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Summary. We propose new tests for testing the validity of a semiparametric random-design
linear regression model. The construction consists of several steps. First, we follow the classical
idea of overfitting and replace the basic problem by a series of auxiliary subproblems. Next, to
test whether extra terms are significant we construct a counterpart of classic score statistic. In
passing, a handy way of deriving the efficient score is proposed and developed. Finally, we com-
bine the solution with smoothing methods providing guidelines to choose the right subproblem.
This leads to data driven score tests for the initial testing problem. We show that under the
null model our construction is asymptotically distribution free and illustrate this result by a
small simulation study. We also compare the finite sample performace of our tests with the the
recent solution introduced by Guerre and Lavergne (2005), as well as to Cramér-von Mises type
construction. The simulation experiment indicates the very good performance of the proposed
tests.
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1. Introduction. The problem of verifying the linear structure of a regression function
is central in applied statistics. Therefore, it is not surprising that there is an extensive literature
on several possible solutions under a variety of different restrictions. Some of the solutions are
briefly discussed in Section 2, below. For further references, mostly focused on the fixed design
set-up, see Hart (1997).

The purpose of this paper is to propose and investigate some new tests of fit for the following
problem. Let Z = (X, Y ) denote a random vector in I ×R, I = [0, 1]. We would like to verify
the null hypothesis H0 asserting

Y = β[v(X)]T + ǫ, (1.1)

where X and ǫ are independent, Eǫ = 0, Eǫ2 < ∞, β ∈ Rq is a vector of unknown real valued
parameters while v(x) = (v1(x), ..., vq(x)) is a vector of known functions. The symbol T denotes
transposition. All vectors are considered as row vectors.

We follow the classical idea of overfitting and reducing the verification of (1.1) to testing
whether extra terms are significant. More precisely, given a fixed k, we embed our null model
(1.1) into the following auxiliary model

M(k) Y = θ[u(X)]T + β[v(X)]T + ǫ, (1.2)

which satisfies the following assumptions

u(x) = (u1(x), ..., uk(x)), v(x) = (v1(x), ..., vq(x)), x ∈ I, and the measu-
rable functions u1, ..., uk, v1, ..., vq are bounded and linearly independent;

θ ∈ Rk, β ∈ Rq are unknown parameters;

< M1 > X has an unknown density g with respect to the Lebesgue
measure λ supported on I;

ǫ has an unknown density f with respect to the Lebesgue measure λ
on R. The density f satisfies Efǫ = 0, τ = Efǫ

2 and 0 < τ < ∞;

X and ǫ are independent.

At the first step we construct appropriate score test statistic, for the fixed k, for testing
H0(k) : θ = 0 against θ 6= 0 in M(k) satisfying < M1 > and some further regularity conditions
< M2 > and < M3 >. An efficient score vector along with its appropriate estimator play
the central role in this construction. Section 7 briefly presents our approach to a derivation
of efficient scores. This section may be of independent interest. The next step consists in
incorporating into this statistic a score - based selection rule for determining the dimension
k. The both steps are presented in detail in Section 3. This section is preceded by Section 2
containing motivation for the proposed construction, related discussion and some references to
existing solutions of the considered problem. Section 4 presents the results of simulation study.
Section 5 contains a proof of the crucial result on the asymptotic behaviour of the estimate of
the efficient score vector under the null model (1.1). In Section 6 we discuss various aspects
of our general assumptions. Finally in the Appendix we check the assumptions related to our
implementation of the test in Section 4.

2. Motivation of the approach. The first rigorous approach to defining and con-
structing tests which are asymptotically optimal was by Neyman (1937). Roughly speaking, the
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paper introduced an asymptotically locally most powerful test of fit to a completely specified
null distribution. The resulting solution was called the smooth test and can be seen to be a
standard score statistic [under the set-up considered by Neyman]. Note that this score statistic
is simply the Euclidean norm of the score vector. In 1959 Neyman successfully extended this
idea to cover the case of testing a parametric hypothesis in the case where some Euclidean nui-
sance parameters are present [cf. also Neyman (1954) and Le Cam (1956) for some preliminary
results and their improvements]. The key elements of Neyman’s asymptotically locally optimal
solutions (1954, 1959) were residual scores calculated as the residuals from projections [derived
under the null hypothesis] of scores for the parameters of interest onto scores for the nuisance
parameters. Nowadays the residuals are called efficient scores. Neyman’s resulting statistic is
some norm of the efficient score vector.

In the thirties other goodness of fit statistics for a completely specified null distribution were
introduced. Cramér-von Mises and Kolmogorov-Smirnov proposals are prominent examples.
In contrast to Neyman’s solution, these statistics were based mainly on intuition, as being
measures of distance between theoretical and empirical distributions. Goodness of fit testing
was dominated by solutions of this kind for decades. This remark applies also to goodness of
fit tests for semiparametric regression in the case X is random. In particular, Stute (1997) and
Stute et al. (1998a,b) developed some Cramér-von Mises type tests. Some simplified variants of
such statistics were proposed by Diebolt and Zuber (2000). Kozek (1991), Härdle and Mammen
(1993) and many others proposed defining the distance between parametric and nonparametric
estimators. Horowitz and Spokoiny (2001) refined this approach by using data driven choice of a
smoothing parameter. Recently, an alternative construction based on nonparametric smoothing
methods and penalization was introduced by Guerre and Lavergne (2005). Roughly speaking,
these solutions rely on the not entirely justified belief that good estimators produce sensitive
tests. The papers by Cox et al. (1988), Azzalini and Bowman (1993), Aerts et al. (2000) and
Fan and Huang (2001) were exceptions to the mainstream. In these articles the starting point
for test construction were some ideas related to testing theory. These four papers deal with the
case of fixed design. The study of Dette (2000) extended the solution of Azzalini and Bowman
(1993) to the case of random design.

Returning to Neyman’s approach, it should be noted that smooth tests rose little interest
for many years, while nowadays Neyman’s 1937 paper is considered to be ingenious [cf. Le Cam
and Lehmann (1975), p. ix]. Renewed interest in this solution and its 1959 extension, related
to goodness of fit problems, was observed after the paper by Thomas and Pierce (1979) and
accelerated by the book of Rayner and Best (1989). It should also be noted that the theory
and applications elaborated there concerned goodness of fit testing in the case where some
Euclidean niusance parameters are present. The resulting solutions were also called smooth
tests. A justification for the name was provided by Javitz (1975), who showed that Neyman’s
tests are simply efficient score tests for some natural parametric family.

However, it was increasingly clear that the practical application of smooth tests to goodness
of fit problems should be accompanied by careful selection of the number of components in the
test statistic. In the case of a fully specified null distribution, solutions of this kind were
proposed by Eubank et al. (1993), Ledwina (1994), Fan (1996), Aerts et al. (2000), to mention
few. In particular, the construction introduced in Ledwina (1994) is closely related to the
original idea of Neyman (1937), as it provides asymptotically locally most powerful test for a
large class of nonparametric alternatives [for some evidence see e.g. Inglot and Ledwina (1996)
and Inglot and Ledwina (2001a)]. The solution relies on using Neyman’s smooth test with
the number of components defined by Schwarz selection rule. The case of testing goodness of
fit when some Euclidean nuisance parameters are present was solved also in a similar way [cf.
Inglot et al. (1997) and Inglot and Ledwina (2001b)]. The aim of this article is to apply a
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suitable counterpart of Neyman’s solution, along with the data driven choice of the number of
components incorporated in order to construct test of fit for the model (1.1).

It should be said that the last few decades have been a period of vigorous developement of
semiparametric estimation theory. Efficient scores also play central role in it. An important
idea of applying results derived in semiparametric estimation, in order to construct some score
tests in the case where functional nuisance parameters are present, has been considered in Choi
(1989) and Choi et al. (1996). See also Bickel et al. (1998) for an alternative approach. In order
to link our solution more clearly to these important contributions, we shall use the name score
test instead of smooth test. Moreover, note that the name score test is an abbreviation of a more
suitable name: efficient score test. Finally, let us recall that the primary importance of efficient
score tests lie in the fact that, under the null model, the influence of the nuisance parameters
on the null distribution is asymptotically negligible. The second advantage of efficient score
tests is that they are locally optimal solutions.

In the context presented above, it is quite obvious that the paper by Choi et al. (1996)
stimulated us. On the other hand, it seems to be a difficult task to follow the outline and
suggestions sketched in Section 7 of that paper to someone not experienced in the details and
particular concerns of techniques of efficient estimation. The guidelines given in that paper
are very rough and a lot of work is needed to adapt them to a working solution in some
particular application. For some further discussion on this point see Remark 4 of Section 5.
Anyway, the idea turns out to be worthy of this effort. To extract, among other things, the
essence of the technicalities which are needed in constructing a test, we decided to rederive
some results on efficient scores stated in the literature and to present a minimal set of readable
assumptions under which these results are valid in our set-up. In particular, by embedding
the underlying probability model into a related abstract setting, we manage to clearly separate
purely analytical work, such as differentiation and projections, from probabilistic arguments.
We comment on this approach in Section 6. It seems that this may be of independent interest.
Moreover, we propose an estimator of the efficient score vector and provide a detailed proof
that its limiting null distribution is independent of the nuisance parameters. In this proof we
used some well established ideas, as well as a very useful recent result of Schick (2001).

Having constructed an appropriate score statistic, we define a score-based selection rule,
which mimics the Schwarz criterion in the application considered. We also propose a refinement
of this selection rule, which combines the advantages of the Schwarz and Akaike criteria. This
two ingredients, the score statistic and the selection rule for the number of components in the
score statistic, lead to the final solution - a data driven score test, which we present in Section
3. The simulation results presented in Section 4 show that these data driven constructions
possess two fundamental advantages of efficient score statistics. Namely, for moderate sample
sizes the critical values are stable for a variety of nuisance parameters, while empirical powers
are high, considerably dominating those of the best existing solutions in the area.

Though the present paper concentrates on one particular problem, it is obvious that similar
approach can be adopted and developed for many others semiparametric and nonparametric
testing problems.

3. Data driven score tests. Before we introduce the test statistics, we present a
series of auxiliary constructions and results.

3.1. Efficient score vector for testing θ = 0 in M(k). As mentioned in Section 2, we
rederived some existing results on score vectors in the model M(k) and derived an efficient score
vector for testing (1.1). The calculations for (1.2), as well as in the more general heteroscedastic
case, are given in Inglot and Ledwina (2003a). A general result for score vectors in some large
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class of regression models is given in Schick (1997).
In the case under consideration, in addition to the basic model assumptions < M1 > we

need the following ones

< M2 > f ′(y) exists for all y ∈ R and J = J(f) =
∫

R
[f ′(y)]2

f(y)
λ(dy) < ∞,

< M3 > g > 0 λ - a.e.

Under these three assumptions the efficient score vector for testing H0(k) : θ = 0 in M(k)
is of the form

ℓ∗(z) = −
[
f ′

f

(
y − v(x)βT

)]
[ũ(x) − ṽ(x)V−1M]+

+
1

τ
[y − v(x)βT ][m1 − m2V

−1M], (3.1)

where
m1 = Egu(X), m2 = Egv(X), m = (m1, m2),

w̃(x) = (ũ(x), ṽ(x)), ũ(x) = u(x) − m1, ṽ(x) = v(x) − m2, (3.2)

while M and V are blocks in

W =

(
U MT

M V

)
=

1

4

{
JEg[w̃(X)]T [w̃(X)] +

1

τ
mT m

}
. (3.3)

Note that, due to < M3 >, W is positive definite [cf. Remark C.13 in Inglot and Ledwina
(2003a)].

3.2. Efficient score statistic and a general result. We introduce the additional notation

ϑ = (
√

g,
√

f), η = (β, ϑ) and ℓ∗(z; η) = ℓ∗(z).

Moreover, let P n
η denote the joint distribution of Z1, ..., Zn under the null model (1.1).

Finally set

W11 = (U − MTV−1M)−1, L =
1

4
W11 (3.4)

and define

Wk(η) =

[
1√
n

n∑

i=1

ℓ∗(Zi; η)

]
L

[
1√
n

n∑

i=1

ℓ∗(Zi; η)

]T

.

From < M1 > − < M3 >, Corollaries C.16, C.18 and Remark C.13 of Inglot and Ledwina
(2003a), e.g., under the null hypothesis H0(k), L is positive definite and it holds that

Eηℓ
∗(Z; η) = 0,

{
Eη[ℓ∗(Z; η)]T [ℓ∗(Z; η)]

}−1
= L, Wk(η)

D→ χ2
k, (3.5)

where χ2
k denotes a random variable from the central chi-square distribution with k degrees of

freedom.
Define

Wk(η̂) =

[
1√
n

n∑

i=1

ℓ̂∗(Zi; η̂)

]
L̂

[
1√
n

n∑

i=1

ℓ̂∗(Zi; η̂)

]T

, (3.6)

where ℓ̂∗(•; η̂) is an estimator of ℓ∗(•; η), while L̂ is an estimator of L.
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Finally, let || • || denote the Euclidean norm of a given vector, while the symbol
∧

• stands
for the statement: for every •. The relation (3.5) and a simple argument yield the following
result.

Proposition 1. Assume the null hypothesis H0(k) : θ = 0 is true and the assumptions
< M1 >, < M2 > and < M3 > are fulfilled. Suppose that L̂ is a consistent estimator of L and
the estimator ℓ̂∗(•; η̂) satisfies the following condition

∧

δ>0

P n
η

(
1√
n

∣∣∣∣∣

∣∣∣∣∣

n∑

i=1

[ℓ̂∗(Zi; η̂) − ℓ∗(Zi; η)]

∣∣∣∣∣

∣∣∣∣∣ ≥ δ

)
→ 0 as n → ∞. (3.7)

Then for the test statistic Wk(η̂) defined in (3.6) it holds that

Wk(η̂)
D→ χ2

k, as n → ∞.

Remark 1. Wk(η̂) is an efficient score statistic for testing H0(k) in M(k). As said before,
we shall abbreviate this name to score statistic. Choi et al. (1996) used the name efficient test
statistic for such a construction.

3.3. Some class of estimators ℓ̂∗ of ℓ∗ satisfying (3.7). We follow some well
established ideas. On one hand, our construction is obviously linked to the approach of Bickel
(1982), Example 3. On the other hand, our solution incorporates the very useful contribution
of Schick (1986) showing that using only a small fraction of the sample to estimate the score
function, as Bickel (1982) did, can be avoided.

Suppose Z1, ..., Zn are i.i.d. vectors obeying (1.2). Note that, as usual in score test theory,
all considerations below are done under the assumption θ = 0.

Take ζ =
[

n
2

]
and divide Z1, ..., Zn into two parts Z1, ..., Zζ and Zζ+1, ..., Zn. In order

to clearly show an important feature of our construction, we shall, for a moment, display
in formulas the expectation m as if it were the next nuisance parameter. Additionally set
< 1 >= {1, ..., ζ}, < 2 >= {ζ + 1, ..., n}. The superscript (j), j = 1, 2, appearing below,
indicates from which part of the sample we estimate the related quantity.

The basic structure of ℓ̂∗ at the observed points Z1, ..., Zn is as follows

ℓ̂∗(Zi; η̂) = ℓ∗
(
Zi; β̂

(2)
∗ , ĝ(2), f̂ (2), m̂(1)

)
, if i ∈< 1 >

and (3.8)

ℓ̂∗(Zi; η̂) = ℓ∗
(
Zi; β̂

(1)
∗ , ĝ(1), f̂ (1), m̂(2)

)
, if i ∈< 2 >,

where

m̂
(1)
1 =

1

ζ

∑

i∈<1>

u(Xi), m̂
(1)
2 =

1

ζ

∑

i∈<1>

v(Xi),

m̂
(2)
1 =

1

n − ζ

∑

i∈<2>

u(Xi), m̂
(2)
2 =

1

n − ζ

∑

i∈<2>

v(Xi),

ũ(j)(•) = u(•) − m̂
(j)
1 , ṽ(j)(•) = v(•) − m̂

(j)
2 , j = 1, 2,

while β̂
(j)
∗ is a discretized version of a

√
n - consistent estimator β̂(j) of β, based on the jth part

of the sample.
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The specific form of m̂(j), together with the fact that in the construction of ℓ̂∗ only the
estimators m̂(j) are matched to Zi with i from < j > guarantee that the important property
(5.7) holds [cf. Section 5]. Moreover, the requirements for

√
n - consistency of an estimator

for β and the specific form of m̂(j) are the strongest requirements on estimators we imposed
in the construction. When estimating other quantities there is a lot of freedom, as seen from
Theorem 1, below.

To write the form of the estimators ℓ̂∗(Zi; η̂), i ∈< j >, j = 1, 2, explicitly denote by

V̂(j), M̂(j), τ̂ (j), τ̂ (j) > 0 − a.e. and [̂f ′/f ]
(j)

the related estimators of the appropriate quantities.
Note that having these estimators, we do not need to estimate the density g itself. We also
introduce auxiliary functions L∗

j , j = 1, 2, defined as follows:

L∗
1(z; β) = −[̂f ′/f ]

(2) (
y − v(x)βT

) [
ũ(1)(x) − ṽ(1)(x)[V̂(2)]−1M̂(2)

]
+

+
1

τ̂ (2)

[
y − v(x)βT

] [
m̂

(1)
1 − m̂

(1)
2 [V̂(2)]−1M̂(2)

]
, (3.9)

L∗
2(z; β) = −[̂f ′/f ]

(1) (
y − v(x)βT

) [
ũ(2)(x) − ṽ(2)(x)[V̂(1)]−1M̂(1)

]
+

+
1

τ̂ (1)

[
y − v(x)βT

] [
m̂

(2)
1 − m̂

(2)
2 [V̂(1)]−1M̂(1)

]
.

Finally set

ℓ̂∗(Zi; η̂) = L∗
1(Zi; β̂

(2)
∗ ) for i ∈< 1 >, ℓ̂∗(Zi; η̂) = L∗

2(Zi; β̂
(1)
∗ ) for i ∈< 2 > . (3.10)

Theorem 1. Suppose that under the null distribution P n
η for j = 1, 2 the following hold :

β̂(j) are
√

n - consistent estimators of β, while τ̂ (j), V̂(j) and M̂(j) are consistent estimators of

τ,V and M, respectively. Moreover, assume that the estimators [̂f ′/f ]
(j)

, j = 1, 2, of f ′/f are
consistent in the L2 norm, i.e.

∧

δ>0

P n
η

(∫

R

(
[̂f ′/f ]

(j)

(y) − [f ′/f ](y)

)2

f(y)λ(dy) > δ

)
→ 0 as n → ∞. (3.11)

Then the estimator ℓ̂∗ of ℓ defined in (3.10) satisfies the condition (3.7) of Proposition 1.

Remark 2. Theorem 1 shows that there is a lot of flexibility in chosing estimators defin-
ing ℓ̂∗. In Section 4.1 we propose a particular choice, while in the Appendix we check that the
selected estimators fulfil the above requirements. The flexibility in choosing estimators is an at-
tractive feature of the approch. It permits refinements of our relatively simple implementation
by using robust estimators of β and τ [cf. Maronna and Yohai (1981) for a related approach]
or more sophisticated estimators of f ′/f and J , which we need to estimate L, cf. (3.3) and
(3.4), [see e.g. Koul and Susarla (1983) and Csörgő and Révész (1986) for such solutions for a
fixed design and classical score function estimation, respectively, as well as Faraway (1992) and
Jin (1992) in random design regression models] etc. Presumably, by incresing the complication
of calculations a sample splitting scheme could be avoided, as done in a series of estimation
problems by van der Vaart (1988) and Schick (1993, 1994, 1997). On the other hand, Schick’s
sample splitting has some other advantages, apart from being relatively simple. For evidence
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see Klaassen (2001). Also, after incorporating more complicated notation and considerations,
a more complex system of functions ui’s, such as piecewise polynomials, splines etc., could be
included for modelling the alternatives M(k). Since our primary and ultimate goal was, how-
ever, to understand the basic features of the approach and to propose simple working solutions,
we have not considered these possibilities.

3.4. Determining k in Wk(η̂) by some score-based selection rules. We now
consider a nested family of auxiliary models M(k), k = 1, ..., d, where d is fixed but otherwise
arbitrary. Following the construction proposed in Ledwina (1994), as e.g. in Kallenberg and
Ledwina (1997a) we define score-based selection rule S1 as follows

S1 = min{1 ≤ k ≤ d : Wk(η̂) − k log n ≥ Ws(η̂) − s log n), s = 1, ..., d}.

The rule S1 mimics the Schwarz BIC criterion. Since the penalty s log n is relatively heavy, S1
is well suited to detect low dimensional models M(k). In contrast, the rule

A1 = min{1 ≤ k ≤ d : Wk(η̂) − 2k ≥ Ws(η̂) − 2s, s = 1, ..., d},

imitating the Akaike AIC criterion, is expected to work well when high dimensional disturbances
M(k) of the null model M(0): Y = β[v(X)]T + ǫ are present. Based on our experience and
some previous articles, the following ”intermediate” solution was proposed and discussed in
Inglot and Ledwina (2005). Use A1 when the distribution of the data at hand is very distinct
from the null model and S1 otherwise. To provide a threshold defining which rule should be
applied, we propose looking at the magnitude of the estimated standardized components of the
efficient score vector. More precisely, in the present set-up, under the assumptions and notation
of Proposition 1, set

(Y1, ...Yk) =

[
1√
n

n∑

i=1

ℓ̂∗(Zi; η̂)

]
L̂1/2.

Then, obviously, Wk(η̂) = ||(Y1, ...,Yk)||2. Following the discussion presented in Inglot and
Ledwina (2005), we propose using the following penalty in this problem

π(s, n, c) =

{
s log n, if max1≤s≤d |Ys| ≤

√
c log n

2s, if max1≤s≤d |Ys| >
√

c log n,
(3.12)

where c is some fixed positive number. This strategy leads to the following refined selection
rule

T1 = min{1 ≤ k ≤ d : Wk(η̂) − π(k, n, c) ≥ Ws(η̂) − π(s, n, c), s = 1, ..., d}.
It is evident that small c’s result in T1 being in practice equivalent to A1, while large c’s lead
to T1 being very similar to S1. ”Moderate” values of c give a meaningful ”switching effect”.

For n ≥ 8, S1 ≤ T1 ≤ A1. Moreover, since under the null model (Y1, ...,Yk)
D→ N(0, Ik),

then P n
η (T1 6= S1) → 0 as n → ∞. On the other hand, under H0, for any s ∈ {2, ..., d},

P n
η (S1 = s) ≤ P n

η (Ws(η̂) ≥ (s − 1) log n). Hence, Proposition 1 yields

Proposition 2. Under the null hypothesis H0 : Y = β[v(X)]T + ǫ, the assumptions of
Proposition 1 and n → ∞, it holds that

P n
η (S1 > 1) → 0, WS1(η̂)

D→ χ2
1,

and
P n

η (T1 > 1) → 0, WT1(η̂)
D→ χ2

1.
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Remark 3. We shall call WS1(η̂) and WT1(η̂) data driven score statistics for testing the
validity of (1.1). We shall show in Section 4.4 that WT1 considerably extends the range of
sensitivity of WS1. Obviously, more general selection rules could be considered and incorpo-
rated into constructing data driven score statistics. However, as emphasized in Remark 2, our
primary goal is to propose a practical solution. Therefore, we reduce the technical scope of the
paper to its minimum. Finally, note that in our implementation we used numerical algorithm,
based on the Schur decomposition, to calculate L̂1/2.

4. Simulation study. The aim of the simulations was to investigate the behaviour
of WS1 and WT1 under H0, as well as to compare the empirical powers of our tests to those
of the recent solution in the field, which was proposed by Guerre and Lavergne (2005). We
shall also present the empirical powers of the related Cramér-von Mises test, which represents
a classical type of construction, still very often applied for testing goodness of fit. Practical
implementation of WS1 and WT1 requires some specification of the estimators appearing in (3.6)
and (3.9). So, we shall first discuss this point.

4.1. Specification of estimators. We define WS1 and WT1 in the following way. The

sample splitting scheme and estimators m
(j)
i , i, j = 1, 2, were applied according to the descrip-

tion in Section 3.3. The remaining parameters were estimated on the basis of the jth part of the
sample, j = 1, 2, as follows. The components of β̂(j) were ordinary least square estimators. The
discretization was neglected in the simulations. τ̂ (j) was the adjusted Rice (1984) estimator [cf.

Section A1]. We estimated f ′/f by [f̃ (j)]′/f̃ (j), where f̃ (j) is the kernel estimator of f defined
as follows

f̃ (1)(y) = γζ +
1

ζα̂
(1)
ζ

∑

i∈<1>

K

(
y − ǫ̂

(1)
i

α̂
(1)
ζ

)
, f̃ (2)(y) = γζ +

1

ζα̂
(2)
ζ

∑

i∈<2>

K

(
y − ǫ̂

(2)
i

α̂
(2)
ζ

)
,

where K is the standard Gaussian kernel, while γζ = 0.0001, α̂
(j)
ζ = (0.9)[τ̂ (j)]1/2ζ−1/7, ǫ̂

(j)
i =

Yi − v(Xi)[β̂
(j)]T . To have some flexibility, we used a simple random bandwidth. Our choice

was inspired by one of the simplest solutions in density estimation [cf. Silverman (1986), p.
45] and the result of Mammen and Park (1997), p. 338, on optimal bandwidth rate in shift
models.

We estimated J in the first part of the sample by

Ĵ (1) =
1

ζ

∑

c∈<1>

[
f̃ ′(2)

f̃ (2)

(
ǫ̂(2)
c

)
]2

and in the second part of the sample by the analogous expression. We estimated W by Ŵ =
(Ŵ(1) + Ŵ(2))/2, where

Ŵ(1) =
1

4

{
Ĵ (1) 1

ζ

∑

i∈<1>

[w̃(1)(Xi)]
T [w̃(1)(Xi)] +

1

τ̂ (1)
[m̂(1)]T m̂(1)

}

and Ŵ(2) is defined analogously. Finally, we considered the natural estimator L̂ of L given
by L̂ = 1

4
(Û − M̂T V̂−1M̂)−1, where M̂, Û and V̂ are blocks of Ŵ. Following our earlier

considerations [cf. the discussion in Inglot and Ledwina (2005)], we took c = 2.4 in (3.12). The
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choice of ui’s and d is given in Section 4.2.

4.2. Models used in the simulations. The scheme of our study matches those used
in the papers by Baraud et al. (2003), Diebolt and Zuber (2000), Guerre and Lavergne (2003,
2005), as well as Horowitz and Spokoiny (2001). We considerd the problem of testing

H0 : Y = 1 + 2X + ǫ.

To construct WS1 and WT1 we considered d = 10 auxiliary models M(k), which we defined
pertain to ui(x) = cos([i+1]πx), i = 1, ..., 10. Obviously, the user chooses of the supplementing
system {ui}, i ≥ 1. We find this to be an advantage of the procedure. A statistician can use
information on the phenomenon under investigation to build apropriate and convenient class
of alternative models. We decided to consider the cosine system in view of the competitors we
shall investigate. The statistic of Guerre and Lavergne is based on equispaced partitions, while
the Cramér-von Mises test is tightly linked to cosine functions. Therefore, such a choice gives
conditions for fair comparison.

We consider ǫ obeying one of three laws: Gaussian with 0 mean and standard deviation
σ [G(σ) for short], Laplace with 0 mean and standard deviation

√
2/ϕ [ L(ϕ) for short] and

normal mixture (0.7)φ(x − µ/(0.7)) + (0.3)φ(x + µ/(0.3)) [denoted NM(µ) in what follows],
where φ is the N(0, 1) density function.

X was assumed to be independent of ǫ and from a beta distribution on [0,1]. Since changing,
to some reasonable extent, the parameters of the beta distribution had no essential influence on
the general picture, we restricted the presentation of results to the case where X is uniformly
distributed.

The alternatives were defined by disturbing the pattern 1 + 2x [with each type of error:
G(σ), L(ϕ), NM(µ)] by one of the functions rl(x), l = 1, ..., 6, where

r1(x) = c × cos(oπx), c ∈ R, o = 2, 3, ...

r2(x) = c × Ls(x), c ∈ R, s = 2, 3, ... Ls − sth normalized Legendre polynomial on [0, 1],

r3(x) = c × 1

t
φ

(
x − 0.5

t

)
, c ∈ R, t ∈ R+, φ − the N(0, 1) density function,

r4(x) = c × (x − a)1[a,1](x), c ∈ R, a ∈ (0, 1),

r5(x) = c × arctg[b(2x − 1)], c ∈ R, b ∈ (0,∞),

r6(x) = c × max{min{(2x − 1)/(1 − 2a), 1},−1}, c ∈ R, a ∈ (0, 1/2).

The disturbance r1 was considerd by Guerre and Lavergne (2003, 2005), r2 by Diebolt and
Zuber (2000), r3 was used by Horowitz and Spokoiny (2001), while r4 by Baraud et al. (2003).
We added the functions r5 and r6 to the above list of disturbances to cover some cases of three-
phase regression.

4.3. Empirical behaviour of test statistics under H0. All simulation experiments
presented in the paper were done for the same sample size n = 300 and N = 10000 Monte
Carlo runs. Throughout we considered tests at the significance level α = 0.05.

Let us start our discussion with some remarks on the behaviour of WS1 and WT1 under
H0. The asymptotic critical value of WS1 and WT1 is 3.841. In order to illustrate how the
asymptotic theory works in the case of our implementation, Table 1 presents simulated critical
values of WS1 and WT1 under different error distributions.
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TABLE 1
Simulated critical values of WS1, WT1 and CvM under the null model Y = 1 + 2X + ǫ with X
uniform on [0,1] and different errors. Sample size n = 300. 5% significance level, N = 10000

MC runs.

Error Parameter Variance Critical values

distribution WS1 WT1 CvM

G(σ) 0.25 0.063 5.91 6.11 27.88
0.50 0.250 5.63 5.92 7.00
0.75 0.563 5.83 6.04 3.22
1.00 1.000 5.79 6.02 1.73

L(ϕ) 4.00 0.125 5.29 5.57 15.72
2.00 0.500 5.27 5.50 3.86
1.00 2.000 5.75 5.93 0.94
0.50 8.000 5.61 5.82 0.23

NM(µ) 0.20 1.191 5.94 6.08 1.52
0.40 1.762 5.67 6.00 0.97
0.60 2.714 5.81 6.05 0.63
0.80 4.048 5.66 5.85 0.43

As seen, an evident feature of the new procedures is that the critical values are very stable
to changes of the error distributions and their parameters. Since the penalty in the selection
rule T1 is slightly smaller, the respective critical values of the test WT1 are slightly larger. We
would like to emphasize that critical values are also very stable with respect to the choice of d.
Any choice of d ≥ 4 gives practically the same simulated critical value. This follows from the
fact that, under the null model and n = 300, in all the cases we investigated, the proportion
of cases with {S1 = 1} and {T1 = 1} is in [0.97, 0.98] and [0.96, 0.97], respectively, and the
remaining mass is mostly concentrated on dimensions 2 - 3. On the other hand, the simulated
critical values are larger than the limiting values. This is a characteristic phenomenon for data
driven tests, which was discussed in detail in some earlier papers. We would like to recall
the basic reason for this phenomenon. As said above, in some small percentage of cases the
selection rules take values greater than 1, which makes the test statistic stochastically larger
than the limiting χ2

1 random variable. For some classical testing problems we developed nicely
working approximations, which can be used to estimate p - values. For some evidence see e.g.
Kallenberg and Ledwina (1995, 1997b). In the present set-up, to provide a practical way of
generating critical values, one can apply the residual bootstrap, described e.g. on pp. 142 - 143
of Stute et al. (1998b). We implemented this procedure in our simulation study and found that
it works well. We conducted several trials with B = 400 bootstrap replications and N = 10000
Monte Carlo [MC] runs, observing that the resulting critical values are, on average throughout
the N = 10000 repetitions, very stable, slightly overestimating the ”actual” critical values given
in Table 1. It was verified that this overestimation has only a negligible effect on the empirical
powers. More precisely, we compared the resulting powers with those obtained by simulations
when the ”actual” critical values, as well as the average of the twelve ”actual” critical values,
5.68 for WS1 and 5.91 for WT1, are used. The conclussion was that, in many cases there is no
difference, in some cases the powers differ by 1% - 3%. Therefore, we present simulated powers
for WS1 and WT1 in the case the averaged critical values 5.68 and 5.91 are used. This also
allows us to some further comparisons with simulation results presented in Inglot and Ledwina
(2003b). A formal proof of the consistency of the residual bootstrap in our implementation is
beyond the scope of the present paper. Finally, we would like to emphasize that the stability
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of critical values of the data driven tests with respect to the choice of d allows us to choose
practically arbitrary d ≥ 4. Enlarging d does not spoil empirical powers achieved for choices
of smaller d’s. Therefore, reasonable choice of d only depends on two factors: how complicated
alternatives one likes to detect and how much time consuming calculations are reasonable in
this context.

In our implementation of Guerre and Lavergne’s (2003, 2005) solution we took binwidths in
{2−2, 2−3, ..., 2−7}, c = 1.5, Jn = 6 and used the adjusted Rice estimator for the variance of
errors [cf. p. 17 in Guerre and Lavergne (2003)]. They noticed that the normal approximation
to the distribution of their statistic under the null hypothesis may not be very accurate for finite
samples. Indeed, we did some experiments and observed, under various error distributions, such
extreme simulated critical values as e.g. 0.11 and 40.50. Therefore, in our simulation study
we followed their prescription and applied the wild bootstrap with the two-point distribution
for wi given on p. 17 of Guerre and Lavergne (2003). We did B = 400 bootstrap replications
and N = 10000 MC runs in each experiment. For simplicity, we shall denote the test statistic
introduced by Guerre and Lavergne (2003, 2005) by T̂ .

To complete the picture, we also investigated the empirical behaviour of a transformed
Cramér- von Mises statistic, which was developed in Stute et al. (1998a). We shall denote
this statistic by CvM. This transformation was introduced by Khmaladze (1981) to remove the
influence on nuisance parameters on the null distribution. The simulations reported in Table 1
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FIG. 1. Simulated powers of tests based on WT1, WS1, T̂ and CvM under the alternatives
Y = 1 + 2X + rl(X) + ǫ, l = 1, 2, X uniform on [0,1] and different errors. Signal/noise 0.25.
5% nominal level, n=300, N=10000 MC runs.
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show that the simulated critical values of CvM are highly unstable. A similar observation was
made earlier in Diebolt and Zuber (2000) and can be inferred from Koenker and Xiao (2001).
As demonstrated by Stute et al. (1998b), the wild bootstrap and residual bootstrap are much
better suited to provide distributional feasibility of untransformed Cramér- von Mises statistic
for model check in homoscedastic regression.

4.4. Empirical powers. As concluded in Section 4.3, in order to simulate powers of WS1

and WT1, T̂ , as well as CvM, we used the averaged, bootstrap and ”actual” critical values,
respectively.

A representative selection of simulation results is presented in Figures 1 and 2. In Figure
1 we present results of experiments which serve to understand the behaviour of test statistics
when alternatives are oscillating, i.e. r1 and r2, given in Section 4.2, are taken into account.
In all four cases considered there, the ratio signal/noise = c||rl||2/

√
Varǫ, where || • ||2 denotes

the L2[0, 1] norm, equals 0.25. Figure 2 exhibits the behaviour of tests under more ”smooth”
deviations i.e. the disturbances r3 - r6.
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FIG 2. Simulated powers of tests based on WT1, WS1, T̂ and CvM under the alternatives
Y = 1 + 2X + rl(X) + ǫ, l = 3, 4, 5, 6, X uniform on [0,1] and different errors. 5% nominal
level, n = 300, N = 10000 MC runs.

The simulation results confirm what might have been expected from our earlier experience.
As characteristic to data-driven Neyman tests with a Schwarz penalty, WS1 is powerful

for ”smooth” deviations from linear regression, while the minimax data-driven chi-square-type
statistic T̂ of Guerre and Lavergne (2005) is more powerful for some extreme deviations, [such
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as highly oscillating alternatives, in particular]. However, Figure 1 [see the case NM(0.6),
r1 ] shows that under difficult conditions [large variance, asymmetrical bimodal error density]
the T̂ test has some difficulty in detecting high frequency oscillations. Under larger c and/or
smaller µ this drawback disappears. We also observed that T̂ loses a lot of its power when the
variance of the model error is small [cf. Figure 1, G(0.25), r1] or the model is very close to the
null model [cf. Figure 2]. Some more simulations on WS1 and T̂ can be found in Inglot and
Ledwina (2003b). Note also that in Guerre and Lavergne (2003) it is shown that T̂ compares
favourably with the solution of Horovitz and Spokoiny (2001). The refined selection rule T1
works very well. In comparison to WS1, one observes only a slight decrease in power of WT1

under low dimensional deviations and, simultaneously, very substantial gain in power under
high dimensional alternatives.

In all the cases considered, except L(4) and r2 with o = 6, 7, 8, the power of WT1 is larger
than that of T̂ and in many cases powers dramatically differ in favour of WT1. At first glance,
such big differences in behaviour of T̂ , on one hand, and WS1 and WT1, on the other hand, might
be considered as somewhat surprising. One could argue, loosely speaking, that the structure
of the three solutions is similar: one has a quadratic statistic with the dimension fitted by the
associated criterion. However, the quadratic statistic Wk(η̂), which we derived, exploits the
information contained in the data and the structure of the alternative models more efficiently.
In contrast, T̂ compares, in some way, a parametric and nonparametric fit. Moreover, other
ingredients built into the constructions [i.e. the system of functions and the penalties] play
some role. In this respect, the situation is to a large extent similar to a corresponding one in
which data driven chi-square tests and data driven smooth tests for uniformity are compared.
Therefore, we refer the reader to related discussions in Inglot et al. (1994), Bogdan (1995),
Inglot and Janic-Wróblewska (2003) and references therein.

The behaviour of CvM is unsatisfactory. Obviously, the poor power of CvM test is not due
to the transformation, but follows from the nature of such a statistic. It is known that, under
resonable sample sizes, the Cramér-von Mises test is only capable of detecting very smooth
deviations from the null model. Various aspects of this drawback are discussed e.g. in Inglot
and Ledwina (2001a, 2004).

In view of the above, it seems that WT1 can be recommended as a stable and powerful tool
for checking validity of (1.1).

5. Proof of Theorem 1. Obviously, it is enough to show (3.7) for i ∈< j >, j = 1, 2.
Therefore, we shall restrict attention to the case j = 1 and prove that

∧

δ>0

P n
η

(
1√
n

∣∣∣∣∣

∣∣∣∣∣
∑

i∈<1>

[ℓ̂∗(Zi; η̂) − ℓ∗(Zi; η)]

∣∣∣∣∣

∣∣∣∣∣ ≥ δ

)
→ 0 as n → ∞. (5.1)

To facilitate reading, recall that ϑ = (
√

g,
√

f) and η = (β, ϑ) and concisely denote the estimate

of ϑ by ϑ̂. We also introduce the class B(β) of deterministic sequences {bn}, bn ∈ Rq, such
that

√
n(bn − β) stays bounded.

The proof consists of four basic steps.

• The discretization allows us to replace checking (5.1) by proving that for any {bn} ∈ B(β)
it holds that

∧

δ>0

P n
η

(
1√
n

∣∣∣∣∣

∣∣∣∣∣
∑

i∈<1>

[ℓ̂∗(Zi; bn, ϑ̂) − ℓ∗(Zi; β, ϑ)]

∣∣∣∣∣

∣∣∣∣∣ ≥ δ

)
→ 0 as n → ∞. (5.2)
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• From Schick’s (2001) results we infer that for any {bn} ∈ B(β)

∧

δ>0

P n
η

(
1√
n

∣∣∣∣∣

∣∣∣∣∣
∑

i∈<1>

[ℓ∗(Zi; β, ϑ) − ℓ∗(Zi; bn, ϑ)]

∣∣∣∣∣

∣∣∣∣∣ ≥ δ

)
→ 0 as n → ∞, (5.3)

and therefore, to prove (5.2), it is enough to show that for any {bn} ∈ B(β) and η = (β, ϑ)

∧

δ>0

P n
(β,ϑ)

(
1√
n

∣∣∣∣∣

∣∣∣∣∣
∑

i∈<1>

[ℓ̂∗(Zi; bn, ϑ̂) − ℓ∗(Zi; bn, ϑ)]

∣∣∣∣∣

∣∣∣∣∣ ≥ δ

)
→ 0 as n → ∞. (5.4)

• The contiguity of {P n
(β,ϑ)} and {P n

(bn,ϑ)}, where {bn} ∈ B(β), allows us to replace (5.4) by

∧

δ>0

P n
(bn,ϑ)

(
1√
n

∣∣∣∣∣

∣∣∣∣∣
∑

i∈<1>

[ℓ̂∗(Zi; bn, ϑ̂) − ℓ∗(Zi; bn, ϑ)]

∣∣∣∣∣

∣∣∣∣∣ ≥ δ

)
→ 0 as n → ∞. (5.5)

• Checking (5.5) is simplified by introducing some conditioning related to the sample split-
ting scheme. Under this conditioning, the structure of the model and the choice of
estimators are exploited. In particular, the structure of the model with the shift v(Xi)b

T
n ,

as well as the choice of m̂
(j)
i , i, j = 1, 2 are essential to get the final result.

Some details are given below.

We start with some brief comments on the discretization. Suppose Rq is covered by cubes
with edges of length 2n0/

√
n, where n0 is a given natural number. The discretized version

β̂
(2)
∗ of β̂(2) is defined as the center of the cube into which β̂(2) has fallen [with some additional

rule for the boundaries of cubes]. The crucial property of the discretized estimator β̂
(2)
∗ is the

following one: given γ > 0, there exists Mγ such that for the set Bn = {√n||β̂(2)
∗ −β|| < Mγ} it

follows that P n
η (Bn) > 1− γ and on the set Bn the estimator β̂

(2)
∗ takes only a finite number of

values, which depend on Mγ solely. The discretization trick was introduced by Le Cam (1956).
For an insightful exposition see Bickel et al. (1993), p. 44, or Kreiss (1987), p. 120. The
application is immediate and therefore we skip the details.

To get (5.3), it is enough to show that

Hn(β) =
1√
ζ

ζ∑

i=1

ℓ∗(Zi; β, ϑ)

with β ∈ Rq and the other parameters fixed, but otherwise arbitrary, is asymptotically differ-
entiable at β with the matrix Dβ = 0. Indeed, the definition of asymptotic differentiability [cf.
Schick (2001), p. 15] and the definition ζ = [n/2] immediately yield that for

Rn =
1√
n

ζ∑

i=1

[ℓ∗(Zi; β, ϑ) − ℓ∗(Zi; bn, ϑ)]

it follows that P n
η (||Rn|| ≥ δ) → 0 as n → ∞, which is the desired result.

To check the asymptotic differentiability of Hn(β) we shall apply Theorem 2.3 from Schick
(2001). First note that from the results of Section 7 of this paper, it follows that the null
model density g(x)f(y − v(x)βT ) has Hellinger derivative [κβ in Schick’s notation] of the form
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−v(x)f ′

f
(y − v(x)βT ) [cf. (7.5)]. As ℓ∗(z; β, ϑ), by definition, is [under Pη] orthogonal to the

scores for the nuisance parameters, we immediately obtain

Dβ =

∫

R

∫

I

[v(x)]T ℓ∗(x, y, β; ϑ)

[
f ′

f
(y − v(x)βT )

]
g(x)f(y − v(x)βT )dxdy = 0.

Here and throughout the remaining part of the proof we abbreviate λ(dx) and λ(dy) to
dx, dy.

Therefore, it remains to show that the assumption (2.1) of Theorem 2.3 is fulfilled. In the
problem considered, (2.1) reads as

lim
β̃→β

rn(β̃, β) = 0,

where

rn(β̃, β) =

∫

R

∫

I

∣∣∣∣
∣∣∣∣ℓ

∗(x, y; β̃, ϑ)

√
f(y − v(x)β̃T )g(x) − ℓ∗(x, y; β, ϑ)

√
f(y − v(x)βT )g(x)

∣∣∣∣
∣∣∣∣
2

dxdy.

The definition of ℓ∗ [cf. (3.1)] and a change of variables in the integral yield the bound

rn(β̃, β) ≤ 4

∫

R

∫

I

[
f ′

√
f

(
y − v(x)(β̃ − β)T

)
− f ′

√
f

(y)

]2

||ũ(x) − ṽ(x)V−1M||2g(x)dxdy+

4

∫

R

∫

I

1

τ 2

[(
y − v(x)(β̃ − β)T

)√
f(y − v(x)(β̃ − β)T ) − y

√
f(y)

]2

||m1−m2V
−1M||2g(x)dxdy.

It follows from < M1 > and < M2 > that the functions f ′/
√

f and y
√

f(y) are from L2(R, λ).

Obviously,
√

g(x) ∈ L2(I, λ). Therefore, setting t = ||β̃−β|| and ϕt(x) = v(x)(β̃−β)T /||β̃−β||
we see that (iii) of Section 6 of this paper is satisfied. This concludes the proof of (5.3).

As mentioned above, from Section 7 it follows that the model density p(z; β, ϑ) is Hellinger
differentiable at β [cf. Sec. 2 of Schick (2001) for the terminology]. Therefore, by Lemma 2.3
in Schick (1997), the sequences of product measures {P n

(β,ϑ)} and {P n
(bn,ϑ)}, where {bn} ∈ B(β),

are indeed mutually contiguous. This implies that the proof reduces to proving (5.5).

Let us now rewrite (5.5) in a more convenient form. For this purpose let us set

Tn,s =
1√
n

∑

i∈<1>

[
ℓ̂∗s(Zi; bn, ϑ̂) − ℓ∗s(Zi; bn, ϑ)

]
, (5.6)

where the symbol νs denotes the sth component of a k - dimensional vector. Using this notation,
(5.5) reads as

Tn,s = oP n
(bn,ϑ)

(1), for each s = 1, ..., k and {bn} ∈ B(β). (5.7)

To check (5.7) we shall apply the following result, which is proved for completeness in Appendix
B.

Proposition 3. Suppose for each n ≥ 1, Tn is a random variable defined on a probability

space (Tn,Bn, Pn), EPn
|Tn| < ∞, n ≥ 1. Let Fn be a sub-σ-field of Bn. If E

(
|Tn|||Fn

) Pn→ 0
then Pn(|Tn| > δ) → 0 for every δ > 0.
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This proposition shall be applied to each Tn,s, s = 1, ..., k. We shall take Tn = R2n, Bn -
the Borel σ-field in R2n, Pn = P n

(bn,ϑ) and Fn = σ(X1, ..., Xn, Yζ+1, ..., Yn).

We shall first prove that (everywhere)

E (Tn,s |Fn ) = 0, s = 1, ..., k. (5.8)

Since the conditional density of (Y1, ..., Yζ) under Fn is of the form
∏ζ

l=1 f(yl − v(Xl)b
T
n ), we

have for Tn = (Tn,1, ..., Tn,k)

E (Tn |Fn ) =
1√
n

∑

i∈<1>

∫

R

[
ℓ̂∗(Xi, y; bn, ϑ̂) − ℓ∗(Xi, y; bn, ϑ)

]
f(y − v(Xi)b

T
n )dy. (5.9)

Moreover, from
∫

R
f ′(y)dy =

∫
R

yf(y)dy = 0 we get

∫

R

ℓ∗(Xi, y; bn, ϑ)f(y − v(Xi)b
T
n )dy = 0.

This, a change of variables in the integral (5.9) and another application of
∫

R
yf(y)dy = 0 yield

√
nE (Tn |Fn ) =

[∫

R

{
−[̂f ′/f ]

(2)

(y)

}
f(y)dy

]
×
[
∑

i∈<1>

u(Xi) − ζm̂
(1)
1 −

{
∑

i∈<1>

v(Xi) − ζm̂
(1)
2

}
[V̂(2)]−1M̂(2)

]
.

Since, however, m̂
(1)
1 = 1

ζ

∑
i∈<1> u(Xi) and m̂

(1)
2 = 1

ζ

∑
i∈<1> v(Xi) we infer that E(Tn|Fn) = 0

everywhere. This proves (5.8).
Therefore, E(T 2

n,s|Fn) = Var(Tn,s|Fn) and, by Proposition 3, to get (5.7) it is enough to
check that ∧

δ>0

P n
(bn,ϑ) (Var (Tn,s |Fn ) > δ) → 0 as n → ∞. (5.10)

However, notice again that, as previously, under P n
(bn,ϑ) the conditional density of (Y1, ..., Yζ)

with respect to Fn is of the form
∏ζ

l=1 f(yl − v(Xl)b
T
n ). Hence, from (3.8), the conditional

variance of Tn,s equals

1

n

∑

i∈<1>

∫

R

[
ℓ̂∗s(Xi, y; bn, ϑ̂) − ℓ∗s(Xi, y; bn, ϑ)

]2
f(y − v(Xi)b

T
n )dy.

In consequence, after changing the variables in the above integral, (5.10) reads as

∧

δ>0

P n
(bn,ϑ)

(
1

n

∑

i∈<1>

∫

R

[
ℓ̂∗s(Xi, y; 0, ϑ̂) − ℓ∗s(Xi, y; 0, ϑ)

]2
f(y)dy > δ

)
→ 0.

Now, the artificial bn is no longer useful and applying the contiguity argument again, we see
that to prove (5.10) it is enough to show that

∧

δ>0

P n
η

(
1

n

∑

i∈<1>

∫

R

[
ℓ̂∗s(Xi, y; 0, ϑ̂) − ℓ∗s(Xi, y; 0, ϑ)

]2
f(y)dy > δ

)
→ 0. (5.11)

The rest of the proof consists of showing that each summand appearing in (5.11) is bounded
by a common [independent of i] quantity which tends to 0 in probability with respect to P n

η .

17



We have
ℓ̂∗s(Xi, y; 0, ϑ̂) − ℓ∗s(Xi, y; 0, ϑ) =

= y

(
1

τ̂ (2)
− 1

τ

)
(m1s − {m2V

−1M}s)+ (5.12)

+
y

τ̂ (2)

(
m̂

(1)
1s − m1s − {m̂(1)

2 [V̂(2)]−1M̂(2)}s + {m2V
−1M}s

)
+ (5.13)

−
[
f ′

f
(y)

](
ũ(1)

s (Xi) − {ṽ(1)(Xi)[V̂
(2)]−1M̂(2)}s − ũs(Xi) + {ṽ(Xi)V

−1M}s

)
+ (5.14)

−
(

[̂f ′/f ]
(2)

(y) − [f ′/f ](y)

)(
ũ(1)

s (Xi) − {ṽ(1)(Xi)[V̂
(2)]−1M̂(2)}s

)
. (5.15)

Now we shall consider the integrals of the squared terms from (5.12) - (5.15). Denote by
Πf the distribution on R with density f with respect to λ.

As
∫

R
y2f(y)dy = τ ∈ (0,∞) and τ̂ (2) is a consistent estimator of τ , we infer that the

L2(R, Πf ) norm of (5.12) tends to 0 in probability. In addition, exploiting the consistency of

m̂
(1)
1 , m̂

(1)
2 , V̂(2), M̂(2) the same conclussion follows for (5.13).

Now, rewrite (5.14) as follows

−
[
f ′

f
(y)

] [
(m̂

(1)
1s − m1s) −

{
v(Xi)

(
[V̂(2)]−1M̂(2) −V−1M

)}
s

+

+
{
m̂

(1)
2 [V̂(2)]−1M̂(2) − m2V

−1M
}

s

]
.

As J = J(f) < ∞ and supx ||v(x)|| < ∞, the consistency of the involved estimators implies
the required convergence to 0.

Finally, consider (5.15). Estimating |ũ(1)
s (Xi)| by 2 supx ||u(x)|| and treating ṽ(1)(Xi)

analogously, we see that the consistency of V̂(2) and M̂(2) reduces the problem to showing

that the L2(R, Πf) norm of

(
[̂f ′/f ]

(2)

− f ′/f

)
tends to 0 in P n

η . However, this is just our

assumption (3.11).
To close the proof, note that when applying Proposition 3 to the case j = 2, it is convenient

to take Fn = σ(X1, ..., Xn, Y1, ..., Yζ). The rest of the argument is identical. �

Remark 4. The proof of Theorem 1 shows that to get the key result Wk(η̂)
D→ χ2

k, using
several steps, the problem can be reduced to checking the following conditions

(∗)
∑

i∈<j>

∫

R

ℓ̂∗(Xi, y; bn, ϑ̂)f(y − v(Xi)b
T
n )λ(dy) = 0,

and

(∗∗)
1

n

∑

i∈<j>

∫

R

∣∣∣
∣∣∣ℓ̂∗(Xi, y; bn, ϑ̂) − ℓ∗(Xi, y; bn, ϑ)

∣∣∣
∣∣∣
2

f(y − v(Xi)b
T
n )λ(dy) = oP n

(bn,ϑ)
(1),

for j = 1, 2 and every sequence {bn} ∈ B(β). In the problem considered, the conditions (∗)
and (∗∗) play the role of handy counterparts of (i) and (ii) in the basic proposition on p. 854
of Choi et al. (1996).

6. Discussion of the general assumptions. The assumption on the compactly
supported density g was imposed for technical convenience. It could be removed when assuming
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some extra conditions on the tails of g. The restriction g > 0, λ - a.e. guarantees that the matrix
W is positive definite. Obviously, the assumption is not necessary.

Extensions to multivariate explanatory variable seems to be rather straightforward.
The assumption that the lenght d of the list of models is independent on n substantially

simplifies the considerations. From the practical point of view, fixing this number seems to be
reasonable. Recall that the critical values of our tests are stable with respect to the choice of
d and enlarging d does not spoil empirical powers achieved for choices of smaller d′s [cf. our
discussion in Section 4.3]. We would like to quote here also the general opinion phrased by
Bickel and Kwon (2001), p. 948, which supports our view point : “When considering nonpara-
metric alternatives however, as Bickel, Ritov and Stoker (2001) point out, it may be important
to tailor tests to directions which a priori appear important and save some power for grossly
divergent alternatives in other directions, rather than have negligible power in all directions”.
Introducing d = d(n), d(n) → ∞ as n → ∞, has however some aesthetical aspect. Namely, in
price of some fine technical work one can get then consistency of the related data driven test
for essentially any alternative. Such a program, in case of Euclidean nuisance parameters, was
elaborated in details in Inglot, Kallenberg and Ledwina (1997).

7. Generalized shift operators and the efficient score vector. The
degree to which efficient estimation is developed is well illustrated by the fact that nowadays
many proofs and derivations are not published. For example, the efficient score vector for
a complicated regression problem is introduced in Schick (1997), p. 375, as follows: “define
a map”. This is not very instructive, especially if e.g. one likes to do some modifications.
Therefore we rederived “some maps” in Inglot and Ledwina (2003a). In the course of the work
we observed that it would be useful to generalize some standard results of Hájek and Šidák
(1967) and simplify some traditional calculations in this way. Therefore, we briefly comment
here on our observations.

Consider the model

M(k) Y = u(X)θT + v(X)βT + ǫ

and define
w(x) = (u(x), v(x)), a = (θ, β), η = (β,

√
g,
√

f), κ = (θ, η).

Under this notation set p(z; κ) to be the density of Z = (X, Y ) under M(k). We have

p(z; κ) = g(x)f(y − w(x)aT ). (7.1)

Observe that p1/2(z; κ), seen as a function of κ, is a map from Ω → H, where Ω = A×B × C,
while A = Rk+q, B = L2(I, λ), C = L2(R, λ), H = L2(I × R, λ × λ). The specific structure of
p1/2(z; κ) [cf. (7.1)] motivates the introduction of an abstract map

Φ : Ω → H, Φ(ω) = Φ(a, b, c) = ∆waT (bc),

where for an arbitrary measurable function ϕ on I we define ∆ϕ : H → H by

∆ϕh(x, y) = h(x, y − ϕ(x)), x ∈ I, y ∈ R, h ∈ H. (7.2)

It can be shown that Φ is Hadamard differentiable at each point ω = (a, b, c) such that c
is differentiable for every y ∈ R and

∫
R

[c′]2dλ < ∞. Moreover, for any (a0, b0, c0) ∈ Ω the
following holds

Φ̇(a,b,c)(a0, b0, c0) = ∆waT (−bc′[waT
0 ] + b0c + bc0) (7.3)
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[cf. Theorem B.11 in Inglot and Ledwina (2003a)]. The result was derived by exploiting the
chain rule for Hadamard differentiability and the following basic properties of the shift operator
∆ϕ.

For any arbitrary measurable ϕ defined on I
(i) ∆ϕ is an isometry on H,
(ii) for each h ∈ H the following holds

lim
t→0

||∆tϕh − h||H = 0.

Moreover,
(iii) if {ϕt, t ∈ R} is a family of measurable functions on I satisfying limt→0 tϕt(x) = 0 for
almost all x, then for each h ∈ H it follows that

lim
t→0

||∆tϕt
h − h||H = 0.

∆ϕ plays a similar role to the standard location operator ∆∗
t f(y) = f(y−t) investigated in Hájek

and Šidák (1967), pp. 210-212, and exploited in later articles on semiparametric estimation.
For the proof of (i) - (iii) and other useful properties of ∆ϕ and related scale operators see Inglot
and Ledwina (2003a), Section A. Also note that some general shift operators were studied in
the Appendix of Koul and Schick (1996).

Consider now the question of the differentiability of p1/2(•; κ) itself. Take b =
√

g, c =
√

f .
Obviously, f and g satisfy

∫
I
gdλ =

∫
R

fdλ = 1. So, if one wants to approach p1/2(z; κ) through
some, possibly completely artificial, ”paths” within the space of densities, then one can disturb
b =

√
g by bn ∈ B, bn → b0 ∈ B, in the following way. Take a real sequence {tn}, tn → 0, such

that for large n the function [b+ tnbn]2 is a probability density [with respect to λ in our setting].
This implies that b0 has to satisfy

∫
I
b0
√

gdλ = 0. Therefore, given b ∈ B, define B0 ⊂ B by

B0 = {b0 ∈ B :

∫

I

b0bdλ = 0}.

Analogously, taking c =
√

f, cn → c0 ∈ C, tn → 0 such that for large n
∫

R
[c + tncn]2dλ = 1

and
∫

R
ι[c + tncn]2dλ = 0, ι(y) = y, [cf. the model assumptions < M1 >], one can easily infer

that c0 has to belong to the subspace

C0 = {c0 ∈ C :

∫

R

c0cdλ =

∫

R

ιc0cdλ = 0}.

Set Ω0 = A× B0 × C0. Take f and g satisfying < M1 > and

ω = κ = (a,
√

g,
√

f).

Moreover, consider a sequence {ωn} ⊂ Ω, ωn → ω0 ∈ Ω0 and tn → 0. In this setting (7.3) is
applicable at ω = (a, b, c) = κ and the following holds

1

tn

∣∣∣∣∣

∣∣∣∣∣p
1/2(•; κ + tnωn) − p1/2(•; κ) − 1

2
tn

[
Φ̇κ(ωn)

1
2
p1/2(•; κ)

]
p1/2(•; κ)

∣∣∣∣∣

∣∣∣∣∣
H

→ 0.

This relation shows that Φ̇κ(•)/[1
2
p1/2(•; κ)] is the standard form of the Hadamard derivative

ṡκ(•), say, of sk(•) = p1/2(•; κ), cf. e.g. van der Vaart (1991). So, we have

ṡκ(•) =
Φ̇κ(•)

1
2
p1/2(•; κ)

. (7.4)
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This, together with (7.3), implies that the operator ṡκ(•) is defined by the vector

∆waT

(
−u

[
f ′

f

]
,−v

[
f ′

f

]
,

1√
f

,
1√
g

)
. (7.5)

This vector is not affected by the restrictions on the set of directions Ω0 from which one
approaches the model density. However, the restricted set of directions Ω0 plays an essential
role when calculating projections of some components of (7.5) onto the subspace spanned by the
remaining components of (7.5). Also note that the argument relating Φ̇κ to ṡκ shows that to get
the efficient score vector (3.1), it is enough to project the first k components of ∆waT (−bc′w, c, b)
onto the subspace

{
bc′[vβT

0 ] + bc0 + cb0 : β0 ∈ Rq, b0 ∈ B0, c0 ∈ C0

}

in the standard space H = L2(I × R, λ × λ) and, at the final stage, to divide the resulting
expressions by 1

2
p1/2(•; κ). To calculate projections in H, one can exploit standard results on

Hilbert spaces, very nicely presented in Appendices A.2 and A.4 of Bickel et al. (1993). Some
traditionally applied projections in L2(I × R, Pκ) can be avoided in this way. Thus, this ap-
proach allows to extract purely analytical calculations and separate them from other derivations
for which a probability space is really needed. This seems to simplify the presentation. We
applied this method of derivation of an efficient score ℓ∗ [cf.(3.1)] in Sections B[1] and C[1] of
Inglot and Ledwina (2003a).

APPENDIX A

In this section we collect some auxiliary results that are needed to justify our implementation
of the precedure. Note that we only need to check the consistency of several estimators under
the null distribution P n

η .√
n - consistency of β̂ follows by considering the normal equations and exploiting < M1 >.

Therefore we start with

A1.
√

n - consistency of the adjusted Rice estimator of τ under the null model.
Rice defined the estimator in a nonparametric regression model with fixed design. Similarly to
Guerre and Lavergne (2003, 2005), we used an adjusted version of this estimator in our simu-
lation study. To be specific, the estimator of τ for a sample of size n is defined as follows. Let
(X1, Y1), ..., (Xn, Yn) be i.i.d. random variables where Yi = β[v(Xi)]

T + ǫ satisfies < M1 >. We
now introduce the vector of order statistics X(1) ≤ ... ≤ X(n), the vector of ranks (R1, ..., Rn)
of (X1, ..., Xn) and the vector of antiranks (D1, ..., Dn), being, by definition, the inverse permu-
tation of (R1, ..., Rn). We have Xi = X(Ri) and X(i) = XDi

while the estimator of τ is defined
by

τ̂ =
1

2(n − 1)

n−1∑

i=1

(
YDi+1

− YDi

)2
.

Note that, formally, we only need to consider the consistency of τ̂ . However, knowing the
consistency rate as well we have more flexibility when defining α̂n in our implementation.

Lemma A.1. In addition to < M1 >, assume that the functions v1(x), ..., vq(x), x ∈ I,
satisfy the Lipschitz condition. Then

√
n(τ̂ − τ) = OP n

η
(1).
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Proof. From < M1 >, (D1, ..., Dn) is independent of (ǫ1, ..., ǫn). This implies

(ǫ1, ..., ǫn)
D
= (ǫD1 , ..., ǫDn

). (A.1)

Set

Ei = ǫDi+1
− ǫDi

, E = (E1, ..., En−1), Vi = v(X(i+1)) − v(X(i)), V0 = (V T
1 , ..., V T

n−1).

Note that V0 is q × (n − 1) random matrix and

τ̂ =
1

2(n − 1)

∣∣∣∣βTV0 + E
∣∣∣∣2 , (A.2)

where || • || stands for the Euclidean norm in Rn−1. The property (A.1) and the assumptions
on the errors yield ||E|| = OP n

η
(
√

n). By (A.2) and the triangular inequality

||E|| − rn ≤
√

2(n − 1)τ̂ ≤ ||E|| + rn, where rn = ||βTV0||.

As
∑n−1

i=1 [X(i+1) −X(i)] ≤ 1 we have
∑n−1

i=1 [X(i+1) −X(i)]
2 ≤ 1 and the Lipschitz condition along

with the Schwarz inequality yield rn = OP n
η

(1). Therefore, (A.2) implies

√
n − 1(τ̂ − τ) =

1

2
√

n − 1

n−1∑

i=1

[E2
i − 2τ ] + OP n

η
(1).

Hence, the conclussion follows from (A.1) and the assumptions on the ǫ′is. �

A.2. Estimating the score function. In many papers on semiparametric estimation the
score function f ′/f is estimated simply by f̂ ′/f̂ , where

f̂(y) = γn +
1

nan

n∑

i=1

K

(
y − ǫ̂i

an

)
,

while ǫ̂i = Yi − v(Xi)β̂
T , {γn} and {an} are deterministic sequences tending to 0. However,

it is more effective to use a random bandwidth α̂n instead of an in the above formula. Below
we show a consistency result for such modified estimator of f . As in Section A.1, to simplify
the notation we formulate the result for one sample of size n.

Lemma A.2. Consider the regression model Y = v(X)βT + ǫ, where β ∈ Rq, while v is a
vector of bounded functions on I. Assume that ǫ possesses a density f which is differentiable
a.s. and the Fisher information J = J(f) is finite. Let β̂ be a

√
n - consistent estimator of β

and α̂n, α̂n > 0, a random bandwidth. For n i.i.d. (Xi, Yi) obeying the model, set

f̃(y) = γn +
1

nα̂n

n∑

i=1

K

(
y − ǫ̂i

α̂n

)
,

where ǫ̂i = Yi−v(Xi)β̂
T , {γn} is a deterministic sequence converging to 0, while K is a positive

twice differentiable symmetric density such that K ≤ C and max{|K ′|, |K ′′|} ≤ CK. Suppose
in addition that for α̂n and an auxiliary deterministic sequence {αn}, such that αn → 0 and
nγ2

nα
6
n → ∞, we have

√
n(αn/α̂n − 1) = OP n

η
(1). Then

∧

δ>0

P n
η




∫

R

(
f̃ ′

f̃
(y) − f ′

f
(y)

)2

f(y)λ(dy) > δ



→ 0 as n → ∞. (A.3)
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Proof. First we introduce some auxiliary notation. Let

ǫi = Yi−v(Xi)β
T , fn(y) = γn+

1

nαn

n∑

i=1

K

(
y − ǫi

αn

)
and f̄n(y) = γn+

1

nα̂n

n∑

i=1

K

(
y − ǫi

α̂n

)
.

From Forrester et al. (2003), Section 8, [by inserting fn instead of their f̂n], since nγ2
nα6

n → ∞,
we infer

P n
η

(∫

R

[
f ′

n

fn

(y) − f ′

f
(y)

]2

f(y)λ(dy) > δ

)
→ 0 as n → ∞.

Therefore, to get (A.3) it is enough to show that both relations

P n
η



∫

R

[
f̃ ′

f̃
(y) − f̄ ′

n

f̄n

(y)

]2

f(y)λ(dy) > δ


→ 0, P n

η

(∫

R

[
f̄ ′

n

f̄n

(y) − f ′
n

fn

(y)

]2

f(y)λ(dy) > δ

)
→ 0

(A.4)
hold as n → ∞. To deal with the first term of (A.4), note that

∣∣∣∣∣
f̃ ′

f̃
− f̄ ′

n

f̄n

∣∣∣∣∣ ≤
∣∣∣∣∣
f̃ ′

f̃

∣∣∣∣∣

∣∣∣∣∣
f̃ − f̄n

f̄n

∣∣∣∣∣+

∣∣∣∣∣
f̃ ′ − f̄ ′

n

f̄n

∣∣∣∣∣ .

Since |K ′| ≤ CK, neglecting γn in f̃ , for any y we get
∣∣∣∣∣
f̃ ′

f̃
(y)

∣∣∣∣∣ ≤
C

α̂n
. (A.5)

From our assumptions, K and K ′ are Lipschitz with bounding constant C2. Moreover, as before
set supx ||v(x)|| = ||v||∞. Therefore, from the definition of f̃ and fn, we infer that for any y

|f̃ ′(y) − f̄ ′
n(y)| ≤ C2

nα̂2
n

n∑

i=1

|ǫ̂i − ǫi|
α̂n

≤ C2||v||∞
α̂3

n

||β̂ − β||.

In consequence

[
f̃ ′(y) − f̄ ′

n(y)

f̄n(y)

]2

≤ 1

γ2
n

{f̃ ′(y) − f̄ ′
n(y)}2 ≤

[
C2||v||∞

√
n||β̂ − β||√

nγnα3
n

]2 [
αn

α̂n

]6

. (A.6)

Similarly, from the Lipschitz condition for K

[
f̃(y) − f̄n(y)

f̄n(y)

]2

≤
[

C2||v||∞
√

n||β̂ − β||√
nγnα2

n

]2 [
αn

α̂n

]6

. (A.7)

As β̂ is
√

n - consistent, due to the assumptions on γn, αn and α̂n, from (A.5)-(A.7), the first
term in (A.4) converges to 0. Using similar arguments, the second term of (A.4) tends to 0 as
well. �

Corollary A.3. Choose αn = c0τ
1/2n−1/7, where c0 is a positive constant and γn satisfies

nγ2
nα

6
n → ∞. From the

√
n - consistency of τ̂ it follows that α̂n = c0[τ̂ ]1/2n−1/7 fulfils the

assumptions of Lemma A.2.
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Remark A.4. Choose α̂n = an a.s. for each n with an satisfying nγ2
na6

n → ∞. Then,
obviously, {an} satisfies the assumption of Lemma A.2 and we have in particular

∧

δ>0

P n
η



∫

R

(
f̂ ′

f̂
(y) − f ′

f
(y)

)2

f(y)λ(dy) > δ


→ 0 as n → ∞. (A.8)

Remark A.5. A typical kernel K satisfying these assumptions is the logistic one. How-
ever, our experience with using this kernel in simulations was discouraging. Therefore we used a
Gaussian kernel. Formally, this kernel requires some modification to satisfy max {|K ′|, |K ′′|} ≤
CK. Obviously, such modification, which does not influence the simulation results, can be
done. Therefore, we did not utilize it in our implementation. Also note that some kernel-type
estimators of f ′/f with random bandwidth have been applied earlier in a regression context by
Koul and Susarla (1983), e.g.

A.3. Consistency of the estimator of J . The consistency of Ĵ (j), j = 1, 2, is established
in the following lemma.

Lemma A.5. Suppose that the assumptions of Lemma A.2 hold. We specify β̂ here to be
a discretized version of some

√
n - consistent estimator. Consider the sample splitting scheme

from Section 3.3. Set f̃ (j)(y), j = 1, 2, for the adjusted versions of f̃ defined in Lemma A.2.
Set

Ĵ (1) =
1

ζ

∑

c∈<1>

[
f̃ ′(2)

f̃ (2)

(
ǫ̂(2)
c

)
]2

and Ĵ (2) =
1

n − ζ

∑

c∈<2>

[
f̃ ′(1)

f̃ (1)

(
ǫ̂(1)
c

)
]2

,

where ǫ̂
(j)
c = Yc − v(Xc)[β̂

(j)]T , c = 1, ..., ζ for j = 2 and c = ζ + 1, ..., n for j = 1. Then, under
P n

η , Ĵ (j), j = 1, 2, are consistent estimators of J .

Proof. We shall apply similar arguments to these used in Section 5 and some details shall
therefore be omitted. As previously, it suffices to consider e.g. j = 1. Due to the discretization,
we can restrict our attention to an analysis of

Ĵ (1)
n =

1

ζ

∑

c∈<1>

[
f̃ ′(2)

f̃ (2)
(ǫcn)

]2

,

where ǫcn = Yc − v(Xc)b
T
n , while {bn} is such that {√n(bn − β)} stays bounded. Recall that

η = (β, ϑ). Since the sequences {P n
(β,ϑ)} and {P n

(bn,ϑ)} are contiguous, then it is enough to prove

that P n
(bn,ϑ)

(
|Ĵ (1)

n − J | > δ
)
→ 0 holds for any positive δ. We shall show this by proving that

for any δ > 0

P n
(bn,ϑ)

(
|J (1)

n − J | > δ
)
→ 0 and P n

(bn,ϑ)

(
|Ĵ (1)

n − J (1)
n | > δ

)
→ 0, (A.9)

where

J (1)
n =

1

ζ

∑

c∈<1>

[
f ′

f
(ǫcn)

]2

.

As, under P(bn,ϑ) the ǫi,n’s have the same distribution as the Yi’s under P(0,ϑ), the first term of
(A.9) tends to 0 from the weak law of large numbers. This convergence also implies that

P n
(bn,ϑ)

(
|
√

J
(1)
n −

√
J | > δ

)
→ 0. This fact allows us to replace the second part of (A.9) by
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P n
(bn,ϑ)

(
|
√

Ĵ
(1)
n −

√
J

(1)
n | > δ

)
→ 0, as

Ĵ
(1)
n − J

(1)
n =

(√
Ĵ

(1)
n −

√
J

(1)
n

)(√
Ĵ

(1)
n −

√
J

(1)
n + 2[

√
J

(1)
n −

√
J ] + 2

√
J

)
. Therefore, by the

triangular inequality, it is enough to show that for

Tn =
1

ζ

∑

c∈<1>

[
f̃ ′(2)

f̃ (2)
(ǫcn) − f ′

f
(ǫcn)

]2

it follows that P n
(bn,ϑ) (Tn > δ) → 0. To prove this we shall apply Proposition 3 with Pn = P n

(bn,ϑ)

and Fn = σ(Xζ+1, ..., Xn, Yζ+1, ..., Yn). Since we have

E(Tn|Fn) =

∫

R

[
f̃ ′(2)

f̃ (2)
(y) − f ′

f
(y)

]2

f(y)dy

an application of Lemma A.2 concludes the proof. �

APPENDIX B

Proof of Proposition 3. Recall that for each n, Tn is a random variable defined on
(Tn,Bn, Pn). Therefore, for each n, by Jensen inequality it holds {E(|Tn||Fn)}2 ≤ E(T 2

n |Fn) Pn

- a.s. Hence, for any δ ∈ (0, 1)

Pn

(
E(|Tn||Fn)

1 + E(|Tn||Fn)
> δ

)
= Pn

(
E(|Tn||Fn) >

δ

1 − δ

)
≤ Pn(E(T 2

n |Fn) > δ2) (B.1)

and by the assumption the right hand side of (A.4) tends to 0 as n → ∞.
Applying again Jensen inequality for the concave function h(x) = x/(1 + x), x ∈ (0,∞) we

get

E(h(|Tn|)|Fn) ≤ E(|Tn||Fn)

1 + E(|Tn||Fn)
Pn − a.e. (B.2)

By the above we infer that
E(h(|Tn|)|Fn) → 0 in Pn. (B.3)

Now observe that

E(h(|Tn|)) = E [E(h(|Tn|)|Fn)] =

∫

Tn

E(h(|Tn|)|Fn)dPn =

=

∫ 1

0

Pn(E(h(|Tn|)|Fn) > δ)dδ. (B.4)

By (B.3) and the Lebesgue Dominated Convergence Theorem the right hand side of (B.4) tends
to 0 and Eh(|Tn|) → 0 as well.

On the other hand, for any positive δ

Eh(|Tn|) ≥
δ

1 + δ

∫

Tn

1{|Tn|>δ}dPn =
δ

1 + δ
Pn(|Tn| > δ). (B.5)

Thus, by the above, (B.5) yields the conclussion of Proposition 2. �
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