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SYMPLECTIC SINGULARITIES OF VARIETIES:

THE METHOD OF ALGEBRAIC RESTRICTIONS

W. DOMITRZ, S. JANECZKO, AND M. ZHITOMIRSKII

Abstract. We study germs of singular varieties in a symplectic space. In

[A1] V. Arnol’d discovered so called “ghost” symplectic invariants which are

induced purely by singularity. We introduce algebraic restrictions of differen-

tial forms to singular varieties and show that this ghost is exactly the invariants

of the algebraic restriction of the symplectic form. This follows from our gene-

ralization of Darboux-Givental’ theorem from non-singular submanifolds to

arbitrary quasi-homogeneous varieties in a symplectic space. Using algebraic

restrictions we introduce new symplectic invariants and explain their geomet-

ric meaning. We prove that a quasi-homogeneous variety N is contained in

a non-singular Lagrangian submanifold if and only if the algebraic restriction
of the symplectic form to N vanishes. The method of algebraic restriction is
a powerful tool for various classification problems in a symplectic space. We
illustrate this by complete solutions of symplectic classification problem for
the classical A, D, E singularities of curves, the S5 singularity, and for regular
union singularities.

1. Introduction and main results

1.1. Starting points. The starting points for this paper are as follows:

• the classical Darboux-Givental’ theorem on non-singular submanifolds of a sym-
plectic manifold (proved by A. Givental’ and firstly published in [AG]);

• the works [A1], [A2] in which V. Arnol’d studied singular curves in symplectic
and contact spaces and introduced the local symplectic and contact algebras.

• the work [Z] developing the local contact algebra.

The work [Z] is based on the notion of the algebraic restriction of a contact
structure to a subset N of a contact manifold. The present work is based on a
similar notion of the algebraic restriction to N of a symplectic structure, and we
show that like in the contact case it is a powerful tool for the study of singular
submanifolds of a symplectic manifold.

1.2. Darboux-Givental’ theorem. A diffeomorphism Φ : (R2n, 0) → (R2n, 0) of
a symplectic space (R2n, ω) is called a symplectomorphism if it preserves the sym-
plectic form ω: Φ∗ω = ω. Two subsets N1, N2 ⊂ R

2n are called symplectomorphic
if there exists a symplectomorphism which brings N2 to N1.
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Convention. Throughout the paper all objects are germs at 0 of a fixed category
which is either C∞ or real-analytic.

Theorem 1.1. (Darboux-Givental’ theorem, see [AG]).

(i) Let N be a non-singular submanifold of R
2n and let ω0, ω1 be symplectic forms

on R
2n with the same restriction to TN . There exists a local diffeomorphism Φ

such that Φ(x) = x for any x ∈ N and Φ∗ω1 = ω0.

(ii) (corollary of (i)) Two equal-dimensional non-singular submanifolds N1, N2 of
a symplectic space (R2n, ω) are symplectomorphic if and only if the restrictions of
the symplectic form ω to TN1 and TN2 are diffeomorphic.

Let Symp(R2n)|Rr = {ω|TRr : ω ∈ Symp(R2n)}, where Symp(R2n) denotes
the set of all symplectic 2-forms on R

2n. Theorem 1.1, (ii) reduces the classifica-
tion of germs of non-singular r-dimensional submanifolds of a symplectic manifold
with respect to the group of symplectomorphisms to the classification of the set
Symp(R2n)|Rr with respect to the group of all local diffeomorphisms of R

r. This
reduction is completed by an explicit description of Symp(R2n)|Rr .

Theorem 1.2. (see [AG]). The set Symp(R2n)|Rr consists of closed 2-forms on R
r

of rank ≥ 2(r − n).

1.3. The problem of symplectic classification of singular varieties. The
present work is devoted to the following problem.

Problem A. To classify with respect to the group of symplectomorphisms the
class of all varieties in a symplectic space (R2n, ω) which are diffeomorphic to a
fixed singular variety N .

We give a method for solving this problem for any quasi-homogeneous variety
N based on generalization of Theorem 1.1 from non-singular submanifolds to arbi-
trary quasi-homogeneous varieties. We recall the definition of a quasi-homogeneous
variety in section 2.6. The simplest example is

(1.1) N = Ak = {x ∈ R
2n : xk+1

1 − x2
2 = x≥3 = 0}, k ≥ 1,

which is a cusp if k is even and the union of two non-singular curves if k is odd.

1.4. Arnold’s ghost invariant. A natural symplectic invariant of a singular vari-
ety N is the restriction of the symplectic 2-form to the regular part N reg of N . This
invariant is not complete - there are other independent and much more involved
invariants. To explain this, in the work [A1] V. Arnol’d solved the classification
Problem A for the simplest case when the restriction of the symplectic structure to
N reg vanishes – case N = A2`. Arnol’d proved that if ` ≥ 2 then there are exactly
2`+ 1 singularities (orbits). Describing this result Arnol’d wrote

”...something nontrivial remains from the symplectic structure at the singular points
of the curve. It would be interesting to describe this ghost of the symplectic structure
in terms of the local algebra of the singularity.”

1.5. Our approach. We believe that in the present paper this objective has been
reached: the ghost is exactly the singularity of the algebraic restriction of the
symplectic structure to Ak. The algebraic restrictions are introduced in the begin-
ning of section 2. The results of section 2 give a method (the method of algebraic
restrictions) for solving Problem A for many types of singularities. The main re-
sults are Theorems A - C (proved in section 3) and D. Theorem A is the base for
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the method – it is a generalization of Theorem 1.1 from non-singular submanifolds
to arbitrary quasi-homogeneous varieties N : one has to replace the pullback by the
algebraic restriction. Theorem B states that the symplectic form has zero alge-
braic restriction to N if and only if N is contained in a non-singular Lagrangian
submanifold. We introduce the index of non-isotropness and the symplectic mul-
tiplicity of N and show how these symplectic invariants can be calculated using
the algebraic restrictions (Theorems C and D ). In section 2 we also illustrate
the method of algebraic restrictions showing that the results in [A1], devoted to
Problem A with N = Ak, are almost immediate corollaries of Theorems A - D.
Of course these theorems can be applied to many much more involved singulari-
ties. In the present work, using the method of algebraic restrictions, we continue
[A1] solving Problem A for the case that N is one of the classical Dk, E6, E7, E8

singularities of planar curves (sections 4, 5), we also solve Problem A for the case
N = S5 = {x2

1 − x2
2 − x2

3 = x2x3 = x≥4 = 0} (section 6) and for the case that N
is a regular union singularity, i.e. N = N1 ∪ · · · ∪ Ns, where Ni is a non-singular
submanifold and the sum T0N1 + · · · + T0Ns is direct (section 7).

2. The method of algebraic restrictions

2.1. Definition of algebraic restrictions. Given a germ of a non-singular man-
ifold M denote by Λp(M) the space of all germs at 0 of differential p-forms on M .
Given a subset N ⊂M introduce the following subspaces of Λp(M):

Λp
N (M) = {ω ∈ Λp(M) : ω(x) = 0 for any x ∈ N};

Ap
0(N,M) = {α+ dβ : α ∈ Λp

N (M), β ∈ Λp−1
N (M).}

The relation ω(x) = 0 means that the p-form ω annihilates any p-tuple of vectors
in TxM , i.e. all coefficients of ω in some (and then any) local coordinate system
vanish at the point x.

It is easy to check that in the case that N is a non-singular submanifold of R
m

the restriction of ω to TN can be defined in the following algebraic way.

Proposition 2.1. If N is a non-singular submanifold of M then a p-form ω on M
has zero restriction to TN if and only if ω ∈ Ap

0(N,M). Therefore the restriction
of ω to TN can be defined as the equivalence class of ω in the space Λp(M), where
the equivalence is as follows: ω is equivalent to ω̃ if ω − ω̃ ∈ Ap

0(N,M).

Proof. Take local coordinates x = (x1, . . . , xk), y = (y1, . . . , yl) on M such that N
is described by the equations x = 0. A p-form ω has zero restriction to TN if and
only if it can be written in the form

∑
xiαi +

∑
dxi ∧µi, where αi are p-forms and

µi are (p− 1)-forms. It remains to note that dxi ∧ µi = d(xiµi) − xidµi. �

Note now that Proposition 2.1 involves no structure of N . Allowing N to be any
subset of M and calling the equivalence classes by algebraic restrictions (we believe
this name is natural) we get the following definition, generalizing the definition in
[Z] of the algebraic restriction to N of a 1-form.

Definition 2.2. Let N be a subset of M and let ω ∈ Λp(M). The algebraic
restriction of ω to N is the equivalence class of ω in Λp(M), where the equivalence
is as follows: ω is equivalent to ω̃ if ω − ω̃ ∈ Ap

0(N,M).
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Notation. The algebraic restriction of a p-form ω on M to a subset N ⊂M will be
denoted by [ω]N . Writing [ω]N = 0 (or saying that ω has zero algebraic restriction
to N) we mean that [ω]N = [0]N , i.e. ω ∈ Ap

0(N,M).

It is clear that if ω ∈ Ap
0(N,M) then dω ∈ Ap+1

0 (N,M). This allows to define
the differential of an algebraic restriction: d[ω]N = [dω]N . Another well-defined
operation is the external multiplication: [ω1]N ∧ [ω2]N = [ω1 ∧ ω2]N , where ω1 and
ω2 are differential forms of any degrees. This operation is well-defined due to the
following almost obvious proposition.

Proposition 2.3. Let N ⊂ R
m and let ω be a p-form on R

m such that [ω]N = 0.
Let µ be any q-form on R

m. Then [ω ∧ µ]N = 0.

Proof. It suffices to write ω in the form α+dβ with α and β vanishing at any point
of N and to note that dβ ∧ µ = d(β ∧ µ) + (−1)qβ ∧ dµ. �

2.2. Example: algebraic restrictions of 2-forms to Ak. The set of algebraic
restrictions of p-forms on R

m to any variety N ⊂ R
m is a vector space if p is fixed.

Let us calculate this space for the case p = 2 and N = Ak = (1.1). Since the
functions x≥3 have zero algebraic restriction to Ak then by Proposition 2.3 the
algebraic restriction to Ak of any 2-form can be represented by a 2-form of the
form f(x1, x2)dx1 ∧ dx2. Let H = xk+1

1 − x2
2. We will use again (several times)

Proposition 2.3. Since [dH]Ak
= 0 then [dH∧dx1]Ak

= [dH∧dx2]Ak
= 0. It follows

that if f(x1, x2) belongs to the gradient ideal of H then [f(x1, x2)dx1 ∧dx2]Ak
= 0.

The gradient ideal is (x2, x
k
1). Consequently the algebraic restriction to Ak of any

2-form on R
2n can be represented by a 2-form of the form

∑k−1
i=0 cix

i
1dx1 ∧ dx2.

It is easy to show that if such a 2-form has zero algebraic restriction to Ak then
c0 = · · · = ck−1 = 0. We obtain:

the dimension of the space of algebraic restrictions to Ak of all 2-forms on R
2n is

equal to k. This space is spanned by the algebraic restrictions

(2.1) [Ak]i = [xi
1dx1 ∧ dx2]Ak

, i = 0, . . . , k − 1.

2.3. The action of the group of diffeomorphisms. Let M and M̃ be non-

singular equal-dimensional manifolds and let Φ : M̃ → M be a local diffeomor-

phism. Let N be a subset of M . It is clear that Φ∗Ap
0(N,M) = Ap

0(Φ
−1(N), M̃).

Therefore the action of the group of diffeomorphisms can be defined as follows:

Φ∗([ω]N ) = [Φ∗ω]Φ−1(N), where ω is an arbitrary p-form on M . Let Ñ ⊂ M̃ . Two
algebraic restrictions [ω]N and [ω̃] eN

are called diffeomorphic if there exists a local

diffeomorphism from M̃ to M sending the first algebraic restriction to the second

one. This of course requires that the same diffeomorphism sends Ñ to N .

If M = M̃ and N = Ñ then the definition of diffeomorphic algebraic restric-
tions reduces to the following one: two algebraic restrictions [ω]N and [ω̃]N are
diffeomorphic if there exists a local symmetry Φ of N (i.e. a local diffeomorphism
preserving N) such that [Φ∗ω]N = [ω̃]N .

2.4. Reduction theorem. If a set N ⊂ R
m is contained in a non-singular sub-

manifold M ⊂ R
m then the classification of algebraic restrictions to N of p-forms

on R
m reduces to the classification of algebraic restrictions to N of p-forms on M .

At first note that the algebraic restrictions [ω]N and [ω|TM ]
N

can be identified:
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Proposition 2.4. Let N be the germ at 0 of a subset of R
m contained in a non-

singular submanifold M ⊂ R
m and let ω1, ω2 be p-forms on R

m. Then [ω1]N =
[ω2]N if and only if

[
ω1|TM

]
N

=
[
ω2|TM

]
N

.

Proof. Take local coordinates in which M = {x ∈ R
n : x1 = · · · = xs = 0}. Then

[x1]N = · · · = [xs]N = 0 and Proposition 2.4 follows from Proposition 2.3. �

The following, less obvious statement, means that the orbits of the algebraic
restrictions [ω]N and [ω|TM ]

N
also can be identified.

Theorem 2.5. Let N1, N2 be subsets of R
m contained in equal-dimensional non-

singular submanifolds M1,M2 respectively. Let ω1, ω2 be two p-forms. The algebraic
restrictions [ω1]N1

and [ω2]N2
are diffeomorphic if and only if the algebraic restric-

tions
[
ω1|TM1

]
N1

and
[
ω2|TM2

]
N2

are diffeomorphic.

Proof. The “if” part follows from Proposition 2.4. To prove the “only if” part
it suffices to prove the following: the restrictions of any p-form ω to TM1 and
TM2 have diffeomorphic algebraic restrictions to any set N ⊂ M1 ∩ M2. This
statement easily follows from the following observations: (a) one can easily prove
that there exists a local diffeomorphism of R

m sending M1 to M2 and preserving
pointwise the set M1 ∩ M2 (and consequently preserving pointwise N); (b) any
local diffeomorphism Φ preserving N pointwise preserves the algebraic restriction
to N of any p-form. The latter follows from Proposition 2.3 because Φ has the form
xi → xi + φi(x), where φi(x) are functions vanishing at points of N . �

2.5. Example: classification of algebraic restrictions of 2-forms to Ak. We
continue Example 2.2. The curve Ak has a symmetry of the form Φ : (x1, x2) →
(x1φ

2, x2φ
k+1) where φ = φ(x1, x2) is any function such that φ(0) = 1. In view of

section 2.2 consider the symmetries

Φ : (x1, x2) →
(
x1(1 + rxs

1)
2, x2(1 + rxs

1)
k+1

)
, r ∈ R, s ≥ 1.

It is easy to calculate

Φ∗(xp
1dx1∧dx2) =

((
xp

1 + r̃xp+s
1 + o(||(x1, x2)||

p+s
))
dx1∧dx2, r̃ = r(2p+2s+k+3).

Along with results of section 2.2 this implies

(Φ)∗ ([Ak]p) ∈ [Ak]p + r̃ · [Ak]p+s + span
(
[Ak]p+s+1, . . . , [Ak]k−1

)
.

Since r and s ≥ 1 are arbitrary it follows that any algebraic restriction of the affine
space [Ak]p + span

(
[Ak]p+1, . . . , [Ak]k−1

)
is diffeomorphic to [Ak]p. Therefore any

non-zero algebraic restriction to Ak of a 2-form on R
2n is diffeomorphic to r · [Ak]p,

where r 6= 0 and p ∈ {0, ..., k − 1}. The factor r can be reduced to 1 due to the
scale symmetries (x1, x2) → (t2x1, t

k+1x2) and (x1, x2) → (x1,−x2). The algebraic
restrictions [Ak]i and [Ak]j with i < j ≤ k − 1 are not diffeomorphic because, as it
is easy to prove, [Ak]i cannot be represented by a 2-form with zero i-jet. Therefore
we obtain the following result:

any non-zero algebraic restriction to Ak of a 2-form on R
m is diffeomorphic to one

and only one of the algebraic restrictions (2.1).
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2.6. Relative cohomology groups. The name “algebraic restriction” was intro-
duced in [Z], but the differential subcomplex of the de Rham complex related to
the spaces Ap

0(N,M) and the corresponding relative cohomology groups

Hp(N,Rm) =
{ω ∈ Ap

0(N,R
m) : dω = 0}

{dα : α ∈ Ap−1
0 (N,Rm)}

were studied much earlier, see [R], [Sa1], [B], [Se], [Gr1], [Gr2]. See also the work
[DJZ] and other references there. The main purpose of the mentioned works was to
express certain local properties of N in terms of vanishing of some of the relative
cohomology groups. In the present work we will use the main result in this direction
which can be called the relative Poincare lemma.

Definition 2.6. The germ at 0 of a set N ⊂ R
m is called quasi-homogeneous if

there exist a local coordinate system x1, . . . , xm and positive numbers λ1, . . . , λm

such that the following holds: if a point with coordinates xi = ai belongs to N then
for any t ∈ [0, 1] the point with coordinates xi = tλiai also belongs to N .

Theorem 2.7. (see [R]). If N ⊂ R
m is a quasi-homogeneous subset then

Hp(N,Rm) = {0} for any p ≥ 1.

2.7. Generalization of Darboux-Givental’ theorem. The method of algebraic
restrictions is based on the following theorem.

Theorem A. (cf. Theorem 1.1).

(i) Let N be a quasi-homogeneous subset of R
2n. Let ω0, ω1 be symplectic forms on

R
2n with the same algebraic restriction to N . There exists a local diffeomorphism

Φ such that Φ(x) = x for any x ∈ N and Φ∗ω1 = ω0.

(ii) (corollary of (i)) Two quasi-homogeneous subsets N1, N2 of a fixed symplectic
space (R2n, ω) are symplectomorphic if and only if the algebraic restrictions of the
symplectic form ω to N1 and N2 are diffeomorphic.

Theorem A generalizes Theorem 1.1 since any non-singular submanifold is quasi-
homogeneous and, as we explained in Proposition 2.1, the algebraic restriction of a
p-form ω to a non-singular submanifold N can be identified with ω|TN .

Remark. Our proofs in section 3 show that in Theorem A and in its corollaries
– Theorems B, C, D below – the assumption that N is quasi-homogeneous can
be replaced by the condition H2(N,R2n) = {0}. This condition follows from the
quasi-homogeneity of N (see Theorem 2.7), but in general it is weaker than the
quasi-homogeneity. It is possible that H2(N,R2n) = {0} but one of the other
cohomology groups is not trivial and consequently N is not quasi-homogeneous,
see [Gr1]. See also [DJZ] where there are examples of non-quasi-homogeneous
varieties N such that all cohomology groups are trivial. If H2(N,R2n) 6= {0} then
the conclusion of Theorem A, (i) remains the same if the symplectic forms ω1, ω2

satisfy the additional assumption that ω1 − ω2 has zero class in H2(N,R2n). The
proof is the same as that of Theorem A, (i) in section 3. Nevertheless, we believe
that for a certain class of varieties N such that H2(N,R2n) 6= {0} the algebraic
restriction [ω]N remains to be a complete symplectic invariant unless [ω]N = 0.

2.8. Application to Problem A. Let us fix the following notations:

•
[
Λ2(R2n)

]
N

: the vector space consisting of algebraic restrictions to a subset

N ⊂ R
2n of all 2-forms on R

2n;
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•
[
Λ2,closed(R2n)

]
N

: the subspace of
[
Λ2(R2n)

]
N

consisting of algebraic restrictions

to N of all closed 2-forms on R
2n;

•
[
Symp(R2n)

]
N

: the open set in
[
Λ2,closed(R2n)

]
N

consisting of algebraic restric-

tions to N of all symplectic 2-forms on R
2n.

Theorem A reduces problem A for quasi-homogeneous N to the following

Problem B. To classify the algebraic restrictions of set
[
Symp(R2n)

]
N

with respect
to the group of symmetries of N .

In fact, assume that problem B is solved, i.e. we have a final list of normal forms
[θ1]N , ..., [θs]N ∈

[
Symp(R2n)

]
N

for algebraic restrictions, where θi are certain 2-
forms (some of them might depend on parameters). The 2-forms θi representing the
algebraic restrictions might be not symplectic and even not closed. But we know
that there exist symplectic forms ωi such that [ωi]N = [θi]N . Now, given a fixed
symplectic space (R2n, ω0) take local diffeomorphisms Φi of R

2n sending ωi to ω0

(the existence of such diffeomorphism follows from the classical Darboux theorem).
Consider the varieties N i = Φ−1

i (N). By Theorem A the tuple N1, . . . , Ns is a
final list of normal forms for problem A.

2.9. Arnold’s ghost invariant in terms of algebraic restrictions. As we men-
tioned in section 1.4, for the case N = Ak =(1.1) Problem A was studied by V.
Arnol’d in [A1] (for even k). In fact, the classification results in [A1] and the ghost
invariant are already obtained by our method in examples given in sections 2.2
and 2.5. Since Ak is contained in a non-singular 2-manifold then Proposition 2.4
implies that the algebraic restriction to Ak of any 2-form on R

2n can be realized
by a symplectic form provided n ≥ 2. Therefore the results of sections 2.2, 2.5
imply that in the classification Problem B with N = Ak ⊂ R

2n≥4 there are exactly
k + 1 orbits - the orbits of the k algebraic restrictions (2.1) and the orbit of the
zero algebraic restriction.

This complete solution of Problem B can be easily transferred to solution of
Problem A – the classification of symplectic Ak-singularities. The algebraic re-
strictions [Ak]i are represented by 2-forms which are not symplectic, but since they
belong to

[
Symp(R2n)

]
Ak

then they also can be represented by symplectic forms.

For example the zero algebraic restriction can be represented by a symplectic form

θk = dx1 ∧ dx3 + dx2 ∧ dx4 + dx5 ∧ dx6 + · · · + dx2n−1 ∧ dx2n

and [Ak]i with i < k can be represented by the symplectic form

θi = xi
1dx1 ∧ dx2 + θk, 1 ≤ i ≤ k − 1.

Given a symplectic form ω fix a local diffeomorphism Φi bringing the symplectic
form θi to ω, i = 0, 1, . . . , k. Let Ai

k = Φ−1
i (Ak). By Theorem A any singular curve

in the symplectic space (R2n, ω) which is diffeomorphic to Ak is symplectomorphic
to one and only one of the curves A0

k, . . . , A
k
k. This gives us the classification result

obtained in [A1].

The geometric meaning of this classification, explained in [A1], is also one of the
applications of the method of algebraic restrictions, as it will be showed below.
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2.10. The geometric meaning of the zero algebraic restriction. Theorem
1.1 easily implies that if N1, N2 are any diffeomorphic subsets of non-singular La-
grangian submanifolds in a fixed symplectic space then N1 and N2 are symplec-
tomorphic. How to check if a subset of a symplectic manifold is contained in a
non-singular Lagrangian submanifold?

Theorem B. A quasi-homogeneous set N of a symplectic space (R2n, ω) is con-
tained in a non-singular Lagrangian submanifold if and only if the symplectic form
ω has zero algebraic restriction to N .

Example 2.8. Let C be a curve in a symplectic space (R2n≥4, ω) which is diffeo-
morphic to Ak. Let Ak

k be the curve defined in section 2.9. By Theorem B the
curve C is contained in a non-singular Lagrangian submanifold if and only if it is
symplectomorphic to Ak

k.

Arnol’d also introduced a symplectic invariant characterizing how far is a curve
of the class Ak from the closest non-singular Lagrangian submanifold. In the next
subsection we show that this invariant can be generalized and expressed in terms
of algebraic restrictions.

2.11. Index of isotropness. In terms of algebraic restrictions one can express the
following symplectic invariant. Given a differential form germ ω with zero (k − 1)-
jet and non-zero k-jet we will say that k is the order of vanishing of ω. If ω(0) 6= 0
then the order of vanishing is 0. If ω = 0 or, in the C∞-category, ω has the zero
Taylor expansion, then the order of vanishing is ∞.

Definition 2.9. Let N be a subset of a symplectic space (R2n, ω). The index of
isotropness of N is the maximal order of vanishing of the 2-forms ω|TM over all
non-singular submanifolds M containing N .

It is easy to prove that an equivalent definition is as follows: the index of isotrop-
ness is the maximal order of tangency between non-singular submanifolds contain-
ing N and non-singular isotropic submanifolds of the same dimension. The index
of isotropness is equal to 0 if N is not contained in any non-singular submanifold
which is tangent to some isotropic submanifold of the same dimension. If N is
contained in a non-singular Lagrangian submanifold then the index of isotropness
is ∞. (In the analytic category “if” can be replaced by “if and only if”).

Theorem C. The index of isotropness of a quasi-homogeneous variety N in a
symplectic space (R2n, ω) is equal to the maximal order of vanishing of closed 2-
forms representing the algebraic restriction [ω]N .

Example 2.10. (cf. results in [A1]). Let Ai
k be the curves in a symplectic space

(R2n, ω) defined in section 2.9. By Theorem C the index of isotropness of Ai
k is

equal to i if i ≤ k − 1 and the index of isotropness of Ak
k (the curve which is

contained in a non-singular Lagrangian submanifold) is ∞.

2.12. Symplectic multiplicity. One more invariant which can be effectively de-
scribed in terms of algebraic restrictions is the symplectic multiplicity of a variety
in a symplectic space. This invariant, generalizing the symplectic defect of a pa-
rameterized curve [IJ1], is defined below. At first let us fix the definition of a variety
and one of equivalent definitions of the (usual) multiplicity of a variety. Recall that
the zero set of an ideal I in the ring of function germs (Rm, 0) → R is the subset
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of R
m consisting of points at which vanishes any function in I. The ideal has the

property of zeros if it contains any function vanishing on its zero set. Throughout
the paper by a variety in R

m we mean the zero set of a k-generated ideal having
the property of zeros, k ≥ 1.

Definition 2.11 (cf. [T], [AVG]). Denote by Var(k,m) the space of all varieties
described by k-generated ideals. Given N ∈ Var(k,m) denote by (N) the orbit of
N with respect to the group of local diffeomorphisms. The multiplicity (or Tjurina
number) of N is the codimension of (N) in Var(k,m).

To make this definition precise one should associate with N a map germ H :
(Rm, 0) → (Rk, 0) whose k components are generators of the ideal of functions va-
nishing on N . Then the orbit (N) can be identified with the orbit of H with respect
to the V -equivalence, see [AVG]. Recall from [AVG] that the V -equivalence of two

map germs H, H̃ : (Rm, 0) → (Rk, 0) means the existence of a local diffeomorphism
Φ and a germ M of a map from R

m to the manifold of non-singular k× k matrices
such that H̃ = M ·H(Φ).

A variety N ∈ Var(k,m) is called a complete intersection singularity if k is the
depth of the ideal of functions vanishing on N . (In the holomorphic category this
means that k is the codimension of N in C

m). If N is not a complete intersection
singularity then its multiplicity is ∞. This follows from the fact that the set of k-
tuples of function germs generating an ideal of depth 6= k has infinite codimension
in the space of all k-tuples of function germs.

In view of Definition 2.11 we define the symplectic multiplicity of a variety in a
symplectic space as follows.

Definition 2.12. Let N be a variety in a symplectic space (R2n, ω). Let (N) be
the orbit of N with respect to the group of local diffeomorphisms and let (N)symp

be the orbit of N with respect to the group of local symplectomorphisms. The
symplectic multiplicity of N is the codimension of (N)symp in (N).

To make this definition precise take, as above, a map germ H : (R2n, 0) → (Rk, 0)
whose components generate the ideal of functions vanishing on N . Let (H)V be
the orbit of H with respect to the V -equivalence and let (H)V,symp be the orbit of
H with respect to the V -symplectic-equivalence. The V -symplectic-equivalence is
defined in the same way as the V -equivalence; the only difference is that we require
that Φ (the change of coordinates in the source space) is a local symplectomorphism.
The codimension of (N)symp in (N) is the codimension of (H)V,symp in (H)V .

The classical Darboux theorem implies another equivalent definition of the sym-
plectic multiplicity of N ⊂ (R2n, ω): it is the codimension of the orbit of ω with
respect to the group of local symmetries of N in the space of all closed 2-forms.
Therefore Theorem A implies the following statement.

Theorem D. (corollary of Theorem A). The symplectic multiplicity of a quasi-
homogeneous variety in a symplectic space (R2n, ω) is equal to the codimension of
the orbit of the algebraic restriction [ω]N with respect to the group of local symme-
tries of N in the space

[
Λ2,closed(R2n)

]
N
.

Example 2.13. Let Ai
k be the curves in a symplectic space (R2n, ω0) defined in

section 2.9. In section 2.5 we proved that the algebraic restriction c0[Ak]0 + · · · +
ck−1[Ak]k−1 is diffeomorphic to [Ak]p if and only if c1 = · · · = cp−1 = 0 and cp 6= 0.
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Therefore by Theorem D the symplectic multiplicity of the curve Ai
k is equal to i.

This holds for all i ≤ k (the curve Ak
k corresponds to the zero algebraic restriction,

i.e. to the case c0 = · · · = ck−1 = 0).

2.13. The dimension of the space
[
Λ2,closed(R2n)

]
N
. In view of results of the

previous subsections it is worth to present several general results on the number

s(N) = dim
[
Λ2,closed(R2n)

]
N
.

Theorem 2.14. Let N be a quasi-homogeneous variety in a symplectic space of
dimension 2n such that s(N) < ∞. The symplectic multiplicity of N does not
exceed s(N). It is equal to s(N) if and only if N is contained in a non-singular
Lagrangian submanifold.

Proof. The first statement is a corollary of Theorem D. The second statement
follows from Theorems B, D and the following statement: if a ∈

[
Λ2,closed(R2n)

]
N

and a 6= 0 then the orbit of a with respect to the group of symmetries of N
has dimension ≥ 1. To prove this statement it suffices to note that in the quasi-
homogeneous coordinates (see Definition 2.6) the flow xi → e−λitxi preserves N
and brings a to a family of algebraic restrictions at such at → 0 as t→ ∞. �

It is easy to prove that if N is a stratified submanifold of dimension ≥ 2 (i.e.
at least one of the strata has dimension ≥ 2) then the space consisting of the
pullbacks to the regular part N reg of N of all possible closed 2-forms on R

2n is
infinite-dimensional. Since two 2-forms on R

2n with the same algebraic restriction
to N have the same pullback to N reg (see Proposition 2.1) then we obtain

Proposition 2.15. If N is a stratified submanifold of dimension bigger than 1 then
s(N) = ∞.

Within 1-dimensional stratified submanifolds N consider at first the case that
N is a complete intersection singularity.

Proposition 2.16 (real-analytic category; corollary of results by Greuel [Gr1]).
Let N ⊂ R

2n be a one-dimensional complete intersection singularity with finite
Tjurina number (multiplicity) τ(N). If N is quasi-homogeneous then s(N) = τ(N).

In fact, Greuel proved a much more general statement in the holomorphic ca-
tegory [Gr1]: if N ⊂ C

k is an isolated complete intersection singularity of di-
mension m then the Milnor number of N is equal to the dimension of the space
[Λm(Ck)]N/d

(
[Λm−1(Ck)]N

)
. Greuel also proved [Gr1] that for any quasi-homo-

geneous isolated complete intersection singularity the Milnor number is equal to
τ(N). In the case m = 1 these results of Greuel imply that for any N satisfying the
assumptions in Proposition 2.16 one has τ(N) = dim [Λ1(R2n)]N/d

(
[Λ0(R2n)]N

)
.

Now we use one more time the quasi-homogeneity of N . By Theorem 2.7 one
has H2(N,R2n) = {0}. This implies that the space [Λ1(R2n)]N/d

(
[Λ0(R2n)]N

)
is

isomorphic to
[
Λ2,closed(R2n)

]
N

. Consequently s(N) = τ(N).

We do not know a direct proof of Theorem 2.16. We neither know if the assump-
tion that N is quasi-homogeneous can be removed. Our results in section 4.1 show
that it can be removed if N is a planar curve.

Conjecturally s(N) <∞ for any 1-dimensional stratified submanifold N ⊂ R
2n.
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Example 2.17. Let N1, ..., Np, p ≥ 2 be non-singular 1-dimensional submanifolds
of R

2n such that dim(T0N1 + · · · + T0Np) = p. Let N = N1 ∪ · · · ∪ Np. The
ideal of functions vanishing on N is k-generated with k = p(p − 1)/2 + 2n − p.
One has k > codimN = 2n − 1 unless p = 2. Therefore if p ≥ 3 then N is not a
complete intersection singularity and the multiplicity of N is ∞. On the other hand
s(N) < ∞ for any p. Our results in section 7 imply that two closed 2-forms have
the same algebraic restriction to N if and only if they have the same restriction to
the p-space T0N1 + · · · + T0Np. Therefore s(N) = p(p− 1)/2.

2.14. Calculation of the set
[
Symp(R2n)

]
N
. The space

[
Λ2(R2n)

]
N

can be cal-
culated using Proposition 2.3, see section 6.1. In this subsection we present a simple
way for transitions

[
Λ2(R2n)

]
N

→
[
Λ2,closed(R2n)

]
N

→
[
Symp(R2n)

]
N

. At first let
us distinguish the case where two or all of these spaces coincide.

Proposition 2.18. Let N ⊂ R
2n. If N is contained in a non-singular 2-dimen-

sional submanifold then
[
Λ2,closed(R2n)

]
N

=
[
Λ2(R2n)

]
N

. If N is contained in a

non-singular n-dimensional submanifold then
[
Symp(R2n)

]
N

=
[
Λ2,closed(R2n)

]
N

.

The first statement follows from Proposition 2.4 and the fact that any 2-form on
a 2-manifold is closed. The second statement follows from Theorem 2.19 below.

This transition
[
Λ2,closed(R2n)

]
N

→
[
Symp(R2n)

]
N

is equivalent to distinguish-

ing closed 2-forms θ on R
2n whose algebraic restrictions to N ⊂ R

2n is realizable
by symplectic structure, i.e. [θ]N = [ω]N for some symplectic form ω.

Theorem 2.19. Let N ⊂ R
2n. Let r be the minimal dimension of non-singular

submanifolds of R
2n containing N . Let M be one of such r-dimensional submani-

folds. The algebraic restriction [θ]N of a closed 2-form θ is realizable by a symplectic
form on R

2n if and only if rank(θ|T0M ) ≥ 2r − 2n.

Theorem 2.19 is almost obvious corollary of Theorem 1.2, Proposition 2.4 and
the following lemma.

Lemma 2.20. Let N ⊂ R
m. Let W ⊆ T0R

m be the tangent space to some (and
then any) non-singular submanifold containing N of minimal dimension within such
submanifolds. If ω is a p-form with zero algebraic restriction to N then ω|W = 0.

Proof. Fix a non-singular submanifoldM containingN of minimal dimension within
such submanifolds (then W = T0M). By Proposition 2.4 the form ω|TM also has
zero algebraic restriction to N and consequently it can be expressed in the form
α + dβ, where α and β are forms on M vanishing at any point of N . Since N is
not contained in any non-singular hypersurface of M then any function vanishing
on N has zero 1-jet at 0. It follows that dβ(0) = 0 and then (ω|TM )(0) = 0. �

Now we give an algorithm for the transition
[
Λ2(R2n)

]
N

→
[
Λ2,closed(R2n)

]
N

under the assumptions that N is quasi-homogeneous and the space
[
Λ2(R2n)

]
N

is

finite-dimensional. (See section 6.1 where this algorithm is realized for the case
N = S5). Take any basis a1, . . . , ak of

[
Λ2(R2n)

]
N

and consider the algebraic

restrictions da1, . . . , dak ∈
[
Λ3(R2n)

]
N

. Let p be the dimension of the vector space
over R spanned by these algebraic restrictions. The case p = 0 is not excluded.
Change the order in the tuple a1, . . . , ak so that

(a) the algebraic restrictions da1, . . . , dap are linearly independent.
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Replace now the algebraic restrictions ai, p < i ≤ k by ai+
∑p

j=1 kijaj with suitable
kij ∈ R so that

(b) dap+1 = · · · = dak = 0.

Theorem 2.21. Let N be a quasi-homogeneous subset of R
2n and let a1, . . . , ak be

a basis of
[
Λ2(R2n)

]
N

satisfying (a) and (b). Then ap+1, . . . , ak is a basis of the

space
[
Λ2,closed(R2n)

]
N

.

Proof. To conclude that the algebraic restrictions ap+1, . . . , ak span the space[
Λ2,closed(R2n)

]
N

we do not need the assumption that N is quasi-homogeneous. In
fact, the algebraic restriction to N of any closed 2-form ω can be expressed in the
form [ω]N = c1a1 + · · ·+ ckak, and taking the differential of this relation we obtain
0 = c1da1 + · · · + cpdap. By (a) c1 = · · · = cp = 0, i.e. [ω]N ∈ span(ap+1, . . . , ak).

The quasi-homogeneity of N is required in order to prove that ap+1, . . . , ak ∈[
Λ2,closed(R2n)

]
N

, i.e. that the algebraic restrictions ai>p can be represented by
closed 2-forms. In what follows i = p + 1, . . . , k. Take any 2-forms ωi represent-
ing ai. Since N is quasi-homogeneous then by Theorem 2.7 the cohomology group
H3(N,Rm) vanishes. This means that any closed 3-form with zero algebraic re-
striction to N , in particular the 3-forms dωi, is a differential of some 2-form with
zero algebraic restriction to N . Therefore dωi = dω̃i, where [ω̃i]N = 0. The 2-form
ωi − ω̃i is closed because dωi = dω̃i. It represents the algebraic restriction ai: since
[ω̃i]N = 0 then ai = [ωi]N = [ωi − ω̃i]N . �

3. Proof of Theorems A, B, and C

In section 3.1 we reduce Theorem A, (i) to the case that the symplectic forms ω0

and ω1 in this theorem satisfy the condition (ω0−ω1)(0) = 0. In this case Theorem
A, (i) can be easily proved by the homotopy method (section 3.2). Theorem B is
proved in section 3.3 using Theorem A, and Theorem C is proved in section 3.4
using Theorem B. Throughout the proof we use the following lemma.

Lemma 3.1. Let ω be a closed 2-form on R
m with zero algebraic restriction to

N ⊂ R
m. Let M ⊆ R

m be a non-singular submanifold containing N of minimal
possible dimension within such submanifolds. There exists a closed 2-form θ on R

m

such that θ|TM = ω|TM , [θ]N = 0, and θ(0) = 0.

Proof. Let µ = ω|TM . By Lemma 2.20 one has µ(0) = 0. Let π : R
2n → M be a

submersion which is identity on M . Let θ = π∗µ. Then θ is a closed 2-form which
vanishes at 0 and whose restriction to TM coincides with that of ω. Since [ω]N = 0
and ω|TM = θ|TM then by Proposition 2.4 we obtain [θ]N = 0. �

3.1. Reduction of Theorem A, (i) to the case (ω0 − ω1)(0) = 0. Take a non-
singular submanifold M as in Lemma 3.1. By this lemma there exists a closed
2-form θ such that θ|TM = ω0|TM −ω1|TM , [θ]N = 0 and θ(0) = 0. Set ω̃ = ω1 + θ.
Then ω0, ω1, ω̃ have the following properties: (a) ω̃ is symplectic (since θ(0) = 0);
(b) ω̃|TM = ω0|TM ; (c) [ω̃]N = [ω1]N , (ω̃ − ω1)(0) = 0. By Theorem 1.1 there
exists a local diffeomorphism preserving M pointwise (and consequently preserving
N pointwise) and bringing ω̃ to ω0. Therefore Theorem A, (i) for the forms ω0 and
ω1 will be proved if we prove it for the forms ω1 and ω̃.
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3.2. Proof of Theorem A, (i) in the case (ω0 − ω1)(0) = 0. We will prove the
existence of a family of diffeomorphisms Φt preserving pointwise N and bringing
the form ωt = ω0 + t(ω1 − ω0) to the form ω0, for any t ∈ [0, 1]. This family will
be found within families satisfying the ODE dΦt

dt
= Vt(Φt), Φ0 = id, where Vt is a

family of vector fields on R
2n vanishing at any point of N . (The latter implies that

Φt preserves N pointwise). Let LV be the Lie derivative along a vector field V .
The requirement Φ∗

tωt = ω0 is equivalent to the condition LVt
ωt + dωt

dt
= 0. Since

ωt is a closed 2-form we obtain the equation

(3.1) d(Vt c(ω0 + t(ω1 − ω0))) = ω0 − ω1

with respect to the family Vt under the constraint that Vt vanishes at points of N .
Since N is quasi-homogeneous then by Theorem 2.7 ω0 − ω1 = dβ, where β is a
1-form vanishing at any point of N . Therefore to solve (3.1) it suffices to solve the
equation

(3.2) Vt c(ω0 + t(ω1 − ω0)) = β.

This equation can be treated as a square system of linear equations parameterized
by a point x ∈ R

2n close to 0 and t ∈ [0, 1]. The assumption (ω0 − ω1)(0) = 0
implies (ω0 + t(ω1 − ω0))(0) = ω0(0). The form ω0 is symplectic and consequently
the 2-form (ω0 + t(ω1 − ω0)) has maximal rank 2n for any t at any point x close
to 0. Therefore for any such t and x the matrix of the linear system (3.2) is non-
degenerate and consequently (3.2) has a unique solution Vt. It vanishes at any point
of N since so does the 1-form β.

3.3. Proof of Theorem B. The “if” part of Theorem B follows from Proposition
2.4. Let us prove the “only if” part: if [ω]N = 0 then N is contained in a non-
singular Lagrangian submanifold. Fix a non-singular submanifold M and a closed
2-form θ as in Lemma 3.1. Since θ(0) = 0 then the form ω − θ is symplectic. The
manifold M is isotropic with respect to ω − θ. By Theorem A ,(i) there exists a
local diffeomorphism sending ω−θ to ω preserving N . It sends M to a non-singular

submanifold M̃ which contains N and which is isotropic with respect to ω.

3.4. Proof of Theorem C. We have to prove the following two statements:

1. If M ⊂ (R2n, ω) is a non-singular submanifold containing N and such that the
restriction ω|TM has zero k-jet, k ≥ 0, then there exists a closed 2-form ω̃ on R

2n

with zero k-jet such that [ω]N = [ω̃]N ;

2. If ω̃ is a closed 2-form on R
2n with zero k-jet, k ≥ 0, such that [ω]N = [ω̃]N

then there exists a non-singular submanifold M ⊂ R
2n containing N such that the

restriction ω|TM has zero k-jet.

To prove the first statement fix a submersion π : R
2n →M which is identity on

M and set ω̃ = π∗ (ω|TM ). Then ω̃ is a closed 2-form on R
2n with zero k-jet. The

forms ω and ω̃ have the same restriction to TM and by Proposition 2.4 the same
algebraic restriction to N . Therefore ω̃ is a required closed 2-form.

To prove the second statement consider the form (ω− ω̃). It is symplectic and it
has zero algebraic restriction to N . By Theorem B N is contained in a non-singular
submanifold M such that (ω−ω̃)|TM = 0. Since ω̃ has zero k-jet then its restriction
to TM and consequently the restriction of ω to TM also has zero k-jet.
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4. Symplectic classification of singular

planar quasi-homogeneous curves

By a singular planar quasi-homogeneous curve in R
2n we mean a curve given in

suitable coordinates by the equations

(4.1) N = {H(x1, x2) = x≥3 = 0} ⊂ R
2n

where the function germ H(x1, x2) satisfies the following conditions:

1. H(0) = 0, dH(0) = 0;

2. the property of zeros: the ideal of functions on R
2 vanishing at any point of the

set {H = 0} is generated by H;

3. the function H(x1, x2) is quasi-homogeneous polynomial. This means that there
exist positive numbers λ1, λ2 (weights of quasi-homogeneity) and a positive number
d (degree of quasi-homogeneity) such that H(x1, x2) is a linear combination of
monomials xα1

1 xα2

2 satisfying the condition α1λ1 + α2λ2 = d.

The classical examples are the simple function germs Ak, Dk, E6, E7, E8, see
[AVG]. In section 4.1 we prove that the vector space

[
Λ2,closed(R2n)

]
N

can be
identified with the local algebra of the function H(x1, x2). In section 4.2 we use
this result and Theorems C and D to give a simple way of calculating the index
of isotropness and the symplectic multiplicity of any planar quasi-homogeneous
curve. In sections 4.3 - 4.4 we use the method of algebraic restrictions to present a
complete symplectic classification of the Ak, Dk, E6, E7, E8 singularities.

4.1. The space of algebraic restrictions and the local algebra of H. The-
orem 4.2 below generalizes Example 2.2.

Definition 4.1. (see [AVG]). The factor space Λ0(R2)/(∇H) is called the local
algebra of H and the dimension of this factor space is called the multiplicity of H.

Theorem 4.2 (cf. Theorem 2.16). Let N = {H(x1, x2) = x≥3 = 0} be a planar
quasi-homogeneous curve where the function H = H(x1, x2) has a finite multiplicity
µ and let the tuple f1, f2, . . . , fµ be a basis of the local algebra of H 1 such that
f1(0) 6= 0, f≥2(0) = 0.

(i)
[
Λ2,closed(R2n)

]
N

is a µ-dimensional vector space spanned by the algebraic re-

strictions ai = [fidx1 ∧ dx2]N , i = 1, . . . , µ.

(ii) If n ≥ 2 then
[
Symp(R2n)

]
N

=
[
Λ2,closed(R2n)

]
N

. The manifold
[
Symp(R2)

]
N

consists of algebraic restrictions of the form
{
c1a1 + · · · cµaµ, c1 6= 0

}
.

The second statement is a corollary of the first one and results in section 2.14.
The first statement follows from Lemma 4.3 below and Proposition 2.4.

Lemma 4.3. Let H(x1, x2) be a quasi-homogeneous polynomial with the property
of zeros. A 2-form f(x1, x2)dx1 ∧ dx2 has zero algebraic restriction to the curve
{H(x1, x2) = 0} if and only if f ∈ (∇H).

Proof. Since the function H has the property of zeros then for some function germs
A(x1, x2), B1(x1, x2), B2(x1, x2) one has

fdx1 ∧ dx2 = HAdx1 ∧ dx2 + d (H(B1dx1 +B2dx2)) .

1after factorization of these function germs by the ideal (∇H).
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It is easy to see that this condition is equivalent to the condition f ∈ (H,∇H),
where (H,∇H) is the ideal generated by theH and its first order partial derivatives.
It is clear that any quasi-homogeneous polynomial belongs to its gradient ideal,
therefore (∇H,H) = (∇H). �

Remark. If H is not quasi-homogeneous then, as we see from the proof of Lemma
4.3, the space

[
Λ2,closed(R2n)

]
N

can be identified with the space Λ0(R2)/(∇H,H).
The dimension τ of the latter space is called the Tjurina number (or the multiplicity)
of the curve {H = 0} (see Definition 2.11). By Saito theorem [Sa1] τ < µ. 2

4.2. The index of isotropness and the symplectic multiplicity. The index
of isotropness and the symplectic multiplicity are defined in sections 2.11 and 2.12.

Theorem 4.4. Let N = {H(x1, x2) = x≥3 = 0} be a singular planar quasi-
homogeneous curve in a symplectic space (R2n, ω). Let µ be the multiplicity of
the function H.

(i) The index of isotropness of N does not exceed (µ− 1) unless N is contained in
a non-singular Lagrangian submanifold (in the latter case the index is ∞).

(ii) The symplectic multiplicity of N does not exceed µ. It is equal to µ if and only
if N is contained in a non-singular Lagrangian submanifold.

The second statement is a direct corollary of Theorems 2.14 and 4.2. (It is also
a direct corollary of Theorems B and 4.2). The first statement follows from the
following corollary of Theorems 2.5, C and Lemma 4.3 allowing to calculate the
index of isotropness for any planar quasi-homogeneous curve.

Notation. Given a 2-form ω on R
2n denote by Fω = Fω(x1, x2) a function germ

such that the pullback of ω to the 2-plane x≥3 = 0 has the form Fωdx1 ∧ dx2.

Theorem 4.5 (Corollary of Theorems 2.5, C and Lemma 4.3).
Let N be as in Theorem 4.4. The index of isotropness of N is the maximal p such
that Fω ∈ (∇H) +Mp, where M denotes the maximal ideal in the ring of function
germs on R

2 (if Fω ∈ (∇H) then p = ∞, if Fω(0) 6= 0 then p = 0).

Proof of Theorem 4.4, (i). If N is not contained in a non-singular Lagrangian sub-
manifold then by Theorem B [ω]N 6= 0 and then by Proposition 2.4 and Lemma
4.3 one has Fω 6∈ (∇H). Since Mµ ⊂ (∇H) (see [AVG]) then Fω 6∈ (∇H) + Mµ

and by Theorem 4.5 the index of isotropness does not exceed (µ− 1). �

The following theorem gives a simple way for calculation of the symplectic mul-
tiplicity of any planar quasi-homogeneous curve.

Theorem 4.6. Let N be as in Theorem 4.4. The symplectic multiplicity of N
is equal to dim Λ0(R2)/(∇H,Fω), where (∇H,Fω) is the ideal generated by the
function germs ∂H/∂x1, ∂H/∂x2, Fω.

Example 4.7. Consider the curve

C : {p2
1p2 − p3

2 = 0, q1 = p3
2, q2 = 0} ⊂ (R4, ω0 = dp1 ∧ dq1 + dp2 ∧ dq2).

2This means that if H is not quasi-homogeneous then the multiplicity of the curve {H = 0}

is smaller than the multiplicity of the function H. The number µ − τ is called the degree of

non-quasi-homogeneity of H, see [V].
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This is a planar quasi-homogeneous curve diffeomorphic to the curve D4: in the
local coordinates x1 = p1, x2 = p2, x3 = q1 − p3

2, x4 = q2 it takes the form
H(x1, x2) = x2

1x2 − x3
2 = x3 = x4 = 0. In the same coordinates the form ω0 takes

the form dx1∧(dx3+3x2
2dx2)+dx2∧dx4. The restriction of this form to the 2-surface

x3 = x4 = 0 is 3x2
2dx1 ∧ dx2. The ideal (∇H, 3x2

2) = (x1x2, x
2
1 − 3x2

2, x
2
2) coincides

with the ideal (x1x2, x
2
1, x

2
2). By Theorems 4.5 and 4.6 the index of isotropness of

C is equal to 2 and the symplectic multiplicity of C is equal to 3.

The proof of Theorem 4.6 consists of several steps. At first we use Theorems D
and 2.5 reducing Theorem 4.6 to the following proposition.

Proposition 4.8. Let H(x1, x2) be a quasi-homogeneous polynomial of finite mul-
tiplicity having the property of zeros. The codimension in the space

[
Λ2(R2)

]
{H=0}

of the orbit of the algebraic restriction [F (x1, x2)dx1∧dx2]{H=0} with respect to the
group of symmetries of the curve {H = 0} is equal to the dimension of the factor
space Λ0(R2)/(∇H,F ).

Notation. Given an algebraic restriction a ∈
[
Λ2(R2n)

]
N

denote by T (a) the
tangent space at a to the orbit of a with respect to the group of symmetries of N .

Proposition 4.9. Let H be as in Proposition 4.8 and let a ∈
[
Λ2(R2)

]
{H=0}

. Then

dimT (a) = dim
(
Λ0(R2) · a

)
.

If a is represented by 2-form F (x1, x2)dx1 ∧ dx2 then by Theorem 4.2 one has
codim

(
Λ0(R2) · a

)
= dimΛ0(R2)/(∇H,F ). Therefore Proposition 4.9 and Theo-

rem 4.2 imply Proposition 4.8 and consequently Theorem 4.6. The proof of Propo-
sition 4.9 requires certain techniques related to quasi-homogeneous algebraic re-
strictions, therefore it is postponed to section 5.

4.3. Symplectic A-D-E classification. Continuing results of section 2.9 we give
a complete solution of Problem A with N = {H(x1, x2) = x≥3 = 0} where
H(x1, x2) is a function representing one of the classical singularities Ak, Dk, E6, E7,
E8, see Table 1. Theorems A and 2.5 reduce Problem A to classification of algebraic
restrictions of the space

[
Λ2(R2)

]
{H=0}

with respect to the group of symmetries

of the curve {H = 0} ⊂ R2. This classification involves functions and families of
functions given in the second column of Table 1.
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H(x1, x2) Fi(x1, x2), i = 0, 1, . . . , µ

Ak : xk+1
1 − x2

2

k ≥ 1
F0 = 1
Fi = xi

1, i = 1, . . . , k − 1
Fk = 0

Dk : x2
1x2 − xk−1

2

k ≥ 4
F0 = 1
Fi = bx1 + xi

2, i = 1, . . . , k − 4
Fk−3 = (±1)kx1 + bxk−3

2 ,

Fk−2 = xk−3
2 , Fk−1 = xk−2

2 , Fk = 0

E6 : x3
1 − x4

2 F0 = 1, F1 = ±x2 + bx1, F2 = x1 + bx2
2,

F3 = x2
2 + bx1x2, F4 = ±x1x2, F5 = x1x

2
2, F6 = 0

E7 : x3
1 − x1x

3
2 F0 = 1, F1 = x2 + bx1, F2 = ±x1 + bx2

2,
F3 = x2

2 + bx1x2, F4 = ±x1x2 + bx3
2,

F5 = x3
2, F6 = x4

2, F7 = 0

E8 : x3
1 − x5

2 F0 = ±1, F1 = x2 + bx1, F2 = x1 + b1x
2
2 + b2x

3
2

F3 = ±x2
2 + bx1x2, F4 = ±x1x2 + bx3

2,
F5 = x3

2 + bx1x
2
2, F6 = x1x

2
2, F7 = ±x1x

3
2, F8 = 0

Table 1. Classification of the algebraic restrictions to Ak, Dk, E6, E7, E8.

Theorem 4.10. Fix a function H = H(x1, x2) in Table 1. Let Fi = [Fidx1 ∧
dx2]{H=0}, where the functions Fi are given in the row of H.

(i) Any algebraic restriction a ∈
[
Λ2(R2)

]
{H=0}

is diffeomorphic to one of the

normal forms Fi, i = 0, . . . , µ, where µ is the multiplicity of H.

(ii) The singularity classes defined by to the normal forms F0, . . . ,Fµ are disjoint;

(iii) The singularity class defined by the normal form Fi has codimension i;

(iv) The parameters b, b1, b2 in the normal forms are moduli.

The second statement is proved in section 4.4, the other statements – in section
5. Let us transfer the normal forms Fi to symplectic normal forms following the
algorithm in section 2.8. Fix any symplectic form, for example,

ω0 = dp1 ∧ dq1 + · · · + dpn ∧ dqn.

If n ≥ 2 then the algebraic restriction [Fi(x1, x2)dx1 ∧ dx2]N can be realized by
the symplectic form ωi = Fidx1 ∧ dx2 + dx1 ∧ dx3 + dx2 ∧ dx4 + dx5 ∧ dx6 + · · · +
dx2n−1 ∧ dx2n which can be brought to ω0 by the change of coordinates

x1 = p1, x2 = p2, x3 = q1 −
∫ p2

0
Fi(p1, t)dt, x4 = q2,

x5 = p3, x6 = q3, . . . , x2n−1 = pn, x2n = qn.

The given change of coordinates brings N =(4.1) to the form

(4.2) N i =
{
H(p1, p2) = q1 −

∫ p2

0

Fi(p1, t)dt = q≥2 = p≥3 = 0
}
⊂

(
R

2n, ω0

)
.

Theorems A, (ii), 2.5 and 4.10 imply the following complete symplectic classification
of the Ak, Dk, E6, E7, E8 singularities.

Theorem 4.11. Fix a function H = H(x1, x2) in Table 1. Any curve in the sym-
plectic space (R2n, ω0), n ≥ 2, which is diffeomorphic to the curve N : H(x1, x2) =
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x≥3 = 0 can be reduced by a symplectomorphism to one and only one of the normal
forms N i, i = 0, ..., µ, given by (4.2), where Fi are the functions in Table 1 and
µ is the multiplicity of H. The parameters b, b1, b2 are symplectic moduli. The
codimension of the symplectic singularity class defined by the normal form N i in
the class of all curves diffeomorphic to N is equal to i.

If n = 1, i.e in the 2-dimensional case, the symplectic classification is much
simpler. Theorems 4.2, (ii) and 4.10 along with Theorem A, (ii) imply the following

Theorem 4.12. Let H(x1, x2) be one of the functions in Table 1. All curves in
the symplectic plane (R2, dp∧dq) which are diffeomorphic to the curve {H = 0} are
symplectomorphic unless H = E8. Any curve in (R2, dp∧dq) which is diffeomorphic
to E8 : {x3

1 − x5
2 = 0} is symplectomorphic to one of the curves p3 ± q5 = 0.

Remark. It is easy to prove that the curves p3±q5 = 0 are not symplectomorphic.
The statement of Theorem 4.12 also follows from the works [V] and [Gi]. It is also
contained in the works [IJ1], [IJ2] along with other results on classification of curves
in R

2 with respect to volume-preserving diffeomorphisms.

4.4. Distinguishing normal forms (proof of Theorem 4.10, (ii)). The nor-
mal form N i in Theorem 4.11 corresponds to the normal form Fi in Theorem 4.10.
Using Table 1 and Theorems 4.5 and 4.6 it is easy to calculate the index of isotrop-
ness and the symplectic multiplicity of all singularities, see Table 2. They do not
depend on the parameters of the normal forms except for the case Di

k, 2 ≤ i ≤ k−4,
when the index of isotropness is different for b 6= 0 and for b = 0.

As we see from Table 2, either the index of isotropness or the symplectic multi-
plicity distinguishes all normal forms except for the following two couples: (α) E3

6

and E4
6 ; (β) E5

8 and E6
8 . To distinguish these normal forms we will distinguish the

corresponding normal forms for algebraic restrictions:

(α) [(x2
2 + bx1x2)dx1 ∧ dx2]{H=0} and [±x1x2dx1 ∧ dx2]{H=0}, H = x3

1 − x4
2;

(β) [(x3
2 + bx1x

2
2)dx1 ∧ dx2]{H=0} and [x1x

2
2dx1 ∧ dx2]{H=0}, H = x3

1 − x5
2.

These couples can be distinguished as follows. Let a = [F (x1, x2)dx1∧dx2]{H=0},
where H is any quasi-homogeneous polynomial. Consider the ideal (∇H,F ). We
will say that this ideal is associated with a. The associated ideals are invariantly
related to algebraic restrictions: if a, ã ∈

[
Λ2(R2n)

]
N

are diffeomorphic then the as-
sociated ideals are diffeomorphic. This follows from Lemma 4.3 and the observation

that any diffeomorphism sending a 2-form Fdx1∧dx2 to F̃ dx1∧dx2 sends the ideal

generated by F to the ideal generated by F̃ . Therefore to distinguish the couples
(α), (β) it suffices to distinguish the couples of associated ideals. In the case (α)

the associated ideals are I
(1)
α =

(
x2

1, x
3
2, x

2
2 + bx1x2

)
and I

(2)
α =

(
x2

1, x
3
2, x1x2

)
.

In the case (β) they are I
(1)
β =

(
x2

1, x
4
2, x

3
2 + bx1x

2
2

)
and I

(2)
β =

(
x2

1, x
4
2, x1x

2
2

)
. It is

easy to prove that I
(1)
α is not diffeomorpic to I

(2)
α and I

(1)
β is not diffeomorpic to

I
(2)
β (to prove this it suffices to consider the 2-jets of functions in the ideals I

(1)
α and

I
(2)
α and the 2-jets of functions in the ideals I

(1)
β and I

(2)
β ).
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Normal
form

index of
isotr.

sympl.
multip.

Ai
k

0 ≤ i ≤ k − 1
i i

Ak
k ∞ k

D0
k 0 0

D1
k 1 2

Di
k

2 ≤ i ≤ k − 4
b 6= 0 : 1
b = 0 : i

i + 1

Dk−3
k 1 k − 2

Dk−2
k k − 3 k − 2

Dk−1
k k − 2 k − 1

Dk
k ∞ k

E0
6 0 0

E1
6 1 2

E2
6 1 3

E3
6 2 4

E4
6 2 4

E5
6 3 5

E6
6 ∞ 6

Normal
form

index of
isotr.

sympl.
multip.

E0
7 0 0

E1
7 1 2

E2
7 1 3

E3
7 2 4

E4
7 2 5

E5
7 3 5

E6
7 4 6

E7
7 ∞ 7

E0
8 0 0

E1
8 1 2

E2
8 1 4

E3
8 2 4

E4
8 2 5

E5
8 3 6

E6
8 3 6

E7
8 4 7

E8
8 ∞ 8

Table 2. Symplectic invariants of Ak, Dk, E6, E7, E8 singularities.

5. Proof of Proposition 4.9 and Theorem 4.10

Throughout this section, including formulations of the statements, H = H(x1, x2)
is a quasi-homogeneous polynomial with respect to the weights λ1, λ2. Any quasi-
homogeneity should be understood as that with respect to the weights λ1, λ2. We
also assume that H has the property of zeros and a finite multiplicity µ.

Proposition 4.9 is proved in sections 5.1 - 5.3. The main ingredients are the
structure of the algebra of infinitesimal symmetries of the curve {H = 0} (sec-
tion 5.1) and the quasi-homogeneous algebraic restrictions (section 5.2). The same
ingredients are used for the proof of Theorem 4.10, statements (i), (iii), (iv) in
sections 5.4 - 5.6 (Theorem 4.10, (ii) is already proved in section 4.4).

5.1. The infinitesimal symmetries of the curve {H = 0}. An infinitesimal
symmetry of the curve {H = 0} is a vector field tangent to this curve. The space
of all infinitesimal symmetries is an algebra with respect to the Lie bracket. It will
be denoted by Symminf({H = 0}). 3 Consider the following Euler vector field E
and the Hamiltonian vector field H related to H via the volume form dx1 ∧ dx2:

E = λ1x1∂/∂x1 + λ2x2∂/∂x2, H = (∂H/∂x2)∂/∂x1 − (∂H/∂x1)∂/∂x2.

The following lemma was used in many works, see for example [A1], [L].

Lemma 5.1. Any vector field V ∈ Symminf({H = 0}) has the form V = g1E+g2H
for some functions g1, g2.

Proof. Since H has the property of zeros then V (H) = RH for some function
R. One has E(H) = δ · H, where δ is the degree of quasi-homogeneity of H.
Let V1 = V − RE/δ. Then V1(H) = 0. Let V1 = A∂/∂x1 + B∂/∂x2, then
(Adx2 − Bdx1) ∧ dH = 0. Since H has a finite multiplicity then the form dH has

3another notation for the same algebra is Derlog({H = 0}), see for example [Sa2].
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the division property (see, for example [M]) and this relation implies Adx2−Bdx1 =
R1dH for some function R1. This can be written in the form V1 = −R1 · H. We
obtain V = R1 · H −RE/δ. �

By the following lemma the Hamiltonian part of the algebra Symminf({H = 0})
leads to the symmetries preserving any algebraic restriction in

[
Λ2(R2)

]
{H=0}

. In

what follows LV denotes the Lie derivative along the vector field V .

Lemma 5.2. LgH(a) = 0 for any g ∈ Λ0(R2) and any a ∈
[
Λ2(R2)

]
{H=0}

.

Proof. Let F (x1, x2) be any function. Let θ = LgH(Fdx1 ∧ dx2). We have to prove
[θ]{H=0} = 0. Note that Hcdx1 ∧ dx2 = dH. This implies θ = d(gFHcdx1 ∧ dx2) =
d(gFdH) = d(−Hd(gF )). �

Recall that T (a) denotes the tangent space at a to the orbit of an algebraic
restriction a. Lemmas 5.1 and 5.2 imply the following statement.

Proposition 5.3. Let a ∈
[
Λ2(R2)

]
{H=0}

. Then T (a) =
{
LgE(a), g ∈ Λ0(R2)

}
.

5.2. Quasi-homogeneous algebraic restrictions. Now we will calculate the
tangent space T (a) more explicitly. This requires working with quasi-homogeneous
algebraic restrictions. The possibility to define quasi-homogeneous algebraic re-
strictions follows from the following lemma.

Notation. Given a function F = F (x1, x2) denote by F (δ) the quasi-homogeneous
part of degree δ of its Taylor series with respect to the weights λ1, λ2.

Lemma 5.4. If [Fdx1 ∧ dx2]{H=0} = 0 then [F (δ)dx1 ∧ dx2]{H=0} = 0 for any δ.

Proof. Follows from Lemma 4.3 and the observation that ∂H/∂x1, ∂H/∂x2 are also
quasi-homogeneous polynomials with respect to the weights λ1, λ2. �

Lemma 5.4 allows to define quasi-homogeneous algebraic restrictions as follows.

Definition 5.5. Let F = F (x1, x2) and a = [Fdx1 ∧ dx2]{H=0}. The algebraic

restriction a(δ) = [F (δ−λ1−λ2)dx1 ∧dx2]{H=0} will be called the quasi-homogeneous

degree δ part of a. If a = a(δ) then a is called quasi-homogeneous of degree δ.

Why F (δ−λ1−λ2), not F (δ) in the definition of a(δ)? This is so in order to have

Lemma 5.6. If an algebraic restriction a ∈
[
Λ2(R2)

]
{H=0}

is quasi-homogeneous

of degree δ then LE(a) = δ · a.

Proof. Let a = [Fdx1dx2]{H=0}. Calculate the Lie derivative

LE (Fdx1 ∧ dx2) = d (E c Fdx1 ∧ dx2) = LEFdx1 ∧ dx2 + FLE(dx1 ∧ dx2).

It remains to note that LE(dx1∧dx2) = (λ1+λ2)dx1∧dx2 and LEF = (δ−λ1−λ2)F
since F is quasi-homogeneous of degree δ − λ1 − λ2. �

Lemma 5.7. For any a ∈
[
Λ2(R2)

]
{H=0}

the sum
∑

δ∈R
a(δ) is finite.

Proof. Obviously a(δ) = 0 if δ < λ1 + λ2 or if δ 6= α1λ1 + α2λ2 for some positive
integers α1, α2. Therefore we have to prove that a(δ) = 0 for sufficiently big δ.
Let δ > λ1 + λ2 + µ, where µ is the multiplicity of H. Then a(δ) has the form
[Fdx1∧dx2]{H=0}, where the function F has zero µ-jet. Any such function belongs

to the gradient ideal (∇H), see [AVG]. By Lemma 4.3 one has a(δ) = 0. �
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5.3. Proof of Proposition 4.9. In view of Proposition 5.3 let us calculate the Lie
derivative LgE(a) for quasi-homogeneous g and a.

Lemma 5.8. If a ∈
[
Λ2(R2)

]
{H=0}

and g ∈ Λ0(R2) are quasi-homogeneous of

degrees δ1 and δ2 then LgE(a) = (δ1 + δ2)ga.

Proof. For any ω ∈ Λ2(R2), and g ∈ Λ0(R2) and any vector field V on R
2 one has

LgV ω = g · (LV (ω)) + (LV (g)) ·ω. Therefore LgE(a) = g · LE(a) + (LE(g)) · a. One
has LE(g) = δ2g. By Lemma 5.6 LE(a) = δ1a. �

Consider the linear operator

Q :
[
Λ2(R2)

]
{H=0}

→
[
Λ2(R2)

]
{H=0}

, Q(a) =
∑

δ∈R

δ · a(δ).

It is well-defined by Lemma 5.7. Lemmas 5.3 and 5.8 imply

Proposition 5.9. T (a) = Q
(
Λ0(R2) · a

)
.

Since a(0) = 0 (moreover a(δ) = 0 for δ < λ1 + λ2) then the operator Q is
non-singular and consequently dimT (a) = dim

(
Λ0(R2) · a

)
.

5.4. Proof of Theorem 4.10, (i). The normal forms in Theorem 4.10 follow from
Propositions 5.10 and 5.11 below. To formulate these propositions it is convenient
to use the following notation.

Notation. Denote by o(δ) the subspace of the space
[
Λ2(R2)

]
{H=0}

consisting of

algebraic restrictions without quasi-homogeneous terms of degree ≤ δ.

Proposition 5.10. Let a1, . . . , aµ be a basis of the space
[
Λ2(R2)

]
{H=0}

consisting

of quasi-homogeneous algebraic restrictions of degrees δ1 ≤ δ2 ≤ · · · ≤ δµ. Let
a = c1a1+· · ·+cµaµ. If as belongs to the affine space g·(c1a1+· · ·+cs−1as−1)+o(δs)
for some function g such that g(0) = 0 then a is diffeomorphic to an algebraic
restriction in the affine space c1a1 + · · · + cs−1as−1 + o(δs).

Proof. Let us show that a symmetry Ψ of the curve {H = 0} reducing a to the
required normal form is contained in the flow Φt of the vector field gE. Since
g(0) = 0 and the degrees of quasi-homogeneity of a≥s are not less than δs then by
Lemma 5.8 one has LgEa ∈ LgE(c1a1 + · · · + cs−1as−1) + o(δs). Lemma 5.8 and
the assumption of Proposition 5.10 imply LgEa ∈ δsas + o(δs). It follows

d(Φt)∗a/dt ∈ (Φt)∗(δsas + o(δs)).

Note now that for any t the diffeomorphism Φt preserves the x1 and the x2-axes
and since g(0) = 0 then Φt has identity linear approximation. These properties
imply that Φt preserves the affine space δsas + o(δs) and consequently

d(Φt)∗a/dt ∈ δsas + o(δs).

Since Φ0 = id it follows (Φt)∗a = a+ tδsas + o(δs). Let t0 = −cs/δs. Then Ψ = Φt0

is the required symmetry. �

To prove Theorem 4.10,(i) for all singularities except Dk it suffices to use the
following corollary of Proposition 5.10.
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Proposition 5.11. Let a1, . . . , aµ be a basis of the space
[
Λ2(R2)

]
{H=0}

consisting

of quasi-homogeneous algebraic restrictions of degrees δ1 < δ2 < · · · < δµ. Any
algebraic restriction of the form a = cpap + · · ·+ cµaµ with cp 6= 0 is diffeomorphic
to an algebraic restriction of the form ã = cpap + c̃p+1ap+1 + · · · + c̃µaµ, where
c̃i = 0 for all i ≥ p+ 1 such that ai ∈ Λ0(R2) · ap.

Proof. By Lemma 5.4 and the assumption δi < δi+1 any algebraic restriction in the
space o(δs) is a linear combination of as+1, . . . , aµ. Therefore to prove Proposition
5.11 it suffices to prove that if as = g · ap for some function g then the algebraic
restriction a is diffeomorphic to an algebraic restriction in the affine space c1a1 +
· · ·+ cs−1as−1 + o(δs). This follows from Proposition 5.10 since g(0) = 0 (if we had
g(0) 6= 0 then by Lemma 5.4 ap and as would be proportional). �

The proof of Theorem 4.10,(i) requires, except Propositions 5.10 and 5.11, the
following lemma.

Lemma 5.12. Let a = [xα1

1 xα2

2 dx1 ∧ dx2]{H=0} and c 6= 0. Then c · a is diffeo-
morphic to ±a. If the curve {H = 0} admits a symmetry (x1, x2) → (−x1, x2)
or (x1, x2) → (x1,−x2) which changes the sign of the monomial xα1

1 xα2

2 then the
algebraic restrictions ±a are diffeomorphic.

Proof. The first statement follows from the fact that the group of symmetries of the
curve {H = 0} includes the scale transformations (x1, x2) → (tλ1x1, t

λ2x2). The
second statement is obvious. �

Theorem 4.10, (i) for the Ak, E6, E7, E8 singularities (respectively Dk singulari-
ties) is a direct corollary of Proposition 5.11 (respectively Proposition 5.10), Lemma
5.12, the obvious implication

g ∈ Λ0(R2) · f =⇒ [gdx1 ∧ dx2]{H=0} ∈ Λ0(R2) · [fdx1 ∧ dx2]{H=0}

and the relations in the last column of Table 3. In this table we use the notation

[f(x1, x2)] = [fdx1 ∧ dx2]{H=0}.

H λ1, λ2 Basis of
ˆ

Λ2(R2)
˜

{H=0}
Relations following
from Lemma 4.3

xk+1
1 − x2

2 2, k +1 [1], [x1], . . . , [x
k−1
1 ]

x2
1x2 − xk−1

2 k− 2, 2 [1], [x2], . . . , [x
`
2], [x1],

[x`+1
2 ], [x`+2

2 ], . . . , [xk−2
2 ]

` = [(k − 1)/2]

[xj
2] = (b[x1] + [xi

2]) · x
j−i
2

(b ∈ R, j > i);

[xk−2
2 ] = 2x2

k−1
[x1]

x3
1 − x4

2 4, 3 [1], [x2], [x1],
[x2

2], [x1x2], [x1x
2
2]

x3
1 − x1x

3
2 3, 2 [1], [x2], [x1], [x

2
2]

[x1x2], [x
3
2], [x

4
2]

[x3
2] = 3x1 · [x1]

x3
1 − x5

2 5, 3 [1], [x2], [x1], [x
2
2],

[x1x2], [x
3
2], [x1x

2
2], [x1x

3
2]

Table 3. From Propositions 5.10, 5.11 to Theorem 4.10, (i).
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All relations in the last column of Table 3 are obvious corollaries of Lemma 4.3.
In the second column of Table 3 we give the weights λ1, λ2 of quasi-homogeneity
of the function H. In the third column we present a basis of the space

[
Λ2(R2n)

]
N

satisfying the assumption of Proposition 5.11 for all singularities except Dk with
even k. For the latter singularities the basis in Table 3 satisfies the assumption of
Proposition 5.10. The construction of such basis, for any H, is very simple. One
has to take the monomial basis f1, . . . , fµ of the local algebra of H, to calculate
the degrees of these monomials with respect to the weights λ1, λ2 and to rearrange
them so that the degrees form a non-decreasing sequence. Then, replacing fi by
the algebraic restriction [fi] we obtain a required basis.

Example 5.13. Consider the caseH = Dk = x2
1x2−x

k−1
2 . Decompose an algebraic

restriction a ∈
[
Λ2(R2)

]
{H=0}

by the basis in Table 3:

(5.1) a = c0[1] + c1[x2] + · · · + ck−2[x
k−2
2 ] + α · [x1].

Propositions 5.10, 5.11 and Lemma 5.12 imply that if the coefficients ci and α
satisfy the condition given in the first column of Table 4 then a is diffeomorphic to
the normal form in Theorem 4.10, which we present again in the second column of
Table 4. Note that the first column contains all possible cases.

c0 6= 0 F0 : [1]

c0 = · · · = ci−1 = 0, ci 6= 0, i ≤ k − 4 Fi : [bx1 + xi
2]

c0 = · · · = ck−4 = 0, α 6= 0 Fk−3 : [(±1)k−1x1 + bxk−3
2 ]

c0 = · · · = ck−4 = 0, α = 0, ck−3 6= 0 Fk−2 : [xk−3
2 ]

c0 = · · · = ck−3 = 0, α 6= 0, ck−2 6= 0 Fk−1 : [xk−2
2 ]

c0 = · · · = ck−2 = 0, α = 0 Fk : [0]

Table 4. The correspondence between the normal forms in Theorem 4.10
for the case H = Dk and the coefficients in (5.1).

5.5. Proof of Theorem 4.10, (iii). Let a ∈
[
Λ2(R2)

]
{H=0}

. Take a basis [f1], . . . , [fµ]

of
[
Λ2(R2)

]
{H=0}

as in Table 3. Let a = c1[f1] + · · · + cµ[fµ]. Tracing the proof

of Theorem 4.10,(i) we can check that the normal form Fi holds if exactly i of the
coefficients c1, ..., cµ are equal to 0 (see Example 5.13 where this follows from Table
4). By Theorem 4.10, (ii) “if” can be replaced by “if and only if”.

5.6. Proof of Theorem 4.10, (iv). Any normal form with parameters in Theo-
rem 4.10 has the form a0 + b1a1 + · · · + bsas where ai are algebraic restrictions, bi
are parameters, s ≤ 2. To prove that the parameters are moduli we have to prove

(5.2) ai 6∈ T (a0 + b1a1 + · · · + bsas) .

Proposition 5.9 allows to calculate this tangent space explicitly and to check (5.2)
for each of the normal forms in Theorem 4.10. As an example consider the most
difficult case – the only normal form with two parameters – the normal form

F2 = [x1 + b1x
2
2 + b2x

3
2]

for the case H = E8 = x3
1 − x5

2. We continue to use the notation [f ] = [fdx1 ∧
dx2]{H=0} from the previous subsection. We have to prove

(5.3) [x2
2], [x

3
2] 6∈ T (F2).
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By Proposition 5.9 one has

(5.4) T (F2) =
{∑

r

r · [g · F2]
(r), g ∈ Λ0(R2)

}
,

where (r) denotes the quasi-homogeneous part of degree r with respect to the we-
ights λ1 = 5, λ2 = 3. Lemma 4.3 implies the relations

x≥2
1 xα

2F2 = xα
1x

≥4
2 F2 = x1x

2
2F2 = 0

for any α ≥ 0, and the relations

x1F2 = b1[x1x
2
2] + b2[x1x

3
2], x2F2 = [x1x2] + b1[x

3
2],

x2
2F2 = [x1x

2
2], x1x2F2 = b1[x1x

3
2], x

3
2F2 = [x1x

3
2].

These relations and (5.4) imply

T (F2) = span
(
5[x1] + 6b1[x

2
2] + 9b2[x

3
2], 8[x1x2] + 9b1[x

3
2], [x1x

2
2], [x1x

3
2]

)
.

Since the algebraic restrictions [x1], [x1x2], [x
2
2], [x

3
2], [x1x

2
2], [x1x

3
2] are linearly inde-

pendent (see the last row of Table 3) it is clear that (5.3) holds for any b1, b2.

6. Symplectic S5-singularities

Denote by (S5) the class of varieties in a fixed symplectic space (R2n, ω) which
are diffeomorphic to

(6.1) S5 = {x ∈ R
2n≥4 : x2

1 − x2
2 − x2

3 = x2x3 = x≥4 = 0.}

We will use the method of algebraic restrictions to obtain a complete classifica-
tion of symplectic singularities in (S5). In section 6.1 we calculate the manifold
[Symp(R2n)]S5

and classify its algebraic restrictions. This allows us to decompose
(S5) onto symplectic singularity classes, section 6.2. In section 6.3 we transfer the
normal forms for algebraic restrictions to symplectic normal forms. In section 6.4
we give an equivalent definition of the symplectic singularity classes in canonical
terms. Some of the proofs are contained in sections 6.5, 6.6.

6.1. Algebraic restrictions and their classification. One has the relations

(6.2) [d(x2x3)]N = [x2dx3 + x3dx2]N = 0

(6.3) [d(x2
1 − x2

2 − x2
3)]N = 2 · [x1dx1 − x2dx2 − x3dx3]N = 0

Multiplying these relations by suitable 1-forms we obtain the relations in Table 5.

Relation Proof

1. [x2dx2 ∧ dx3]N = 0 (6.2) ∧ dx2

2. [x3dx2 ∧ dx3]N = 0 (6.2) ∧ dx3

3. [x2
1dx2 ∧ dx3]N = 0

follows from rows 1. and 2. since
[x2

1]N = [x2
2 + x2

3]N

4. [x1dx1 ∧ dx2]N = 0 (6.3) ∧ dx2 along with row 2.

5. [x2
2dx1 ∧ dx2]N = 0

(6.3) ∧ x2dx1

(since [x2x3]N = 0)

6. [x2
3dx1 ∧ dx2]N = 0

(6.2) ∧ x3dx1

(since [x2x3]N = 0)

7. [x1dx1 ∧ dx3]N = 0 (6.3) ∧ dx3 along with row 1.

8. [x2dx1 ∧ dx3]N = −[x3dx1 ∧ dx2]N (6.2) ∧ dx1

9. [x3dx1 ∧ dx3]N = −[x2dx1 ∧ dx2]N (6.3) ∧ dx1



SYMPLECTIC SINGULARITIES: THE METHOD OF ALGEBRAIC RESTRICTIONS 25

Table 5. Relations towards calculating
ˆ

Λ2(Rm)
˜

N
for N = S5.

Table 5 and Proposition 2.3 easily imply the following statements.

Proposition 6.1. Any 2-form with zero 1-jet has zero algebraic restriction to S5.

Proposition 6.2. [Λ2(R2n)]S5 is a 6-dimensional vector space spanned by the al-
gebraic restrictions to S5 of the 2-forms

θ1 = dx1 ∧ dx2, θ2 = dx2 ∧ dx3, θ3 = dx3 ∧ dx1, θ4 = x2dx1 ∧ dx2,

σ1 = x3dx1 ∧ dx2, σ2 = x1dx2 ∧ dx3.

Proposition 6.2 and results of section 2.14 (Theorems 2.19 and 2.21) imply the
following description of the space [Λ2,closed(R2n)]S5 and the manifold [Symp(R2n]S5

.

Theorem 6.3. The space [Λ2,closed(R2n)]S5 has dimension 5. It is spanned by the
algebraic restrictions to S5 of the 2-forms

θ1, . . . , θ4, θ5 = σ1 − σ2.

If n ≥ 3 then [Symp(R2n)]S5
= [Λ2,closed(R2n)]S5 . The manifold [Symp(R4)]S5

is
an open part of the 5-space [Λ2,closed(R4)]S5 consisting of algebraic restrictions of
the form [c1θ1 + · · · + c5θ5]S5

such that (c1, c2, c3) 6= (0, 0, 0).

Remark. The fact that dim[Λ2,closed(R2n)]S5 = 5 follows from Proposition 2.16
since S5 is a complete intersection singularity of multiplicity 5.

Theorem 6.4.

(i) Any algebraic restriction in [Λ2,closed(R2n)]S5 can be brought by a symmetry of
S5 to one of the normal forms [S5]

i given in the second column of Table 6;

(ii) The codimension in [Λ2,closed(R2n)]S5 of the singularity class corresponding to
the normal form [S5]

i is equal to i;

(iii) The singularity classes corresponding to the normal forms are disjoint;

(iv) The parameters c, c1, c2 of the normal forms [S5]
0, [S5]

2, [S5]
3 are moduli.

Class
Normal forms for

algebraic restrictions
cod µsym ind Canonical

definition

(S5)
0

2n ≥ 4

[S5]
0 : [θ2 + c1θ1 + c2θ3]S5

(c1, c2) 6= (0, 0)
0 2 0 ω|W 6= 0,

ker ω|W 6= `∗1, `
∗
2, `

∗
3

(S5)
2

2n ≥ 4
[S5]

2 : [θ2 + cθ4]S5
2 3 0 ω|W 6= 0,

ker ω|W ∈ {`∗1, `
∗
2, `

∗
3}

(S5)
3

2n ≥ 6
[S5]

3 : [θ4 + cθ5]S5
3 4 1 ω|W = 0,

[ω]N 6= 0

(S5)
5

2n ≥ 6
[S5]

5 : [0]S5
5 5 ∞ [ω]N = 0

Table 6. Classification of symplectic S5 singularities. cod – codimension of the classes;

µsym– symplectic multiplicity; ind – the index of isotropness; W - the tangent space to a

non-singular 3-dimensional manifold containing N ; `∗1, `
∗
2, `

∗
3 – the lines in W associated

to the tangent lines to the strata of N .
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6.2. Symplectic singularity classes. In the first column of Table 6 by (S5)
i we

denote a subclass of (S5) consisting of N ∈ (S5) such that the algebraic restric-
tion [ω]N is diffeomorphic to some algebraic restriction of the normal form [S5]

i.
Theorem A, Theorem 6.4 and Proposition 6.3 imply the following statement.

Proposition 6.5. The classes (S5)
i are symplectic singularity classes, i.e. they

are closed with respect to the action of the group of symplectomorphisms. The class
(S5) is the disjoint union of the classes (S5)

0, (S5)
2, (S5)

3, (S5)
5. The classes (S5)

0

and (S5)
2 are non-empty for any dimension 2n ≥ 4 of the symplectic space; the

classes (S5)
3 and (S5)

5 are empty if n = 2 and not empty if n ≥ 3.

The following theorem explains why the given stratification of (S5) is natural.

Theorem 6.6. Fix i ∈ {0, 2, 3, 5}. All stratified submanifolds N ∈ (S5)
i have the

same (a) symplectic multiplicity and (b) index of isotropness given in Table 6.

Proof. The part (a) follows from Theorems D and 6.4 and the fact that the codi-
mension in [Λ2,closed(R2n)]S5

of the orbit of an algebraic restriction a ∈ [S5]
i is equal

to the sum of the number of moduli in the normal form [S5]
i and the codimension in

[Λ2,closed(R2n)]S5
of the class of algebraic restrictions defined by this normal form.

The part (b) for the normal form [S5]
5 follows from Theorem B (or from Theorem

C). For the normal forms [S5]
0 and [S5]

2 it follows from Theorem C and Lemma
2.20. For [S5]

3 the part (b) follows from Theorem C and Proposition 6.1. �

6.3. Symplectic normal forms. Let us transfer the normal forms [S5]
i to sym-

plectic normal forms using Theorem A, i.e. realizing the algorithm in section 2.8.
Fix a family ωi of symplectic forms on R

2n realizing the family [S5]
i of algebraic

restrictions. We can fix, for example

ω0 = θ2 + c1θ1 + c2θ3 +dx1∧dx4 +dx5∧dx6 + · · ·+dx2n−1∧dx2n, (c1, c2) 6= (0, 0)

ω2 = θ2 + cθ4 + dx1 ∧ dx4 + dx5 ∧ dx6 + · · · + dx2n−1 ∧ dx2n;

ω3 = θ4 + cθ5 +dx1 ∧dx4 +dx2 ∧dx5 +dx3 ∧dx6 +dx7 ∧dx8 + · · ·+dx2n−1 ∧dx2n;

ω5 = dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 + dx7 ∧ dx8 + · · · + dx2n−1 ∧ dx2n.

Corollary 6.7. Let ω be a symplectic form on R
2n, n ≥ 3 (resp. n = 2). Fix, for

i = 0, 2, 3, 5 (resp. for i = 0, 2) a family Φi of local diffeomorphisms which bring
the family of symplectic forms ωi to the symplectic form ω: (Φi)∗ωi = ω. Consider
the families Si

5 = (Φi)−1(S5). Any stratified submanifold of the symplectic space
(R2n, ω) which is diffeomorphic to S5 can be reduced by a local symplectomorphism
to one and only one of the normal forms Si

5, i = 0, 2, 3, 5 (resp. i = 0, 2). The
parameters of the normal forms are moduli.

Of course the normal forms Si
5 depend on the choice of the diffeomorphisms Φi in

Corollary 6.7 and of the symplectic forms ωi realizing the algebraic restrictions. For
example, if ω is expressed in Darboux coordinates, ω = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn
then a suitable choice of ωi and Φi leads to the following normal forms:

S0
5 : p2

1 − p2
2 − q22 = 0, p2q2 = 0, q1 = c1p2 + c2q2, p≥3 = q≥3 = 0, (c1, c2) 6= (0, 0);

S2
5 : p2

1 − p2
2 − q22 = 0, p2q2 = 0, q1 = cp2

2, p≥3 = q≥3 = 0;

S3
5 : p2

1 − p2
2 − p2

3 = 0, p2p3 = 0, q1 = p2
2/2, q2 = cp1p3, q≥3 = p≥4 = 0;

S5
5 : p2

1 − p2
2 − p2

3 = 0, p2p3 = 0, q≥1 = p≥4 = 0.
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6.4. Canonical definition of the classes (S5)
i. The classes (S5)

i can be distin-
guished geometrically, without using any local coordinate system. Let N ∈ (S5).
Then N is the union of 4 non-singular 1-dimensional submanifolds (strata). Denote
by `1(N), ..., `4(N) the tangent lines at 0 to the strata. These lines span a 3-space
W = W (N). Equivalently W (N) is the tangent space at 0 to some (and then any)
non-singular 3-manifold containing N . The classes (S5)

i can be distinguished in
terms of the restriction ω|W , where ω is the symplectic form, and the following
three lines in the 3-space W associated with the lines `1(N), ..., `4(N):

`∗1 = `∗1(N) = (`1(N) ⊕ `2(N)) ∩ (`3(N) ⊕ `4(N));

`∗2 = `∗2(N) = (`1(N) ⊕ `3(N)) ∩ (`2(N) ⊕ `4(N));

`∗3 = `∗3(N) = (`1(N) ⊕ `4(N)) ∩ (`2(N) ⊕ `3(N)).

The constructed lines `∗1, `
∗
2, `

∗
3 are well-defined 1-dimensional subspaces of the 3-

space W because W is spanned by any three of the lines `1(N), ..., `4(N). For
example, for N = S5 =(6.1) it is easy to calculate

(6.4) `∗1(N) = span(∂/∂x1), `
∗
2,3(N) = span(∂/∂x2 ± ∂/∂x3).

Theorem 6.8. A stratified submanifold N ∈ (S5) of a symplectic space (R2n, ω)
belongs to the class (S5)

i if and only if the couple (N,ω) satisfies the condition in
the last column of Table 6, the row of (S5)

i.

Remark. One can ask why this is a theorem, not the definition of (S5)
i. Of course

we could use the last column of Table 6 as the definition of the classes, but this
way of exposition is not “honest”: the geometric characterization of the classes was
obtained as a result of analysis of normal forms for algebraic restrictions.

Proof of Theorem 6.8. The conditions on the pair (ω,N) in the last column of Table
6 are disjoint. This fact and Theorem 6.4, (i) reduce Theorem 6.8 to the following
statement: the condition given in the last column of Table 6, the row of (S5)

i, are
satisfied for any N ∈ (S5)

i. This statement is a corollary of the following claims:

1. Each of the conditions in the last column of Table 6 is invariant with respect to
the action of the group of diffeomorphisms in the space of pairs (ω,N);

2. Each of these conditions depends only on the algebraic restriction [ω]N ;

3. Take the simplest 2-forms ωi representing the normal forms [S5]
i for algebraic

restrictions: ω0 = θ2 + c1θ1 + c2θ3, ω
2 = θ2 + cθ4, ω

3 = θ4 + cθ5, ω
5 = 0. The pair

(ω = ωi, S5) satisfies the condition in the last column of Table 6, the row of (S5)
i.

The first statement is obvious, the second one follows from of Lemma 2.20. To
prove the third statement it suffices to note that in the case N = S5 = (6.1) one
has W = span(∂/∂x1, ∂/∂x2, ∂/∂x3) and the kernel of the restriction to W of the
2-form θ2+c1θ1+c2θ3 is the line spanned by the vector ∂/∂x1+c2∂/∂x2−c1∂/∂x3.
This line coincides with one of the lines (6.4) if any only if c1 = c2 = 0. �

Theorem 6.8 allows to distinguish the classes (S5)
0 ∪ (S5)

2 and (S5)
3 ∪ (S5)

5 in
simple geometric terms: N ∈ (S5)

3 ∪ (S5)
5 if and only if ω|W = 0. The geometric

distinguishing of the classes (S5)
3 and (S5)

5 follows from Theorem B : N ∈ (S5)
5

if and only if N it is contained in a non-singular Lagrangian submanifold. The
following theorem gives a simple way to check the latter condition without using
algebraic restrictions. Given a 2-form σ on a non-singular submanifold M of R

2n

such that σ(0) = 0 and a vector v ∈ T0M we denote by Lvσ the value at 0 of the Lie
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derivative of σ along a vector field V on M such that v = V (0). The assumption
σ(0) = 0 implies that the choice of V is irrelevant.

Theorem 6.9. Let N ∈ (S5) be a stratified submanifold of a symplectic space
(R2n, ω). Let M3 be any non-singular submanifold containing N and let σ be the
restriction of ω to TM3. Let v∗i ∈ `∗i be non-zero vectors. The symplectic form
ω has zero algebraic restriction to N if and only if σ(0) = 0 and Lv∗

1
σ(v∗2 , v

∗
3) =

Lv∗

2
σ(v∗3 , v

∗
1) = Lv∗

3
σ(v∗1 , v

∗
2) = 0.

6.5. Proof of Theorem 6.4. We will prove statements (i) and (iv). Statements
(ii) and (iii) follow from Theorem 6.8 which was proved in section 6.4 (using only
the part (i) of Theorem 6.4). The first statement of Theorem 6.4 follow from the
following lemmas.

Lemma 6.10. If (c1, c2, c3) 6= (0, 0, 0) then the algebraic restriction of the form
[c1θ1 + · · · + c5θ5]S5

can be reduced by a linear symmetry of S5 to an algebraic
restriction of the same form with c2 = 1.

Lemma 6.11. The algebraic restriction of the form [c4θ4 + c5θ5]S5
with (c4, c5) 6=

(0, 0) can be reduced by a linear symmetry of S5 to an algebraic restriction of the
same form with c4 = 1.

Lemma 6.12. The algebraic restriction of the form [c1θ1+θ2+c2θ3+r1θ4+r2θ5]S5

can be reduced by a symmetry of S5 to the algebraic restriction [c1θ1 + θ2 + c2θ3]S5
.

Lemma 6.13. The algebraic restriction of the form [θ2 + c4θ4 + c5θ5]S5
can be

reduced by a symmetry of S5 to the algebraic restriction [θ2 + c4θ4]S5
.

Proof of Lemmas 6.10 and 6.11. If c2 6= 0 in the case of Lemma 6.10 or c4 6= 0 in
the case of Lemma 6.11 then the required normal form are clear due to the scale
symmetries of S5 of the form xi → kxi and the involution x1 → −x1. It is easy to
check that a suitable permutation of some of the four strata of S5 brings the case
c2 = 0 (resp. c4 = 0) to the case c2 6= 0 (resp. c4 6= 0). �

To prove Lemmas 6.12 and 6.13 we use the non-linear symmetries of S5 generated
by the Euler vector field E = x1∂/∂x1 + x2∂/∂x2 + x2∂/∂x3.

Notation. Denote by Ψt
j the flow of the vector field xjE, j = 1, 2, 3.

Lemma 6.14. Let ai = [θi]S5
, i = 1, ..., 5. The algebraic restriction (Ψt

j)
∗ai has

the form given in Table 7 in the row of ai and the column of Ψj.

Ψt
1 Ψt

2 Ψt
3

a1 a1 a1 + 3ta4 a1 + ta5

a2 a2 − 2ta5 a2 a2

a3 a3 a3 + ta5 a3 + 3ta4

a4 a4 a4 a4

a5 a5 a5 a5

Table 7. The algebraic restrictions (Ψt
j)

∗ai.

Lemmas 6.12 and 6.13 are immediate corollaries of Lemma 6.14. In fact, Table
7 implies that if c1 6= 0 (respectively c2 6= 0) then the algebraic restriction c1a1 +
a2 + c2a3 + c4a4 + c5a5 reduces to the form c1a1 + a2 + c2a3 by the symmetry
Ψt

1 ◦ Ψs
2 (respectively Ψt

1 ◦ Ψs
3) with suitable t and s. The table also implies that

the algebraic restriction a2 + c4a4 + c5a5 reduces to a2 + c4a4 by the symmetry Ψt
1

with a suitable t.
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Proof of Lemma 6.14. The calculation of algebraic restrictions (Ψt
j)

∗ai is based on
the observation that if ωi is a 2-form representing the algebraic restriction ai then
by Proposition 6.1 (Ψt

j)
∗ai depends only on the 1-jet of ω and the 2-jet of Ψj . For

example j2Ψt
1 : x1 → x1+tx2

1, x2 → x2+tx1x2, x3 → x3+tx1x3 and consequently

j1((Ψt
1)

∗a2 = [dx2 ∧ dx3 + 2tx1dx2 ∧ dx3 − tx3dx1 ∧ dx2 + tx2dx1 ∧ dx3]S5
.

Using the relation [x2dx3]S5
= −[x3dx2]S5

(since [x2x3]S5
= 0) we obtain that

(Ψt
1)

∗a2 = a2 − 2ta5. The other boxes in Table 7 can be filled in by similar simple
calculations (using some relations in Table 5, for example [x1dx1 ∧dx3]S5

= 0). �

Now we will prove statement (iv) of Theorem 6.4. The fact that the parameters
c1 and c2 are moduli in the normal form [S5]

0 and the parameter c is a modulus
in the normal form [S5]

3 follows from the reduction Theorem 2.5 and the structure
of the group of linear symmetries of S5 treated as a stratified submanifold of R

3

– it is easy to see that it consists of the scale transformations xi → kxi and the
permutations of the strata.

Remark. The existence of two moduli in the symplectic classification of stratified
submanifolds N ∈ (S5) follows from the existence of two moduli in the classification
of 5-tuples of lines (one-dimensional subspaces) in a 3-space with respect to the
group of linear transformations of this space. One should associate to N the 3-
space W (N) and the lines `1(N), ..., `4(N), kerω|W ⊂W (N), see section 6.4.

It remains to prove that c is a modulus in the normal form [S5]
2. As above,

Theorem 2.5 allows us to treat S5 as a stratified submanifold of R
3. Any symmetry

Φ of S5 preserving each of the four strata has the form xi → kxi, therefore Φ
brings the algebraic restriction [θ2 + c · θ4]S5

to an algebraic restriction of the form
[k2θ2 + r4θ4 + r5θ5]S5

. Therefore it suffices to prove that c is an invariant with
respect to the symmetries of S5 of the form

(6.5) Φ : x1 → x1 + φ1(x), x2 → x2 + φ2(x), x3 → x3 + φ3(x),

where φi are functions with zero 1-jet. Using Table 5 we obtain

Φ∗[θ2 + c · θ4]S5
= [θ2 + (c− r)θ4 + r̃ · θ5]S5

, r =
∂2φ3

∂x1∂x2
(0) +

∂2φ2

∂x1∂x3
(0)

(the number r̃ also can be calculated, but we do not need it). Now, to prove that c
is a modulus, we have to show that r = 0 for any symmetry Φ of S5 of form (6.5).
The fact that Φ preserves the strata x1 = ±x2, x3 = 0 and x1 = ±x3, x2 = 0 implies
that φ3 belongs to the ideal (x3, x

2
1 − x2

2) and φ2 belongs to the ideal (x3, x
2
1 − x2

3).

It follows that ∂2φ3

∂x1∂x2

(0) = ∂2φ2

∂x1∂x3

(0) = 0 and consequently r = 0.

6.6. Proof of Theorem 6.9. By Proposition 2.4 and Lemma 2.20 it suffices to
prove that if a closed 2-form σ on R

3 vanishes at 0 then σ has zero algebraic
restriction to S5 = {x2

1 − x2
2 − x2

3 = x2x3 = 0} ⊂ R
3 if and only if

(6.6) Lv∗

1
σ(v∗2 , v

∗
3) = Lv∗

2
σ(v∗3 , v

∗
1) = Lv∗

3
σ(v∗1 , v

∗
2) = 0.

Let σ = A3(x)dx1 ∧dx2 +A1(x)dx2 ∧dx3 +A2(x)dx3 ∧dx1. Then, by the closeness
of σ, one has ∂A1

∂x1

(0) + ∂A2

∂x2

(0) + ∂A3

∂x3

(0) = 0. Using (6.4) it is easy to calculate that

the intersection of this condition and (6.6) gives

(6.7)
∂A1

∂x1
(0) =

∂A2

∂x2
(0) +

∂A3

∂x3
(0) =

∂A2

∂x3
(0) +

∂A3

∂x2
(0) = 0.



30 W. DOMITRZ, S. JANECZKO, AND M. ZHITOMIRSKII

Let us show that (6.7) is equivalent to the condition [σ]N = 0. By Proposition
6.1 [σ]N = 0 if and only if [j1σ]N = 0. The functions x2

1 − x2
2 − x2

3 and x2x3 have
zero 1-jet. Therefore [σ]N = 0 if and only if there exist r1, . . . , r6 ∈ R such that

j1σ = d(x2
1−x

2
2−x

2
3)∧ (r1dx1 +r2dx2 +r3dx3)+d(x2x3)∧ (r4dx1 +r5dx2 +r6dx3).

This relation is a system of 9 linear equations with respect to 6 unknowns r1, ..., r6.
It is easy to check that it is solvable if and only if the condition (6.7) holds.

7. Classification of symplectic regular union singularities

By a regular union singularity in R
2n we mean the union

(7.1) N = N1 ∪ · · · ∪Ns, s ≥ 2

of germs of s non-singular submanifolds of R
2n (in what follows - strata) such that

the dimension of the space

(7.2) W = T0N1 + · · · + T0Ns

is equal to the sum of the dimensions of the strata, i.e. the sum (7.2) is direct.
If the number of strata and their dimensions are fixed then all such N are diffeo-
morphic. The set

[
Symp(R2n)

]
N

can be explicitly described (section 7.1). Using
this description and Theorem A we classify all symplectic regular union singulari-
ties with three 1-dimensional strata (section 7.2), with two 2-dimensional isotropic
strata (section 7.3), and with two 2-dimensional symplectic strata (section 7.4).

7.1. Algebraic restrictions. At first we describe the space
[
Λ2,closed(R2n)

]
N

.

Throughout subsection 7.1 N is an arbitrary regular union singularity (7.1).

Theorem 7.1. Two closed 2-forms ω1, ω2 have the same algebraic restriction to
N if and only if they have the same restriction to the tangent bundle to each of the
strata Ni and ω1 and ω2 have the same restriction to the space W .

It follows that
[
Λ2,closed(R2n)

]
N

is a finite dimensional vector space if and only if
each of the strataNi is 1-dimensional. Theorem 7.1 makes clear how to parameterize
the space of algebraic restrictions, see sections 7.2, 7.3, 7.4.

The minimal dimension of a non-singular manifold containing N is the sum of
the dimensions of the strata. Therefore Theorem 2.19 implies:

Proposition 7.2. Let m = dim N1+· · ·+dim Ns. If m ≤ n then
[
Symp(R2n)

]
N

=

[Λ2,closed(R2n)]N . If m > n then an algebraic restriction [ω]N ∈ [Λ2,closed(R2n)]N
belongs to

[
Symp(R2n)

]
N

if and only if rank ω(0) ≥ 2(m− n).

Note that Theorem A, Theorem 7.1 and Proposition 7.2 reduce the problem
of classification of symplectic regular union singularities with isotropic strata to
simple linear algebra problems, see sections 7.2 and 7.3.

Theorem 7.1 and Theorem C imply the following corollary on the index of
isotropness of a regular union singularity.

Proposition 7.3. Let N be a regular union singularity (7.1) in a symplectic space
(R2n, ω). Let W ⊂ T0R

2n be the space (7.2). If ω|W 6= 0 then the index of isotrop-
ness of N is equal to 0. If ω|W = 0 then it is equal to the minimum of orders
of vanishing of the 2-forms ω|TNi

, i = 1, . . . , s. In particular, if the strata Ni are
isotropic then the index is either 0 (if ω|W 6= 0) or ∞ (if ω|W = 0). .
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Proof of Theorem 7.1. Fix a non-singular submanifoldM containingN of dimension
dim N1 + · · ·+dim Ns. Theorem 7.1 follows from Proposition 2.4 and the following
statement: a closed 2-form σ on M has zero algebraic restriction to N if and only
if (a) σ|TNi

= 0 i = 1, . . . , s and (b) σ(0) = 0. The implication [σ]N = 0 =⇒ (a),
(b) follows from Lemma 2.20. In what follows we prove the implication (a), (b) =⇒
[σ]N = 0. It is easy to show that (a) and (b) imply that σ is a differential of a
1-form α such that (c) α has zero 1-jet and (d) α|TNi

= 0, i = 1, . . . , s. Therefore
it suffices to prove that (c) and (d) imply [α]N = 0. To prove this statement take

local coordinates x
(1)
1 , . . . , x

(1)
m1
, . . . , x

(s)
1 , . . . , x

(s)
ms

on M such that the stratum Ni is

described by vanishing of all coordinates except x
(i)
1 , . . . , x

(i)
mi

(here mi = dimNi).
It is easy to see that any 1-form α satisfying (c) and (d) belongs to the ideal in the
external algebra of differential forms generated by 0-forms (functions)

x(i)
p · x(j)

q , j 6= i, p = 1, . . . ,mi, q = 1, . . . ,mj ,

which vanish at any point of N , and 1-forms

(7.3) x(i)
p1

· x(i)
p2
dx(j)

q , j 6= i, p1, p2 = 1, . . . ,mi, q = 1, . . . ,mj .

By Proposition 2.3 it remains to prove that the 1-forms (7.3) have zero algebraic
restriction to N . This follows from the relation

x(i)
p1

· x(i)
p2
dx(j)

q = d
(
x(i)

p1
· x(i)

p2
· x(j)

q

)
− x(i)

p1
· x(j)

q dx(i)
p2

− x(i)
p2

· x(j)
q dx(i)

p1
.

7.2. Regular union of 3 one-dimensional submanifolds. By Theorem 7.1 the
algebraic restrictions of closed 2-forms to a regular union N of three 1-dimensional
submanifolds can be identified with 2-forms on the 3-space W spanned by the
tangent lines `1, `2, `3 to the strata of N . The action of the group of symmetries of
N reduces to the action of the group of linear transformations of W preserving the
set `1 ∪ `2 ∪ `3. Therefore the problem of classification of algebraic restrictions to
N of closed 2-forms reduces to the following simple problem of linear algebra:

Let `1, `2, `3 be linearly independent 1-dimensional subspaces of a 3-dimensional
space W . One has to classify 2-forms σ on W with respect to the group of linear
transformations preserving `1 ∪ `2,∪`3.

It is easy to prove that in this problem there are exactly 4 orbits, of codimension
0, 1, 2, 3. The orbit of codimension 0 consists of non-zero 2-forms whose kernel does
not belong to any of the 2-spaces `1 +`2, `1 +`3, `2 +`3. The orbit of codimension 1
consists of non-zero 2-forms whose kernel belongs to one of these 2-spaces but does
not coincide with any of the lines `1, `2, `3. The orbit of codimension 2 consists
of non-zero 2-forms whose kernel coincides with of the lines `1, `2, `3. The orbit of
codimension 3 is one “point” – the zero 2-form.

Theorem 7.1 allows to bring this simple classification to the classification of
algebraic restrictions given in the first column of Table 8, where

N∗ : x1x2 = x1x3 = x2x3 = x≥4 = 0

is the normal form with respect to the group diffeomorphisms serving for all regular
unions of three 1-dimensional submanifolds. The algebraic restriction to N of any
closed 2-form ω is diffeomorphic to one and only one of the algebraic restrictions
ai. The normal form ai holds if and only if the pair (ω,N) satisfies the condition
given in the last column of Table 8. The orbit of ai with respect to the group of
symmetries of N∗ has codimension i in the space

[
Λ2,closed(R2n)

]
N∗

.
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Normal forms for
algebraic restrictions

Symplectic normal forms Geometric condition

a0 = [dx2dx3 + dx3dx1+
+dx1dx2]N∗

N0 : q2 = p1 + p2,
p1q1 = q1p2 = p2q2 = 0,
p≥3 = q≥3 = 0

ω|W 6= 0,
kerω|Q 6⊂ T0Ni + T0Nj ,
for any i, j ∈ {1, 2, 3};

a1 = [dx3dx1 + dx1dx2]N∗

N1 : q2 = p1,
p1q1 = q1p2 = p2p1 = 0,
p≥3 = q≥3 = 0

ω|Q 6= 0,
kerω|W ⊂ T0Ni + T0Nj ,
kerω|W 6= TONi, T0Nj

for some i, j ∈ {1, 2, 3};

a2 = [dx1dx2]N∗

N2 : p1q1 = q1p2 =
p2p1 = 0, p≥3 = q≥2 = 0

ω|Q 6= 0,
kerω|W = T0Ni

for some i ∈ {1, 2, 3}

a3 = [0]N∗

N3 : p1p2 = p2p3 =
p3p1 = 0, p≥4 = q≥1 = 0

ω|W = 0.

Table 8. Classification of symplectic regular union singularities with three 1-dimensional
strata. W denotes the 3-space spanned by the tangent lines at 0 to the strata.

This classification of algebraic restrictions can be transferred to the following
symplectic classification using Theorems A and D and Proposition 7.2, 7.3.

Theorem 7.4. Any regular union singularity N with three 1-dimensional strata in
the symplectic space (R2n, ω0 = dp1 ∧ dq1 + · · · + dpn ∧ dqn), n ≥ 3 (resp. n = 2)
is symplectomorphic to one and only one of the varieties N 0, N1, N2, N3 (resp.
N0, N1, N2) given in Table 8. The normal form N i has symplectic multiplicity i.
It holds if and only if the pair (ω = ω0, N) satisfies the condition in the last column
of the table. The index of isotropness of N 0, N1, N2 is equal to 0, of N3 – to ∞.

7.3. Regular union of two 2-dimensional isotropic submanifolds. In this
subsection we obtain symplectic classification of all regular union singularities N
with two 2-dimensional isotropic strata. (In this case we will say thatN is isotropic).
Like in the previous subsection, Theorem 7.1 reduces the classification of algebraic
restrictions to the following problem of linear algebra:

Let L1, L2 be transversal 2-dimensional subspaces of a 4-dimensional space Q. One
has to classify 2-forms σ on Q which annihilate L1 and L2 with respect to the group
of linear transformations preserving L1 ∪ L2.

It is easy to show that in this classification problem the rank of σ is a complete
invariant – two 2-forms with the given above properties are equivalent if and only if
they have the same rank. By Theorem 7.1 we obtain the classification of algebraic
restrictions in Table 9, where

(7.4) N∗ : x1x3 = x1x4 = x2x3 = x2x4 = x≥5 = 0

is the normal form with respect to the group diffeomorphisms serving for all regular
unions of two 2-dimensional submanifolds. The algebraic restriction to N of any
closed 2-form annihilating the tangent bundles to the strata of N is diffeomorphic to
one and only one of the algebraic restrictions ai. The orbit of ai has codimension
i in the space of algebraic restrictions to N ∗ of closed 2-forms annihilating the
tangent bundles to the strata of N ∗. The normal form ai holds if and only if the
pair (ω,N) satisfies the condition in the third column of Table 9.
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Normal forms for
algebraic restrictions

Symplectic normal forms Geometric
condition

codim

a0 = [dx1dx3 + dx2dx4]N∗

N0 : {p≥3 = q≥1 = 0}∪
{p≥1 = q≥3 = 0}

rank ω|W = 4 0

a1 = [dx1dx3]N∗

N1: (for 2n ≥ 6 only)
{p≥3 = q≥1 = 0}∪
{p≥1 = q2 = q≥4 = 0}

rank ω|W = 2 1

a4 = [0]N∗

N4: (for 2n ≥ 8 only)
{p≥3 = q≥1 = 0}∪

{p1 = p2 = p≥5 = q≥1 = 0}
ω|W = 0 4

Table 9. Classification of symplectic regular union singularities with two 2-dimensional
isotropic strata. W denotes the 4-space spanned by the tangent planes at 0 to the strata.

Using Theorem A and Proposition 7.2, 7.3 we can transfer the obtained classi-
fication of algebraic restrictions to the following symplectic classification.

Theorem 7.5. Any regular union singularity N with two isotropic 2-dimensional
strata in a symplectic space (R2n, ω0 = dp1∧dq1 + · · ·+dpn∧dqn) is symplectomor-
phic to one and only one of the varieties N 0, N1, N4 in Table 9. The orbit of N i has
codimension i in the class of all regular union singularities with two 2-dimensional
isotropic strata. The normal form N i holds if and only if the pair (ω = ω0, N)
satisfies the condition given in the last column of Table 9. The index of isotropness
of N0, N1 is equal to 0, of N4 – ∞.

7.4. Regular union of two 2-dimensional symplectic submanifolds. In this
subsection we classify regular union singularities with two 2-dimensional symplectic
strata in a symplectic space (R2n, ω). Note that in this case the index of isotropness
of N is equal to 0. The symplectic classification of such N involves the following
invariant. Recall that two germ of submanifolds N1, N2 of a symplectic space
(R2n, ω) are called ω-orthogonal if ω(v, u) = 0 for any vectors v ∈ T0N1, u ∈ T0N2.

Definition 7.6. The index of non-orthogonality between 2-dimensional symplectic
submanifolds N1 and N2 of a symplectic space (R2n, ω) is the number

α = α(N1, N2) = 1 −
(ω ∧ ω)(v1, v2, u1, u2)

2 · ω(v1, v2) · ω(u1, u2)

where v1, v2 is a basis of T0N1 and u1, u2 is a basis of T0N2.

The following obvious statement explains this definition.

Proposition 7.7. The index α(N1, N2) is well-defined, i.e. it does not depend on
the choice of the bases of T0N1 and T0N2. It is equal to 0 if and only if there exists
a non-zero vector u ∈ T0N1 such that ω(v, u) = 0 for any v ∈ T0N2. It is equal to 1
if and only if the 4-form ω ∧ ω has zero restriction to the space Q = T0N1 + T0N2.

In other words, α(N1, N2) = 0 if the space T0N1 has non-trivial intersection with
the ω-orthogonal complement to T0N2 in the space Q. In particular, if N1 and N2

are ω-orthogonal then α(N1, N2) = 0.

Proposition 7.8. Let N = N1 ∪ N2 be the regular union of two 2-dimensional
symplectic submanifolds of a symplectic space (R2n, ω). Let α be the index of non-
orthogonality between N1 and N2. If N1 and N2 are not ω-orthogonal then the
algebraic restriction [ω]N is diffeomorphic to the algebraic restriction

aα = [dx1 ∧ dx2 + dx3 ∧ dx4 + dx1 ∧ dx3 + αdx2 ∧ dx4]N∗ ,
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where N∗ = (7.4). If N1 and N2 are ω-orthogonal then [ω]N is diffeomorphic to
the algebraic restriction

a⊥ = [dx1 ∧ dx2 + dx3 ∧ dx4]N∗ .

The orbit of a⊥ has codimension 4 in
[
Λ2,closed(R2n)

]
N∗

.

Theorems A, D and Propositions 7.7, 7.8 imply the following corollary.

Theorem 7.9. Let ω0 = dp1∧dq1+ · · ·+dpn∧dqn. Let N = N1∪N2 be the regular
union singularity with two 2-dimensional symplectic strata in the symplectic space
(R2n, ω0). If N1 and N2 are not ω0-orthogonal then N has symplectic multiplicity
1 and is symplectomorphic to the variety

Nα : {q1 = p2, p1 = p≥3 = q≥3 = 0} ∪ {p2 = αq1, p≥3 = q≥2 = 0},

where α is the index of non-orthogonality between N1 and N2. If N1 and N2 are
ω0-orthogonal then N has symplectic multiplicity 4 and is symplectomorphic to

N⊥ : {p1 = q1 = p≥3 = q≥3 = 0} ∪ {p≥2 = q≥2 = 0}.

If n ≥ 3 then any of the normal forms is realizable and if n = 2 – any except the
normal form N1.

It follows that the index of non-orthogonality distinguishes all normal forms
except N⊥ and N0 – for each of them the index is equal to 0. These normal forms
can be distinguished as follows. Intersect the ω-orthogonal complement to the
tangent space to N1 with the tangent space to N2. If the index of non-orthogonality
is equal to 0 then the dimension of the intersection is either 1 or 2. It is 1 if N is
symplectomorphic to N0 and it is 2 if N is symplectomorphic to N⊥.

Proof of Proposition 7.8. By Theorem 7.1 the algebraic restriction to N ∗ = (7.4)
of any closed 2-form can be expressed in the form

(7.5) [ω]N∗ = [f(x1, x2)dx1 ∧ dx2 + g(x3, x4)dx3 ∧ dx4+

+c1dx1 ∧ dx3 + c2dx1 ∧ dx4 + c3dx2 ∧ dx3 + c4dx2 ∧ dx4]N∗ .

Therefore [ω]N is diffeomorphic to (7.5). The condition that the strata are symplec-
tic with respect to ω depends only on the algebraic restriction [ω]N and is equivalent
to the condition f(0) 6= 0, g(0) 6= 0. This condition allows to reduce f(x1, x2) and
g(x3, x4) to 1 by a symmetry of N∗ of the form (x1, x2) → (φ1(x1, x2), φ2(x1, x2)),
(x3, x4) → (ψ1(x3, x4), ψ2(x3, x4)). We obtain the normal form

[dx1 ∧ dx2 + dx3 ∧ dx4 + c1dx1 ∧ dx3 + c2dx1 ∧ dx4 + c3dx2 ∧ dx3 + c4dx2 ∧ dx4]N∗

with real parameters c1, c2, c3, c4. The condition that the strata are ω-orthogonal
is also a property of the algebraic restriction [ω]N∗ . It holds if and only if c1 =
c2 = c3 = c4 = 0. In this case we obtain the normal form a⊥. If the strata are
not ω-orthogonal then at least one of the numbers c1, · · · , c4 is different from 0.
The case c1 = 0 can be transferred to the case c1 6= 0 by one of the symmetries
(x1, x2, x3, x4) 7→ (−x2, x1, x3, x4), (x1, x2, x3, x4) 7→ (x1, x2,−x4, x3). The scale
symmetry (x1, x2, x3, x4) → (c−1

1 x1, c1x2, x3, x4) reduces c1 to 1. Now we can
reduce c2 and c3 to 0 by the symmetry (x1, x2, x3, x4) → (x1−c3x2, x2, x3−c2x4, x4).
We obtain the normal form aα, and it remains to note that in this normal form α
is exactly the index of non-orthogonality between the strata of N . �
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