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Abstract

A one-to-one correspondence is established between Fourier transforms of ultradis-
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1 Introduction

The Laplace transformation determines a one-to-one correspondence be-
tween the class S ′+(ξ0,∞;X) of distributions of exponential growth on R with
values in a complex Banach space X and support in R+, and some set Hξ0(X)
of X-valued functions holomorphic on an open right halfplane. This implies
that if A is a Banach algebra, then each distribution semigroup belonging to
S ′+(ξ0,∞;A) is the inverse Laplace transform of an A-valued pseudoresolvent
belonging to Hξ0(A). In the present paper it is proved that a similar repre-
sentation by pseudoresolvents also holds for ultradistribution semigroups in
the sense of Beurling. In this case the proof depends in an essential way on
algebraic properties of ultradistribution semigroups and does not work for
general ultradistributions with support in R+. Sections 1.1 and 1.2 describe
the situation for S ′+(ξ0,∞;X) and distribution semigroups in S ′+(ξ0,∞;A). A
comparison with these sections elucidates the main result concerning ultradis-
tribution semigroups presented in Section 1.3, and discussed in Sections 1.4
and 1.5.

Email address: jan.kisynski@gmail.com (Jan Kisyński).
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1.1 Laplace transforms of tempered distributions with support in R+

Let D = C∞c (R), R+ = [0,∞[, D+ = { �
R+ϕ : ϕ ∈ D} where

�
R+ denotes

the characteristic function of the subset R+ of R. Denote by D′(X) the space
of distributions of L. Schwartz on R with values in a complex Banach space X,
and let D′+(X) = {S ∈ D′(X) : suppS ⊂ R+}. The R. T. Seeley extension
theorem [S] implies that:

D+ is equal to the set of functions ϕ defined on R such that
ϕ|]−∞,0[ ≡ 0 and ϕ|R+ ∈ C∞c (R+). Hence D+ may be endowed with
the topology inherited from C∞c (R+). (1.1)

A distribution S ∈ D′(X) belongs to D′+(X) if and only if there
is a (unique) continuous linear operator S+ ∈ L(D+, X) such that
S(ϕ) = S+(

�
R+ϕ) for every ϕ ∈ D. (1.2)

For any λ ∈ C denote by e−λ the exponential function

e−λ(t) = exp(−λt), t ∈ R.

Let S ′(X) be the space of tempered distributions on R with values in X. For
any ξ0 ∈ R define

S ′+(ξ0,∞;X) = {S ∈ D′+(X) : e−ξS ∈ S ′(X) for every ξ > ξ0}.

Denote by Hξ0(X) the set of X-valued functions holomorphic on the open
halfplane C+

ξ0
= {λ ∈ C : Reλ > ξ0} whose growth is at most polynomial

on every closed halfplane contained in C+
ξ0

. If S ∈ S ′+(ξ0,∞;X), then the
X-valued function

R : Cξ0 3 λ 7→ S(e−λ) ∈ X (1.3)

makes sense and is called the Laplace transform of S.
This definition is compatible with the one given in a more general setting

in Chapter VIII of [Sch]. See also Sec. 7.4 of [H]. The following proposition is
closely related to the statement in Remark 2 on p. 310 of [Sch].

Proposition 1.1. The Laplace transformation L maps S ′+(ξ0,∞;X) in one-
to-one manner onto Hξ0(X). If R ∈ Hξ0(X), then the inverse Laplace trans-
form of R is the distribution S = L−1R ∈ S ′+(ξ0,∞;X) such that

S(ϕ) =
1

2π

∫ ξ+i∞

ξ−i∞
ϕ̂(iλ) dλ for every ϕ ∈ D and ξ > ξ0. (1.4)

Here ϕ̂(iλ) =
∫∞
−∞ e

λtϕ(t) dt is the value of the Fourier–Laplace transform of
ϕ ∈ D at iλ.

1.2 A corollary for tempered distribution semigroups

Let ∗ denote convolution on R. From (1.1) it follows that D+ ∗ D+ ⊂ D+,
so that D+ is a convolution algebra. Let A be a complex Banach algebra. A
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distribution S ∈ D′+(A) will be called a distribution semigroup if the operator
S+ ∈ L(D+, X),X = A, appearing in (1.2) is a homomorphism of the convolu-
tion algebra (D+, ∗) into the Banach algebra A (i.e. S+(φ ∗ψ) = S+(φ)S+(ψ)
for every φ, ψ ∈ D+). The set of A-valued distribution semigroups will be
denoted by D′S(A). Whenever S ∈ S ′+(ξ0,∞;A), R ∈ Hξ0(A) and R = LS,
then S ∈ D′S(A) if and only if R is a pseudoresolvent. The last means that R
satisfies on C+

ξ0
the Hilbert equality

R(λ1)− R(λ2) = (λ2 − λ1)R(λ1)R(λ2) for every λ1, λ2 ∈ C+
ξ0
.

The “if” may be deduced from (1.2) and Proposition 2.1 of the subsequent
section. The “only if” is a consequence of the equality

�
R+e−λ1 −

�
R+e−λ2 = (λ2 − λ1)(

�
R+e−λ1) ∗ (

�
R+e−λ2).

Corollary 1.1. The Laplace transformation L defined by (1.1) maps the set
of A-valued distribution semigroups belonging to S ′+(ξ0,∞;A) in a one-to-one
manner onto the set of A-valued pseudoresolvents belonging to Hξ0(A). The
mapping inverse to L is determined by (1.4).

1.3 Analogue of Corollary 1.1 for ultradistribution semigroups in the sense
of A. Beurling

The purpose of the present paper is to prove an analogue of Corollary 1.1
for the class D′ωS(A) of A-valued ultradistribution semigroups corresponding
to any Beurling’s test function space Dω = {ϕ ∈ Cc(R) : ϕ̂ exp(nω) ∈ L1(R)
for every n ∈ N}. Here ̂ denotes the Fourier transformation, and ω is a non-
negative continuous subadditive function defined on R such that

ω(0) = 0, sup
x∈R

log(1 + |x|)
1 + ω(x)

<∞,

and ∫ ∞

−∞

ω(x)

1 + x2
dx <∞. (1.5)

By a theorem of Beurling, if ω is a non-negative continuous subadditive func-
tion on R such that ω(0) = 0, then (1.5) holds if and only if Dω 6= {0},
and these equivalent conditions imply that Dω admits partitions of unity. The
conditions imposed on ω imply that Dω ⊂ C∞c (R). If ω(x) = log(1 + |x|),
then D = C∞c (R). If ω(x) ≡ |x|1/s, s = const > 1, then Dω is equal to the
M. Gevrey space D(nns).

In the definition of the ultradistribution semigroup in the sense of Beurl-
ing we use the convolution algebra D+

ω = { �
R+ϕ : ϕ ∈ Dω}, an analogue

of D+ from Sections 1.1 and 1.2. The formula (1.3) does not make sense for
general distributions, and we do not try to generalize Proposition 1.1. How-
ever, if S ∈ D′ωS(A), then, by means of a special construction going back to
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J. Chazarain [C], it is possible to determine an A-valued pseudoresolvent R
representing the Laplace transform of S. For this pseudoresolvent R there are
a, b ≥ 0 such that

R is defined on a set containing Λaω+b ={λ∈C :Reλ≥aω(− Imλ) + b} (1.6)

and R satisfies on Λaω+b the growth condition: there is κ ∈ R such that

sup
λ∈Λaω+b

‖R(λ)‖A exp(−εReλ− κω(− Imλ)) <∞ for every ε > 0. (1.7)

Conversely, if an A-valued pseudoresolvent R satisfies (1.6) and (1.7) for some
a, b ≥ 0, then, by means of a formula similar to (1.2) but involving an integral
along a path running inside Λaω+b, R determines an ultradistribution semi-
group S ∈ D′ωS(A) which will be called the inverse Laplace transform of R.
The correspondence between the ultradistribution semigroups S and maximal
pseudoresolvents R satisfying (1.6) and (1.7) is one-to-one.

The sets Λaω+b will be called ω-regions. For the first time they appeared in
connection with distribution semigroups of normal operators in a Hilbert space
in the paper of C. Foiaş [Fo], where ω(x) ≡ log(1 + |x|), and then in the paper
of E. Larsson [La], where ω(x) ≡ |x|1/s, s = const > 1. In connection with
applications of the inverse Laplace transformation to differential equations in
Banach spaces, the ω-regions appeared later in the articles of J. Chazarain [C]
and R. Beals [Be].

1.4 Operator-valued distribution semigroups

If A = L(X) is the Banach algebra of continuous linear operators on a com-
plex Banach space X, then every distribution semigroup S ∈ D′ωS(L(X)) is
uniquely determined by its generator, every maximal L(X)-valued pseudore-
solvent R is uniquely determined by its generator, and S is the inverse Laplace
transform of R if and only if the generator of S is equal to the generator of R.
The details are similar to those presented in [K] for ω(x) ≡ log(1 + |x|).
If S ∈ D′ωS(L(X)), I = {∑n

k=1 S(ϕk)xk : n ∈ N, ϕk ∈ Dω, xk ∈ X for
k = 1, . . . , n} and N = {x ∈ X : S(ϕ)x = 0 for every ϕ ∈ Dω}, then the
generator of S is defined as the algebraic linear operator G : I → X/N such
that

GS(ϕ)x = −S(Dϕ)x− ϕ(0)x+N for every ϕ ∈ Dω and x ∈ X.

Correctness of this definition is a consequence of Proposition 2.1.
If R is an L(X)-valued pseudoresolvent, then the operators R(λ) have range

I and null space N independent of λ and the generator of R is defined as the
linear operator G : I→ X/N such that, for some λ,

GR(λ)x = λR(λ)x− x +N for every x ∈ X.
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From the Hilbert equality it follows that this definition is independent of
the choice of λ. Theorem 2.1 yields a characterization of the generator of a
distribution semigroup S ∈ D+

ω S(L(X)) as the generator of an L(X)-valued
pseudoresolvent which satisfies (1.6) and (1.7) for some a > 0 and b ∈ R. The
above result extends Theorem 6.1 from the pioneering paper [L] of J.-L. Lions
and Theorem 5.1 from [C] to distribution semigroups which, as in [W] and
[Ku], need not satisfy the denseness assumption (iv) from Definition 1.1 in
[L], nor the “non-degeneracy” assumption (v) from that definition. The con-
nection between “degenerate” distribution semigroups (for which N 6= {0})
and “degenerate” differential equations in Banach spaces is briefly explained
in Section 6.

1.5 Indispensability of the condition (1.5)

By Beurling’s Lemma I in [B, p. 16], whenever ω is a non-negative continuous
subadditive function defined on R, vanishing at zero and satisfying (1.5), then
there is a function ω̃ satisfying the same conditions (including (1.5)) such
that ω(x) ≤ ω̃(x) for every x ∈ R, ω̃ is even, and ω̃|R+ is concave. In the
present paper the condition (1.5) appears in connection with the framework
of Beurling’s ultradistributions and, by means of (1.6) and (1.7), imposes
restrictions on the pseudoresolvents R. In particular (1.5) & (1.6) says that
the ω-region Λaω+b in which R has to exist must be a “sufficiently wide”
subset of the halfplane {λ ∈ C : Reλ ≥ b}. This last restriction on R is
indispensable in possible theorems similar to the one discussed in Section 1.3,
whether or not the Beurling ultradistributions are used. Namely an example
of a homogeneous ACP without non-trivial solutions given in Theorem 2 of
the paper [Be] of R. Beals implies the following

Corollary 1.2. Suppose that ω is a non-negative, even, continuous function
on R such that ω|R+ is concave and

∫ ∞

−∞

ω(x)

1 + x2
dx =∞.

Then there is a closed densely defined linear operator A from a Hilbert space
X into X whose resolvent R(λ) = (λ−A)−1 ∈ L(X) exists in Λω+b = {λ ∈ C :
Reλ ≥ ω(Imλ) + b} for some b ∈ ]0,∞[ and satisfies the condition

sup
λ∈Λω+b

‖R(λ)‖L(X) Reλ <∞,

but A is not the generator of a D-distribution semigroup for any test function
space D satisfying the conditions (2.1)–(2.4) from the next section.
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2 The setting and the main result

2.1 The convolution algebras D and D+

Let D be an l.c.v.s. whose elements are infinitely differentiable complex-
valued functions on R with compact supports. For any ϕ ∈ D and t ∈ R
denote by ϕt the translate of ϕ by t, that is, ϕt(u) = ϕ(u + t), u ∈ R. Let
R− = ]−∞, 0], R+ = [0,∞[. Assume that:

D is sequentially complete and D− = {ϕ ∈ D : suppϕ ⊂ R−} is a
closed subspace of D, (2.1)

D is translation-invariant and for every ϕ ∈ D the D-valued function
t 7→ ϕt is continuous on R, (2.2)

if 0 6= K ⊂ U ⊂ R, K is compact and U is open, then there is
a function ϕ ∈ D with values in [0, 1] such that ϕ = 1 on K and
ϕ = 0 outside U , (2.3)

if ϕ ∈ D and suppϕ ⊂ U1 ∪ · · · ∪ Uk where U1, . . . , Uk are non-
empty open subsets of R, then there are ϕ1, . . . , ϕk ∈ D such that
suppϕi ⊂ Ui for i = 1, . . . , k and ϕ = ϕ1 + · · ·+ ϕk. (2.4)

If D is an algebra with respect to pointwise multiplication, then (2.3) implies
(2.4), by the argument in the proof of Theorem 1.4.4 in [H]. From (2.1) and
(2.2) it follows that

ϕ ∗ ψ =
∫
ϕ(u)ψ−u du for every ϕ, ψ ∈ D,

where the integral of the D-valued compactly supported continuous function
u 7→ ϕ(u)ψ−u is computed in the sense of Riemann. Hence D is a convolution
algebra.

Examples of spaces D satisfying the conditions (2.1)–(2.4) are: the space
D = C∞c (R) of test functions of L. Schwartz, the test function spaces Dω of
A. Beurling which will be discussed and applied in what follows, the spaces
D{Mn} of C. Roumieu type, and the spaces D(Mn) of A. Beurling type used
by I. Cioranescu in [Ci]. The spaces D{Mn} and D(Mn), both discussed in [Ko],
consist of compactly supported functions ultradifferentiable in the Denjoy–
Carleman sense. D is a particular case of Dω. The M. Gevrey spaces D{s} =
D{nns} and D(s) = D(nns), s = const > 1, are particular cases of D{Mn} and
D(Mn). At the same time, if s > 1 and ω(x) ≡ |x|1/s, then D(s) = Dω.

Following Sheng Wang Wang [W] and P. C. Kunstmann [Ku], for any ϕ, ψ
∈ D put

ϕ ∗0 ψ =
�
R+ϕ ∗ �

R+ψ − �
R−ϕ ∗

�
R−ψ. (2.5)

The assumptions (2.1) and (2.2) imply that if ϕ, ψ ∈ D, then

ϕ ∗0 ψ =
∫ ∞

0
[ϕ(u)ψ−u − ψ(−u)ϕu] du ∈ D, (2.6)
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so that
D ∗0 D ⊂ D. (2.7)

Indeed, the integrand in (2.6) is a D-valued function of u continuous on R
and vanishing if u ≥ a = max(0,max suppϕ,−min suppψ). Since D is a
sequentially complete l.c.v.s., the integral in (2.6), taken in fact only over
[0, a] and computed in the sense of Riemann, makes sense and is equal to a
function η ∈ D such that

η(t) =
∫ ∞

0
ϕ(u)ψ(t− u) du−

∫ ∞

0
ψ(−u)ϕ(t + u) du

=

(∫ ∞

0
−
∫ ∞

t

)
ϕ(u)ψ(t− u) du =

∫ t

0
ϕ(u)ψ(t− u) du

= (
�
R+ϕ ∗ �

R+ψ)(t)− (
�
R−ϕ ∗

�
R−ψ)(t) for every t ∈ R.

Let
D+ = { �

R+ϕ : ϕ ∈ D}. (2.8)

Since
�
R+ϕ ∗ �

R+ψ =
�
R+(ϕ ∗0 ψ), from (2.7) it follows that

D+ ∗D+ ⊂ D+. (2.9)

The space D+ defined by (2.8) is algebraically isomorphic to D/D−, which,
by (2.1), is an l.c.v.s. equipped with the quotient topology. In the following
D+ will be treated as an l.c.v.s. whose topology is inherited from D/D−. The
inclusion (2.9) means that (D+, ∗) is a convolution algebra. Let D+

0 = {ϕ ∈ D :
suppϕ ⊂ R+}. Then D+

0 ⊂ D+ and D+
0 is an ideal in (D+, ∗). Indeed, if

ϕ ∈ D+
0 and ψ ∈ D, then ϕ ∗ �

R+ψ ∈ D+
0 , because ϕ ∗ �

R+ψ = ϕ ∗0 ψ ∈ D and
supp(ϕ ∗ �

R+ψ) ⊂ R+.

2.2 Distribution semigroups

The space of continuous linear maps of D into a Banach space will be de-
noted by D′(X), and the maps belonging to D′(X) will be called X-valued
D-distributions. The condition (2.4) implies that every S ∈ D′(X) has a well
defined support. Sometimes it is convenient to use the fact that, by (2.2) and
(2.4), S(ϕ) = 0 whenever S ∈ D′(X), ϕ ∈ D, and there is an open interval I
(finite or infinite) such that supp S ⊂ I and suppϕ ⊂ R \ I.

There is a one-to-one map of L(D+, X) onto {S ∈ D′(X) : supp S ⊂ R+}
which to any S+ ∈ L(D+, X) assigns the distribution S ∈ D′(X) such that
S(ϕ) = S+(

�
R+ϕ) for every ϕ ∈ D.

Let A be a Banach algebra. A distribution S ∈ D′(A) is called a distribution
semigroup if

S(ϕ) = S+(
�
R+ϕ) for every ϕ ∈ D, (2.10)

where S+ ∈ L(D+,A) satisfies the condition

S+(φ)S+(ψ) = S+(φ ∗ ψ) for every φ, ψ ∈ D+. (2.11)
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The condition (2.11) makes sense thanks to (2.9) and means that S+ is a
homomorphism of the convolution algebra (D+, ∗) into the Banach algebra A.
The set of A-valued D-distribution semigroups will be denoted by D′S(A).
From (2.5) it follows that a distribution S ∈ D′(A) is a distribution semigroup
if and only if

supp S ⊂ R and S(ϕ)S(ψ) = S(ϕ ∗0 ψ) for every ϕ, ψ ∈ D. (2.12)

Let D denote the differentiation: (Dϕ)(t) = d
dt
ϕ(t) for every ϕ ∈ D and t ∈ R.

Proposition 2.1. Suppose that A is a Banach algebra and S ∈ D′(A). Then
S ∈ D′S(A) if and only if

supp S⊂R+ and S(Dϕ)S(ψ)+ϕ(0)S(ψ) = S(ϕ)S(Dψ)+ψ(0)S(ϕ) (2.13)

for every ϕ, ψ ∈ D.
Proof. If S ∈ D′(A), then (2.13) is a consequence of (2.12) and the equalities
Dϕ ∗0 ψ + ϕ(0)ψ = D(ϕ ∗0 ψ) = ϕ ∗0 Dψ + ψ(0)ϕ. Conversely, suppose that
(2.13) holds. Fix any ϕ, ψ ∈ D and let a = max(0,max suppϕ,−min suppψ).
By (2.6), one has

S(ϕ ∗0 ψ) = S

(∫ a

0
[ϕ(u)ψ−u − ψ(−u)ϕu] du

)

=
∫ a

0
[ϕu(0)S(ψ−u)− ψ−u(0)S(ϕu)] du.

Applying (1.13) to ϕu and ψ−u one concludes that

S(ϕ ∗0 ψ) =
∫ a

0
[S(ϕu)S(Dψ−u)− S(Dϕu)S(ψ−u)] du

= −
∫ a

0

d

du
[S(ϕu)S(ψ−u)] du = S(ϕ)S(ψ)− S(ϕa)S(ψ−a).

Since suppϕa = suppϕ− a ⊂ R−, one has S(ϕa) = 0, and hence S(ϕ ∗0 ψ) =
S(ϕ)S(ψ).

2.3 The test function spaces Dω of A. Beurling

Throughout this paper the one-dimensional Fourier transformations F and
F−1 are defined by

Fϕ(x) =
∫ ∞

−∞
e−itxϕ(t) dt, F−1f(t) =

1

2π

∫ ∞

−∞
eitxf(x) dx.

Consider the spaces L1(R) and C0(R) of complex-valued functions. For any
non-negative continuous function ω on R define

Lω = {f ∈ L1(R) : fenω ∈ L1(R) for n = 1, 2, . . .}, Aω = F−1Lω.
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For any ϕ ∈ Aω denote by ϕ̂ the unique element of Lω such that ϕ = F−1ϕ̂.
Equipped with the topology determined by the system of norms

‖ϕ‖nω =
∫ ∞

−∞
|ϕ̂(x)| exp(nω(x)) dx, n = 0, 1, . . . , (2.14)

Aω is a Fréchet space, densely and continuously embedded in C0(R). If in
addition ω is subadditive, i.e.

ω(x1 + x2) ≤ ω(x1) + ω(x2) for every x1, x2 ∈ R,

then Lω is a convolution algebra, and hence Aω is an algebra with respect to
pointwise multiplication.

Theorem of Beurling ([B, Theorem I]; [Bj, Theorem 1.3.7]) Suppose that

ω is a non-negative continuous subadditive function on R
such that ω(0) = 0. (α)

Then ∫ ∞

−∞

ω(x)

1 + x2
dx <∞ (β)

if and only if the condition (2.3) is satisfied with Dω in place of D.

Henceforth we assume that ω satisfies (α) and (β). For any compact interval
[a, b] ⊂ R let

Dω[a, b] = {ϕ ∈ Aω : suppϕ ⊂ [a, b]}.
Then Dω[a, b] ⊂ Cc[a, b], and if −∞ < a < b < ∞, then Dω[a, b] 6= {0} by
Beurling’s theorem. Let

Dω =
⋃

−∞<a<b<∞
Dω[a, b].

Then Dω ⊂ Cc(R), and since each Dω[a, b] is a closed subalgebra of Aω, it
follows that, equipped with the inductive topology, Dω is an LF-space and an
algebra with respect to pointwise multiplication. Since (2.3) holds for D = Dω,
by an argument mentioned in Section 2.1 it follows that Dω admits partitions
of unity in the sense that (2.4) holds for D = Dω. Furthermore, by another
argument of Section 2.1, Dω is a convolution algebra, because D = Dω satisfies
(2.1) and (2.2). Pointwise multiplication and convolution are both continuous
bilinear maps of Dω ×Dω into Dω.

By Theorem 1.3.18 of G. Björck’s paper [Bj], whenever both ω and ω̃ satisfy

(α) and (β), then supx∈R
ω̃(x)

1+ω(x)
<∞ if and only if Dω is densely and continu-

ously embedded in Dω̃. If ω(x) = log(1+ |x|), then ω satisfies (α) and (β), and
Dω is equal to the L. Schwartz test function space D = C∞c (R). The condition

sup
x∈R

log(1 + |x|)
1 + ω(x)

<∞ (γ)

holds if and only if Dω is densely and continuously embedded in D.
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In the following, Ω(α, β) and Ω(α, β, γ) will denote the sets of functions ω
defined on R and satisfying respectively the Beurling conditions (α) and (β)
or all the three conditions (α), (β) and (γ). If ω ∈ Ω(α, β, γ), then D = Dω
satisfies the assumptions of Section 2.1, and all the statements of Sections 2.1
and 2.2 remain valid for Dω.

2.4 The M. Gevrey test function spaces D(s)

If ω(x) ≡ |x|1/s where s = const > 1, then ω ∈ Ω(α, β, γ). The corresponding
Dω will be denoted by D(s). It follows from [H, Lemma 12.7.4] that if −∞ <
a < b <∞ and s > 1, then

D(s)[a, b] =

{
ϕ ∈ D : suppϕ ⊂ [a, b], sup

t∈[a,b], n∈N

|Dnϕ(t)|
nnsεn

<∞ for all ε > 0

}
.

In the terminology of [EDM 2, p. 650] this equality means that D(s)[a, b] coin-
cides with the set of those M. Gevrey functions of the class (s) whose supports
are contained in [a, b].

2.5 The Fourier transforms of elements of Dω and D′ω(X)

For any compact interval [a, b] ⊂ R denote its support function by H[a,b]:

H[a,b](y) = sup
t∈[a,b]

ty =

{
ay if y < 0,

by if y ≥ 0.

Let ω ∈ Ω(α, β, γ). By the equivalence (ii)⇔(iii) in Theorem 1.4.1 of [Bj],
proved in the present paper as Corollary 3.8, if −∞ < a < b < ∞, then the
Fourier transformation is an isomorphism of Dω[a, b] onto the space Zω[a, b]
of entire functions f such that

sup
x+iy∈C

|f(x+iy)| exp(nω(x)−H[a,b](y)−ε|y|) <∞ for every n ∈ N and ε > 0.

Consequently, the Fourier transformation is an isomorphism of the union Dω =⋃
−∞<a<b<∞Dω[a, b] onto Zω =

⋃
−∞<a<b<∞Zω[a, b].

Let X be a complex Banach space. The space D′ω(X) of X-valued Dω-
distributions of Beurling is defined as the space of continuous linear maps of
Dω into X. Let ∨ denote the reflection in 0. The Fourier transform S of a
distribution S ∈ D′ω(X) is defined as the unique linear map Ŝ : Zω∨ → X
satisfying the Parseval equality

S(ϕ) =
1

2π
Ŝ(ϕ̂∨) for every ϕ ∈ Dω.

10



2.6 Peudoresolvents

Let A be an algebra over a commutative ring K. A map R of a non-empty
subset D(R) of K into A is called a pseudoresolvent if it satisfies the Hilbert
equality

R(λ)−R(µ) = (µ− λ)R(λ)R(µ) for every λ, µ ∈ D(R).

An A-valued pseudoresolvent is called maximal if it has no proper extension
to an A-valued pseudoresolvent.

Proposition 2.2. Every A-valued pseudoresolvent extends uniquely to a max-
imal A-valued pseudoresolvent.

Proof. Consider the binary relations → and ↔ on K×A defined as follows:
whenever (λ,A), (µ,B) ∈ K×A, then

(λ,A)→ (µ,B) means that A− B = (µ− λ)AB

and

(λ,A)↔ (µ,B) means that (λ,A)→ (µ,B) and (µ,B)→ (λ,A).

(It follows that (λ,A) ↔ (µ,B) if and only if A − B = (µ − λ)AB and
AB = BA.) Suppose that (λ,A)→ (µ,B) and (µ,B)→ (ν, C). Then

B = A+ (λ− µ)AB = C + (ν − µ)BC,

whence

A− C = (µ− λ)AB + (ν − µ)BC

= (µ− λ)A[C + (ν − µ)BC] + (ν − µ)[A+ (λ− µ)AB]C

= (ν − λ)AC,

so that (λ,A) → (ν, C). Thus the relation → is transitive, and hence so
is ↔. Since obviously ↔ is reflexive and symmetric, it follows that it is an
equivalence relation. Therefore K×A splits into the equivalence classes of↔.
Proposition 2.2 is a consequence of two obvious facts:

1◦ the graph of every A-valued pseudoresolvent is contained in some equiva-
lence class of ↔,

2◦ a subset of K×A is an equivalence class of↔ if and only if it is the graph
of a maximal A-valued pseudoresolvent.

If A is a Banach algebra, then Proposition 2.2 coincides with Theorem 5.8.6
of [H-P]. The proof given in [H-P] is non-elementary. An application of the
C. Neumann series shows that every maximal pseudoresolvent, with values in
a Banach algebra over K, where K = R or K = C, is an analytic function
defined on an open subset of K.
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2.7 The main result. Fourier transforms of Dω-distribution semigroups

Let A be a complex Banach algebra. Let ω ∈ Ω(α, β, γ). For any a, b ≥ 0
let

Λaω+b = {λ ∈ C : Reλ ≥ aω(− Imλ) + b}.
As in Section 2.6, for any A-valued pseudoresolvent R denote by D(R) the
subset of C on which R is defined.

Definition 2.1. For any a, b ≥ 0, ε> 0 and κ ∈ R denote by Raω+b(A; ε, κ)
the set of A-valued pseudoresolvents R such that Λaω+b ⊂ D(R) and

sup
λ∈Λaω+b

‖R(λ)‖A exp(−εReλ− κω(− Imλ)) <∞. (2.15)

Let

R̃aω+b(A) =
⋂

ε>0

⋃

κ∈R
Raω+b(A; ε, κ), Raω+b(A) =

⋃

κ∈R

⋂

ε>0

Raω+b(A; ε, κ),

R̃ω(A) =
⋃

a,b≥0

R̃aω+b(A), Rω(A) =
⋃

a,b≥0

Raω+b(A).

Definition 2.2. For any ω ∈ Ω(α, β, γ) such that ω∨ = ω, and any a, b ≥ 0
and κ ∈ R denote by R0

aω+b(A; κ) the set of A-valued pseudoresolvents R such
that Λaω+b ⊂ D(R) and

sup
λ∈Λaω+b

‖R(λ)‖A exp(−κω(|λ|)) <∞.

Let

R0
aω+b(A) =

⋃

κ∈R
R0

aω+b(A; κ), R0
ω(A) =

⋃

a,b≥0

R0
aω+b(A).

Proposition 2.3. If ω ∈ Ω(α, β, γ), then R̃ω(A) = Rω(A). If either ω(x) ≡
log(1 + |x|) or ω(x) ≡ |x|1/s, s = const > 1, then R̃ω(A) = R0

ω(A).

Denote by Rmax
ω (A) the set of maximal pseudoresolvents belonging to Rω(A),

and by Ω̃ω the set of real uniformly lipschitzian functions ω̃ on R such that
ω̃− ω is non-negative and ω̃

1+ω
is bounded on R. For any a, b ≥ 0 and ω̃ ∈ Ωω

denote by Ca,b,ω̃ the path R 3 x 7→ x − i(aω̃(−x) + b) ∈ C directed by the
natural order in R.

Theorem 2.1. Assume that A is a complex Banach algebra and ω∈Ω(α, β, γ).
Then there is a one-to-one map of D′ωS(A) onto Rmax

ω (A) which to any dis-
tribution semigroup S ∈ D′ωS(A) assigns the unique pseudoresolvent R ∈
Rmax
ω (A) such that

∫

Ca,b,ω̃
‖ϕ̂(−z)R(iz)‖A|dz|<∞ and S(ϕ)=

1

2π

∫

Ca,b,ω̃
ϕ̂(−z)R(iz) dz (2.16)

for every ϕ ∈ Dω, ω̃ ∈ Ω̃ω and every a, b ≥ 0 such that R ∈ R̃aω+b(A).
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Equality (2.16) means that, in the sense of the definition formulated in
Section 2.5, the map

Zω∨ 3 f 7→
∫

Ca,b,ω̃
f(z)R(iz) dz ∈ A

is the Fourier transform of the distribution semigroup S ∈ D′ωS(A). One can
rewrite (2.16) in the equivalent form

S(ϕ) =
1

2πi

∫

iCa,b,ω̃
ϕ̂(iλ)R(λ) dλ, ϕ ∈ Dω,

which resembles (1.4) and means that S is equal to the inverse Laplace trans-
form of R.

3 Paley–Wiener estimations of Fourier transforms of Beurling test
functions and distributions

A thorough exposition of the theory of Beurling test functions and dis-
tributions is presented in [Bj]. We limit ourselves to a concise selfcontained
presentation of the Paley–Wiener type results needed in the following.

For any y > 0 denote by Py the probability measure on R such that

Py(B) =
y

π

∫

B

dx

x2 + y2

for every Lebesgue measurable subset B of R. Let P0 be the Dirac measure
on R. The family (Py)y≥0 is a convolution semigroup of probability measures
on R called the Poisson semigroup.

Proposition 3.1. Let −∞ < a < b <∞ and f ∈ L1(R). Then the following
three conditions are equivalent:

(i) F−1f vanishes outside [a, b],
(ii) there is an entire function F such that F |R = f a.e. on R and

|F (x+ iy)| ≤ exp([P|y| ∗ log |f |](x) +H[a,b](y)) for every x + iy ∈ C, (3.1)

(iii) there is an entire function F such that F |R = f a.e. on R and

sup
y∈R

( ∫ ∞

−∞
|F (x+ iy)| dx

)
exp(−H[a,b](y)) <∞. (3.2)

Note that log |f | appearing in (3.1) is a function with values in [−∞,∞[
continuous and bounded from above on R, so that the convolution makes sense
and defines a function of z = x+ iy with values in [−∞,∞[. It is understood
that exp(−∞) = 0.

Proof. (i)⇒(ii). Suppose that ϕ ∈ C(R), suppϕ ⊂ [a, b] and f = ϕ̂ a.e. on R.
For any z ∈ C let F (z) =

∫ b
a e
−itzϕ(t) dt. Then F is an entire function such
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that F |R = f a.e. on R and we have to prove that F satisfies (3.1). To this
end notice first of all that

F (x+ iy) = ϕ̂y(x) exp(H[a,b](y)) for every x + iy ∈ C, (3.3)

where
ϕy(t) = ϕ(t) exp(ty −H[a,b](y))

for every t, y ∈ R. If y ∈ R is fixed, then ϕy ∈ C(R), suppϕy ⊂ [a, b] and
|ϕy| ≤ |ϕ|. If ε ∈ ]0, 1

2
(b− a)] and t ∈ [a+ ε, b− ε], then

|ϕy(t)| ≤ |ϕ(t)| exp( inf
s∈[a,b]

(t− s)y) ≤ |ϕ(t)| exp(−ε|y|).

By the Lebesgue dominated convergence theorem, it follows that the map
R 3 y 7→ ϕy ∈ L1(R) is continuous and lim|y|→∞ ‖ϕy‖L1(R) = 0. Consequently,
the map R 3 y 7→ ϕ̂y ∈ C0(R) is continuous and lim|y|→∞ ‖ϕ̂y‖C0(R) = 0,
which, by (3.3), implies that

lim
|z|→∞

F (z) exp(−H[a,b](Im z)) = 0. (3.4)

The inequality (3.1) is an immediate consequence of the fact that both the
entire functions

Φ(z) = F (z)eibz and Φ(z) = F (z)e−iaz (3.5)

satisfy the inequality

log |Φ(x + iy)| ≤ (Py ∗ log |f |)(x) for every x ∈ R and y ∈ R+. (3.6)

In the proof of (3.6) we shall use (3.4), and we shall follow the idea indicated
in the proof of Lemma 1.4.2 of [Bj]. By (3.4), for both the functions (3.5) one
has

lim
Im z≥0, |z|→∞

Φ(z) = 0,

and hence g(z) = log |Φ(z)| is a continuous function of z ∈ C with values in
[−∞,∞[ such that

lim
Im z≥0, |z|→∞

g(z) = −∞. (3.7)

Since Φ is holomorphic, the functions g and gk = max(g,−k), k = 1, 2, . . . ,
are subharmonic on C. It follows that for every k = 1, 2, . . . the function

hk(z) = [Py ∗ gk|R](x), z = x+ iy, y ≥ 0,

is bounded and continuous on {Im z ≥ 0} and harmonic in {Im z > 0}, and
the function g − hk with values in [−∞,∞[ is continuous on {Im z ≥ 0} and
subharmonic in {Im z > 0}. Furthermore

g(x)− hk(x) = g(x)− gk(x) ≤ 0 for every x ∈ R
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and, by (3.7),

lim
Im z≥0, |z|→∞

(g(z)− hk(z)) = −∞.

Hence from the maximum principle for subharmonic functions it follows that

g(z)− hk(z) ≤ 0 whenever Im z ≥ 0 and k = 1, 2, . . . .

This means that

g(x+ iy) ≤ (Py ∗ gk|R)(x) for every x ∈ R, y ∈ R+ and k = 1, 2, . . . .

By the Lebesgue monotone convergence theorem, passing to the limit as
k →∞, one concludes that

g(x+ iy) ≤ (Py ∗ g|R)(x) for every x ∈ R and y ∈ R+,

so that (3.6) holds.
(ii)⇒(iii). If (ii) holds, then, by Jensen’s inequality,

|F (x+ iy)| ≤ (P|y| ∗ |f |)(x) · exp(H[a,b](y)) for every x + iy ∈ C.

This implies (3.2), because the operators P|y| ∗, y ∈ R, are contractions in
L1(R).

(iii)⇒(i). Suppose that (iii) holds and take any c ∈ ]0,∞[. Then, by Fubini’s
theorem, ∫∫

−∞<x<∞
−c≤y≤c

|F (x+ iy)| dx dy <∞

and hence

lim inf
x→−∞

∫ c

−c
|F (x+ iy)| dy = lim inf

x→∞

∫ c

−c
|F (x+ iy)| dy = 0. (3.8)

By the Cauchy integral theorem, from (iii) and (3.8) it follows that

∫ ∞

−∞
eit(x+iy)F (x+ iy) dx =

∫ ∞

−∞
eitxf(x) dx for all t, y ∈ R. (3.9)

Let

ϕ(t) = F−1f(t) =
1

2π

∫ ∞

−∞
eitxf(x) dx, t ∈ R.

Then ϕ ∈ C0(R) and we have to prove that suppϕ ⊂ [a, b]. From (3.9) and
(3.2) it follows that there is C ∈ ]0,∞[ such that

|ϕ(t)| ≤ e−ty

2π

∫ ∞

−∞
|F (x+ iy)| dx ≤ C

2π
exp(H[a,b](y)− ty) = r(t, y)

for every t, y ∈ R. If t ∈ ]−∞, a[, then limy→∞ r(t, y) = 0, and if t ∈ ]b,∞[,
then limy→−∞ r(t, y) = 0. Hence suppϕ ⊂ [a, b].
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Lemma 3.2 ([Bj, Lemma 1.3.11]). If ω ∈ Ω(α, β), then for every δ ∈ ]0,∞[
there is Cδ ∈ ]0,∞[ such that

|(Py ∗ ω)(x)− ω(x)| ≤ δy + Cδ for every x ∈ R and y ∈ ]0,∞[. (3.10)

Proof. By (β), there is r ∈ ]0,∞[ such that

1

π

(∫ −r

−∞
+
∫ ∞

r

)
ω(u)

u2
du ≤ δ.

Since y
π

∫∞
−∞

du
u2+y2 = 1, it follows that

y

π

∫ ∞

−∞

ω(u)

u2 + y2
du ≤ δy + Cδ, where Cδ = max

−r≤u≤r
ω(u).

This implies (3.10), because

(Py ∗ ω)(x)− ω(x) =
y

π

∫ ∞

−∞

ω(x− u)− ω(x)

u2 + y2
dy

and −ω(u) ≤ ω(x− u)− ω(x) ≤ ω(−u), by (α).

Proposition 3.3. If ω ∈ Ω(α, β), then for every n ∈ N and ε > 0 there is
Cn,ε ∈ ]0,∞[ such that

‖e−izϕ‖nω ≤ Cn,ε‖ϕ‖nω exp(nω(−Re z) +H[a,b](Im z) + ε|Im z|) (3.11)

whenever −∞ < a < b <∞, ϕ ∈ Dω[a, b], and z ∈ C.

Proof. Fix ω ∈ Ω(α, β), n ∈ N and ε > 0. Let δ = ε/n. We will prove
that (3.11) holds for Cn,ε = exp(nCδ) where Cδ ∈ ]0,∞[ is the constant from
Lemma 3.2. The equality

ê−izϕ(x) = ϕ̂(x + z)

implies that

‖e−izϕ‖nω =
∫ ∞

−∞
|ϕ̂(x+ i Im z)| exp(nω(x− Re z)) dx

≤ exp(nω(−Re z))
∫ ∞

−∞
|ϕ̂(x+ i Im z)| exp(nω(x)) dx.

Therefore (3.11) will follow once it is shown that

∫ ∞

−∞
|ϕ̂(x+ iy)| exp(nω(x)) dx ≤ Cn,ε‖ϕ‖nω exp(H[a,b](y) + ε|y|) (3.12)

for any −∞ < a < b < ∞, ϕ ∈ Dω[a, b] and y ∈ R. In the proof of (3.12)
we repeat the argument which may be found on pp. 366–367 of [Bj]. Let
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ϕ ∈ Dω[a, b] and x, y ∈ R. Then, by (i)⇒(ii) of Proposition 3.1,

|ϕ̂(x + iy)| exp([P|y| ∗ nω](x))

≤ exp([P|y| ∗ (log |ϕ̂|R|+ nω)](x) +H[a,b](y))

≤ exp([P|y| ∗ log(|ϕ̂|R| exp(nω))](x)) · exp(H[a,b](y)),

whence, by Jensen’s inequality,

|ϕ̂(x + iy)| exp([P|y| ∗ nω](x)) ≤ [P|y| ∗ (|ϕ̂|R| exp(nω)](x) · exp(H[a,b](y)).

By (3.10), it follows that

C−1
n,ε|ϕ̂(x+ iy)| exp(nω(x)− ε|y|) ≤ |ϕ̂(x+ iy)| exp(nω(x)− nδ|y| − nCδ)

≤ [P|y|∗(|ϕ̂|R| exp(nω))](x) · exp(H[a,b](y)),

and so

|ϕ̂(x + iy)| exp(nω(x)) ≤ Cn,ε[P|y| ∗ (|ϕ̂|R| exp(nω))](x) · exp(H[a,b] + ε|y|).

Since the operators P|y|∗ are contractions in L1(R), the last inequality implies
(3.12), by integration with respect to x.

Corollary 3.4. If ω ∈ Ω(α, β), −∞ < a < b < ∞, and ϕ ∈ Dω[a, b], then
e−izϕ is an entire Dω[a, b]-valued function of z.

For any ω ∈ Ω(α, β), ϕ ∈ Dω and n ∈ N put

|||ϕ|||nω = sup
x∈R
|ϕ̂(x)| exp(nω(x)). (3.13)

Proposition 3.5. (A) If ω ∈ Ω(α, β), then for every n ∈ N and every a, b ∈ R
with a < b there is Cn,a,b ∈ ]0,∞[ such that

|||ϕ|||nω ≤ Cn,a,b‖ϕ‖nω for every ϕ ∈ Dω[a, b].

(B) ([Bj, Proposition 1.3.26]) If ω ∈ Ω(α, β, γ), then there are m ∈ N and
D ∈ ]0,∞[ such that

‖ϕ‖nω ≤ D|||ϕ|||(m+n)ω for every ϕ ∈ Dω and every n ∈ N.
Proof. (A) ([Bj, pp. 365–366]) Fix r > 0 and ε > 0. For every ϕ ∈ Dω[a, b]
and x ∈ R one has

ϕ̂(x) =
1

πr2

∫∫

|u+iv|≤r
ϕ̂(x+ u+ iv) du dv,

because ϕ̂ is an entire function. Hence, by (3.12),
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|ϕ̂(x)| exp(nω(x))

≤ 1

πr2

∫ r

−r

[ ∫ r

−r
|ϕ̂(x+ u+ iv)| exp(nω(x+ u)) exp(nω(−u)) du

]
dv

≤ 2

πr
M(r) max

−r≤v≤r

∫ ∞

−∞
|ϕ̂(x + iv)| exp(nω(x)) dx

≤ 2

πr
M(r)N(r, a, b)Cn,ε‖ϕ‖,

where M(r) = max−r≤u≤r exp(nω(−u)), N(r, a, b) = max−r≤v≤r exp(H[a,b](v)
+ ε|v|).

(B) Let K = supx∈R
log(1+|x|)

1+ω(x)
. Then K <∞, by (γ), and

∫ ∞

−∞
exp(−mω(x)) dx ≤ em

∫ ∞

−∞
(1 + |x|)−m/K dx <∞

whenever m > K. By (α), for any such m one has

‖ϕ‖nω ≤ |||ϕ|||(n+m)ω

∫ ∞

−∞
exp(−mω(x)) dx

for every ϕ ∈ Dω and n ∈ N.

Corollary 3.6. If ω ∈ Ω(α, β, γ) and −∞ < a < b < ∞, then both the
systems of norms, (2.14) and (3.13), determine on Dω[a, b] the same topology
of a Fréchet space.

Proposition 3.7 ([Bj, Theorem 1.4.1, (iii)⇒(ii)]). Let ω ∈ Ω(α, β). Then
for every n ∈ N and ε > 0 there is Cn,ε ∈ ]0,∞[ such that

|ϕ̂(x + iy)| ≤ Cn,ε|||ϕ|||nω exp(−nω(x) +H[a,b](y) + ε|y|) (3.14)

for any −∞ < a < b <∞, ϕ ∈ Dω[a, b], and x, y ∈ R.

Proof. Let ϕ ∈ Dω[a, b]. By Lemma 3.2, for every δ > 0 there is Cδ ∈ ]0,∞[
such that

[P|y| ∗ log |ϕ̂|R|](x) ≤ [P|y| ∗ (log |||ϕ|||nω − nω)](x)

≤ log |||ϕ|||nω − nω(x) + nδ|y|+ nCδ

for every x, y ∈ R and n ∈ N. Hence, by Proposition 3.1,

|ϕ̂(x+ iy)| ≤ exp([P|y| ∗ log |ϕ̂|R|](x) +H[a,b](y))

≤ exp(nCδ)|||ϕ|||nω exp(−nω(x) +H[a,b](y) + nδ|y|),

so that (3.14) holds for any ε > 0 with Cn,ε = exp(nCδ), δ = ε/n.

Corollary 3.8. If ω ∈ Ω(α, β, γ) and −∞ < a < b < ∞, then the Fourier
transformation F is an isomorphism of Dω[a, b] onto the space Zω[a, b] of
entire functions defined in Section 2.5.
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Proof. Proposition 3.7 says that F maps Dω[a, b] into Zω[a, b]. Since F|Dω[a,b]

is invertible, it remains to prove that for every f ∈ Zω[a, b] there is ϕ ∈ Dω[a, b]
such that Fϕ = f . So, take any f ∈ Zω[a, b]. Then estimations similar to those
used in the proof of Proposition 3.5(B) show that

sup
x+iy∈C

(∫ ∞

−∞
|f(x+ iy)| exp(nω(x)) dx

)
exp(−H[a−ε,b+ε](y)) <∞

for every n ∈ N and ε > 0. Hence, for Lω and Aω defined in Section 2.3, one
has f |R ∈ Lω and ϕ := F−1f |R ∈ Aω. Moreover, by (iii)⇒(i) of Proposition
3.1, suppϕ ⊂ ⋂ε>0[a− ε, b+ ε] = [a, b], so that ϕ ∈ Dω[a, b].

Assume that ω ∈ Ω(α, β, γ), X is a complex Banach space, and −∞ < a <
b <∞. Let

D′ω(a, b;X) = {S ∈ D′ω(X) : supp S ⊂ [a, b]},
and denote by Uω(a, b;X) the set of X-valued entire functions U such that
there is m0 = m0(U) ∈ N for which

sup
z∈C
‖U(z)‖X exp(−m0ω(−Re z)−H[a,b](Im z)− ε|Im z|) <∞ (3.15)

for every ε > 0. Let S ∈ D′ω(a, b;X). Take any χ ∈ Dω such that χ = 1 on
[a, b]. Then, by Corollary 3.4, the formula

U(z) = S(e−izχ), z ∈ C, (3.16)

defines an entire X-valued function U . Since supp S ⊂ [a, b], another choice
of χ ∈ Dω does not affect U provided that χ = 1 on [a, b]. By (2.3) for
any ε > 0 one can choose χ ∈ Dω so that χ = 1 on [a, b] and χ vanishes
outside [a − ε, b + ε]. Then applying Proposition 3.3 one concludes that the
transformation S 7→ U maps D′ω(a, b;X) into Uω(a, b;X).

The following theorem is equivalent to a combination of Theorem 1.8.11
and (b)⇔(c) from Theorem 1.8.14 of [Bj]. A complete proof of this theorem
is given because of its crucial role in the subsequent section.

Theorem 3.9. Assume that ω ∈ Ω(α, β, γ), a, b ∈ R, a < b, and X is a
Banach space.

(A) Let U ∈ Uω(a, b;X), and let υ be a real function uniformly lipschitzian
on R such that

sup
x∈R

|υ(x)|
1 + ω(x)

<∞. (3.17)

Denote by Cυ the oriented path R 3 x 7→ x − iυ(−x) ∈ C. Then for every
ϕ ∈ Dω the integral

∫
Cυ ϕ̂(−z)U(z) dz is absolutely convergent in the sense of

the norm in X, and the value of this integral is independent of the choice of a
uniformly lipschitzian υ satisfying (3.17). Furthermore, the formula

S(ϕ) =
1

2π

∫

Cυ
ϕ̂(−z)U(z) dz, ϕ ∈ Dω, (3.18)

determines a distribution S ∈ D′ω(a, b;X).
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(B) The map D′ω(a, b;X) 3 S 7→ U ∈ Uω(a, b;X) determined by (3.16) is
an isomorphism of D′ω(a, b;X) onto Uω(a, b,X), and its inverse is the map
Uω(a, b;X) 3 U 7→ S ∈ D′ω(a, b;X) determined by (3.18).

Taking υ ≡ 0 and comparing (3.18) with the Parseval equality from Sec-
tion 2.5, one concludes that for every distribution S ∈ D′ω(a, b;X) its Fourier
transform Ŝ : Zω∨ → X is represented by the X-valued entire function U
determined by (3.16).

Proof. (A) By Propositions 3.5(A) and 3.7, if −∞ < c < d <∞, ϕ ∈ Dω[c, d],
n ∈ N, ε > 0 and z ∈ C, then

|ϕ̂(−z)| ≤ Cc,d,n,ε‖ϕ‖nω exp(−nω(−Re z) +H[c,d](− Im z) + ε|Im z|) (3.19)

where Cc,d,n,ε is a function of (c, d, n, ε) with values in ]0,∞[. Suppose now
that U ∈ Uω(a, b;X) is fixed, and υ is a real function uniformly lipschitzian on
R, satisfying (3.17). By (3.15) and (3.19), if −∞ < c < d < ∞, ϕ ∈ Dω[c, d],
n ∈ N, ε > 0 and z = x + iy ∈ C, then

‖ϕ̂(−z)U(z)‖X ≤ C̃c,d,n,ε‖ϕ‖nω exp((m0(U)− n)ω(−x)

+H[a,b](y) +H[c,d](−y) + 2ε|y|). (3.20)

Consequently,

‖ϕ̂(−z)U(z)‖X
≤ C̃c,d,n,ε‖ϕ‖nω exp((m0(U) + 2K(M + ε)− n)ω(−x) + 2K(M + ε)) (3.21)

for every z=x+iy ∈ Cυ, where K=supx∈R
|υ(x)|

1+ω(x)
and M=max(|a|, |b|, |c|, |d|).

If n ∈ N is sufficiently large, then, by (γ), the right side of the last inequality is
a function of x belonging to L1(R). Since υ is uniformly lipschitzian, it follows
that the integral

∫
Cυ ϕ̂(−z)U(z) dz is absolutely convergent in the sense of the

norm in X. Furthermore, by (3.20), (3.21) and by Cauchy’s integral theorem,

∫

Cυ
ϕ̂(−z)U(z) dz =

∫ ∞

−∞
ϕ̂(−x− iy)U(x+ iy) dx (3.22)

for every ϕ ∈ Dω[c, d] and y ∈ R. Consequently, the formula (3.18) defines a
distribution S ∈ D′ω(X) which is independent of the choice of υ. It remains
to prove that supp S ⊂ [a, b]. To this end it is sufficient to show that if a
compact integral [c, d] is disjoint from [a, b] and ϕ ∈ Dω[c, d], then S(ϕ) = 0.
So, suppose that [a, b] and [c, d] are disjoint and ϕ ∈ Dω[c, d]. Then there is
an ε > 0 such that

either c− b− 2ε = A > 0, or a− d− 2ε = B > 0.

By (3.20) and (3.22) one has
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‖S(ϕ)‖X ≤
1

2π

∫ ∞

−∞
‖ϕ̂(−x− iy)U(x+ iy)‖X dx

≤ L exp(H[a,b](y) +H[c,d](−y) + 2ε|y|)

and hence

‖S(ϕ)‖X ≤ L

{
exp(−Ay) if A > 0 and y > 0,

exp(By) if B > 0 and y < 0,

where L = 1
2π
C̃c,d,n,ε‖ϕ‖nω

∫∞
−∞ exp((m0(U) − n)ω(−x)) dx is finite provided

that n is sufficiently large. Letting y → ∞ if A > 0, and y → −∞ if B > 0,
one concludes that S(ϕ) = 0.

(B) We have to prove that if S ∈ D′ω(a, b;X), ϕ, χ ∈ Dω, and χ = 1 on [a, b],
then

S(ϕ) =
1

2π

∫ ∞

−∞
ϕ̂(−x)S(e−ixχ) dx, (3.23)

and if U ∈ Uω(a, b;X), χ ∈ Dω, and χ = 1 on [a, b], then

1

2π

∫ ∞

−∞
ê−ix0χ(−x)U(x) dx = U(x0) for every x0 ∈ R. (3.24)

Indeed, (3.23) and (3.24) mean respectively that the map of U(a, b;X) into
D′ω(a, b;X) determined by (3.18) is a left and right inverse for the map of
D′ω(a, b;X) into Uω(a, b;X) determined by (3.16).

For the proof of (3.23) notice that if c and d are chosen so that −∞ <
c < a < b < d < ∞ and χ ∈ Dω[c, d], then, by Propositions 3.3, 3.7 and
Corollary 3.4, ϕ̂(−z)e−izχ is an entire function of z with values in the Fréchet
space Dω[c, d], such that

‖ϕ̂(−x)e−ixχ‖nω ≤ |ϕ̂(−x)|‖e−ixχ‖nω
≤ |||ϕ|||(m+n)ωexp(−(m + n)ω(−x)) · Cn,1‖χ‖nω exp(nω(−x))

= Cn,1|||ϕ|||(m+n)ω‖χ‖nω exp(−mω(−x))

for every m,n ∈ N and x ∈ R. Since, by (γ),
∫∞
−∞ exp(−mω(−x)) dx < ∞

for sufficiently large m, and since there are n ∈ N and C ∈ ]0,∞[ such that
‖S(ψ)‖X ≤ C‖ψ‖nω for every ψ ∈ Dω[c, d], it follows that the vector-valued
integrals

∫∞
−∞ ϕ̂(−x)e−ixχ dx and

∫∞
−∞ ϕ̂(−x)S(e−ixχ) dx make sense and

1

2π

∫ ∞

−∞
ϕ̂(−x)S(e−ixχ) dx = S

(
1

2π

∫ ∞

−∞
ϕ̂(−x)e−ixχ dx

)
.

For every x, t ∈ R one has ϕ̂(−x)(e−ixχ)(t) = ϕ̂(−x)e−itxχ(t), so that by the
Fourier inversion formula, the Dω[c, d]-valued integral

∫∞
−∞ ϕ̂(−x)e−ixχ dx is

equal to 2πχϕ. Hence

1

2π

∫ ∞

−∞
ϕ̂(−x)S(e−ixχ) dx = S(χϕ) = S(ϕ),

where the last equality follows from (2.2), (2.4) and the fact that χ = 1 on
supp S. The assertion (3.23) is proved.
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Now we prove (3.24). By Beurling’s Lemma I from [B], quoted in Sec-
tion 1.5, there is an even function ω̃ ∈ Ω(α, β, γ) such that ω̃|R+ is con-
cave and ω(x) ≤ ω̃(x) for every x ∈ R. By Beurling’s Theorem I from [B],
quoted in Section 2.3, there is χ1 ∈ Dω̃ equal to one on the interval [−c, c],
c = max(|a|, |b|). Obviously Dω̃ ⊂ Dω and Uω(a, b;X) ⊂ Uω̃(a, b;X). Let
χk(t) = χ1(k−1t). Then χk ∈ Dω̃ and χk = 1 on [a, b] for every k = 1, 2, . . . .
If U ∈ Uω(a,b;X), then, by the already proved part (A) of Theorem 3.9, the
formula S(ϕ) = 1

2π

∫∞
−∞ ϕ̂(−x)U(x) dx, ϕ ∈ Dω, determines a distribution

S ∈ D′ω(a, b;X). Therefore for U and χ appearing in (3.24) and for every
x0 ∈ R and k = 1, 2, . . . one has

∫ ∞

−∞
ê−ix0χ(−x)U(x) dx =

∫ ∞

−∞
ê−ix0χk(−x)U(x) dx =

∫ ∞

−∞
χ̂k(x0 − x)U(x) dx

= k
∫ ∞

−∞
χ̂1(k(x0 − x))U(x) dx

=
∫ ∞

−∞
χ̂1(x)U(x0 − k−1x) dx.

Since
∫∞
−∞ χ̂1(x) dx = 2πχ1(0) = 2π, for the proof of (3.24) it is sufficient to

show that

lim
k→∞

∫ ∞

−∞
χ̂1(x)U(x0 − k−1x) dx =

∫ ∞

−∞
χ̂1(x)U(x0) dx (3.25)

for every x0 ∈ R. To this end, fix x0 ∈ R. By continuity of U , for every x ∈ R
one has

lim
k→∞

χ̂1(x)U(x0 − k−1x) = χ̂1(x)U(x0) (3.26)

in the sense of the norm in X. Since U ∈ Uω(a, b;X) ⊂ Uω̃(a, b;X) and ω̃ is
even, subadditive and non-decreasing on R+, it follows from (3.15) that there
are C ∈ ]0,∞[ and m0 ∈ N such that

‖U(x0 − k−1x)‖X ≤ C exp(m0ω̃(x0 − k−1x))

≤ C exp(m0ω̃(x0) +m0ω̃(k−1x))

≤ C exp(m0ω̃(x0) +m0ω̃(x))

for every x ∈ R and k ∈ N. Since χ1 ∈ Dω̃, one concludes that

‖χ̂1(x)U(x0 − k−1x)‖X ≤ |χ̂1(x)| · ‖U(x0 − k−1x)‖X
≤ |||χ1|||nω̃ exp(−nω̃(x))C exp(m0ω̃(x) +m0ω̃(x))

≤C exp(m0ω̃(x0))|||χ1|||nω̃ · exp((m0 − n)ω̃(x)) (3.27)

for every x ∈ R and k, n ∈ N. By (γ), one has
∫∞
−∞ exp((m0−n)ω̃(x)) dx <∞

for sufficiently large n. Therefore (3.26) and (3.27) imply (3.25) in view of the
Lebesgue dominated convergence theorem.
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4 Proofs of Theorem 2.1 and Proposition 2.3

Throughout the present section it is assumed that ω ∈ Ω(α, β, γ), A is a
complex Banach algebra, and X is a complex Banach space. R̃max

ω (A) and
R̃max

aω+b(A) denote the sets of maximal A-valued pseudoresolvents belonging

respectively to R̃ω(A) or R̃aω+b(A). Theorem 2.1 and Proposition 2.3 are
consequences of the following three statements:

(A) For every S ∈ D′ωS(A) there are a, b ≥ 0 and a pseudoresolvent R ∈
Raω+b(A) such that (2.16) holds for every ϕ ∈ Dω and ω̃ ∈ Ω̃ω.

(A)0 If either ω(x) ≡ log(1 + |x|) or ω(x) ≡ |x|1/s, s = const > 1, and
S ∈ D′ωS(A), then there are a, b ≥ 0 and a pseudoresolvent R ∈ R0

aω+b(A)

such that (2.16) holds for every ϕ ∈ Dω and ω̃ ∈ Ω̃ω.

(B) Whenever a, b ≥ 0, R ∈ R̃aω+b(A), ϕ ∈ Dω and ω̃ ∈ Ω̃ω, then∫
Ca,b,ω̃ ‖ϕ̂(−z)R(iz)‖A |dz| < ∞. If R ∈ R̃ω then the value of the integral
∫
Ca,b,ω̃ ϕ̂(−z)R(iz) dz is independent of a, b ≥ 0 and ω̃ ∈ Ω̃ω provided that

R ∈ R̃aω+b. There is an invertible map

R̃max
ω (A) 3 R 7→ S ∈ D′ωS(A) (4.1)

which to any pseudoresolvent R ∈ R̃max
ω (A) assigns the distribution semigroup

S ∈ D′ωS(A) satisfying (2.16).

4.1 Proof of (A)

Given S ∈ D′ωS(A), in order to construct a pseudoresolvent R ∈ Raω+b

satisfying (2.16) we will follow J. Chazarain. Namely, we will use a cut-off
function ϑ ∈ Dω, analogous to the one introduced on p. 394 of [C], such that
ϑ = 1 on some interval [0, a], a > 0. The existence of ϑ is a consequence of
the Theorem of Beurling quoted in Section 2.3. Recall that D = d

dt
.

Lemma 4.1. Suppose that ϑ ∈ Dω is a cut-off function as above. Fix any
a ∈ ]0,∞[ such that ϑ = 1 on [0, a], and let b = sup suppϑ. Then a < b <∞,

�
R+ϑ ∈ D+

ω [0, b],
�
R+Dϑ ∈ Dω[a, b],

�
R+ϑ ∗ (− �

R+Dϑ)∗,k ∈ Dω[ka, (k + 1)b] for k = 1, 2, . . . ,
(4.2)

and
�
R+ϑ +

∑

k≥1

�
R+ϑ ∗ (− �

R+Dϑ)∗,k =
�
R+, (4.3)

the sum being locally finite.

Proof. The first of the relations (4.2) is obvious, the second follows from (2.4),
and the third is a consequence of the fact that D0

ω = {ϕ ∈ Dω : suppϕ ⊂ R+}
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is an ideal in (D+
ω , ∗). Let

ψ =
�
R+ϑ +

∑

k≥1

�
R+ϑ ∗ (− �

R+Dϑ)∗,k.

Then suppψ ⊂ R+, ψ|R+ ∈ C∞(R+), and

ψ + ψ ∗ �
R+Dϑ =

�
R+ϑ.

On the other hand,
�
R+ +

�
R+ ∗ �

R+Dϑ =
�
R+ϑ,

and hence
(ψ − �

R+) ∗ (δ +
�
R+Dϑ) = 0.

Both the factors in the last equality belong to the convolution algebra D′+
of distributions of L. Schwartz on R with supports in R+. By Theorem XIV
on p. 173 of [Sch], D′+ is a convolution algebra without zero divisors. Since
δ +

�
R+Dϑ 6= 0, it follows that ψ − �

R+ = 0, proving (4.3).

Lemma 4.2. Suppose that ϑ ∈ Dω is a cut-off function, S ∈ D′ω(X) and
supp S ⊂ R+. Then there is κ ∈ N such that

sup
Im z≤0

‖S(e−izϑ)‖X exp(−κω(−Re z) + ε Im z) <∞ for every ε > 0, (4.4)

and there are a > 0 and b ≥ 0 such that

‖S(e−izDϑ)‖X ≤
1

2
whenever Im z ≤ −aω(−Re z)− b. (4.5)

Proof. Let b = sup suppϑ. By continuity of S there are κ ∈ N and K ∈ ]0,∞[
such that

‖S(ϕ)‖X ≤ K‖ϕ‖κω for every ϕ ∈ Dω[−1, b].

Hence, by Proposition 3.3, for every ε > 0 there is Cε ∈ ]0,∞[ such that
whenever ϕ ∈ Dω[−1, b], aϕ = inf suppϕ and Im z ≤ 0, then

‖S(e−izϕ)‖X ≤K‖e−izϕ‖κω
≤KCε‖ϕ‖κω exp(κω(−Re z) + (aϕ − ε/2) Im z). (4.6)

By (2.4), for every ε > 0 there is ϕ ∈ Dω[−1, b] such that −ε/2 ≤ aϕ < 0 and
ϕ = ϑ on R+. Since supp S ⊂ R+, it follows that S(e−izϑ) = S(e−izϕ) and
hence, by (4.6),

‖S(e−izϑ)‖X = ‖S(e−izϕ)‖X
≤ KCε‖ϕ‖κω exp(κω(−Re z)− ε Im z) whenever Im z ≤ 0,

which proves (4.4).
To prove (4.5) take a ∈ ]0, b] such that ϑ = 1 on [0, a]. By (2.4) one has

Dϑ = ψ + ϕ where ψ ∈ Dω, suppψ ⊂ ]−∞, 0], and ϕ ∈ Dω[a, b]. Since
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supp S ⊂ R+, one has S(e−izDϑ) = S(e−izϕ) and, by (4.6),

‖S(e−izDϑ)‖X ≤ KCa‖ϕ‖κω exp

(
κω(−Re z)+

1

2
a Im z

)
whenever Im z ≤ 0.

Letting a = 2a−1κ, b = 2a−1 log(2KCa), one concludes that (4.5) holds.

Completion of the proof of (A). Suppose that S ∈ D′ωS(A). Take any cut-off
function ϑ ∈ Dω and fix a > 0 and b ≥ 0 for which (4.5) holds. For z ∈ C one
has Im z ≤ −aω(−Re z)− b if and only if z ∈ −iΛaω+b. Hence the formula

V (z) =
∞∑

k=1

(−S(e−izDϑ))k, z ∈ −iΛaω+b, (4.7)

defines on −iΛaω+b anA-valued function V such that supz∈−iΛaω+b
‖V (z)‖ ≤ 1.

Let
U(z) = S(e−izϑ) + S(e−izϑ)V (z), z ∈ −iΛaω+b. (4.8)

Then U is an A-valued function on −iΛaω+b such that

‖U(z)‖A ≤ 2‖S(e−izϑ)‖A (4.9)

and

−izU(z) = S(D(e−izϑ))− S(e−izDϑ) + [S(D(e−izϑ))− S(e−izDϑ)]V (z)

= S(D(e−izϑ)) + S(D(e−izϑ))V (z)− S(e−izDϑ)− S(e−izDϑ)V (z)

= S(D(e−izϑ)) + S(D(e−izϑ))V (z) + V (z) (4.10)

for every z ∈ −iΛaω+b. If A is unital, then let
�

denote the unit ofA; otherwise
denote by

�
the unit of the unitization of A. One can rewrite (4.10) in the

equivalent form

� − izU(z) = [
�

+ S(D(e−izϑ))] · [ �
+ V (z)], z ∈ −iΛaω+b.

Since all the elements of A appearing here belong to the commutative subal-
gebra generated by {S(ϕ) : ϕ ∈ Dω}, it follows that

U(z2)− iz1U(z1)U(z2) = [S(D(e−iz1ϑ)) +
�

]S(e−iz2ϑ)(
�

+ V (z1))(
�

+ V (z2))

for every z1, z2 ∈ −iΛaω+b. Since, by Proposition 2.1, the right side of the
last equality is a symmetric function of (z1, z2) ∈ −iΛaω+b × −iΛaω+b, one
concludes that

U(z2)− iz1U(z1)U(z2) = U(z1)− iz2U(z1)U(z2) for every z1, z2 ∈ −iΛaω+b.

It follows that the formula

R(λ) = U(−iλ), λ ∈ Λaω+b, (4.11)
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determines an A-valued pseudoresolvent R defined on Λaω+b. From (4.4) and
(4.9) it follows that R ∈ Raω+b(A).

To complete the proof of (A) it remains to show that if S ∈ D′ωS(A), ϑ ∈ Dω
is a cut-off function, a > 0 and b ≥ 0 are chosen so that (4.5) holds, and
ω̃ ∈ Ω̃ω, then the pseudoresolvent R ∈ Raω+b(A), determined by (4.7), (4.8)
and (4.11), satisfies the equality

S(ϕ) =
1

2π

∫

Ca,b,ω̃
ϕ̂(−z)R(iz) dz for every ϕ ∈ Dω. (2.16)

To this end, remembering (4.2), consider the sequence of compactly supported
distributions Sk ∈ D′ω(A), k = 0, 1, . . . , such that

S0(ϕ) = S(ϑϕ) for every ϕ ∈ Dω,
Sk(ϕ) = S((

�
R+ϑ ∗ (− �

R+Dϑ)∗,k)ϕ) for every 1, 2, . . . and ϕ ∈ Dω.
(4.12)

If a ∈ ]0,∞[ is such that ϑ = 1 on [0, a] and b = sup suppϑ, then by (4.2) one
has

suppSk ⊂ [ka, (k + 1)b] for k = 0, 1, . . . . (4.13)

Hence, by (4.3) and (4.12),

S(ϕ) =
k(ϕ)−1∑

k=0

Sk(ϕ) for every ϕ ∈ Dω, (4.14)

where
k(ϕ) = inf{k ∈ N : suppϕ ⊂ ]−∞, ka]}

is finite for every ϕ ∈ Dω. For every k = 0, 1, . . . take any χk ∈ Dω such that
χk = 1 on [ka, (k + 1)b]. From (4.13) it follows that the formula

Uk(z) = Sk(e−izχk), z ∈ C, (4.15)

defines a function Uk ∈ Uω(ka, (k + 1)b;A) such that

Sk(ϕ) =
1

2π

∫

Ca,b,ω̃
ϕ̂(−z)Uk(z) dz for every ϕ ∈ Dω. (4.16)

This last equality coincides with (3.18) applied to Sk ∈ D′ω(ka, (k + 1)b;A)
and υ = aω̃ + b. From (4.12), (4.15) and (4.11) it follows that

U0(z) = S(e−izϑ) (4.17)

and

Uk(z) = S(e−iz(
�
R+ϑ ∗ (− �

R+Dϑ)∗,k)

= S+(
�
R+e−izϑ ∗ (− �

R+e−izDϑ)∗,k)

= (−1)kS+(
�
R+e−izϑ)S+(

�
R+e−izDϑ)k

= (−1)kS(e−izϑ)S(e−izDϑ)k (4.18)
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for k = 1, 2, . . . , where S+ ∈ L(D+
ω ,A) is the homomorphism of (D+

ω , ∗) into
A such that S(ϕ) = S+(

�
R+ϕ) for every ϕ ∈ Dω. Hence, by (4.7), (4.8) and

(4.11),
∞∑

k=0

Uk(z) = S(e−izϑ) + S(e−izϑ)V (z) = U(z) = R(iz) (4.19)

for every z ∈ −iΛaω+b, the series being absolutely convergent in the sense of
the norm in A. Furthermore, from (4.17), (4.18), (4.4) and (4.5) it follows that
there are κ ∈ N and C ∈ ]0,∞[ such that

‖Uk(z)‖A ≤
1

2k
‖S(e−izϑ)‖A ≤

1

2k
C exp(κω(−Re z)− Im z)

for every k = 0, 1, . . . and z ∈ −iΛaω+b. Consequently, by Proposition 3.7 for
every n ∈ N there is Cn ∈ ]0,∞[ such that

‖ϕ̂(−z)Uk(z)‖A ≤
1

2k
CCn|||ϕ|||nω exp((κ− n)ω(−Re z)− (b + 2) Im z)

for every k = 0, 1, . . . , z ∈ −iΛaω+b, b ∈ ]0,∞[ and ϕ ∈ Dω such that
sup suppϕ ≤ b. Let b ∈ ]0,∞[ and choose d ∈ [max(0, b),∞] so large that
Im z ≥ −aω(−Re z) − d for every z ∈ Ca,b,ω̃. If z ∈ Ca,b,ω̃, ϕ ∈ Dω and
sup suppϕ ≤ b, then

‖ϕ̂(−z)Uk(z)‖A ≤
1

2k
CCn|||ϕ|||nω exp(d(b+2)) exp((κ+a(b+2)−n)ω(−Re z)).

By (γ), one can choose n so large that

m(x) = CCn exp(d(b+ 2)) exp((κ+ a(b+ 2)− n)ω(−x))

is a function of x belonging to L1(R). On Ca,b,ω̃ one has

∥∥∥∥
l∑

k=0

ϕ̂(−z)Uk(z)
∥∥∥∥
A
|dz| ≤ 2(1 + a2L2)1/2m(Re z) dRe z

for every l = 0, 1, . . . , where L is the Lipschitz constant of ω̃. Consequently,
by (4.19), (4.16) and the Lebesgue dominated convergence theorem, for every
ϕ ∈ Dω one has

1

2π

∫

Ca,b,ω̃
ϕ̂(−z)R(iz) dz =

∞∑

k=0

1

2π

∫

Ca,b,ω̃
ϕ̂(−z)Uk(z) dz =

∞∑

k=0

Sk(ϕ)

=
k(ϕ)−1∑

k=0

Sk(ϕ) = S(ϕ).

4.2 Proof of (A)0

Suppose that S ∈ D′ωS(A) where either ω(x) ≡ log(1 + |x|) or ω(x) ≡ |x|1/s,
s = const > 1. Let ϑ ∈ Dω be a cut-off function. Take a > 0 and b ≥ 0 for
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which (4.5) is satisfied. Statement (A)0 will follow once it is shown that the
pseudoresolvent R determined by (4.7), (4.8) and (4.11) belongs to R0

aω+b(A).
By (4.9), it is sufficient to show that there is κ ∈ R+ such that

sup
Im z≤0

‖S(e−izϑ)‖A exp(κω(|z|)) <∞. (4.20)

To this end, take κ ∈ N for which (4.4) is satisfied. Let C− = {z ∈ C :
Im z < 0}, and for every ε > 0 and z ∈ C− put

fε(z)=exp(−iεz)S(e−izϑ) ·
{

(1 + iz)−κ if ω(x) ≡ log(1 + |x|),
exp(−κs(iz)1/s) if ω(x)≡|x|1/s, s=const>1,

where κs = κ(cos π
2s

)−1, (iz)1/s = |z|1/s exp( i
s

Arg(iz)) if Im z ≤ 0 and z 6= 0,
(i0)1/s = 0. For any ε > 0, fε is an X-valued function continuous on C− and
holomorphic in C−. If z ∈ C−, then

exp(κω(−Re z))

≤
{

(1 + |Re z|)κ ≤ 2κ|1 + iz|κ if ω(x) ≡ log(1 + |x|),
exp(κ|z|1/s) ≤ exp(κs Re((iz)1/s)) if ω(x) ≡ |x|1/s, s = const > 1.

From these inequalities and from (4.4) it follows that for every ε > 0 the
function fε is bounded in C−. If x ∈ R, then ‖fε(x)‖X is independent of ε,
and hence M = supx∈R ‖fε(x)‖ is finite and independent of ε. For any ε, δ > 0
one has

sup
z∈C−
‖(1 + iδz)−1fε(z)‖X ≤ sup

z∈C−
‖fε(z)‖X <∞

and
lim

z∈C−, |z|→∞
(1 + iδz)−1fε(z) = 0,

and hence

sup
z∈C−
‖(1 + iδz)−1fε(z)‖X = sup

x∈R
‖(1 + iδx)−1fε(x)‖ ≤ M,

by the maximum principle for holomorphic functions. Hence, for any ε, δ > 0
and z ∈ C−,

exp(ε Im z)‖S(e−izϑ)‖X
≤M |1 + iδz| ·

{ |1 + iz|κ if ω(x) ≡ log(1 + |x|),
exp(κs Re(iz)1/s) if ω(x) ≡ |x|1/s, s = const > 1.

Since |1 + iz|κ ≤ (1 + |z|)κ = exp(κ log(1 + |z|)) and exp(κs Re(iz)1/s) ≤
exp(κs|z|1/s), one concludes that for any ε, δ > 0 and z ∈ C−,

exp(ε Im z)‖S(e−izε)‖X ≤M |1 + iδz| exp(κω(|z|)),

where κ = κ or κ = κs according as ω(x) ≡ log(1 + |x|) or ω(x) ≡ |x|1/s. This
inequality implies (4.20) by passing to the limit as ε ↓ 0 and δ ↓ 0.
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4.3 Proof of (B)

Suppose that R ∈ R̃ω(A), so that the set

C = {(a, b, ω̃) : a, b ≥ 0, ω̃ ∈ Ω̃ω, R ∈ R̃aω+b(A)}

is non-empty. By means of estimations of ‖ϕ̂(−z)R(iz)‖A we will prove that

∫

Ca,b,ω
‖ϕ̂(−z)R(iz)‖A |dz| <∞ for (a, b, ω̃) ∈ C and ϕ ∈ Dω, (4.21)

Dω 3 ϕ 7→
∫

Ca,b,ω̃
ϕ̂(−z)R(iz) dz ∈ A belongs to D′ω(A), (4.22)

for every fixed (a, b, ω̃) ∈ C,

∫

Ca,b,ω̃
ϕ̂(−z)R(iz) dz is independent of (a, b, ω̃) ∈ C (4.23)

for every ϕ ∈ Dω, and finally, for all (a, b, ω̃) ∈ C and ϕ ∈ Dω,

∫

Ca,b,ω̃
ϕ̂(−z)R(iz) dz = 0 whenever sup suppϕ < 0. (4.24)

From (4.21)–(4.24) it follows that there is a unique distribution S ∈ D′ω(A)
for which (2.16) holds, and that suppS ⊂ R+. Thus, once (4.21)–(4.24) are
proved, to complete the proof of (B) it will remain to show that

S is a distribution semigroup (4.25)

and
the map (4.1) is invertible. (4.26)

Estimations of ‖ϕ̂(−z)R(iz)‖A. By Definition 2.1 and Proposition 3.7, if

a, b ≥ 0 and R ∈ R̃aω+b(A), then

‖ϕ̂(−z)R(iz)‖A ≤ Kn,ε|||ϕ|||n,ω exp((κε − n)ω(−Re z)− (b+ ε) Im z) (4.27)

for every ϕ ∈ Dω such that sup suppϕ ≤ b, z ∈ −iΛaω+b (i.e. Im z ≤
−aω(−Re z) − b), ε > 0 and n ∈ N, with some κε ∈ R depending only on ε,
and some Kn,ε ∈ ]0,∞[ depending only on n and ε. From (4.27) it follows that
if

a, b ≥ 0, R ∈ R̃aω+b(A), c ∈ [a,∞[, d ∈ [max(0, b),∞[,

ε > 0, b ∈ R, m, n ∈ N, n ≥ m+ κε + c(b + ε),
(4.28)

and either

b + ε ≥ 0 and z ∈ (−iΛaω+b) \ (−iΛcω+d), i.e.

−cω(−Re z)− d < Im z ≤ −aω(−Re z)− b,
(4.29)

29



or

b + ε < 0 and z ∈ −iΛcω+d, i.e. Im z ≤ −cω(−Re z)− d, (4.30)

then

‖ϕ̂(−z)R(iz)‖A ≤ Kn,ε exp(d(b+ ε)) exp(−mω(−Re z)) (4.31)

for every ϕ ∈ Dω such that sup suppϕ ≤ b. By (γ), for sufficiently large m ∈ N
one has ∫ ∞

−∞
exp(−mω(−x)) dx = Mm <∞. (4.32)

From (4.28)–(4.31) it follows that if m ∈ N satisfies (4.32), (a, b, ω̃) ∈ C, L is
the Lipschitz constant of ω̃, ε > 0 and b ∈ R, then

(i) whenever b > 0 and c ∈ [a,∞[, d ∈ [b,∞[ are so large that Ca,b,ω̃ ⊂
(−iΛaω+b) \ (−iΛcω+d), then there is n ∈ N such that

∫

Ca,b,ω̃
‖ϕ̂(−z)R(iz)‖A |dz|≤Mm(1 + a2L2)1/2Kn,ε exp(d(b+ ε))|||ϕ|||nω

for every ϕ ∈ Dω such that sup suppϕ ≤ b,
(ii) whenever b + ε < 0, then there is n ∈ N such that

∫

Ca,d,ω̃
‖ϕ̂(−z)R(iz)‖A |dz| ≤Mm(1 + a2L2)1/2Kn,ε exp(d(b+ ε))|||ϕ|||nω

for every ϕ ∈ Dω such that sup suppϕ ≤ b and every d ∈ [b,∞[.

Proof of (4.21) and (4.22). Both are consequences of (i).

Proof of (4.23). Suppose that (ak, bk, ω̃k) ∈ C for k = 1, 2 and ϕ ∈ Dω. Let
a0 = max(a1, a2), b0 = max(b1, b2) and ω̃0(x) = max(ω̃1(x), ω̃2(x)) for every
x ∈ R. Then (a0, b0, ω̃0) ∈ C. We will prove that

∫

Cak,bk,ω̃k
ϕ̂(−z)R(iz) dz =

∫

Ca0,b0,ω̃0

ϕ̂(−z)R(iz) dz for k = 1, 2. (4.33)

To this end fix k and choose c > a0 and d ≥ b0 such that Ca0,b0,ω̃0 ⊂
(−iΛa0ω+b0) \ (−iΛcω+d). Then also Cak,bk,ω̃k ⊂ (−iΛakω+bk) \ (−iΛcω+d). Let

I(x) =
∫ a0ω̃0(−x)+b0

akω̃k(−x)+bk

ϕ̂(−(x + iy))R(i(x+ iy)) dy, x ∈ R.

In the above the vertical segment of integration is contained in (−iΛakω+bk) \
(−iΛcω+d) and hence its length is no greater than cω(−x) + d− bk. Therefore
applying (4.29) and (4.31) to a = ak, b = bk one concludes that for any fixed
ε > 0 and b ≥ 0 with sup suppϕ ≤ b, there are m,n ∈ N such that

‖I(x)‖A ≤ Kn,ε|||ϕ|||nω exp(d(b+ ε))(cω(−x) + d− bk) exp(−mω(−x))
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for every x ∈ R. Since, by (γ), one has lim|x|→∞ ω(−x) =∞, it follows that

lim
|x|→∞

‖I(x)‖A = 0. (4.34)

Let

Il(r) =
∫

Cal,bl,ω̃l∩{|Re z|<r}
ϕ̂(−z)R(iz) dz, r > 0, l = k, 0.

The equality (4.33) may be written in the form Ik(∞) = I0(∞). By Cauchy’s
integral theorem, for every r ∈ ]0,∞[ one has Ik(r)− I0(r)+ I(r)− I(−r) = 0.
By (4.21), limr→∞ Il(r) = Il(∞) for l = k, 0. Hence, by (4.34),

Ik(∞)− I0(∞) = lim
r→∞[(Ik(∞)− Ik(r))− (I0(∞)− I0(r)) + I(−r)− I(r)] = 0.

Proof of (4.24). Suppose that (a, b, ω̃) ∈ C. Then (a, d, ω̃) ∈ C for every
d ∈ [max(0, b),∞[. Suppose that ϕ ∈ Dω and sup suppϕ = b < 0. Take ε > 0
such that b+ ε < 0. Then limd→∞ exp(d(b+ ε)) = 0 and hence, by (4.23) and
(ii), ∫

Ca,b,ω̃
ϕ̂(−z)R(iz) dz = lim

d→∞

∫

Ca,d,ω̃
ϕ̂(−z)R(iz) dz = 0.

Proof of (4.25). By Proposition 2.1 and by (4.24), assertion (4.25) will follow
once it is shown that

S(Dϕ)S(ψ) + ϕ(0)S(ψ) = S(ϕ)S(Dψ) + ψ(0)S(ϕ) for every ϕ, ψ ∈ Dω.

To prove this equality, let (a, b, ω̃) ∈ C and ϕ, ψ ∈ Dω. Then D̂ϕ(−z) =
−izϕ̂(−z) and ϕ(0) = 1

2π

∫
Ca,b,ω̃ ϕ̂(−z) dz, by Cauchy’s integral theorem and

the Fourier inversion theorem. Consequently, by (4.21), (2.16) and Fubini’s
theorem,

S(Dϕ)S(ψ) + ϕ(0)S(ψ)

=
1

4π2

∫∫

Ca,b,ω̃×Ca,b,ω̃
ϕ̂(−z1)ψ̂(−z2)(1− iz1R(iz1))R(iz2)(dz1 × dz2).

Similarly

S(ϕ)S(Dψ) + ψ(0)S(ϕ)

=
1

4π2

∫∫

Ca,b,ω̃×Ca,b,ω̃
ϕ̂(−z1)ψ̂(−z2)(1− iz2R(iz2))R(iz1)(dz1 × dz2).

These double integrals are equal in view of the Hilbert equality.

Proof of (4.26). Suppose that R ∈ R̃ω(A), S ∈ D′ωS(A), (a, b, ω̃) ∈ C and

S(ϕ) =
1

2π

∫

Ca,b,ω̃
ϕ̂(−z)R(iz) dz for every ϕ ∈ Dω.

Then for every ϕ ∈ Dω and z ∈ −iΛaω+b one has
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S((D + iz)ϕ)R(iz) =
1

2π

∫

Ca,b,ω̃
ϕ̂(−w)(iz − iw)R(iw)R(iz) dw

=
1

2π

∫

Ca,b,ω̃
ϕ̂(−w)[R(iw)−R(iz)] dw

=S(ϕ)− ϕ(0)R(iz). (4.35)

Let ϑ ∈ Dω be a cut-off function. Applying (4.35) to ϕ = e−izϑ one concludes
that

S(e−izDϑ)R(iz) = S(e−izϑ)− R(iz) for every z ∈ −iΛaω+b.

By (4.5) there are c ≥ a and d ≥ b such that ‖S(e−izDϑ)‖A ≤ 1
2

for every
z ∈ −iΛcω+d. Hence

R(iz) = S(e−izϑ) +
∞∑

k=1

(−S(e−izDϑ))kS(e−izϑ) for every z ∈ −iΛcω+d.

This implies that the maximal A-valued pseudoresolvent which extends R is
uniquely determined by the distribution semigroup S, proving (4.26).

5 Proof of Corollary 1.2

By Theorem 2 of R. Beals’ paper [Be], for every non-negative even continuous
function ω on R such that ω|R+ is concave and

∫ ∞

−∞

ω(x)

1 + x2
dx =∞ (5.1)

there exist a complex Hilbert space X and a closed linear operator A from X
into X with domain D(A) dense in X and with resolvent set %(A) such that

Λω := {λ ∈ C : Reλ ≥ ω(Imλ)} ⊂ %(A) ( C,

sup
λ∈Λω

‖(λ− A)−1‖L(X)(1 + Reλ) <∞
(5.2)

and

for every T ∈ ]0,∞[ the only X-valued function u strongly differ-

entiable on [0, T [ such that u(t) ∈ D(A) and du(t)
dt

= Au(t) for every
t ∈ ]0, T [ is the identically zero function on [0, T [. (5.3)

Suppose that X and A satisfy (5.2) and (5.3), take any λ0 in the spectrum
σ(A) of A, and put A0 = A− λ0

�
X . Then 0 ∈ σ(A0), %(A0) = %(A)− λ0, and

if b ≥ ω(Imλ0)− Reλ0, then Λω+b ⊂ %(A0), because by subadditivity of ω,
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λ ∈ Λω+b ⇒ Reλ ≥ ω(Imλ) + ω(Imλ0)− Reλ0

⇒ Re(λ+ λ0) ≥ ω(Im(λ+ λ0))

⇒ λ+ λ0 ∈ Λω ⊂ %(A) ⇒ λ ∈ %(A)− λ0 = %(A0).

The condition (5.3) remains valid when A is replaced by A0. Therefore one
can modify Theorem 2 of [Be] replacing (5.2) by

0 ∈ σ(A) and there is b ∈ ]0,∞[ such that Λω+b ⊂ %(A)

and supλ∈Λω+b
‖(λ− A)−1‖L(X) Reλ <∞. (5.2)0

Take now any non-negative continuous even function ω on R such that ω|R+

is concave and (5.1) is satisfied, fix a complex Hilbert space X and a densely
defined closed linear operator A from X into X satisfying (5.2)0 and (5.3), and
take any l.c.v.s. D contained in C∞c (R) and satisfying (2.1)–(2.4). Corollary
1.2 will follow once it is proved that

there is no distribution semigroup S ∈ D′S(L(X)) with generator A. (5.4)

To this end we will proceed ad absurdum. Suppose that A is the generator
of a distribution semigroup S ∈ D′S(L(X)). Then

D(A) =

{
n∑

k=1

S(ϕk)xk : n ∈ N, ϕk ∈ D and xk ∈ X for k = 1, . . . , n

}
(5.5)

and

AS(ϕ) = −S(Dϕ)− ϕ(0)
�
X for every ϕ ∈ D. (5.6)

These equalities follow directly from the definition of the generator of a D-
distribution semigroup, identical with one discussed in [K] in the case when
D is equal to the L. Schwartz space D = C∞c (R). Furthermore,

S(ϕ)A = −S(Dϕ)|D(A) − ϕ(0)
�
D(A) for every ϕ ∈ D. (5.7)

This follows from Proposition 3 of [K], formulated there for D = D, but valid
for general D. One has

supp S = R+. (5.8)

Indeed, supp S ⊂ R+ by the definition of a distribution semigroup, and if
(5.8) were not true, then [a, b] ∩ supp S = ∅ for some 0 < a < b < ∞. By
(2.3) there is a ϕ ∈ D such that ϕ = 1 on [− 1

2
, a] and suppϕ ⊂ [−1, b].

Then suppDϕ ⊂ [−1,− 1
2
] ∪ [a, b] so that suppDϕ ∩ suppS = ∅ and hence

S(Dϕ) = 0. Consequently, by (5.6) and (5.7), (−A)−1 = S(ϕ) ∈ L(X), which
is impossible, because 0 ∈ σ(A).

By (5.8) there is ϕ ∈ D such that suppϕ ⊂ R+ and S(ϕ) 6= 0. Fix such a ϕ
and take x ∈ X such that

S(ϕ)x 6= 0. (5.9)

For every t ∈ R put

u(t) = S(ϕ−t)x,
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where ϕ−t is the translate of ϕ defined by ϕ−t(s) = ϕ(s− t). From (2.1),
and from (2.2) applied to t 7→ ϕ−t and t 7→ (−1)n(Dnϕ)−t, n = 1, 2, . . . , it
follows that t 7→ ϕ−t is a D-valued function infinitely differentiable on R in
the topology of D. Hence u is an X-valued function infinitely differentiable on
R. By (5.5), u takes values in D(A). Furthermore, by (5.6),

du(t)

dt
= −S(D(ϕ−t))x = AS(ϕ−t)x+ ϕ−t(0)x = Au(t) + ϕ(−t)x = Au(t)

for every t ∈ R+. By (5.3) it follows that u(t) = 0 for every t ∈ R+. On the
other hand, u(0) = S(ϕ)x 6= 0, by (5.9). This contradiction proves (5.4).

6 Distribution semigroups and degenerate differential equations in
Banach spaces

Degenerate differential equations in Banach spaces, considered e.g. in [C-S],
[Fe] and [F-Y], may be illustrated by examples such as the (algebraic-differen-
tial) system of Kirchhoff equations of an electrical RLC network or the Stokes
system of linear PDE related to hydrodynamics. “Degeneracy” of these sys-
tems is related to absence of differentiation with respect to time in some part
of the equations.

A connection between degenerate differential equations in Banach spaces and
distribution semigroups follows from the results of J. Chazarain. To stay within
the framework of his paper [C] we use only the distributions of L. Schwartz
or those of M. Gevrey. Hence we assume that either ω(x) ≡ log(1 + |x|) or
ω(x) ≡ |x|1/s, s = const > 1.

Let X, Y be Banach spaces, and L,M linear operators belonging to L(Y,X).
A distribution E ∈ D′ω(L(X, Y )) is called a fundamental solution for the dif-
ferential operator M d

dt
− L if P ∗ E = IX ⊗ δ and E ∗ P = IY ⊗ δ, where

P = M ⊗ Dδ − L ⊗ δ ∈ D′(L(Y,X)). From Theorems 1.6 and 4.4 of [C] it
follows that the following two assertions are equivalent:

(i) the operator M d
dt
−L has a unique fundamental solution E ∈ D′ω(L(X, Y ))

with support in R+,
(ii) there are a, b ≥ 0 and κ ∈ R such that for every λ ∈ Λaω+b the operator
P(λ) = λM − L is an isomorphism of Y onto X and

sup
λ∈Λaω+b

‖P(λ)−1‖L(X,Y ) exp(−κω(|λ|)) <∞.

It is easy to prove that if (ii) holds, then the formulas

(iii) R(λ) = M(λM − L)−1, R̃(λ) = (λM − L)−1M , λ ∈ Λaω+b,

determine pseudoresolvents R ∈ R0
aω+b(L(X)) and R̃ ∈ R0

aω+b(L(Y )). By

Theorem 2.1 there exist distribution semigroups S ∈ D′ωS(L(X)) and S̃ ∈
D′ωS(L(Y )) which are the inverse Laplace transforms of R and R̃. Since, by
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Chazarain’s results, E is the inverse Laplace transform of the L(X, Y )-valued
function λ 7→ P(λ)−1, one has

(iv) S = ME and S̃ = EM .

The operator M ∈ L(Y,X) need not be invertible, and if it is not, then
the abstract Cauchy problem for the operator M d

dt
− L is “degenerate”. Let

I(M) = the range of M , N (M) = the null space of M . The generator of R
and S is the operator

(v) LM−1 : I→ X/N where I = I(M) and N = LN (M).

The generator of R̃ and S̃ is the operator

(vi) M−1L : Ĩ→ Y/Ñ where Ĩ = L−1I(M) and Ñ = N (M).

Remarks. I. Theorem 1.6 of [C], concerning ω(x) ≡ log(1 + |x|), was gen-
eralized by H. O. Fattorini in Theorem 8.4.8 of his book [F] to distributions
P ∈ S ′(L(Y,X)) with suppP ⊂ R+.

II. Pseudoresolvents of both kinds in (iii) and the operators (v) and (vi)
appear in the paper [Fe] of V. Fedorov. In the case of reflexive spaces X and
Y the distribution semigroups S and S̃ are represented in [Fe] by strongly
continuous semigroups of operators (St)t≥0 ⊂ L(X) and (S̃t)t≥0 ⊂ L(Y ) such
that S0 is the projector of X onto I(M) along LN (M), and S̃0 is the projector
of Y onto L−1I(M) along N (M).

III. In Chapter V of the book of A. Favini and A. Yagi [F-Y] the degenerate
Cauchy problem for the operator M d

dt
− L is considered under the additional

assumptions that Y is continuously embedded in X and L is an isomorphism
of Y onto X.

IV. Directly from Theorem 4.4 of [C] it follows that if ω(x) ≡ |x|1/s, s =
const > 1, then (i) is equivalent to the condition

(ii)′ there are a, b ≥ 0 such that for every λ ∈ Λaω+b the operator P(λ) =
λM − L is an isomorphism of Y onto X and for every ε > 0 there is
κ ∈ R such that

sup
λ∈Λaω+b

‖P(λ)−1‖L(X,Y ) exp(−εReλ− κω(|λ|)) <∞.

Evidently (ii)⇒(ii)′. By Theorem 4.4 of [C], (ii)′⇒(i). If (i) holds and ϑ is
a cut-off function (defined in Section 4.1), then for every λ in some Λaω+b

one has ‖ME(e−λDϑ)‖L(X) ≤ 1
2
, P(λ)−1 = E(e−λϑ)[I + ME(e−λDϑ)]−1, and

‖P(λ)−1‖L(X,Y ) ≤ 2‖E(e−λϑ)‖L(X,Y ). This implies (ii) by an argument similar
to one used in Section 4.2.
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