INSTITUTE OF MATHEMATICS of the Polish Academy of Sciences

IM PAN Preprint 667 (2006)

Anna Rusinek

Invariant measures for a class of stochastic evolution equations

Presented by Jerzy Zabczy

Published as manuscript

Invariant measures for a class of stochastic evolution equations *

Anna Rusinek
Institute of Mathematics
Polish Academy of Sciences
ul. Sniadeckich 8
00-956 Warszawa, Poland

Abstract

We give a sufficient condition for the existence of an invariant measure for a stochastic evolution equation with noise driven by a Lévy process.

1 Introduction

We consider a stochastic evolution equation on a separable Hilbert space H given by

$$
\begin{align*}
d X & =(A X+F(X)) d t+B(X) d Z(t), \tag{*}\\
X(0) & =\eta,
\end{align*}
$$

where $\eta \in H, A$ is a linear operator, F is a bounded mapping from H into H, Z takes values in a separable Hilbert space U and B is a bounded mapping from H into space of linear continuos operators from U into H.
We extend Theorem 6.3.2 from [1] which gives a sufficient condition for the existence of an invariant measure for $(*)$ in the case that Z is a Wiener process. We use methods used in the proof of Theorem 6.3.2 and derive a sufficient condition for the existence of an invariant measure in the general case when Z is a Lévy process. We also show that this condition in a form involving Lipschitz constants is weaker than an analogous condition given by Gaans in [3].

2 Preliminaries

We will consider processes on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $Z(t)$ be a Lévy process (i.e. a process with independent and stationary increments) taking values in a separable Hilbert space $\left(U,\|\cdot\|_{U}\right)$. Associated with $Z(t)$ are two measures on U : the measure of jumps of Z, denoted μ, and the so-called Lévy measure of Z, denoted ν, given by

[^0]\[

$$
\begin{aligned}
\mu([0, t], \Gamma) & =\sum_{0<s \leqslant t} \mathbf{1}_{\Gamma}\left(Z(s)-Z\left(s^{-}\right)\right), \\
t \nu(\Gamma) & =\mathbb{E}(\mu([0, t], \Gamma))
\end{aligned}
$$
\]

where Γ is a Borel subset of U such that $\bar{\Gamma} \subset U \backslash\{0\}$. It turns out that $\nu(\{0\})=0$ and $\int_{U} \min \left(\|y\|_{U}^{2}, 1\right) \nu(d y)<\infty . Z(t)$ can be represented as

$$
Z(t)=a t+W(t)+\int_{0}^{t} \int_{\|y\|_{U} \leqslant 1} y(\mu(d y, d s)-\nu(d y) d s)+\int_{0}^{t} \int_{\|y\|_{U}>1} y \mu(d y, d s)
$$

where $a \in U, W$ is a Wiener process taking values in U, with covariance operator Q. We consider another separable Hilbert space $(H,\|\cdot\|)$. Let $L(H)$ denote the space of linear continuous operators from H into H, and let $L(U, H)$ denote the space of linear continuos operators from U into H. We consider a stochastic equation on H of the form

$$
\begin{align*}
d X & =(A X+F(X)) d t+B(X) d Z(t) \tag{*}\\
X(0) & =\eta
\end{align*}
$$

where $\eta \in H, A$ is a linear operator, with dense domain, which in general may be unbounded, F is a bounded mapping from H into H and B is a bounded mapping from H into $L(U, H)$. We introduce the following conditions:
(i) $c:=\int_{U}\|y\|_{U}^{2} \nu(d y)<\infty$,
(ii) A is the infinitesimal generator of a strongly continuous semigroup on H,
(iii) there exists $L_{F}>0$ such that

$$
\|F(x)-F(y)\| \leqslant L_{F}\|x-y\|,
$$

(iv) there exists $L_{B}>0$ such that

$$
\|B(x)-B(y)\|_{L(U, H)} \leqslant L_{B}\|x-y\| .
$$

Condition (i) implies the existence of $\int_{\|y\|_{U}>1} y \nu(d y)$. Indeed, we have

$$
\int_{\|y\|_{U}>1}\|y\|_{U} \nu(d y) \leqslant \int_{\|y\|_{U}>1}\|y\|_{U}^{2} \nu(d y) \leqslant \int_{U}\|y\|_{U}^{2} \nu(d y)<\infty .
$$

So there exists $b:=\int_{\|y\|_{U}>1} y \nu(d y) \in U$. Then

$$
\begin{aligned}
Z(t)= & a t+W(t)+\int_{0}^{t} \int_{\|y\|_{U} \leqslant 1} y(\mu(d y, d s)-\nu(d y) d s)+\int_{0}^{t} \int_{\|y\|_{U}>1} y \mu(d y, d s) \\
& -\int_{0}^{t} \int_{\|y\|_{U}>1} y \nu(d y) d s+b t \\
= & (a+b) t+W(t)+\int_{0 U}^{t} \int_{U} y(\mu(d y, d s)-\nu(d y) d s)
\end{aligned}
$$

So $\mathbb{E} Z(1)=a+b$, and $\operatorname{Var} Z(1)=\operatorname{Var} W(1)+\int_{0 U}^{1} \int_{U}\|y\|^{2} \nu(d y) d s=\operatorname{Tr} Q+c$.
For process $Z(t), t \geqslant 0$, let $\bar{Z}(t), t \in \mathbb{R}$, denote process defined by

$$
\bar{Z}(t)=\left\{\begin{array}{c}
Z(t) \quad t \geqslant 0, \tag{2.1}\\
Z_{2}(-t) \quad t<0,
\end{array}\right.
$$

where $\left(Z_{2}(t)\right)_{t \geqslant 0}$ is a Lévy process with the same distribution as $(Z(t))_{t \geqslant 0}$ and independent of $(Z(t))_{t \geqslant 0}$.

3 Sufficient condition for the existence of an invariant measure

Theorem 3.1. Assume that Z, A, F and B satisfy conditions (i), (ii), (iii), (iv) and let $A_{n}=n A(n-A)^{-1}, n \in \mathbb{N}$, be the sequence of Yosida approximations of A. If there exists $N, \omega>0$ such that for every x, y in H and $n>N$

$$
\begin{align*}
2\left\langle A_{n}(x-y)+F(x)-F(y)+(B(x)-B(y)) \mathbb{E} Z(1), x-y\right\rangle+ \\
\operatorname{Var} Z(1)\|B(x)-B(y)\|_{L(U, H)}^{2} \leqslant-\omega\|x-y\|^{2} \tag{A}
\end{align*}
$$

then there exists an invariant measure for the equation

$$
\begin{align*}
d X & =(A X+F(X)) d t+B(X) d Z(t), \\
X(0) & =\eta . \tag{*}
\end{align*}
$$

First we prove two lemmas.
Lemma 3.2. Assume that Z satisfies condition (i) and $\mathbb{E} Z(1)=0$. Let $\bar{Z}(t), t \in \mathbb{R}$, be defined by (2.1). If $d Y(t)=\alpha(t) d t+\beta(t) d \bar{Z}(t)$, where $\alpha(t) \in H$ and $\beta(t) \in L(U, H)$ for $t \in \mathbb{R}$, then

$$
\frac{d}{d t} \mathbb{E}\|Y(t)\|^{2} \leqslant \mathbb{E}\left(2\langle Y(t), \alpha(t)\rangle+\operatorname{Var} Z(1)\|\beta(t)\|_{L(U, H)}^{2}\right)
$$

Proof of Lemma 3.2. Applying Itô's lemma to the function $\varphi(x)=\|x\|^{2}$, we obtain $\|Y(t)\|^{2}=\left\|Y\left(t_{0}\right)\right\|^{2}+\int_{t_{0}}^{t} 2\left\langle Y\left(s^{-}\right), d Y(s)\right\rangle+\int_{t_{0}}^{t} \operatorname{Tr}\left(\beta(s) Q(\beta(s))^{*}\right) d s+\int_{t_{0} U}^{t} \int_{U} \psi(s, y) \mu_{Y}(d y, d s)$, where $\psi(s, y)=\varphi\left(Y\left(s^{-}\right)+y\right)-\varphi\left(Y\left(s^{-}\right)\right)-D \varphi\left(Y\left(s^{-}\right)\right) y=\|y\|^{2}$ and μ_{Y} denotes the measure of jumps of Y. Hence

$$
\begin{align*}
\|Y(t)\|^{2}= & \left\|Y\left(t_{0}\right)\right\|^{2}+\int_{t_{0}}^{t} 2\left\langle Y\left(s^{-}\right), d Y(s)\right\rangle \\
& +\int_{t_{0}}^{t} \operatorname{Tr}\left(\beta(s) Q(\beta(s))^{*}\right) d s+\int_{t_{0} U}^{t}\|\beta(s) y\|^{2} \mu(d y, d s), \tag{3.1}
\end{align*}
$$

as $\int_{t_{0} U}^{t} \int_{U} \psi(s, y) \mu_{Y}(d y, d s)=\int_{t_{0} U}^{t} \int^{t} \psi(s, \beta(s) y) \mu(d y, d s)$. We have

$$
\begin{aligned}
\left\langle Y\left(s^{-}\right), d Y(s)\right\rangle= & \left\langle Y\left(s^{-}\right), \alpha(s)\right\rangle d s+\left\langle Y\left(s^{-}\right), \beta(s) d W(s)\right\rangle \\
& +\left\langle Y\left(s^{-}\right), \beta(s) \int_{U} y(\mu(d y, d s)-\nu(d y) d s)\right\rangle
\end{aligned}
$$

so

$$
\mathbb{E} \int_{t_{0}}^{t} 2\left\langle Y\left(s^{-}\right), d Y(s)\right\rangle=\mathbb{E} \int_{t_{0}}^{t} 2\left\langle Y\left(s^{-}\right), \alpha(s)\right\rangle d s
$$

Let $B_{s}:=\left\{Y(s) \neq Y\left(s^{-}\right)\right\}$. Then

$$
\mathbb{E}\left\langle Y(s)-Y\left(s^{-}\right), \alpha(s)\right\rangle=\mathbb{E}\left(\mathbf{1}_{B_{s}}\left\langle Y(s)-Y\left(s^{-}\right), \alpha(s)\right\rangle\right)=0
$$

since $\mathbb{P}\left(B_{s}\right)=0$. Hence

$$
\begin{equation*}
\mathbb{E} \int_{t_{0}}^{t} 2\left\langle Y\left(s^{-}\right), d Y(s)\right\rangle=\mathbb{E} \int_{t_{0}}^{t} 2\langle Y(s), \alpha(s)\rangle d s \tag{3.2}
\end{equation*}
$$

Given that $\operatorname{Tr}\left(\beta(s) Q(\beta(s))^{*}\right) \leqslant\|\beta(s)\|_{L(U, H)}^{2} \operatorname{Tr} Q$, we have

$$
\begin{equation*}
\mathbb{E} \int_{t_{0}}^{t} \operatorname{Tr}\left(\beta(s) Q(\beta(s))^{*}\right) d s \leqslant \operatorname{Tr} Q \mathbb{E} \int_{t_{0}}^{t}\|\beta(s)\|_{L(U, H)}^{2} d s \tag{3.3}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\mathbb{E} \int_{t_{0} U}^{t} \int^{t}\|\beta(s) y\|^{2} \mu(d y, d s) & =\mathbb{E} \int_{t_{0} U}^{t} \int^{t}\|\beta(s) y\|^{2} \nu(d y) d s \\
& \leqslant \mathbb{E} \int_{t_{0} U}^{t}\|\beta(s)\|_{L(U, H)}^{2}\|y\|^{2} \nu(d y) d s \\
& =\int_{U}\|y\|_{U}^{2} \nu(d y) \mathbb{E} \int_{t_{0}}^{t}\|\beta(s)\|_{L(U, H)}^{2} d s .
\end{aligned}
$$

So,

$$
\begin{equation*}
\mathbb{E} \int_{t_{0} U}^{t} \int_{U}\|\beta(s) y\|^{2} \mu(d y, d s) \leqslant c \mathbb{E} \int_{t_{0}}^{t}\|\beta(s)\|_{L(U, H)}^{2} d s \tag{3.4}
\end{equation*}
$$

Combining (3.1), (3.2), (3.3) and (3.4), we obtain

$$
\mathbb{E}\|Y(t)\|^{2} \leqslant \mathbb{E}\left\|Y\left(t_{0}\right)\right\|^{2}+\mathbb{E} \int_{t_{0}}^{t}\left(2\langle Y(s), \alpha(s)\rangle+(\operatorname{Tr} Q+c)\|\beta(s)\|^{2}\right) d s
$$

from which, since $\operatorname{Var} Z(1)=\operatorname{Tr} Q+c$, we finally get

$$
\frac{d}{d t} \mathbb{E}\|Y(t)\|^{2} \leqslant \mathbb{E}\left(2\langle Y(t), \alpha(t)\rangle+\operatorname{Var} Z(1)\|\beta(t)\|^{2}\right)
$$

Lemma 3.3. If B satisfies condition (iv) and there exist $N, \omega>0$ such that for every x, y in H and $n>N$
$2\left\langle A_{n}(x-y)+F(x)-F(y), x-y\right\rangle+\operatorname{Var} Z(1)\|B(x)-B(y)\|_{L(U, H)}^{2} \leqslant-\omega\|x-y\|^{2}$,
then for some $C_{1}>0$

$$
2\left\langle A_{n} x+F(x), x\right\rangle+\operatorname{Var} Z(1)\|B(x)\|_{L(U, H)}^{2} \leqslant-\frac{\omega}{2}\|x\|^{2}+C_{1}
$$

for every x in H and $n>N$.
Proof of Lemma 3.3. Let $\lambda:=\operatorname{Var} Z(1)$. By (A0) with $y=0$, we have

$$
\begin{aligned}
-\omega\|x\|^{2} \geqslant & 2\left\langle A_{n} x+F(x)-F(0), x\right\rangle+\lambda\|B(x)-B(0)\|_{L(U, H)}^{2} \\
\geqslant & 2\left\langle A_{n} x+F(x), x\right\rangle-2\|F(0)\|\|x\|+\lambda\left(\|B(x)\|_{L(U, H)}-\|B(0)\|_{L(U, H)}\right)^{2} \\
= & 2\left\langle A_{n} x+F(x), x\right\rangle-2\|F(0)\|\|x\| \\
& +\lambda\left(\|B(x)\|_{L(U, H)}^{2}-\|B(0)\|_{L(U, H)}^{2}\right. \\
& \left.\quad-2\|B(0)\|_{L(U, H)}\left(\|B(x)\|_{L(U, H)}-\|B(0)\|_{L(U, H)}\right)\right),
\end{aligned}
$$

so

$$
\begin{aligned}
2\left\langle A_{n} x+F(x), x\right\rangle+\lambda\|B(x)\|_{L(U, H)}^{2} \leqslant & -\omega\|x\|^{2}+2\|F(0)\|\|x\|+\lambda\|B(0)\|_{L(U, H)}^{2} \\
& +2 \lambda\|B(0)\|_{L(U, H)}\left(\|B(x)\|_{L(U, H)}-\|B(0)\|_{L(U, H)}\right) \\
\leqslant & -\omega\|x\|^{2}+2\|F(0)\|\|x\|+\lambda\|B(0)\|_{L(U, H)}^{2} \\
& +2 \lambda\|B(0)\|_{L(U, H)} L_{B}\|x\| \\
= & -\frac{\omega}{2}\|x\|^{2}-\frac{\omega}{2}\|x\|^{2}+\lambda\|B(0)\|_{L(U, H)}^{2} \\
& +2\left(\|F(0)\|+\lambda\|B(0)\|_{L(U, H)} L_{B}\right)\|x\| .
\end{aligned}
$$

Since $a r^{2}+b r+c \leqslant-\frac{b^{2}-4 a c}{4 a}=c-\frac{1}{a} \frac{b^{2}}{4}$, we have

$$
2\left\langle A_{n} x+F(x), x\right\rangle+\lambda\|B(x)\|_{L(U, H)}^{2} \leqslant-\frac{\omega}{2}\|x\|^{2}+C_{1},
$$

where

$$
C_{1}=\lambda\|B(0)\|_{L(U, H)}^{2}+\frac{2}{\omega}\left(\|F(0)\|+\lambda\|B(0)\|_{L(U, H)} L_{B}\right)^{2}
$$

Proof of Theorem 3.1. I. First assume that $\mathbb{E} Z(1)=0$.
Let $\bar{Z}(t), t \in \mathbb{R}$, be defined by (2.1) and let $A_{n}=n A(n-A)^{-1}, n \in \mathbb{N}$, be the sequence of Yosida approximations of A. Denote by $X_{n}(t, s, \eta)$ the solution of the equation

$$
\begin{aligned}
d X_{n} & =\left(A_{n} X_{n}+F\left(X_{n}\right)\right) d t+B\left(X_{n}\right) d \bar{Z}(t), \\
X_{n}(s) & =\eta,
\end{aligned}
$$

and by $X(t, s, \eta)$ the solution of the equation

$$
\begin{align*}
d X & =(A X+F(X)) d t+B(X) d \bar{Z}(t), \tag{*}\\
X(s) & =\eta .
\end{align*}
$$

$X_{n}(t, s, \eta)$ converges in $L_{2}(\Omega)$ to $X(t, s, \eta)$. Fix $s \in \mathbb{R}$ and let $X_{n}(t)=X_{n}(t, s, \eta)$. Then $d X_{n}=\left(A_{n} X_{n}+F\left(X_{n}\right)\right) d t+B\left(X_{n}\right) d \bar{Z}(t)$. We apply Lemma 3.2 with

$$
\begin{aligned}
Y(t) & =X_{n}(t) \\
\alpha(t) & =A_{n} X_{n}(t)+F\left(X_{n}(t)\right), \\
\beta(t) & =B\left(X_{n}(t)\right)
\end{aligned}
$$

By Lemma 3.3,

$$
2\langle Y(t), \alpha(t)\rangle+\operatorname{Var} Z(1)\|\beta(t)\|_{L(U, H)}^{2} \leqslant-\frac{\omega}{2}\left\|X_{n}(t)\right\|^{2}+C_{1},
$$

from which

$$
\begin{aligned}
\frac{d}{d t} \mathbb{E}\left\|X_{n}(t)\right\|^{2} & \leqslant \mathbb{E}\left(2\langle Y(t), \alpha(t)\rangle+\operatorname{Var} Z(1)\|\beta(t)\|_{L(U, H)}^{2}\right) \\
& \leqslant-\frac{\omega}{2} \mathbb{E}\left\|X_{n}(t)\right\|^{2}+C_{1} .
\end{aligned}
$$

By Gronwall's lemma,

$$
\mathbb{E}\left\|X_{n}(t)\right\|^{2} \leqslant \frac{2 C_{1}}{\omega}+\mathbb{E}\left\|X_{n}(s)\right\|^{2},
$$

so for every $s \in \mathbb{R}$ and every $t \geqslant s$

$$
\begin{equation*}
\mathbb{E}\left\|X_{n}(t, s, \eta)\right\|^{2} \leqslant \frac{2 C_{1}}{\omega}+\|\eta\|^{2} \tag{3.5}
\end{equation*}
$$

Now fix $\delta>\gamma>0$ and let $U_{n}(t)=X_{n}(t,-\gamma, \eta), V_{n}(t)=X_{n}(t,-\delta, \eta)$. Then

$$
d\left(U_{n}-V_{n}\right)=\left(A\left(U_{n}-V_{n}\right)+F\left(U_{n}\right)-F\left(V_{n}\right)\right) d t+\left(B\left(U_{n}\right)-B\left(V_{n}\right)\right) d \bar{Z}(t) .
$$

We apply Lemma 3.2 with

$$
\begin{aligned}
Y(t) & =U_{n}(t)-V_{n}(t) \\
\alpha(t) & =A_{n}\left(U_{n}(t)-V_{n}(t)\right)+F\left(U_{n}(t)\right)-F\left(V_{n}(t)\right) \\
\beta(t) & =B\left(U_{n}(t)\right)-B\left(V_{n}(t)\right)
\end{aligned}
$$

By (A),

$$
2\langle Y(t), \alpha(t)\rangle+\operatorname{Var} Z(1)\|\beta(t)\|_{L(U, H)}^{2} \leqslant-\omega\left\|U_{n}(t)-V_{n}(t)\right\|^{2},
$$

from which

$$
\begin{aligned}
\frac{d}{d t} \mathbb{E}\left\|U_{n}(t)-V_{n}(t)\right\|^{2} & \leqslant \mathbb{E}\left(2\langle Y(t), \alpha(t)\rangle+\operatorname{Var} Z(1)\|\beta(t)\|_{L(U, H)}^{2}\right) \\
& \leqslant-\omega \mathbb{E}\left\|U_{n}(t)-V_{n}(t)\right\|^{2}
\end{aligned}
$$

By Gronwall's lemma, for every $t \geqslant s$

$$
\mathbb{E}\left\|U_{n}(t)-V_{n}(t)\right\|^{2} \leqslant e^{-\omega(t-s)} \mathbb{E}\left\|U_{n}(s)-V_{n}(s)\right\|^{2} .
$$

Letting $t=0$ and $s=-\gamma$, we obtain

$$
\begin{aligned}
\mathbb{E}\left\|X_{n}(0,-\gamma, \eta)-X_{n}(0,-\delta, \eta)\right\|^{2} & \leqslant e^{-\omega \gamma} \mathbb{E}\left\|\eta-X_{n}(-\gamma,-\delta, \eta)\right\|^{2} \\
& \leqslant e^{-\omega \gamma}\left(2\|\eta\|^{2}+2 \mathbb{E}\left\|X_{n}(-\gamma,-\delta, \eta)\right\|^{2}\right) .
\end{aligned}
$$

Now, recalling (3.5),

$$
\mathbb{E}\left\|X_{n}(0,-\gamma, \eta)-X_{n}(0,-\delta, \eta)\right\|^{2} \leqslant e^{-\omega \gamma}\left(4\|\eta\|^{2}+\frac{4 C_{1}}{\omega}\right) .
$$

Since $X_{n}(t, s, \eta)$ converges in $L_{2}(\Omega)$ to $X(t, s, \eta)$,

$$
\mathbb{E}\|X(0,-\gamma, \eta)-X(0,-\delta, \eta)\|^{2} \leqslant e^{-\omega \gamma}\left(4\|\eta\|^{2}+\frac{4 C_{1}}{\omega}\right) .
$$

It follows that $(X(0,-\gamma, \eta))_{\gamma}$ is a Cauchy sequence in $L_{2}(\Omega)$, so there exists random variable $\mathcal{X} \in L_{2}(\Omega)$ such that $X(0,-\gamma, \eta)$ converges to \mathcal{X} in $L_{2}(\Omega)$, which implies that $X(0,-\gamma, \eta)$ converges to \mathcal{X} also in law

$$
\mathcal{L}(X(0,-\gamma, \eta)) \longrightarrow_{\gamma \rightarrow \infty} \mathcal{L}(\mathcal{X})
$$

Since $\mathcal{L}(X(0,-\gamma, \eta))=\mathcal{L}(X(\gamma, 0, \eta))$, we also have

$$
\mathcal{L}(X(\gamma, 0, \eta)) \longrightarrow_{\gamma \rightarrow \infty} \mathcal{L}(\mathcal{X})
$$

Therefore $\mathcal{L}(\mathcal{X})$ is an invariant measure for equation $(*)$.
II. Now let $m:=\mathbb{E} Z(1)$ be any in U. Equation (*) can be written as

$$
\begin{align*}
d X & =(A X+\tilde{F}(X)) d t+B(X) d \tilde{Z}(t), \tag{**}\\
X(0) & =\eta
\end{align*}
$$

where

$$
\begin{aligned}
\tilde{Z}(t) & =Z(t)-m t \\
\tilde{F}(x) & =F(x)+B(x) m
\end{aligned}
$$

It suffices to prove that there exists an invariant measure for $(* *)$. We have $\mathbb{E} \tilde{Z}(1)=0$, $\operatorname{Var} \tilde{Z}(1)=\operatorname{Var} Z(1)$, hence

$$
\begin{aligned}
2\langle A(x-y)+\tilde{F}(x)-\tilde{F}(y), x-y\rangle & +\operatorname{Var} \tilde{Z}(1)\|B(x)-B(y)\|_{L(U, H)}^{2} \\
= & 2\langle A(x-y)+F(x)-F(y)+(B(x)-B(y)) m, x-y\rangle \\
& +\operatorname{Var} Z(1)\|B(x)-B(y)\|_{L(U, H)}^{2},
\end{aligned}
$$

so the existence of an invariant measure for $(* *)$ follows from step I.

4 Sufficient condition in terms of Lipschitz constants

Theorem 4.1. Assume that Z, A, F and B satisfy conditions (i), (ii), (iii), (iv). Let $S(t)_{t \geqslant 0}$ be the semigroup generated by A and assume that there exists $\alpha>0$ such that for every $t \geqslant 0$

$$
\|S(t)\|_{L(H)} \leqslant e^{-\alpha t}
$$

If

$$
\begin{equation*}
-2 \alpha+2 L_{F}+2 L_{B}\|\mathbb{E} Z(1)\|_{U}+\operatorname{Var} Z(1) L_{B}^{2}<0 \tag{B}
\end{equation*}
$$

then there exists an invariant measure for the equation

$$
\begin{align*}
d X & =(A X+F(X)) d t+B(X) d Z(t), \tag{*}\\
X(0) & =\eta .
\end{align*}
$$

Proof of Theorem 4.1. We shall prove that condition (B) implies condition (A) so the result will follow from the previous theorem. If (B) is fullfilled, then there exists $N>0$ such that for $n>N$

$$
-\frac{2 \alpha n}{n+\alpha}+2 L_{F}+2 L_{B}\|\mathbb{E} Z(1)\|_{U}+\operatorname{Var} Z(1) L_{B}^{2}<0
$$

For the Yosida approximations A_{n} we have $\left\langle A_{n} x, x\right\rangle \leqslant-\frac{\alpha n}{n+\alpha}\|x\|^{2}$, since $\|S(t)\|_{L(H)}^{2} \leqslant$ $e^{-\alpha t}$. Thus

$$
\begin{aligned}
2\left\langle A_{n}(x-y), x-y\right\rangle & \leqslant-2 \frac{\alpha n}{n+\alpha}\|x-y\|^{2}, \\
2\langle F(x)-F(y), x-y\rangle & \leqslant 2 L_{F}\|x-y\|^{2}, \\
2\langle(B(x)-B(y)) \mathbb{E} Z(1), x-y\rangle & \leqslant 2 L_{B}\|\mathbb{E} Z(1)\|_{U}\|x-y\|^{2}, \\
\operatorname{Var} Z(1)\|B(x)-B(y)\|_{L(U, H)}^{2} & \leqslant \operatorname{Var} Z(1) L_{B}{ }^{2}\|x-y\|^{2},
\end{aligned}
$$

whence

$$
\begin{aligned}
2\left\langle A_{n}(x-y)+\right. & F(x)-F(y)+(B(x)-B(y)) \mathbb{E} Z(1), x-y\rangle \\
& +\operatorname{Var} Z(1)\|B(x)-B(y)\|_{L(U, H)}^{2} \\
& \leqslant\left(-\frac{2 \alpha n}{n+\alpha}+2 L_{F}+2 L_{B}\|\mathbb{E} Z(1)\|_{U}+\operatorname{Var} Z(1) L_{B}^{2}\right)\|x-y\|^{2} .
\end{aligned}
$$

And condition (A) is fullfilled, since $-\frac{2 \alpha n}{n+\alpha}+2 L_{F}+2 L_{B}\|\mathbb{E} Z(1)\|_{U}+\operatorname{Var} Z(1) L_{B}{ }^{2}<-\omega$, for some $\omega>0$ and $n>N$.

Remark

Gaans [3] proves the existence of an invariant measure for $(*)$ under the asumption that $\|S(t)\|_{L(H)}^{2} \leqslant M e^{-\alpha t}$ for some $\alpha, M>0$, which is less restrictive condition than the condition $\|S(t)\|_{L(H)}^{2} \leqslant e^{-\alpha t}$. His sufficient condition for the existence of an invariant measure is

$$
\begin{equation*}
6 M^{2}\left(\frac{L_{F}^{2}}{\alpha}+\operatorname{Var} Z(1) L_{B}^{2}\right)<\alpha \tag{GM}
\end{equation*}
$$

under the assumption that $\mathbb{E} Z(1)=0$. In the case $M=1$, we get

$$
\begin{equation*}
6\left(\frac{L_{F}^{2}}{\alpha}+\operatorname{Var} Z(1) L_{B}^{2}\right)<\alpha \tag{G1}
\end{equation*}
$$

Condition (B) in the case $\mathbb{E} Z(1)=0$ is

$$
\begin{equation*}
-2 \alpha+2 L_{F}+\operatorname{Var} Z(1) L_{B}^{2}<0 \tag{B0}
\end{equation*}
$$

If (G1) is fullfilled, then so is (B0). Indeed, (G1) is equivalent to

$$
\begin{equation*}
\frac{L_{F}{ }^{2}}{\alpha}-\frac{\alpha}{6}+\operatorname{Var} Z(1) L_{B}{ }^{2}<0 . \tag{G'1}
\end{equation*}
$$

So it is enough to prove that

$$
-2 \alpha+2 L_{F}+\operatorname{Var} Z(1) L_{B}{ }^{2}<\frac{L_{F}{ }^{2}}{\alpha}-\frac{\alpha}{6}+\operatorname{Var} Z(1) L_{B}{ }^{2} .
$$

We have

$$
0<5 \alpha^{2}+6\left(\alpha-L_{F}\right)^{2}=5 \alpha^{2}+6 \alpha^{2}+6 L_{F}^{2}-12 \alpha L_{F}=6 L_{F}^{2}-\alpha^{2}+12 \alpha^{2}-12 \alpha L_{F}
$$

so

$$
0<\frac{L_{F}{ }^{2}}{\alpha}-\frac{\alpha}{6}+2 \alpha-2 L_{F} .
$$

References

[1] G. Da Prato \& J. Zabczyk, Ergodicity for infinite dimensional systems, Cambridge University Press 1996.
[2] G. Da Prato \& J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press 1992.
[3] O. van Gaans, Invariant measures for stochastic evolution equations with Hilbert space valued Lévy noise, Technical Report 05-08, Faculty of Mathematics and Computer Science, Friedrich Schiller Universtity, Jena 2005.
[4] J. Jakubowski \& J. Zabczyk, Exponential moments for HJM models with jumps, Institute of Mathematics, Polish Academy of Sciences, Preprint 651 (2004), 1-11
[5] W. Rudin, Functional Analysis, McGraw-Hill, New York 1973.
[6] M. Tehranchi, A note on invariant measures for HJM models, Finance and Stochastics 9 (2005), 389-398

[^0]: *This work was supported by EC FP6 MC-ToK programme SPADE2, MTKD-CT-2004-014508.

