂y
∈ Vf , we

define a generating function e(t) ∈ O1 of v by d(e(t)) = b(t)d(x(t)) − a(t)d(y(t)), or e′(t) =
b(t)x′(t)−a(t)y′(t) up to the constant term. The generating function of tf(ξ)+wf(Hk) is equal
to f∗k, where k is the Hamiltonian function of the Hamiltonian vector field Hk. Then there
exists an exact sequence of vector spaces:

0 → V ′
f

tf(V1)
→ Vf

tf(V1) + wf(V H2)
→ Rf

f∗O2
→ 0,

where Rf = {e(t) ∈ O1 | ord(e′(t)) ≥ ord(f)− 1} and

V ′
f = {v(t) = a(t)∂/∂x + b(t)∂/∂y ∈ Vf | b(t)x′(t)− a(t)y′(t) = 0}.

Then we see that dimC V ′
f/tf(V1) = ord(f)− 1 = dimCO1/Rf . Therefore we have

sp-cod(f) = dimC V ′
f/tf(V1) + dimC Rf/f∗O2 = dimCO1/f∗O2 = δ(f).

Some of parameters of the symplectically versal unfolding correspond to deformations into
less singular germs, and the remaining parameters provide the symplectic normal form within
a given equi-singular class up to discrete symplectomorphism equivalence classes. We recall a
basic fact from the textbook [17] in our context: Set m = ord(f). Then f is symplectomorphic
to a germ of the form (tm,

∑∞
k=m akt

k). Suppose m ≥ 2, that is, f is not an immersion. Set
β1 = min{k | ak 6= 0,m - k} and let e1 be the greatest common divisor of m and β1, and
inductively set βq = min{k | ak 6= 0, eq−1 - k}, and let eq be the greatest common divisor of βq

and eq−1, q ≥ 2. Then eg = 1 for sufficiently large g, and we call (m = β0, β1, β2, . . . , βg) the
Puiseux characteristic of f , which is a basic diffeomorphism invariant. Setting e0 = m, we have
δ(f) = 1

2

∑g
q=1(βq − 1)(eq−1 − eq) ([11][17]). Moreover the Puiseux characteristic determines

the homeomorphism equivalence class of f ([10][18]). We call a deformation of plane curve
singularities equi-singular if the Puiseux characteristic is preserved. Under an equi-singular
deformation of f , we can take a common monomial basis of O1/f∗O2.

First we have:

Lemma 2.1 f is symplectomorphic to a germ of the form (tm, tβ1 +
∑∞

k=β1+1 bkt
k).

Proof : Set ψ(x) =
∑β1−1

k=m akx
k/m and τ1(x, y) = (x, y−ψ(x)). Then τ1(f(t)) = (tm,

∑∞
k=β1

akt
k)

with aβ1 6= 0. Define α ∈ C∗ = C \ {0} by αm+β1aβ1 = 1, and set σ(t) = αt and τ2(x, y) =
(α−mx, αmy). Then τ1, τ2 are both symplectomorphisms and we see that τ2(τ1(f(σ(t)))) has the
required form. 2

To get symplectic normal forms, we first remark the following:
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Lemma 2.2 Suppose O1/f∗O2 has a monomial basis

t, t2, . . . , tm−1, tm+1, . . . , tr1+m, . . . , trs+m

where r1 + m, . . . , rs + m are all exponents greater than β1 + m(j = 1, . . . , s). Then the family

fc(t) = (tm, tβ1 +
∞∑

k=β1+1

bkt
k +

s∑

j=1

cjt
rj ),

c = (c1, . . . , cs) ∈ Cs, gives a transversal to the symplectomorphism orbit.

Proof : Let v = ψ(t)
(

∂
∂y ◦ f

)
, ψ(t) =

∑∞
k=β1+1 ukt

k, be an infinitesimal deformation of f among
the forms given in Lemma 2.1. Take the generating function e of v satisfying de(t) = ψ(t)d(tm),
e(0) = 0. Then there exist b̃1, b̃2, . . . , b̃m−1, b̃m+1, . . . , b̃r1+m, . . . , b̃rs+m ∈ C such that, setting

ϕ(t) = b̃1t + b̃2t
2 + · · ·+ b̃m−1t

m−1 + b̃m+1t
m+1 + · · ·+ b̃r1+mtr1+m + · · ·+ b̃rs+mtrs+m,

we have e − ϕ ∈ f∗O2. Set e − ϕ = h ◦ f . Since ord(e) ≥ β1 + m, we see ord(h) ≥ 2. On the
other hand, ϕ(t) = b̃r1+mtr1+m + · · ·+ b̃rs+mtrs+m. Then we have

dϕ(t) = {(r1 + m)b̃r1+mtr1+m−1 + · · ·+ (rs + m)b̃rs+mtrs+m−1}dt

=
(

r1+m
m b̃r1+mtr1 + · · ·+ rs+m

m b̃rs+mtrs

)
d(tm).

Set w =
(

r1+m
m b̃r1+mtr1 + · · ·+ rs+m

m b̃rs+mtrs

)(
∂
∂y ◦ f

)
. Consider the Hamiltonian vector field

Xh. Then, the field (v − w)− wf(Xh) has the zero as a generating function, that is, (v − w)−
wf(Xh) ∈ V ′

f . Then there exists ξ ∈ V1 with ξ(0) = 0 satisfying tf(ξ) = (v−w)−wf(Xh), that
is, v = w + tf(ξ)+wf(Xh) (cf. Lemma 8.2 and Theorem 8.7 of [7]). This means that the above
family is transversal to the symplectomorphism orbit through f . 2

A monomial basis of O1/f∗O2 can be calculated by considering the semigroup S(f) =
{ord(h) | h ∈ f∗O2} ⊆ N. In fact {tr | r ∈ N \ S(f), r > 0} forms a monomial basis of
O1/f∗O2. Note that a system of generators for the semigroup S(f) is calculated explicitly from
the Puiseux characteristic. Moreover there exists a number N depending only on the Puiseux
characteristic of f such that if φ ∈ O1 has order ≥ N , then φ ∈ f∗O2 ([17]).

Example 2.3 (1) (W30) Let m = 4, β1 = 11. Then the semigroup S(f) is generated by 4 and
11. A monomial basis of O1/f∗O2 is given by t, t2, t3, t5, t6, t7, t9, t10, t13, t14, t17, t18, t21, t25, t29.

(2) (W#
1,2`−1) Let m = 4, β1 = 6 and β2 = 2`+5. Then S(f) is generated by 4, 6 and 2`+11.

The complement N \ S(f) consists of 1, 2, 3, 5, 7, 9, 11, . . . , 2` + 9, 2` + 13.

(3) (W#
2,2`−1) Let m = 4, β1 = 10 and β2 = 2` + 9. Then S(f) is generated by 4, 10 and

2` + 19. The complement N \ S(f) consists of 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, . . . , 2` +
13, 2` + 15, 2` + 17, 2` + 21, 2` + 25.

Proof of Theorem 1.2 : Under the notations of Lemma 2.2, consider the infinitesimal deformation
v = κ(t)

(
∂
∂y ◦ f

)
, κ(t) = −∑

bkt
k, where the summation runs over k different from r1, . . . , rs.

Then the Puiseux characteristics are preserved under the deformation

fu = (tm, tβ1 +
∞∑

k=β1+1

bkt
k − uκ(t))
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(u ∈ [0, 1]) corresponding to v. This is clear when the greatest common divisor e1 of m and β1

is equal to 1. From Example 2.3 (2)(3), it also holds for W#
1,2`−1 and W#

2,2`−1. Then there exist
wu =

∑s
j=1 cj,utrj , cj,u ∈ C, ξu ∈ V1, ξu(0) = 0, and ηu ∈ V H2, ηu(0) = 0, smoothly depending

on u and satisfying v = wu + tfu(ξu) + wfu(ηu). By integrating from u = 0 to u = 1 we see that
f is symplectomorphic to

fλ(t) = (tm, tβ1 + λ1t
r1 + λ2t

r2 + · · ·+ λst
rs),

for some λ = (λ1, . . . , λs) ∈ Cs. In all cases except W#
1,2`−1 and W#

2,2`−1, there are no restrictions

on λ and we get the symplectic normal forms given in Theorem 1.2. In the case of W#
1,2`−1, f is

symplectomorphic to

fc = (t4, t6 + c1t
7 + · · ·+ c`t

2`+5 + c`+1t
2`+7).

Since the Puiseux characteristic of f is (4; 6, 2` + 5), we necessarily have c1 = 0, . . . , c`−1 = 0
and c` 6= 0. Setting λ = c`, µ = c`+1, we get the symplectic normal form. In the case of W#

2,2`−1,
f is symplectomorphic to

fc = (t4, t10 + c1t
11 + c2t

13 + c15
3 + · · ·+ c`t

2`+9 + c`+1t
2`+11 + c`+2t

2`+13 + c`+3t
2`+17 +c`+4t

2`+21).

Since the Puiseux characteristic of f is (4; 10, 2` + 9), we have c1 = 0, . . . , c`−1 = 0 and c` 6= 0,
which gives the symplectic normal form. 2

In the process of symplectic classification, we observe a kind of rigidity. Let fλ and fλ′ ,
with λ 6= λ′, be germs belonging to one of the symplectic normal forms of simple or uni-modal
parametric plane curve singularities. Then fλ and fλ′ , are not isotopic by symplectomorphisms.
Moreover we have the following strong rigidity which implies Theorem 1.3 in each case:

Proposition 2.4 Let fλ and fλ′ be germs belonging to one of the symplectic normal forms of
simple or uni-modal parametric plane curve singularities. If fλ and fλ′ are symplectomorphic,
then they are linearly symplectomorphic: If there exists a symplectomorphism equivalence (σ, τ)
satisfying τ ◦ fλ′ = fλ ◦ σ, then there exists a symplectomorphism equivalence (Σ, T ) such that
T ◦fλ′ = fλ◦Σ, Σ : (C, 0) → (C, 0) is a complex linear transformation, and T : (C2, 0) → (C2, 0)
is a complex linear symplectic transformation.

Proof : We give the calculation in the case W30. Other cases can be treated similarly. Set
fλ = (t4, t11+λ1t

13+λ2t
14+λ3t

17+λ4t
21+λ5t

25), and suppose fλ and fλ′ are symplectomorphic
for λ = (λ1, . . . , λ5) and λ′ = (λ′1, . . . , λ

′
5).

Set σ(t) = a1t + a2t
2 + · · · and, as components of τ(x, y),

x ◦ τ(x, y) = ax + by + h1x
2 + h2xy + h3y

2 + `1x
3 + `2x

2y + `3xy2 + `4y
3 + · · · ,

y ◦ τ(x, y) = cx + ey + k1x
2 + k2xy + k3y

2 + m1x
3 + m2x

2y + m3xy2 + m4y
3 + · · · .

Consider the equation fλ(σ(t)) = τ(fλ′(t)):

σ(t)m = x ◦ τ(t4, t11 + λ′1t
13 + λ′2t

14 + λ′3t
17 + λ′4t

21 + λ′5t
25) · · · · · · · · · (∗),

σ(t)11 + λ1σ(t)13 + λ2σ(t)14 + λ3σ(t)17 + λ4σ(t)21 + λ5σ(t)25

= y ◦ τ(t4, t11 + λ′1t
13 + λ′2t

14 + λ′3t
17 + λ′4t

21 + λ′5t
25) · · · · · · · · · (∗∗).
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Now we are going to determine the coefficients of σ and τ of lower degree terms, using the
equations (*) and (**) in a zigzag manner. We denote for comparison of terms in (*) (resp.
(**)) of degree i by (*i) (resp. (**i)). First by (*4), we have a4

1 = a. By (*5)(*6)(*7), we have
a2 = 0, a3 = 0, a4 = 0. By (**4), c = 0. By (**8), k1 = 0. By (**11), we have a11

1 = e. Since τ
is a symplectomorphism, we see that ae = 1, so we have a15

1 = 1. By (**12), m1 = 0. By (**13),
we get λ1a

13 = eλ′1 and therefore λ1a
2 = λ′1. By (**14), λ2a

14 = eλ′2 and therefore λ1a
3 = λ′1.

By (**15), 11a10
1 a5 = k2. From (*8), we have 4a3a5 = h1. Since τ is a symplectomorphism, we

have 2h1e + ak2 = 0. Thus we see that a5 = 0. Then k2 = 0, h1 = 0. By (*9), 4a3a6 = 0 so
a6 = 0. By (*10), a7 = 0. By (*11), we have 4a3

1a8 = b. Then by (**17), we have λ3a
17 = eλ′3,

thus λ3a
6 = λ′3. By (**18), we have a8 = 0. Therefore we have b = 0. By (*12), 4a3

1a8 = `1. By
(**19), 11a10

1 a9 = m2. Since τ is a symplectomorphism we have 6`1e+2am2 = 0. Thus we have
a9 = 0. Then we have `1 = 0, m2 = 0. By (*13)(*14), we have a10 = 0, a11 = 0. By (**21),
we have λ4a

21 = eλ′4 so λ4a
10 = λ′4. By (**22), 11a10

1 a12 = k3. By (*15), we have 4a3
1a12 = h2.

Since τ is a symplectomorphism we have h2e+2ak3 = 0. Therefore a12 = 0, and k3 = 0, h2 = 0.
Then, by (**23), we have a13 = 0, and by (*17)(*18), a14 = 0, a15 = 0. Finally, by (**25),we
have λ5a

25 = eλ′5, and λ5a
13 = λ′5. Therefore, setting T and Σ as the linear parts of τ and σ

respectively, we have T ◦ fλ′ = fλ ◦ Σ. 2

Remark 2.5 If two curve-germs f, g : (C, 0) → (C2, 0) are symplectomorphic, then they are
symplectically isotopic, that is, there exist C∞ families of bi-holomorphic diffeomorphisms σs

and bi-holomorphic symplectomorphisms τs (s ∈ [0, 1]) on (C, 0) and (C2, 0) respectively such
that σ0(t) = t, τ0(x, y) = (x, y) and τ1(g(t)) = f(σ1(t)). This fact is a feature of the complex
case and it is proved by using the fact that SL(2,C) is arcwise connected and the group of
symplectomorphisms with identity linear part is arcwise connected (cf. [6]). Thus our symplectic
moduli space in Tables 1 and 2 are also moduli spaces for the symplectic isotopy equivalence.

3 Differential normal forms.

The proof of Theorem 1.1 is similar to the one in [3]. We note that the symplectic normal
forms (Proposition 2.2) can play the role of an intermediate classification, which also makes the
diffeomorphic classification easier and clearer.

First we have

Lemma 3.1 Let f : (C, 0) → (C2, 0) have the Puiseux characteristic (m,β1, . . . ). If m ≥ 4 and
β1 ≥ 13, or m ≥ 5 and β1 ≥ 9, or m ≥ 6 then the modality of f is at least 2.

Proof : For instance, assume m = 4, β1 = 13. Then, in any neighborhood of f , there exists a
two-parameter family of germs at 0 which are diffeomorphic to gλ = (t4, t13 +t14 +λ1t

15 +λ2t
19).

We find this family by an infinitesimal calculation: First, for each α ∈ N, we try to find ξ ∈ O1

and η1, η2 ∈ O2 with ξ(0) = 0, η1(0, 0) = 0, η2(0, 0) = 0, satisfying the equation
(

0
tα

)
≡

(
4t3ξ

(13t12 + · · · )ξ
)

+
(

η1(t4, t13 + · · · )
η2(t4, t13 + · · · )

)
mod

(
0

tα+1O1

)
.

Then we see that the equation is not solvable for α = 15 and α = 19. Second, by a
formal calculation, we verify that gλ and gλ′ are diffeomorphic if and only if λ′ = λ. From this
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observation we see that, if m ≥ 4, β1 ≥ 13, then the modality of f is ≥ 2. Other cases can be
treated in a similar way. 2

Thus Theorem 1.1 will be proved if we check all remaining cases. Here we will treat only the
class W30 with the Puiseux characteristic (4, 11).

Consider the symplectic normal form fλ(t) = (t4, t11 + λ1t
13 + λ2t

14 + λ3t
17 + λ4t

21 + λ5t
25).

Suppose λ1 6= 0. Consider, for given ρ(t), the equation
(

0
ρ(t)

)
= ξ

(
4t3

11t10 + 13λ1t
12 + · · ·

)
+

(
η1(fλ(t))
η2(fλ(t))

)
,

and try to find ξ(t), η1(x, y), η2(x, y) with ξ(0) = 0, η1(0, 0) = 0, η2(0, 0) = 0. The equation is
solvable for ρ(t) = t13, up to higher order terms, and solvable for any ρ(t) with ordρ(t) ≥ 15.
Then, by the homotopy method, we see that, if λ1 6= 0, then f is diffeomorphic to (t4, t11 + t13 +
λt14) for some λ ∈ C. If λ1 = 0, λ2 6= 0, then f is diffeomorphic to (t4, t11 + t14 + λt17) for some
λ ∈ C, λ 6= 25

22 , or to (t4, t11 + t14 + 25
22 t17 + λt21) for some λ ∈ C. If λ1 = 0, λ2 = 0, λ3 6= 0 (resp.

λ1 = 0, λ2 = 0, λ3 = 0, λ4 6= 0; λ1 = 0, λ2 = 0, λ3 = 0, λ4 = 0, λ5 6= 0), then f is diffeomorphic to
(t4, t11 + t17) (resp. (t4, t11 + t21); (t4, t11 + t25)). The exact determination of the moduli space
is completed by direct formal calculations. The other cases are classified in a similar way.

Remark 3.2 In general, for each equi-singularity class, the symplectic moduli space is mapped
canonically onto the differential moduli space, i.e. the ordinary moduli space. The dimension of
the fiber over a diffeomorphism class [f ] is called the symplectic defect and denoted by sd(f) in
[7]. It is known that sd(f) = µ(f)−τ(f), where µ(f) = 2δ(f) is the Milnor number of f and τ(f)
is the Tyurina number of f ([15][9][4]). Let s(f) (resp. c(f)) be the symplectic modality, that is,
the number of parameters in the symplectic normal form of f (resp. the codimension of the locus
in the parameter space corresponding to germs diffeomorphic to f). Then s(f)− c(f) = sd(f).
Thus we have the formula for the Tyurina number (by means of Varchenko-Lando’s formula) as

τ(f) = 2δ(f) + c(f)− s(f).

For example, for f = (t4, t11 + t21) in the case of W30, we have δ(f) = 15, c(f) = 3, s(f) = 5
and in fact τ(f) = 28.

Note that the differential moduli space is not a Hausdorff space, while the symplectic moduli
space is, at least for 0-modal and 1-modal cases, as we clearly observe in Theorems 1.1 and
1.3. Therefore the symplectic moduli space can be called a Hausdorffication of the differential
moduli space.

Remark 3.3 The adjacency of simple and uni-modal singularities of parametric plane curves
is generated (as an ordering) by A2` ← A2`+2, E6` ← E6`+2 ← E6`+6 (` = 1, 2, . . . ), A6s−2 ←
E12s−6, A6s ← E12s, A6s−2 ← E12s−4, A6s+2 ← E12s+2 (s = 1, 2, . . . ), E8 ← W12 ← W18,W12 ←
W#

1,1, E12 ← W#
1,1 ← W18,W

#
1,2`−1 ← W#

1,2`+1 (` = 1, 2, . . . ),W#
1,1 ← N20 ← N24 ← N28,W18 ←

N24,W24 ← N28,W18 ← W24 ← W30, E18 ← W24 ← W#
2,1, E20 ← W30,W

#
2,2`−1 ← W#

2,2`+1 (` =
1, 2, . . . ).
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