INSTITUTE OF MATHEMATICS of the Polish Academy of Sciences

IM PAN Preprint 670 (2006)

Özer Öztürk

On Thom polynomials for $\mathrm{A}_{4}{ }^{(-)}$ via Schur functions

Presented by Piotr Pragacz

Published as manuscript

On Thom polynomials for $A_{4}(-)$ via Schur functions

Özer Öztürk*
Department of Mathematics, METU, ANKARA, TURKEY
ozero@metu.edu.tr

(16.VII.2006)

Abstract

Following Rimanyi and Pragacz we study the structure of the Thom Polynomials for $A_{4}(-)$ singularities. We analize the Schur function expansions of these polynomials. We show that partitions indexing the Schur function expansions of Thom polynomials for $A_{4}(-)$ singularities have at most four parts. We simplify the system of equations that determines these polynomials and give a recursive description of Thom polynomials for $A_{4}(-)$ singularities. We also give Thom polynomials for $A_{4}(3)$ and $A_{4}(4)$ singularities.

Contents

1 Introduction 2
2 Schur functions 3

3 Thom polynomials 6
4 Thom polynomials for $A_{4}(3), A_{4}(4)$ and towards $A_{4}(-) \quad 9$
References

[^0]
1 Introduction

Thom polynomials, express invariants of singularities of a general map f : $X \rightarrow Y$ between complex analytic manifolds in terms of invariants of X and Y. Knowing the Thom polynomial of a singularity η one can compute the cohomology classes represented by η-points of f. The existence of these polynomials are guaranteed by an early theorem of Thom (cf. [20]). Different methods, such as desingularization, have been developed to compute these polynomials. A survey of these methods and works of Porteous, Thom, Ronga, Menn, Sergeraert, Lascoux and Roberts can be found in [7]. Although these methods gave formulas of Thom polynomials for $A_{1}(-)$, $A_{2}(-)$ and Σ^{i}-singularities they became very difficult for more complicated singularities. One can see some of the difficulties of these methods in [6], where Gaffney computed the Thom polynomial for $A_{4}(1)$ singularity.

Recently a new method, the "method of restriction equations" (developed mainly by Rimanyi) converted the problem into an algebraic one. When r is fixed and small using this method to compute the Thom polynomial for a singularity $\eta(r)$ is easier than previous methods (Compare [6] with [17], see also [19]). However, if we want to find the Thom polynomials for a series of singularities, containing r as a parameter, then we have to solve simultaneously a countable family of systems of linear equations (These formulas were asked in [18] and [2]).

In [15], Pragacz combined this method with the techniques of Schur functions and obtained many new results including more transparent proofs of formulas of Thom, Porteous and Ronga; formulas for the Thom polynomials for the singularities $I_{2,2}(-)$ and $A_{3}(-)$ (for all r, as desired) and a strategy for computing Thom polynomials for $A_{i}(-)$ singularities.

In [16], Pragacz and Weber proved that the coefficients of Schur function expansions of the Thom polynomials of stable singularities are nonnegative ${ }^{1}$.

In this paper we study the structure of the Thom polynomials for $A_{4}(-)$ singularities using this strategy and other methods of [15]. We prove that partitions indexing the Schur function expansions of Thom polynomials for $A_{4}(-)$ singularities have at most four parts. We simplify the system of equations that determines these polynomials. We give a recursive description of Thom polynomials for $A_{4}(-)$ singularities. We also give Thom polynomials for $A_{4}(3)$ and $A_{4}(4)$ singularities (Note that Thom polynomials for $A_{4}(2)$ singularities was computed in [18]).

In the next two sections we will collect the necessary information on Schur functions and Thom polynomials.

[^1]
2 Schur functions

In this section we aim to give a quick introduction to Schur functions while introducing our notation. We use the approach and notation of Lascoux's book [8] (also of [9] and [15]) and refer to this book or to [10] for a more detailed study.

An alphabet is a multi-set ${ }^{2}$ of elements from a commutative ring.
Definition 1 For alphabets \mathbb{A} and \mathbb{B}, the ith complete function $S_{i}(\mathbb{A}-\mathbb{B})$ is defined as the coefficient of z^{i} in the generating series

$$
\begin{equation*}
\sum S_{i}(\mathbb{A}-\mathbb{B}) z^{i}=\frac{\prod_{b \in \mathbb{B}}(1-b z)}{\prod_{a \in \mathbb{A}}(1-a z)} \tag{1}
\end{equation*}
$$

Note that if $\mathbb{B}=\{0\}$ then $S_{i}(\mathbb{A}-\mathbb{B})$ gives the complete homogeneous symmetric function of degree i in \mathbb{A}. Similarly when $\mathbb{A}=\{0\}$ we see that $(-1)^{i} S_{i}(\mathbb{A}-\mathbb{B})$ is the i th elementary function in \mathbb{B}. Disjoint union of two alphabets \mathbb{A} and \mathbb{A}^{\prime} is denoted by $\mathbb{A}+\mathbb{A}^{\prime}$ so that we can write

$$
\sum S_{i}(\mathbb{A}-\mathbb{B}) z^{i} \cdot \sum S_{j}\left(\mathbb{A}^{\prime}-\mathbb{B}^{\prime}\right) z^{j}=\sum S_{i}\left(\left(\mathbb{A}+\mathbb{A}^{\prime}\right)-\left(\mathbb{B}+\mathbb{B}^{\prime}\right)\right) z^{i}
$$

By setting $\mathbb{A}^{\prime}=\mathbb{B}^{\prime}=\mathbb{C}$ and simplifying the factors $\prod_{c \in \mathbb{C}}(1-c z)$ on the RHS we obtain

$$
\sum S_{i}((\mathbb{A}+\mathbb{C})-(\mathbb{B}+\mathbb{C})) z^{i}=\sum S_{i}(\mathbb{A}-\mathbb{B}) z^{i}
$$

This enables us to write

$$
\begin{equation*}
(\mathbb{A}+\mathbb{C})-(\mathbb{B}+\mathbb{C})=\mathbb{A}-\mathbb{B} \tag{2}
\end{equation*}
$$

The finite alphabet $\mathbb{A}_{m}=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, being the disjoint union of its subsets of cardinality one, will be written as $a_{1}+\cdots+a_{m}$. Similarly we write

$$
a_{1}+\cdots+a_{m}-b_{1}-\cdots-b_{n}
$$

to denote $\mathbb{A}_{m}-\mathbb{B}_{n}$, the difference of (finite) alphabets \mathbb{A}_{m} and \mathbb{B}_{n}. We also define the product of alphabets $\mathbb{A} \cdot \mathbb{B}$ and multiplication by a constant α in the usual way. However there is one point that we should clarify: For a constant α we have

$$
S_{i}(\alpha)=\binom{\alpha+i-1}{i}
$$

whereas

$$
S_{i}(u)=u^{i}
$$

[^2]when u is a monomial. For example $S_{i}(2)=\binom{i+1}{2}$ and $S_{i}(a)=a^{i}$ for a letter a. So to emphasize the difference and to avoid extra variables we write $S_{i}(\sqrt{2})$ to denote the result of $S_{i}(a)$ specialized at $a=2$. Similarly
$$
S_{2}\left(\mathbb{X}_{2}\right)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2} \neq x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}=S_{2}\left(\boxed{x_{1}+x_{2}}\right)
$$

That is, we write r and take it as a single variable when we want to specialize a letter to an expression r (e.g. to a number or to a sum).

Let n be a natural number. By a partition $I=\left(i_{1}, \ldots, i_{l}\right)$ of n we mean a weakly increasing finite sequence of positive natural numbers such that $|I|:=i_{1}+\cdots+i_{l}=n$. We also write $\ell(I)$ for the number of parts of I, that is for l. Often, partitions are represented by their Young diagrams; left aligned $\ell(I)$ rows of boxes, where j th row consists of i_{j} boxes.

Definition 2 Given a partition $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right)$, and alphabets \mathbb{A} and \mathbb{B}, the Schur function ${ }^{3} S_{I}(\mathbb{A}-\mathbb{B})$ is

$$
\begin{equation*}
S_{I}(\mathbb{A}-\mathbb{B}):=\left|S_{i_{q}+q-p}(\mathbb{A}-\mathbb{B})\right|_{1 \leq p, q \leq \ell(I)} \tag{3}
\end{equation*}
$$

For example, if $I=(1,3,3,4,5)$ then

$$
S_{I}(\mathbb{A}-\mathbb{B})=\left|\begin{array}{ccccc}
S_{1}(\mathbb{A}-\mathbb{B}) & S_{4}(\mathbb{A}-\mathbb{B}) & S_{5}(\mathbb{A}-\mathbb{B}) & S_{7}(\mathbb{A}-\mathbb{B}) & S_{9}(\mathbb{A}-\mathbb{B}) \\
1 & S_{3}(\mathbb{A}-\mathbb{B}) & S_{4}(\mathbb{A}-\mathbb{B}) & S_{6}(\mathbb{A}-\mathbb{B}) & S_{8}(\mathbb{A}-\mathbb{B}) \\
0 & S_{2}(\mathbb{A}-\mathbb{B}) & S_{3}(\mathbb{A}-\mathbb{B}) & S_{5}(\mathbb{A}-\mathbb{B}) & S_{7}(\mathbb{A}-\mathbb{B}) \\
0 & S_{1}(\mathbb{A}-\mathbb{B}) & S_{2}(\mathbb{A}-\mathbb{B}) & S_{4}(\mathbb{A}-\mathbb{B}) & S_{6}(\mathbb{A}-\mathbb{B}) \\
0 & 1 & S_{1}(\mathbb{A}-\mathbb{B}) & S_{3}(\mathbb{A}-\mathbb{B}) & S_{5}(\mathbb{A}-\mathbb{B})
\end{array}\right| .
$$

Note that by equation (2), we have a cancellation property for Schur functions:

$$
\begin{equation*}
S_{I}((\mathbb{A}+\mathbb{C})-(\mathbb{B}+\mathbb{C}))=S_{I}(\mathbb{A}-\mathbb{B}) \tag{4}
\end{equation*}
$$

Definition 3 Given two alphabets \mathbb{A}, \mathbb{B}, we define their resultant:

$$
\begin{equation*}
R(\mathbb{A}, \mathbb{B}):=\prod_{a \in \mathbb{A}, b \in \mathbb{B}}(a-b) \tag{5}
\end{equation*}
$$

Fix two positive integers m and n. We shall say that a partition I is not contained in the (m, n)-hook if the Young diagram of I is not contained in the following "tickened" hook:

[^3]That is, I is not contained in the (m, n)-hook if $\ell(I)>m$ and $i_{\ell(I)-m}>n$. Now consider the alphabets A_{m} and B_{n}. We have the following vanishing property: If a partition I is not contained in the (m, n)-hook then

$$
\begin{equation*}
S_{I}\left(\mathbb{A}_{m}-\mathbb{B}_{n}\right)=0 \tag{6}
\end{equation*}
$$

If on the other hand a partition is contained in the (m, n)-hook and contains the rectangular partition $\left(n^{m}\right)$ then it is of the form

$$
\left(J, I+\left(n^{m}\right)\right):=\left(j_{1}, \ldots, j_{k}, i_{1}+n, \ldots, i_{m}+n\right)
$$

for some partitions $I=\left(i_{1}, \ldots, i_{m}\right)$ and $J=\left(j_{1}, \ldots, j_{k}\right)$. Moreover, we have the following factorization property ${ }^{4}$:

$$
\begin{equation*}
S_{J, I+\left(n^{m}\right)}\left(\mathbb{A}_{m}-\mathbb{B}_{n}\right)=S_{I}\left(\mathbb{A}_{m}\right) R\left(\mathbb{A}_{m}, \mathbb{B}_{n}\right) S_{J}\left(-\mathbb{B}_{n}\right) \tag{7}
\end{equation*}
$$

Let \mathbb{A} be an alphabet of cardinality m. Consider the function

$$
\begin{equation*}
F(\mathbb{A}, \bullet):=\sum_{I} S_{I}(\mathbb{A}) S_{n-i_{m}, \ldots, n-i_{1}, n+|I|}(\bullet) \tag{8}
\end{equation*}
$$

where the sum is over partitions $I=\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ such that $i_{m} \leq n$. This function was introduced in [15], and it will be fundamental in the study of Thom polynomials for A_{i} singularities. The following properties of F are collected from [15] (For the geometric meaning of this function and other properties see [5] and [12]).

Lemma 4 For a variable x and an alphabet \mathbb{B} of cardinality n,

$$
\begin{equation*}
F(\mathbb{A}, x-\mathbb{B})=R(x+\mathbb{A} x, \mathbb{B}) \tag{9}
\end{equation*}
$$

Setting $\mathbb{A}=2+3+\cdots+\pi, m=i-1$, and $n=r:=k+1$ we obtain special cases $F_{r}^{(i)}$ of the function F :

$$
\begin{equation*}
F_{r}^{(i)}(\bullet):=\sum_{J} S_{J}(\boxed{2}+\boxed{3}+\cdots+\boxed{i}) S_{r-j_{i-1}, \ldots, r-j_{1}, r+|J|}(\bullet) \tag{10}
\end{equation*}
$$

where the sum is over partitions $J \subset\left(r^{i-1}\right)$, and for $i=1$ we understand $F_{r}^{(1)}(\bullet)=S_{r}(\bullet)$. In particular,

$$
\begin{equation*}
F_{r}^{(4)}(\bullet)=\sum_{j_{1} \leq j_{2} \leq j_{3} \leq r} S_{j_{1}, j_{2}, j_{3}}(\sqrt{2}+\sqrt{3}+\boxed{4}) S_{r-j_{3}, r-j_{2}, r-j_{1}, r+j_{1}+j_{2}+j_{3}}(\bullet) \tag{11}
\end{equation*}
$$

For example,

$$
\begin{equation*}
F_{1}^{(4)}=S_{1111}+9 S_{112}+26 S_{13}+24 S_{4} \tag{12}
\end{equation*}
$$

Using Lemma 4 we obtain the most important algebraic property of $F_{r}^{(i)}$:

[^4]
Proposition 5 We have

$$
\begin{equation*}
F_{r}^{(i)}\left(x-\mathbb{B}_{r}\right)=R\left(x+\boxed{2 x}+\boxed{3 x}+\cdots+\boxed{i x}, \mathbb{B}_{r}\right) . \tag{13}
\end{equation*}
$$

We close this section with the following corollary.
Corollary 6 Fix an integer $i \geq 1$.
(i) For $p \leq i$, we have

$$
\begin{equation*}
F_{r}^{(i)}\left(x-\mathbb{B}_{r-1}-p x\right)=0 \tag{14}
\end{equation*}
$$

(ii) Moreover, we have

$$
\begin{equation*}
F_{r}^{(i)}\left(x-\mathbb{B}_{r-1}-(i+1) x\right)=R\left(x+2 x+3 x+\cdots+\boxed{i x}, \mathbb{B}_{r-1}+(i+1) x\right) \tag{15}
\end{equation*}
$$

3 Thom polynomials

In this section we outline our approach of computing Thom polynomials. We shall use a combination of the "method of restriction equations" (developed mainly by Rimanyi, cf. [18]) and the techniques of using Schur functions in this method (developed in [15] by Pragacz). First we recall the necessary information about singularities, Thom polynomials and the "method of restriction equations". Find this form in [15].

Let $k \geq 0$ be a fixed integer and $\bullet \in \mathbf{N}$. Two stable germs κ_{1}, κ_{2} : $\left(\mathbf{C}^{\bullet}, 0\right) \rightarrow\left(\mathbf{C}^{\bullet+k}, 0\right)$ are said to be right-left equivalent if there exist germs of biholomorphisms φ of $\left(\mathbf{C}^{\bullet}, 0\right)$ and ψ of $\left(\mathbf{C}^{\bullet+k}, 0\right)$ such that $\psi \circ \kappa_{1} \circ \varphi^{-1}=\kappa_{2}$. A suspension of a germ is its trivial unfolding: $(x, v) \mapsto(\kappa(x), v)$. Consider the equivalence relation (on stable germs $\left(\mathbf{C}^{\bullet}, 0\right) \rightarrow\left(\mathbf{C}^{\bullet+k}, 0\right)$) generated by right-left equivalence and suspension. A singularity η is an equivalence class of this relation.

According to Mather's classification (cf. [4] or [1]), singularities are in one-to-one correspondence with finite dimensional (local) C-algebras. We shall use the following notation:

- A_{i} (of Thom-Boardman type $\Sigma^{1_{i}}$) will stand for the stable germs with local algebra $\mathbf{C}[[x]] /\left(x^{i+1}\right), i \geq 0 ;$
- $I_{a, b}$ (of Thom-Boardman type Σ^{2}) for stable germs with local algebra $\mathbf{C}[[x, y]] /\left(x y, x^{a}+y^{b}\right), \quad b \geq a \geq 2 ;$
$-I I I_{a, b}$ (of Thom-Boardman type Σ^{2}) for stable germs with local algebra $\mathbf{C}[[x, y]] /\left(x y, x^{a}, y^{b}\right), \quad b \geq a \geq 2$ (here $k \geq 1$).

Let $f: X \rightarrow Y$ be a general map between complex analytic manifolds and η be a singularity. Consider the closure of the set of η-points of f :

$$
V^{\eta}(f):=\overline{\{x \in X: \text { the singularity of } f \text { at } x \text { is } \eta\}} .
$$

By an early result of Thom there exists a universal polynomial \mathcal{T}^{η}, called the Thom polynomial of η, such that $\mathcal{T}^{\eta}\left(c_{1}, c_{2}, \ldots\right)$ gives the Poincaré dual of $V^{\eta}(f)$, after the substitution of the Chern classes c_{i} of the virtual bundle $f^{*} T Y-T X$. That is, knowing the Thom polynomial of a singularity, we are able to express invariants of singularities of the map $f: X \rightarrow Y$ in terms of invariants of X and invariants of Y.

Let $k \geq 0$ be a fixed integer, and let $\kappa:\left(\mathbf{C}^{n}, 0\right) \rightarrow\left(\mathbf{C}^{n+k}, 0\right)$ be a prototype of a stable singularity $\eta:\left(\mathbf{C}^{\bullet}, 0\right) \rightarrow\left(\mathbf{C}^{\bullet+k}, 0\right)$. Although the right-left symmetry group

$$
\begin{equation*}
\text { Aut } \kappa=\left\{(\varphi, \psi) \in \operatorname{Diff}\left(\mathbf{C}^{n}, 0\right) \times \operatorname{Diff}\left(\mathbf{C}^{n+k}, 0\right): \psi \circ \kappa \circ \varphi^{-1}=\kappa\right\} \tag{16}
\end{equation*}
$$

is much too large to be a finite dimensional Lie group, it is possible to define its maximal compact subgroup (up to conjugacy) in a sensible way (cf. [18]). Let G_{η} denote the maximal compact subgroup of Aut κ. Note that if necessary we can replace G_{η} with one of its conjugates so that images of its projections to the factors $\operatorname{Diff}\left(\mathbf{C}^{n}, 0\right)$ and $\operatorname{Diff}\left(\mathbf{C}^{n+k}, 0\right)$ are linear. Let $\lambda_{1}(\eta)$ and $\lambda_{2}(\eta)$ denote the representations via the (linear) projections on the source \mathbf{C}^{n} and the target \mathbf{C}^{n+k}. Using the representations $\lambda_{1}(\eta)$ and $\lambda_{2}(\eta)$ we obtain vector bundles E_{η}^{\prime} and E_{η} associated with the universal principal G_{η}-bundle $E G_{\eta} \rightarrow B G_{\eta}$. The total Chern class of the singularity η is defined in $H^{\bullet}\left(B G_{\eta} ; \mathbf{Z}\right)$ by

$$
\begin{equation*}
c(\eta):=\frac{c\left(E_{\eta}\right)}{c\left(E_{\eta}^{\prime}\right)} \tag{17}
\end{equation*}
$$

The Euler class of η is defined in $H^{2 \operatorname{codim}(\eta)}\left(B G_{\eta} ; \mathbf{Z}\right)$ by

$$
\begin{equation*}
e(\eta):=e\left(E_{\eta}^{\prime}\right) \tag{18}
\end{equation*}
$$

where the codimension of a singularity η means the codimension of $V^{\eta}(f)$ in X.

Now we are ready to state the theorem of Rimanyi which explains the name "method of restriction equations".

Theorem 7 Suppose, for a singularity η, that the Euler classes of all singularities of smaller codimension than $\operatorname{codim}(\eta)$, are not zero-divisors ${ }^{5}$. Then we have
(i) if $\xi \neq \eta$ and $\operatorname{codim}(\xi) \leq \operatorname{codim}(\eta)$, then $\mathcal{T}^{\eta}(c(\xi))=0$;
(ii) $\mathcal{T}^{\eta}(c(\eta))=e(\eta)$.

This system of equations (taken for all such ξ 's) determines the Thom polynomial \mathcal{T}^{η} in a unique way.

[^5]Sometimes it is possible to study with a subgroup instead of G_{η} itself. We can define these characteristic classes for a subgroup by using restrictions of the above representations and then use Theorem 7 with these characteristic classes (we take the homomorphic images of the equations). The equations will be still valid for any subgroup of G_{η}. But if the subgroup is small they may not contain necessary information to determine the Thom polynomial \mathcal{T}^{η}. For this reason, we should chose a subgroup as close to G_{η} as possible. For example, in case of $\eta=I_{2,2}$ we have $G_{\eta}=H \times U(k)$ where H is the extension of $U(1) \times U(1)$ by $\mathbf{Z} / 2 \mathbf{Z}$. To simplify computations we use the subgroup $U(1) \times U(1) \times U(k)$ instead G_{η} itself.

To determine the representations $\lambda_{1}(\eta)$ and $\lambda_{2}(\eta)$ we follow Rimanyi (cf. [18], Theorem 4.1). Consider the algebraic automorphism group Aut $\left(Q_{\eta}\right)$ of the local algebra Q_{η}. The group G_{η} is a subgroup of the maximal compact subgroup of $\operatorname{Aut}\left(Q_{\eta}\right)$ times the unitary group $U(k-d)$, where d is the deffect ${ }^{6}$ of Q_{η}. The germ κ is the miniversal unfolding of another germ $\beta:\left(\mathbf{C}^{m}, 0\right) \rightarrow$ $\left(\mathbf{C}^{m+k}, 0\right)$ with $d \beta=0$. With β well chosen, G_{η} acts as right-left symmetry group on β with representations μ_{1} and μ_{2}. Let μ_{V} be the representation of G_{η} on the unfolding space $V=\mathbf{C}^{n-m}$ given by

$$
\begin{equation*}
(\varphi, \psi) \alpha=\psi \circ \alpha \circ \varphi^{-1} \tag{19}
\end{equation*}
$$

where $\alpha \in V$ and $(\varphi, \psi) \in G_{\eta}$. Then we have

$$
\begin{equation*}
\lambda_{1}=\mu_{1} \oplus \mu_{V} \quad \text { and } \quad \lambda_{2}=\mu_{2} \oplus \mu_{V} \tag{20}
\end{equation*}
$$

For example, for the singularity of type $A_{i}:\left(\mathbf{C}^{\bullet}, 0\right) \rightarrow\left(\mathbf{C}^{\bullet+k}, 0\right)$, we have $G_{A_{i}}=U(1) \times U(k)$. Let ρ_{j} denote the standard representation of the unitary group $U(j)$. Then

$$
\begin{equation*}
\mu_{1}=\rho_{1}, \quad \mu_{2}=\rho_{1}^{i+1} \oplus \rho_{k}, \quad \mu_{V}=\oplus_{j=2}^{i} \rho_{1}^{j} \oplus \oplus_{j=1}^{i}\left(\rho_{k} \otimes \rho_{1}^{-1}\right) \tag{21}
\end{equation*}
$$

If we denote the Chern roots of the universal bundles on $B U(1)$ and $B U(k)$ by x and y_{1}, \ldots, y_{k} then

$$
\begin{equation*}
c\left(A_{i}\right)=\frac{1+(i+1) x}{1+x} \prod_{j=1}^{k}\left(1+y_{j}\right) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
e\left(A_{i}\right)=i!x^{i} \prod_{j=1}^{k}\left(i x-y_{j}\right) \cdots\left(2 x-y_{j}\right)\left(x-y_{j}\right) \tag{23}
\end{equation*}
$$

We list the characteristic classes of other singularities that we will use in the computation of Thom Polynomials for A_{4} singularities (cf. Theorem 7, see [15] or [18]).

[^6]\[

$$
\begin{gather*}
c\left(I_{2,2}\right)=\frac{\left(1+2 x_{1}\right)\left(1+2 x_{2}\right)}{\left(1+x_{1}\right)\left(1+x_{2}\right)} \prod_{j=1}^{k}\left(1+y_{j}\right) . \tag{24}\\
c\left(I I I_{2,2}\right)=\frac{\left(1+2 x_{1}\right)\left(1+2 x_{2}\right)\left(1+x_{1}+x_{2}\right)}{\left(1+x_{1}\right)\left(1+x_{2}\right)} \prod_{j=1}^{k-1}\left(1+y_{j}\right), \tag{25}\\
c\left(I I I_{2,3}\right)=\frac{\left(1+2 x_{1}\right)\left(1+3 x_{2}\right)\left(1+x_{1}+x_{2}\right)}{\left(1+x_{1}\right)\left(1+x_{2}\right)} \prod_{j=1}^{k-1}\left(1+y_{j}\right) . \tag{26}
\end{gather*}
$$
\]

Note that last two of these are defined for $k \geq 1$.

4 Thom polynomials for $A_{4}(3), A_{4}(4)$ and towards $A_{4}(-)$

We now focus on the structure of Thom polynomials for A_{4} singularities. The results of this section are inspired by those from [15] but we use different methods. As in [15], we will use a "shifted" parameter r instead of k :

$$
\begin{equation*}
r:=k+1 . \tag{27}
\end{equation*}
$$

We shall write $\eta(r)$ for the singularity $\eta:\left(\mathbf{C}^{\bullet}, 0\right) \rightarrow\left(\mathbf{C}^{\bullet+r-1}, 0\right)$, and \mathcal{T}_{r}^{η} to denote the Thom polynomial for $\eta(r)$.

Since we are interested in Schur function expansions of Thom polynomials we shall use Segre classes S_{i} of the virtual bundle $T X^{*}-f^{*}\left(T Y^{*}\right)$, instead of the Chern classes

$$
c_{i}\left(f^{*} T Y-T X\right)=\left[f^{*} c(T Y) / c(T X)\right]_{i}
$$

That is we write complete symmetric functions $S_{i}(\mathbb{A}-\mathbb{B})$ for the alphabets of the Chern roots \mathbb{A}, \mathbb{B} of $T X^{*}$ and $T Y^{*}$.

Lets write the conditions imposed on $\mathcal{T}_{r}^{A_{4}}$ by the singularities with codimension at most $4 r=\operatorname{codim} A_{4}(r)$. From $A_{0}(r), A_{1}(r), A_{2}(r)$ and $A_{3}(r)$ we have
$P\left(-\mathbb{B}_{r-1}\right)=P\left(x-\mathbb{B}_{r-1}-2 x\right)=P\left(x-\mathbb{B}_{r-1}-3 x\right)=P\left(x-\mathbb{B}_{r-1}-4 x\right)=0$.
Then $I I I_{2,2}(r), I_{2,2}(r)$ and $I I I_{2,3}(r)$ imply that

$$
\begin{gather*}
P\left(\mathbb{X}_{2}-\sqrt[2 x_{1}]{-2 x_{2}}-2 x_{1}+x_{2}-\mathbb{B}_{r-2}\right)=0 \tag{29}\\
P\left(\mathbb{X}_{2}-2 x_{1}-2 x_{2}-\mathbb{B}_{r-1}\right)=0 \tag{30}
\end{gather*}
$$

and

$$
\begin{equation*}
P\left(\mathbb{X}_{2}-2 x_{1}-3 x_{2}-x_{1}+x_{2}-\mathbb{B}_{r-2}\right)=0 . \tag{31}
\end{equation*}
$$

Additionally, $A_{4}(r)$ itself gives

$$
\begin{equation*}
P\left(x-\mathbb{B}_{r-1}-\boxed{5 x}\right)=R\left(x+\boxed{2 x}+\boxed{3 x}+\boxed{4 x}, \mathbb{B}_{r-1}+\boxed{5 x}\right) . \tag{32}
\end{equation*}
$$

Consider the functions of the form

$$
F_{r}^{(4)}+\sum_{(r+1, r+1) \subset I} \alpha_{I} S_{I}
$$

where α_{I} S are arbitrary integers. By Corollary 6 and the vanishing property all these functions satisfy the conditions imposed by $A_{i}(r)$ for $i=0,1,2,3$ and $i=4$. Also notice that equation (29) can be obtained from equation (30) by substituting $b_{r-1}=x_{1}+x_{2}$. Thus, to determine $\mathcal{T}_{r}^{A_{4}}$ we need only to find the coefficients such that the equations

$$
\begin{equation*}
\left(F_{r}^{(4)}+\sum_{(r+1, r+1) \subset I} \alpha_{I} S_{I}\right)\left(\mathbb{X}_{2}-2 x_{1}-2 x_{2}-\mathbb{B}_{r-1}\right)=0 \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(F_{r}^{(4)}+\sum_{(r+1, r+1) \subset I} \alpha_{I} S_{I}\right)\left(\mathbb{X}_{2}-2 x_{1}-3 x_{2}-x_{1}+x_{2}-\mathbb{B}_{r-2}\right)=0 \tag{34}
\end{equation*}
$$

are satisfied.
Set $\mathbb{E}=2 x_{1}+2 x_{2}$ and $\mathbb{F}=2 x_{1}+3 x_{2}+x_{1}+x_{2}$.
Lemma 8 (i) $R\left(\mathbb{X}_{2}, \mathbb{E}+\mathbb{B}_{r-1}\right)$ divides $F_{r}^{(4)}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right)$ and
(ii) $R\left(\mathbb{X}_{2}, \mathbb{F}+\mathbb{B}_{r-2}\right)$ divides $F_{r}^{(4)}\left(\mathbb{X}_{2}-\mathbb{F}-\mathbb{B}_{r-2}\right)$.

Proof.

Set $x_{2}=0, x_{2}=2 x_{1}, b_{r-1}=x_{2}$ for (i) and $x_{1}=0, x_{2}=0, x_{1}=3 x_{2}$, $x_{2}=2 x_{1}, b_{r-2}=x_{1}, b_{r-2}=x_{2}$ for (ii).

Lemma 9 (i) If $S_{I}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right.$) has degree k in b_{r-1} (as a polynomial over $\left.\mathbf{Z}\left[x_{1}, x_{2}, b_{1}, \ldots, b_{r-2}\right]\right)$ then I has at least k parts.
(ii) If a partition I appears as an index in the Schur function expansion of $\mathcal{T}_{r}^{A_{4}}$ then I has at most 4 parts.

Proof.

(i) Assume that $S_{I}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right)$ has degree k in b_{r-1} and I has l parts.

Let $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right)$. Then

$$
\begin{array}{r}
S_{I}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right)=\left|S_{i_{p}+p-q}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right)\right|_{1 \leq p, q \leq l} \\
=\left|S_{i_{p}+p-q}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-2}\right)-b_{r-1} S_{i_{p}+p-q-1}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-2}\right)\right|_{1 \leq p, q \leq l}
\end{array}
$$

According to this determinant the degree in b_{r-1} is at most l. Hence $k \leq l$.
(ii) Assume that $\mathcal{T}_{r}^{A_{4}}=F_{r}^{(4)}+\sum_{(r+1, r+1) \subset I} \alpha_{I} S_{I}$. Since the partitions indexing $F_{r}^{(4)}$ have at most 4 parts, it is enough to show that if I contains the partition $(r+1, r+1)$ and $\ell(I) \geq 5$ then $\alpha_{I}=0$. For this we will show that for such a partition I, if $\alpha_{J}=0$ for every partition J such that $\ell(J)>\ell(I)$ then $\alpha_{I}=0$ also. Observe that $|I|=4 r$ and $(r+1, r+1) \subset I$ give us $\ell(I) \leq 2 r$. If $\ell(I)=2 r$ then I is necessarily $\left(1^{2 r-2}, r+1, r+1\right)$. The coefficient of $b_{r-1}^{2 r-2}$ in equation (33) is zero. By part (i) this coefficient comes from $\alpha_{I} S_{I}$. Therefore if $\ell(I)=2 r$ then $\alpha_{I}=0$. Next fix k between 5 and $2 r-1$ and assume that $\ell(J)>k$ implies that $\alpha_{J}=0$. Note that the set of coefficients of b_{r-1}^{k} 's collected from all $S_{I}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right)$ s for I runs trough the partitions containing $(r+1, r+1)$ and $\ell(I)=k$ is linearly independent over \mathbf{Z}. So we will look at the coefficient of b_{r-1}^{k} in the LHS of equation (33). By our assumption and part (i) this coefficient comes from the sum

$$
\begin{equation*}
\sum_{\ell(I)=k,} \alpha_{I} S_{I}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right) . \tag{35}
\end{equation*}
$$

That is the coefficient of b_{r-1}^{k} in equation (33) is a linear combination of \mathbf{Z} linearly independent functions. On the RHS of equation (33) this coefficient is zero. Therefore $\alpha_{I}=0$ for all I with $\ell(I) \geq 5$.

Denote by H_{r} the part of $\mathcal{T}_{r}^{A_{4}}$ corresponding to the sum of the Schur functions over the partitions containing the partition $(r+1, r+1)$. Using Lemma 9 we can obtain a recursive description H_{r}. Let τ denote the linear endomorphism on the \mathbf{Z}-module of Schur functions corresponding to partitions of length ≤ 4 that sends a Schur function

$$
S_{i_{1}, i_{2}, i_{3}, i_{4}} \quad \text { to } \quad S_{i_{1}+1, i_{2}+1, i_{3}+1, i_{4}+1}
$$

Let H_{r}^{o} denote the sum of those terms in the Schur function expansion of H_{r} which corresponds to partitions of length ≤ 3.

Proposition 10 Keeping the above notation, for $r \geq 2$, we have the following recursive equation:

$$
H_{r}=H_{r}^{o}+\tau\left(H_{r-1}\right)
$$

Proof. . Write

$$
\begin{equation*}
H_{r}=\sum_{I} \alpha_{I} S_{I}=\sum_{J} \alpha_{J} S_{J}+\sum_{K} \alpha_{K} S_{K} \tag{36}
\end{equation*}
$$

where J have at most 3 parts and $K=\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ have 4 parts (we assume that $\alpha_{I} \neq 0$). We set

$$
\begin{equation*}
Q=\sum_{K} \alpha_{K} S_{k_{1}-1, k_{2}-1, k_{3}-1, k_{4}-1} \tag{37}
\end{equation*}
$$

and our aim is to show that $Q=H_{r-1}$. For this it is enough to show that $\mathcal{T}_{r-1}^{A_{4}}=F_{r-1}^{(4)}+Q$. This is equivalent to saying the function $F_{r-1}^{(4)}+Q$ satisfies equations (30) and (31) (for $r-1$). We can also write $F_{r}^{(4)}$ as

$$
\begin{equation*}
F_{r}^{(4)}=\sum_{I} \alpha_{I} S_{I}=\sum_{M} \alpha_{M} S_{M}+\sum_{N} \alpha_{N} S_{N}, \tag{38}
\end{equation*}
$$

where M have at most 3 parts and $N=\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ have 4 parts (we assume that $\alpha_{I} \neq 0$). Note that

$$
\begin{equation*}
\sum_{N} \alpha_{N} S_{n_{1}-1, n_{2}-1, n_{3}-1, n_{4}-1}=F_{r-1}^{(4)} . \tag{39}
\end{equation*}
$$

Consider equation (30) for r. We have

$$
\begin{equation*}
\mathcal{T}_{r}^{A_{4}}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right)=0 \tag{40}
\end{equation*}
$$

Since $\mathcal{T}_{r}^{A_{4}}=F_{r}^{(4)}+H_{r}$ we get

$$
\begin{equation*}
F_{r}^{(4)}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right)=-H_{r}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right), \tag{41}
\end{equation*}
$$

Using the previous lemma in the expansion of this equation we see that the coefficient of b_{r-1}^{4} in LHS is $F_{r-1}^{(4)}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-2}\right)$. On the RHS it is $-Q\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-2}\right)$. Therefore we get equation (30) for $r-1$. The case of equation (31) is similar.

Note that the function $F_{r}^{(4)}$ is given by the formula (11). Therefore using Proposition 10 we obtain a description of $\mathcal{T}_{r}^{A_{4}}$ also:

$$
\begin{equation*}
\mathcal{T}_{r}^{A_{4}}=F_{r}^{(4)}+\tau\left(H_{r-1}\right)+H_{r}^{o}, \quad \text { for } r \geq 2 . \tag{42}
\end{equation*}
$$

Then from equation (33) we get

$$
\mathcal{T}_{r}^{A_{4}}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right)=\left(F_{r}^{(4)}+\tau\left(H_{r-1}\right)+H_{r}^{o}\right)\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right)=0 .
$$

Therefore

$$
\begin{equation*}
H_{r}^{o}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right)=-\left(F_{r}^{(4)}+\tau\left(H_{r-1}\right)\right)\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right) . \tag{43}
\end{equation*}
$$

Similarly from equation (34) we obtain

$$
\begin{equation*}
H_{r}^{o}\left(\mathbb{X}_{2}-\mathbb{F}-\mathbb{B}_{r-2}\right)=-\left(F_{r}^{(4)}+\tau\left(H_{r-1}\right)\right)\left(\mathbb{X}_{2}-\mathbb{F}-\mathbb{B}_{r-2}\right) . \tag{44}
\end{equation*}
$$

Here $H_{r}^{o}=\sum \alpha_{I} S_{I}$ with $I=(a, r+1+p, r+1+q)$ and $a+p+q=2 r-2$. At this point one can expand the equations (43) and (44) to obtain a system of linear equations which determines α_{I}. However it is still possible to further
simplify these equations: First using the factorization property on the LHS of equation (43) we get

$$
\begin{aligned}
& \sum \alpha_{I} S_{I}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right) \\
& =\sum \alpha_{I} S_{a}\left(-\mathbb{E}-\mathbb{B}_{r-1}\right) \cdot R\left(\mathbb{X}_{2}, \mathbb{E}+\mathbb{B}_{r-1}\right) \cdot S_{p, q}\left(\mathbb{X}_{2}\right) \\
& =R\left(\mathbb{X}_{2}, \mathbb{E}+\mathbb{B}_{r-1}\right) \cdot \sum \alpha_{I} S_{a}\left(-\mathbb{E}-\mathbb{B}_{r-1}\right) \cdot S_{p, q}\left(\mathbb{X}_{2}\right)
\end{aligned}
$$

On the LHS of equation (44) this property gives

$$
\begin{aligned}
& \sum \alpha_{I} S_{I}\left(\mathbb{X}_{2}-\mathbb{F}-\mathbb{B}_{r-2}\right) \\
& =\sum \alpha_{I} S_{a}\left(-\mathbb{F}-\mathbb{B}_{r-2}\right) \cdot R\left(\mathbb{X}_{2}, \mathbb{F}+\mathbb{B}_{r-2}\right) \cdot S_{p, q}\left(\mathbb{X}_{2}\right) \\
& =R\left(\mathbb{X}_{2}, \mathbb{F}+\mathbb{B}_{r-2}\right) \cdot \sum \alpha_{I} S_{a}\left(-\mathbb{F}-\mathbb{B}_{r-2}\right) \cdot S_{p, q}\left(\mathbb{X}_{2}\right)
\end{aligned}
$$

Next using once more the factorization property, this time for $\tau\left(H_{r-1}\right)$, and Lemma 8 we define $U_{r}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right)$ and $V_{r}\left(\mathbb{X}_{2}-\mathbb{F}-\mathbb{B}_{r-2}\right)$ as the quotients

$$
U_{r}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right)=-\frac{\left(F_{r}^{(4)}+\tau\left(H_{r-1}\right)\right)\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right)}{R\left(\mathbb{X}_{2}, \mathbb{E}+\mathbb{B}_{r-1}\right)}
$$

and

$$
V_{r}\left(\mathbb{X}_{2}-\mathbb{F}-\mathbb{B}_{r-2}\right)=-\frac{\left(F_{r}^{(4)}+\tau\left(H_{r-1}\right)\right)\left(\mathbb{X}_{2}-\mathbb{F}-\mathbb{B}_{r-2}\right)}{R\left(\mathbb{X}_{2}, \mathbb{F}+\mathbb{B}_{r-2}\right)}
$$

Thus we obtain

$$
\begin{equation*}
\sum \alpha_{I} S_{a}\left(-\mathbb{E}-\mathbb{B}_{r-1}\right) \cdot S_{p, q}\left(\mathbb{X}_{2}\right)=U_{r}\left(\mathbb{X}_{2}-\mathbb{E}-\mathbb{B}_{r-1}\right) \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum \alpha_{I} S_{a}\left(-\mathbb{F}-\mathbb{B}_{r-2}\right) \cdot S_{p, q}\left(\mathbb{X}_{2}\right)=V_{r}\left(\mathbb{X}_{2}-\mathbb{F}-\mathbb{B}_{r-2}\right) \tag{46}
\end{equation*}
$$

Now we can expand these equations and compare the coefficients of monomials on both sides to obtain a system of linear equations whose solution gives the coefficients α_{I}. Since H_{2} is already computed we will start with $r=3$. By Proposition 10 we have

$$
H_{3}=H_{3}^{o}+21 S_{1344}+76 S_{1155}+104 S_{1245}+240 S_{1146}+10 S_{2244}
$$

To determine H_{3}^{o} we need to study partitions I containing the partition $(4,4)$ and $\ell(I) \leq 3$. There are nine of them:

$$
\begin{array}{lll}
I_{1}=147, & I_{4}=255, & I_{7}=48 \\
I_{2}=156, & I_{5}=345, & I_{8}=57 \\
I_{3}=246, & I_{6}=444, & I_{9}=66
\end{array}
$$

So we can write

$$
\begin{equation*}
H_{3}^{o}=\sum_{i=1}^{9} \alpha_{i} S_{I_{i}} \tag{47}
\end{equation*}
$$

for some coefficients $\alpha_{i} \in \mathbf{Z}$. We will first use equation (46). We will compare the coefficients of monomials on both sides of this equation. For this we need to expand the corresponding product $S_{a}\left(-\mathbb{F}-\mathbb{B}_{1}\right) \cdot S_{p, q}\left(\mathbb{X}_{2}\right)$ for $I=I_{1}, I_{2}, \ldots, I_{9}$ and $V_{3}\left(\mathbb{X}_{2}-\mathbb{F}-\mathbb{B}_{r-2}\right)$. For a fixed partition it is not difficult to do this by direct computation. For example, the corresponding product for I_{1} is

$$
\begin{aligned}
S_{1}\left(-\mathbb{F}-\mathbb{B}_{1}\right) \cdot S_{3}\left(\mathbb{X}_{2}\right) & =-\left(2 x_{1}+3 x_{2}+\left(x_{1}+x_{2}\right)+b_{1}\right)\left(x_{1}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{3}\right) \\
& =-\left(3 x_{1}+4 x_{2}+b_{1}\right)\left(x_{1}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{3}\right)
\end{aligned}
$$

So the coefficient of $x_{1}^{3} b_{1}$ in this product is -1 . For I_{3} the coefficient of this monomial is 3 since

$$
\begin{aligned}
S_{2}\left(-\mathbb{F}-\mathbb{B}_{1}\right) & =3 x_{1} b_{1}+4 x_{2} b_{1}+2 x_{1}^{2}+11 x_{1} x_{2}+3 x_{2}^{2}, \\
S_{2}\left(\mathbb{X}_{2}\right) & =x_{1}^{2}+x_{1} x_{2}+x_{2}^{2} .
\end{aligned}
$$

However when we have too many partitions for which we need to repeat similar computations it is better to use a computer. So we use ACE 3.0 (cf. $[21])$ to expand these products and $V_{3}\left(\mathbb{X}_{2}-\mathbb{F}-\mathbb{B}_{r-2}\right)$. (In this paper this is the only use of computers.) We see that the coefficient of $x_{1}^{3} b_{1}$ is zero in the corresponding product for partitions different from I_{1} and I_{3}. The coefficient in $V_{3}\left(\mathbb{X}_{2}-\mathbb{F}-\mathbb{B}_{r-2}\right)$ is -568 . Therefore we obtain the equation

$$
2 \alpha_{3}-\alpha_{1}=-568
$$

Comparing also the coefficients of other monomials in equations (45) and (46) we have the following system of equations:

$$
\begin{array}{rlll}
-\alpha_{1} & +2 \alpha_{3} & & =-568 \\
\alpha_{1} & -4 \alpha_{3} & +3 \alpha_{5} & \\
\alpha_{1} & -3 \alpha_{3} & +2 \alpha_{5} & \\
\alpha_{1}+\alpha_{2} & -7 \alpha_{3}-3 \alpha_{4}+13 \alpha_{5}-6 \alpha_{6} & =-284 \\
\alpha_{1}+\alpha_{2} & -7 \alpha_{3}-4 \alpha_{4}+14 \alpha_{5}-6 \alpha_{6} & =-562 \\
3 \alpha_{1} & +2 \alpha_{3} & -\alpha_{7} & =-602 \\
-4 \alpha_{1}-2 \alpha_{2}+4 \alpha_{3} & +\alpha_{7}+\alpha_{8} & =-110 \\
-4 \alpha_{1}-4 \alpha_{2}+4 \alpha_{3}+4 \alpha_{4} & +\alpha_{7}+\alpha_{8}+\alpha_{9} & =-1392 \\
7 \alpha_{1}+7 \alpha_{2}-16 \alpha_{3}-11 \alpha_{4}+12 \alpha_{5} & -\alpha_{7}-\alpha_{8}-\alpha_{9} & =2032
\end{array}
$$

Solving this system we see that

$$
\begin{array}{rlr}
\alpha_{1}=1900, & \alpha_{4}=200, & \alpha_{7}=3704, \\
\alpha_{2}=804, & \alpha_{5}=160, & \alpha_{8}=1736, \\
\alpha_{3}=666, & \alpha_{6}=14, & \alpha_{9}=520 .
\end{array}
$$

Therefore we have computed

$$
\begin{array}{r}
H_{3}^{o}=1900 S_{147}+804 S_{156}+666 S_{246}+200 S_{255}+160 S_{345}+14 S_{444}+ \\
3704 S_{48}+1736 S_{57}+520 S_{66}
\end{array}
$$

Repeating the same procedure for $r=4$ we see that

$$
\begin{array}{r}
H_{4}^{o}=116 S_{556}+280 S_{466}+889 S_{457}+1476 S_{277}+1490 S_{367}+3376 S_{88}+ \\
3520 S_{358}+5120 S_{268}+5504 S_{178}+10840 S_{259}+11520 S_{79}+ \\
13520 S_{169}+25280 S_{6,10}+27536 S_{1,5,10}+50624 S_{5,11}
\end{array}
$$

These enable us to write the Thom polynomials for the singularities $A_{4}(3)$ and $A_{4}(4)$.
Theorem 11 We have

$$
\begin{aligned}
\mathcal{T}_{3}^{A_{4}}= & S_{3333}+9 S_{2334}+24 S_{2226}+26 S_{2235}+55 S_{1335}+210 S_{1236} \\
& +216 S_{1227}+285 S_{336}+460 S_{1137}+576 S_{1119}+624 S_{1128} \\
& +1214 S_{237}+1320 S_{228}+3516 S_{138}+5040 S_{129}+5184 S_{1,1,10} \\
& +6920 S_{39}+11040 S_{2,10}+13824 S_{12}+14976 S_{1,11} \\
& +10 S_{2244}+21 S_{1344}+76 S_{1155}+104 S_{1245}+240 S_{1146} \\
& +14 S_{444}+160 S_{345}+200 S_{255}+520 S_{66}+666 S_{246} \\
& +804 S_{156}+1736 S_{57}+1900 S_{147}+3704 S_{48}, \\
\mathcal{T}_{4}^{A_{4}}= & S_{4444}+9 S_{3445}+24 S_{3337}+26 S_{3346}+55 S_{2446}+210 S_{2347} \\
+ & 216 S_{2338}+285 S_{1447}+460 S_{2248}+576 S_{2,2,2,10}+624 S_{2239} \\
+ & 1214 S_{1348}+1320 S_{1339}+1351 S_{448}+3516 S_{1249} \\
+ & 5040 S_{1,2,3,10}+5184 S_{1,2,2,11}+6090 S_{349}+6840 S_{3,3,10} \\
+ & 6920 S_{1,1,4,10}+11040 S_{1,1,3,11}+13824 S_{1,1,1,13}+14976 S_{1,1,2,12} \\
+ & 19684 S_{2,4,10}+29136 S_{2,3,11}+31680 S_{2,2,12}+51240 S_{1,4,11} \\
+ & 84384 S_{1,3,12}+95536 S_{4,12}+120960 S_{1,2,13}+124416 S_{1,1,14} \\
+ & 166080 S_{3,13}+264960 S_{2,14}+331776 S_{16}+359424 S_{1,15} \\
+ & 10 S_{3355}+21 S_{2455}+76 S_{2266}+104 S_{1356}+240 S_{2257} \\
+ & 14 S_{1555}+160 S_{1456}+200 S_{1366}+520 S_{1177}+666 S_{1357} \\
+ & 804 S_{1267}+1736 S_{1168}+1900 S_{1258}+3704 S_{159} \\
+ & 116 S_{556}+280 S_{466}+889 S_{457}+1476 S_{277}+1490 S_{367}+3376 S_{88} \\
+ & 3520 S_{358}+5120 S_{268}+5504 S_{178}+10840 S_{259}+11520 S_{79} \\
+ & 13520 S_{169}+25280 S_{6,10}+27536 S_{1,5,10}+50624 S_{5,11} .
\end{aligned}
$$

Acknowledgments The results of this paper were obtained with the help of Piotr Pragacz during my stay at the IMPAN. This is a part of my continuing Ph.D. studies, supervised by Özgür Kişisel and Piotr Pragacz. I thank
them for their perfect guidance. I also would like to thank IMPAN staff for providing me an excellent working atmosphere and to Małgorzata Mikosz, Maria Pragacz, Piotr Pragacz and Andrzej Weber for their hospitality.

References

[1] V. Arnold, V. Vasilev, V. Goryunov, O. Lyashko: Singularities. Local and global theory, Enc. Math. Sci. vol. 6 (Dynamical Systems VI), Springer, 1993.
[2] G. Berczi, L. Feher, R. Rimanyi, Expressions for resultants coming from the global theory of singularities, in: "Topics in algebraic and noncommutative geometry", (L. McEwan et al. eds.), Contemporary Math. AMS 324 (2003), 63-69.
[3] A. Berele, A. Regev, Hook Young diagrams with applications to combinatorics and to representation theory of Lie superalgebras, Adv. in Math. 64 (1987), 118-175.
[4] A. Du Plessis, C.T.C. Wall, The geometry of topological stability, Oxford Math. Monographs, 1995.
[5] W. Fulton, P. Pragacz, Schubert varieties and degeneracy loci, Springer LNM 1689 (1998).
[6] T. Gaffney, The Thom polynomial of $\overline{\Sigma^{1111}}$, in: "Singularities", Proc. Symposia in Pure Math. 40(1), 399-408, AMS, 1983.
[7] S. Kleiman, The enumerative theory of singularities, in: "Real and complex singularities, Oslo 1976" (P. Holm ed.) (1978), 297-396.
[8] A. Lascoux, Symmetric functions and combinatorial operators on polynomials, CBMS/AMS Lectures Notes 99, Providence (2003).
[9] A. Lascoux, Addition of ± 1 : application to arithmetic, Séminaire Lotharingien de Combinatoire, B52a (2004), 9 pp .
[10] I.G. Macdonald, Symmetric functions and Hall-Littlewood polynomials, Oxford Math. Monographs, Second Edition, 1995.
[11] I. Porteous, Simple singularities of maps, in: "Proc. Liverpool Singularities I", Springer LNM 192 (1971), 286-307.
[12] P. Pragacz, Enumerative geometry of degeneracy loci, Ann. Sc. Ec. Norm. Sup. 21 (1988), 413-454.
[13] P. Pragacz, Algebro-geometric applications of Schur S - and Q-polynomials, in: "Topics in invariant theory" - Séminaire d'Algèbre Dubreil-Malliavin 19891990 (M-P. Malliavin ed.), Springer LNM 1478 (1991), 130-191.
[14] P. Pragacz, A. Thorup, On a Jacobi-Trudi identity for supersymmetric polynomials, Adv. in Math. 95 (1992), 8-17.
[15] P. Pragacz, Thom polynomials and Schur functions I, Preprint (August 2005), math.AG/0509234.
[16] P. Pragacz, A. Weber, Positivity of Schur function expansions of Thom polynomials, Preprint, math.AG/0605308 and MPIM Bonn 2006 (60).
[17] R. Rimanyi, Computation of the Thom polynomial of Σ^{1111} via symmetries of singularities, in "Real and complex singularities" (J.W. Bruce, F. Tari eds.), Chapman\&Hall/CRC RNM 412 (2000), 15-35.
[18] R. Rimanyi, Thom polynomials, symmetries and incidences of singularities, Inv. Math. 143 (2001), 499-521.
[19] F. Ronga, Le calcul des classes duales aux singularitiés de Boardman d'ordre 2, Comm. Math. Helv. 47 (1972), 15-35.
[20] R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier 6 (1955-56), 43-87.
[21] S. Veigneau, ACE, an algebraic combinatorics environment for the computer algebra system MAPLE, 1998.

[^0]: 2000 Mathematics Subject Classification. 05E05, 14N10, 57R45.
 Key words and phrases. Thom polynomials, singularities, global singularity theory, classes of degeneracy loci, Schur functions, resultants.
 *Work was done during the author's stay at the IMPAN, supported by TÜBİTAK.

[^1]: ${ }^{1}$ This result was conjectured in [2] and [15]

[^2]: ${ }^{2}$ We allow the elements to be repeated.

[^3]: ${ }^{3}$ These functions are also called supersymmetric Schur functions or Schur functions in difference of alphabets.

[^4]: ${ }^{4}$ See [8] or [3] for a proof and [13], [14] for a more general factorization, called the Sergeev-Pragacz formula.

[^5]: ${ }^{5}$ This condition holds true for the singularities $A_{4}(-)$.

[^6]: ${ }^{6}$ the difference between the minimal number of relations and the number of generators

