INSTITUTE OF MATHEMATICS of the Polish Academy of Sciences

IM PAN Preprint 678 (2007)

Stanisław Janeczko, Zbigniew Jelonek

Diffeomorphisms that are Symplectomorphisms

DIFFEOMORPHISMS THAT ARE SYMPLECTOMORPHISMS

STANISŁAW JANECZKO \& ZBIGNIEW JELONEK

Abstract

Let $\left(X, \omega_{X}\right)$ and $\left(Y, \omega_{Y}\right)$ be compact symplectic manifolds of dimension $2 n>2$. Let us fix a number k with $0<k<n$ and assume that a diffeomorphism $\Phi: X \rightarrow Y$ transforms all $2 k$-dimensional symplectic submanifolds of X onto symplectic submanifolds of Y. Then Φ is a conformal symplectomorphism, i.e., there is a constant $c \neq 0$ such that $\Phi^{*} \omega_{Y}=c \omega_{X}$.

1. Introduction.

Let $\left(X, \omega_{0}\right)$ be a standard symplectic affine space over \mathbb{R} of dimension $2 n$, i.e., $X \cong \mathbb{R}^{2 n}$ and $\omega_{0}=\sum_{i} d x_{i} \wedge d y_{i}$ is the standard non-degenerate skew-symmetric form on X. Linear symplectomorphisms of (X, ω_{0}) are characterized (cf. [3]) as linear automorphisms of X preserving some minimal, complete data defined by ω_{0} on systems of linear subspaces. In this way the linear symplectic group $\mathbf{S p}(X)$ may be characterized geometrically together with its natural conformal and anti-symplectic extensions.

The purpose of this paper is to put the linear considerations of symplectic invariants into a more general context. Let $\left(X, \omega_{X}\right)$ and $\left(Y, \omega_{Y}\right)$ be compact symplectic manifolds of dimension $2 n$ (all manifolds in this paper are assumed to be connected). We say that a diffeomorphism $F: X \rightarrow Y$ is a conformal symplectomorphism if there is a non-zero constant $c \in \mathbb{R}$ such that $F^{*} \omega_{Y}=c \omega_{X}$. Recall that a submanifold $Z \subset X$ is a symplectic submanifold of X if it is closed and the pair $\left(Z,\left.\omega_{X}\right|_{T Z}\right)$ is itself a symplectic manifold. Our main result is:

Theorem. Let $\left(X, \omega_{X}\right)$ and $\left(Y, \omega_{Y}\right)$ be compact symplectic manifolds of dimension $2 n>2$. Fix a number $0<s<n$. Assume that $\Phi: X \rightarrow Y$ is a diffeomorphism which transforms all $2 s$ dimensional symplectic (closed) submanifolds of X onto symplectic (closed) submanifolds of Y. Then Φ is a conformal symplectomorphism.

In other words, for any fixed s as above, the conformal symplectic structure on X is uniquely determined by the family of all $2 s$-dimensional (closed) symplectic submanifolds of X.

2. Generators of the group $S p(2 n)$

Here we recall some basic facts about the linear symplectic group. Let (X, ω) be a symplectic vector space. There exists a basis of X, called a symplectic basis, $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}$, such that

$$
\omega\left(u_{i}, u_{j}\right)=\omega\left(v_{i}, v_{j}\right)=0, \quad \omega\left(u_{i}, v_{j}\right)=\delta_{i j}
$$

Let $\left(X, \omega_{X}\right)$ and $\left(Y, \omega_{Y}\right)$ be symplectic vector spaces. We say that a linear isomorphism $F: X \rightarrow$ Y is a symplectomorphism (or is symplectic on X) if $F^{*} \omega_{Y}=\omega_{X}$, i.e., $\omega_{X}(x, y)=\omega_{Y}(F(x), F(y))$ for every $x, y \in X$. The group of automorphisms of (X, ω) is called the symplectic group and is denoted by $\mathbf{S p}(X, \omega)$. Via a symplectic basis, X can be identified with the standard symplectic space $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ and $\mathbf{S p}(X, \omega)$ can be identified with the group of $2 n \times 2 n$ real matrices A which satisfy $A^{T} J_{0} A=J_{0}$, where J_{0} is the $2 n \times 2 n$ matrix of ω_{0} (in the standard basis), i.e.,

$$
J_{0}=\left[\begin{array}{cccccc}
0 & \ldots & 0 & -1 & \ldots & 0 \\
\vdots & & \vdots & \vdots & & \vdots \\
0 & \ldots & 0 & 0 & \ldots & -1 \\
1 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & & \vdots & \vdots & & \vdots \\
0 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right]
$$

Let $c \in \mathbb{R}$ and $i<j$. We can define following "elementary" symplectomorphisms:

1) $L_{i}(c)\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{i-1}, y_{i}+c x_{i}, y_{i+1}, \ldots, y_{n}\right)$,
2) $L_{i j}(c)\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{i-1}, y_{i}+c x_{j}, y_{i+1}, \ldots, y_{j-1}, y_{j}+c x_{i}, y_{j+1}, \ldots, y_{n}\right)$,
3) $R_{i}(c)\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{i}+c y_{i}, x_{i+1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$,
4) $R_{i j}(c)\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{i}+c y_{j}, x_{i+1}, \ldots, x_{j-1}, x_{j}+c y_{i}, x_{j+1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$.

We have the following basic result:
Theorem 2.1. Let $X=\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ be the standard symplectic vector space. Then the group $\mathbf{S p}(X)$ is generated by the following family of elementary symplectomorphisms:

$$
\left\{L_{i}(c), L_{i j}(c), R_{i}(c), R_{i j}(c): 0<i<j \leq n \text { and } c \in \mathbb{R}\right\}
$$

Proof. We reason by induction. For $n=1$ we have $\mathbf{S p}\left(\mathbb{R}^{2}\right)=\mathbf{S L}(2)$ and the result is well known from linear algebra. Assume $n>1$.

Let $S: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be a linear symplectomorphism. Denote coordinates by $x_{1}, y_{1}, \ldots, x_{n}, y_{n}$ (where $\omega_{0}=\sum_{i} d x_{i} \wedge d y_{i}$). We have

$$
S\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=\left(\sum_{i} a_{1, i} x_{i}+\sum_{j} b_{1, j} y_{j}, \ldots, \sum_{i} a_{2 n, i} x_{i}+\sum_{j} b_{2 n, j} y_{j}\right)
$$

Observe how the rows of the matrix of S are transformed under composition $S \circ L$ with an elementary symplectomorphism L (for simplicity we consider only the first row and we take the coordinates $\left.x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$. After composition
with $L_{i}(c)$ we have:

1) $\left(a_{11}, \ldots, a_{1 n}, b_{11}, \ldots, b_{1 n}\right) \rightarrow\left(a_{11}, \ldots, a_{1 i}+c b_{1 i}, \ldots, a_{1 n}, b_{11}, \ldots, b_{1 n}\right)$,
with $L_{i j}(c)$ we have:
2) $\left(a_{11}, \ldots, a_{1 n}, b_{11}, \ldots, b_{1 n}\right) \rightarrow\left(a_{11}, \ldots, a_{1 i}+c b_{1 j}, \ldots, a_{1 j}+c b_{1 i}, \ldots, a_{1 n}, b_{11}, \ldots, b_{1 n}\right)$,
with $R_{i}(c)$ we have:
3) $\left(a_{11}, \ldots, a_{1 n}, b_{11}, \ldots, b_{1 n}\right) \rightarrow\left(a_{11}, \ldots, a_{1 n}, b_{11}, \ldots, b_{1 i}+c a_{1 i}, \ldots, b_{1 n}\right)$,
with $R_{i j}(c)$ we have:
4) $\left(a_{11}, \ldots, a_{1 n}, b_{11}, \ldots, b_{1 n}\right) \rightarrow\left(a_{11}, \ldots, a_{1 n}, b_{11}, \ldots, b_{1 i}+c a_{1 j}, \ldots, b_{1 j}+c a_{1 i}, \ldots, b_{1 n}\right)$.

Transformations 1) - 4) will be called elementary operations. Now we show that using only elementary operations we can transform the first row of S to $(1,0, \ldots, 0)$ and the second to $(0, \ldots, 0,1,0, \ldots, 0)$ (here the unit corresponds to $b_{1 n}$).

Indeed, consider the first row. Of course it has a non-zero element, say $b_{1 s}$. Using $L_{s}(c)$ we can assume that also $a_{1 s} \neq 0$. Now using $L_{i s}(c)$ and $R_{j s}(d)$ for sufficiently general c and d we can assume that all elements of the first row are non-zero. Again applying $R_{i}(c)$ for $i>1$ we can now transform the first row to $\left(a_{11}, \ldots, a_{1 n}, 1,0, \ldots, 0\right)$. Using $L_{1 j}(c)$ we can transform this row to $(1,0, \ldots, 0,1,0, \ldots, 0)$ and finally using $R_{1}(-1)$ we obtain $(1,0, \ldots, 0)$. Now consider the second row (after these transformations): $\left(a_{21}, \ldots, a_{2 n}, b_{21}, \ldots, b_{2 n}\right)$. We can apply our method to the subrow $\left(a_{22}, \ldots, a_{2 n}, b_{22}, \ldots, b_{2 n}\right)$ (if it is non-zero) and obtain finally the row ($a_{21}, 1,0, \ldots, 0, b_{21}, 0, \ldots, 0$) (or $\left.\left(a_{21}, 0, \ldots, 0, b_{21}, 0, \ldots, 0\right)\right)$. Since the value of ω_{0} on these two rows is 1 we conclude that $b_{21}=1$. Now (in the first case) we can use $L_{12}(-1)$ to obtain a row of the form $\left(a_{21}, 0, \ldots, 0,1,0, \ldots, 0\right)$. Finally applying $L_{1}\left(-a_{12}\right)$ we get $(0, \ldots, 0,1,0, \ldots, 0)$.

Thus under all these compositions the matrix of S in the coordinates $x_{1}, y_{1}, \ldots, x_{n}, y_{n}$ has the form

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
* & * & a_{33} & \ldots & b_{3 n} \\
* & * & a_{43} & \ldots & b_{4 n} \\
\vdots & \vdots & \vdots & & \vdots \\
* & * & a_{n 3} & \ldots & b_{n 1}
\end{array}\right]
$$

Let \mathbf{r}_{i} denote the $i^{t h}$ row of the matrix of S. For $j>2$ we have $\omega_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{j}\right)=0$ and $\omega_{0}\left(\mathbf{r}_{2}, \mathbf{r}_{j}\right)=0$. We can easily conclude that all the $*$ in the matrix of S are 0 . Since

$$
\left[\begin{array}{ccc}
a_{33} & \ldots & b_{3 n} \\
a_{43} & \ldots & b_{4 n} \\
\vdots & & \vdots \\
a_{n 3} & \ldots & b_{n 1}
\end{array}\right]
$$

is a symplectic matrix we can apply the induction hypothesis.

We conclude this section by recalling (and extending) some result from [3].
Definition 2.2. Let $\mathcal{A}_{l, 2 r} \subset G(l, 2 n)$ denote the set of all l-dimensional linear subspaces of X on which the form ω has rank $\leq 2 r$.

Of course $\mathcal{A}_{l, 2 r} \subset \mathcal{A}_{l, 2 r+2}$ if $2 r+2 \leq l$. We have the following (see [3], Theorem 6.2):
Proposition 2.3. Let (X, ω) be a symplectic vector space of dimension $2 n$ and let $F: X \rightarrow X$ be a linear automorphism. Let $0<2 r<2 n$. Assume F transforms $\mathcal{A}_{2 r, 2 r-2}$ into $\mathcal{A}_{2 r, 2 r-2}$. Then there is a non-zero constant c such that $F^{*} \omega=c \omega$.

From Proposition 2.3 we can deduce the following interesting fact:
Proposition 2.4. Let $\left(X, \omega_{X}\right)$ and $\left(Y, \omega_{Y}\right)$ be symplectic vector spaces of dimension $2 n$ and let $F: X \rightarrow Y$ be a linear isomorphism. Fix a number $s: 0<s<n$ and assume that F transforms all $2 s$-dimensional symplectic subspaces of X onto symplectic subspaces of Y. Then there is a non-zero constant c such that $F^{*} \omega_{Y}=c \omega_{X}$.

Proof. Via a symplectic basis we can assume that $\left(X, \omega_{X}\right) \cong\left(\mathbb{R}^{2 n}, \omega_{0}\right) \cong\left(Y, \omega_{Y}\right)$. By assumption the mapping F^{*} induced by F transforms the set $A=\mathcal{A}_{2 s, 2 s} \backslash \mathcal{A}_{2 s, 2 s-2}$ into the same set A. Of course $F^{*}: A \rightarrow A$ is an injection. Since A is a smooth algebraic variety and F^{*} is regular, the Borel Theorem (see [1]) implies that F^{*} is a bijection. This means that F transforms $\mathcal{A}_{2 s, 2 s-2}$ into the same set, and we conclude the proof by applying Proposition 2.3.

We end this section by:

Proposition 2.5. Let X be a vector space of dimension $2 n$ and let ω_{1}, ω_{2} be two symplectic forms on X. If $\mathbf{S p}\left(X, \omega_{1}\right) \subset \mathbf{S p}\left(X, \omega_{2}\right)$, then there exists a non-zero constant c such that $\omega_{2}=c \omega_{1}$.

Proof. If $n=1$, then theorem is obvious. Assume that $n>1$. Let $\mathcal{A}_{1}\left(\mathcal{A}_{2}\right)$ be a set of all ω_{1} $\left(\omega_{2}\right)$ symplectic 2 dimensional subspaces of X. These sets are open and dense in the Grassmannian $G(2,2 n)$. Hence $\mathcal{A}_{1} \cap \mathcal{A}_{2} \neq \emptyset$. Take $H \in \mathcal{A}_{1} \cap \mathcal{A}_{2}$. We have $\mathcal{A}_{1}=\mathbf{S p}\left(X, \omega_{1}\right) H \subset \mathbf{S p}\left(X, \omega_{2}\right) H=\mathcal{A}_{2}$. Now apply Proposition 2.4 to $X=\left(X, \omega_{1}\right), Y=\left(X, \omega_{2}\right)$ and $F=$ identity.

3. Technical Results

Let $X=\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ be the standard symplectic vector space. In X we consider the norm $\left\|\left(a_{1}, \ldots, a_{2 n}\right)\right\|=\max _{i=1}^{2 n}\left|a_{i}\right|$. Take a smooth function $H: X \times \mathbb{R} \ni(z, t) \rightarrow \mathbb{R}$ and consider a system of differential equations

$$
\phi^{\prime}(t, x)=J_{0}\left(\nabla_{z} H\right)(\phi(t), t), \phi(0, x)=x .
$$

Assume that this system has a solution $\phi(t, x)$ for every x and every t (this is satisfied, e.g., if supports of all functions $H_{t}, t \in \mathbb{R}$ are contained in a compact set). Then we can define the diffeomorphism

$$
\begin{equation*}
\Phi(x)=\phi(1, x) \tag{3.1}
\end{equation*}
$$

It is not difficult to check that Φ is a symplectomorphism.
Definition 3.1. Let $\Phi: X \rightarrow X$ be a symplectomorphism. We say that Φ is a hamiltonian symplectomorphism if it is given by the formula (3.1) for some smooth function H. We also say that H is a Hamiltonian of Φ.

Lemma 3.2. All elementary linear symplectomorphisms are hamiltonian symplectomorphisms.

Proof. Indeed, we have:

1) $L_{i}(c)$ is given by the Hamiltonian $H(x, y)=(c / 2) x_{i}^{2}$,
2) $L_{i j}(c)$ is given by the Hamiltonian $H(x, y)=c x_{i} x_{j}$,
3) $R_{i}(c)$ is given by the Hamiltonian $H(x, y)=-(c / 2) y_{i}^{2}$,
4) $R_{i j}(c)$ is given by the Hamiltonian $H(x, y)=-c y_{i} y_{j}$.

Now we show how to compute a Hamiltonian of a linear symplectomorphism:
Theorem 3.3. Let $L: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be a linear symplectomorphism. Then L has a polynomial Hamiltonian

$$
\begin{equation*}
H_{L}(z, t)=\sum_{i, j=1}^{2 n} a_{i, j}(t) z_{i} z_{j} \tag{3.2}
\end{equation*}
$$

where $a_{i, j}(t) \in \mathbb{R}[t]$ are polynomials of one variable t. Moreover, we can compute H_{L} effectively.

Proof. Let $L=L_{m} \circ \cdots \circ L_{1}$ where the L_{i} are elementary symplectomorphisms. We proceed by induction with respect to m. If $m=1$ then we can use Lemma 3.2. In this case the flow $L_{1}(t)$ depends linearly on t.

Now consider $L^{\prime}=L_{m-1} \circ \cdots \circ L_{1}$. By the induction hypothesis $L^{\prime}(t)=L_{m-1}(t) \circ \cdots \circ L_{1}(t)$ is given by the Hamiltonian H^{\prime} of the form 3.2. Let $H^{\prime \prime}$ be the Hamiltonian of L_{m} (as in Lemma 3.2). Now the flow $L(t)=L_{m}(t) \circ L^{\prime}(t)$ is given by the Hamiltonian

$$
H(z, t)=H^{\prime \prime}(z)+H^{\prime}\left(L_{m}(t)^{-1}(z), t\right)
$$

Of course it has also the form 3.2. Since we can decompose L into the product $L=L_{m} \circ \cdots \circ L_{1}$ effectively (see the proof of Theorem 2.1), we can also compute H in effective way.

Proposition 3.4. Let $L: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be a hamiltonian symplectomorphism given by the flow $x \rightarrow \phi(t, x) ; t \in \mathbb{R}$. Assume that $\phi(t, 0)=0$ for $t \in[0,1]$. For every $\eta>0$ there is an $\epsilon>0$ and a hamiltonian symplectomorphism $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ such that

1) $\Phi(x)=L(x)$ for all x with $\|x\| \leq \epsilon$,
2) $\Phi(x)=x$ for all x with $\|x\| \geq \eta$.

Proof. We know that $L(x)=\phi(1, x)$, where $\phi(t, x)$ is the solution of some differential equation

$$
\phi^{\prime}(t)=J_{0}\left(\nabla_{z} H\right)(\phi(t), t) ; \phi(0)=x .
$$

Since $\phi(t, 0)=0$ for every $t \in[0,1]$, we can find $\epsilon>0$ so small, that all trajectories $\{\phi(t, x), 0 \leq$ $t \leq 1\}$, which start from the ball $B(0, \epsilon)$ are contained in the ball $B(0, \eta / 2)$. Let $\sigma: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function such that

$$
\sigma(z)= \begin{cases}1 & \text { if }\|z\| \leq \eta / 2 \\ 0 & \text { if }\|z\| \geq \eta\end{cases}
$$

Take $S=\sigma H$. The hamiltonian symplectomorphism Φ given by the differential equation

$$
\phi^{\prime}(t)=J_{0}\left(\nabla_{z} S\right)(\phi(t), t), \phi(0)=x
$$

is well defined on the whole of $\mathbb{R}^{2 n}$ and

$$
\Phi(x)= \begin{cases}L(x) & \text { if }\|x\| \leq \epsilon \\ x & \text { if }\|x\| \geq \eta\end{cases}
$$

Now Theorem 3.3 easily yields the following important:

Corollary 3.5. Let $L: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be a linear symplectomorphism. For every $\eta>0$ there is an $\epsilon>0$ and a hamiltonian symplectomorphism $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ such that

1) $\Phi(x)=L(x)$ for all x with $\|x\| \leq \epsilon$,
2) $\Phi(x)=x$ for all x with $\|x\| \geq \eta$.

Before we formulate our next result we need the following:
Lemma 3.6. Let $X=\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ be the standard symplectic vector space. Fix $\eta>0$ and let $a, b \in B(0, \eta)$. Then there exists a symplectomorphism $\Phi: X \rightarrow X$ such that

$$
\Phi(a)=b \text { and } \quad \Phi(x)=x \quad \text { for } \quad\|x\| \geq 2 \eta
$$

Proof. Let $c=\left(c_{1}, \ldots, c_{2 n}\right)=b-a$. Define a sequence of points as follows:

1) $a_{0}=a$,
2) $a_{i}=a_{i-1}+\left(0, \ldots, 0, c_{i}, 0, \ldots, 0\right)$.

Of course $a_{i} \in B(0, \eta)$ and $a_{2 n}=b$. Now consider the translation

$$
T_{i}: \mathbb{R}^{2 n} \ni(x, y) \mapsto(x, y)+\left(0, \ldots, 0, c_{i}, 0, \ldots, 0\right) \in \mathbb{R}^{2 n}
$$

We have $T_{i}\left(a_{i-1}\right)=a_{i}$ for $i=1, \ldots, 2 n$.
The translation T_{i} is a hamiltonian symplectomorphism given by the Hamiltonian

$$
H_{i}(x, y)= \begin{cases}-c_{i} y_{i} & \text { if } i \leq n \\ c_{i} x_{i-n} & \text { if } i>n\end{cases}
$$

Let V_{i} be the symplectic vector field which is determined by the Hamiltonian H_{i}. Since the ball $B(0, r)$ is a convex set, all trajectories $\phi(t), 0 \leq t \leq 1$, of the symplectic vector fields V_{i}, which begin at a_{i} lie in the ball $B(0, \eta)$. Let $\sigma: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function such that

$$
\sigma(x)= \begin{cases}1 & \text { if }\|x\| \leq \eta \\ 0 & \text { if }\|x\| \geq 2 \eta\end{cases}
$$

Now let $F_{i}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be the hamiltonian symplectomorphism given by the Hamiltonian $G_{i}=$ σH_{i}. Then

$$
G_{i}\left(a_{i-1}\right)=a_{i} \text { and } G_{i}(x)=x \text { if }\|x\| \geq 2 \eta
$$

Now it is enough to take $\Phi=G_{2 n} \circ G_{2 n-1} \circ \cdots \circ G_{1}$.

We apply Proposition 3.5 to the general case:
Theorem 3.7. Let (X, ω) be a symplectic manifold. Let a_{1}, \ldots, a_{m} and b_{1}, \ldots, b_{m} be two families of points of X. For every $i=1, \ldots, n$ choose a linear symplectomorphism $L_{i}: T_{a_{i}} X \rightarrow T_{b_{i}} X$. Then there is a symplectomorphism $\Phi: X \rightarrow X$ such that

1) $\Phi\left(a_{i}\right)=b_{i}$,
2) $d_{a_{i}} \Phi=L_{i}$.

Proof. By the Darboux Theorem every point $x \in X$ has an open neighborhood V_{x} which is symplectically isomorphic to the ball $B\left(0, r_{x}\right)$ in the standard vector space $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$. Denote by $U_{x} \subset V_{x}$ the open set which corresponds to the ball $B\left(0, r_{x} / 3\right)$.

Since $\operatorname{dim} X \geq 2$ the manifold $X \backslash\left\{a_{2}, \ldots, a_{m}\right\}$ is also connected. Hence there exists a smooth path $\gamma: I \rightarrow X$ such that $\gamma(0)=a_{1}, \gamma(1)=b_{1}$ and $\left\{a_{2}, \ldots, a_{m}\right\} \cap \gamma(I)=\emptyset$. Additionally we can assume that the sets V_{x} which cover $\gamma(I)$ are also disjoint from $\left\{a_{2}, \ldots, a_{m}\right\}$.

Let ϵ be a Lebesgue number for the function $\gamma: I \rightarrow X$ with respect to the cover $\left\{U_{x}\right\}_{x \in X}$ and choose an integer N with $1 / N<\epsilon$. If $I_{k}:=[k / N,(k+1) / N]$, then $\gamma\left(I_{k}\right)$ is contained in some $\left\{U_{x}\right\}$; denote it by U_{k}, the set V_{x} by V_{k}, and r_{x} by r_{k}. Let $A_{k}:=\gamma(k / N)$, in particular $A_{0}=a_{1}, A_{N}=b_{1}$.

Since $V_{k} \cong B\left(0, r_{k}\right)$ and $A_{k}, A_{k+1} \in B\left(0, r_{k} / 3\right)$ we can apply Lemma 3.6 to obtain a symplectomorphism $\Phi: B\left(0, r_{k}\right) \rightarrow B\left(0, r_{k}\right)$ such that

$$
\Phi\left(A_{k}\right)=A_{k+1} \text { and } \Phi(x)=x \quad \text { for }\|x\| \geq(2 / 3) r_{k}
$$

We can extend Φ to the whole of X (we glue it with the identity); denote this extension by Φ_{k}. Put

$$
\Psi=\Phi_{N} \circ \Phi_{N-1} \circ \cdots \circ \Phi_{0} .
$$

Then $\Psi\left(a_{1}\right)=b_{1}$ and $\Psi\left(a_{i}\right)=a_{i}$ for $i>1$. Repeating this process, we finally arrive at a symplectomorphism $\Sigma: X \rightarrow X$ such that $\Sigma\left(a_{i}\right)=b_{i}$ for $i=1, \ldots, m$. In a similar way using Proposition 3.5 we can construct a symplectomorphism $\Pi: X \rightarrow X$ such that

1) $\Pi\left(b_{i}\right)=b_{i}$,
2) $d_{b_{i}} \Pi=L_{i} \circ\left(d_{a_{i}} \Sigma\right)^{-1}$.

Now it is enough to take $\Phi=\Pi \circ \Sigma$.

Now we need the following result which is due to S.K. Donaldson (see [2]):
Theorem 3.8. Let $\left(X, \omega_{X}\right)$ be a compact symplectic manifold of dimension $2 n>2$. Fix a number $0<s<n$. There exists a closed $2 s$-dimensional symplectic submanifold $Z \subset X$.

Using Theorem 3.7 we can restate this result as follows:
Proposition 3.9. Let (X, ω) be a compact symplectic manifold of dimension $2 n>2$. Let a_{1}, \ldots, a_{m} be a family of points of X. Take $0<s<n$. For every $i=1, \ldots, m$ choose a linear $2 s$-dimensional symplectic subspace $H_{i} \subset T_{a_{i}} X$. Then there is a closed symplectic 2 s-dimensional submanifold $Y \subset X$ such that

1) $a_{i} \in Y$,
2) $T_{a_{i}} Y=H_{i}$.

Proof. Let $Z \subset X$ be as in Theorem 3.8. Take points $b_{1}, \ldots, b_{m} \in Z$. Let $S_{i}=T_{b_{i}} Z$. There are linear symplectomorphisms $L_{i}: T_{b_{i}} X \rightarrow T_{a_{i}} X$ such that $L_{i}\left(S_{i}\right)=H_{i}$ for $i=1, \ldots, m$. By Theorem 3.7 there is a symplectomorphism $\Phi: X \rightarrow X$ such that

1) $\Phi\left(b_{i}\right)=a_{i}$,
2) $d_{b_{i}} \Phi=L_{i}$.

Now it is enough to take $Y=\Phi(Z)$.

4. Main result

Finally we show that a symplectomorphism can be described as a diffeomorphism which preserves symplectic submanifolds.

Theorem 4.1. Let $\left(X, \omega_{X}\right)$ and $\left(Y, \omega_{Y}\right)$ be compact symplectic manifolds of dimension $2 n>2$. Fix a number $0<s<n$. Assume that $\Phi: X \rightarrow Y$ is a diffeomorphism which transforms all $2 s$-dimensional symplectic submanifolds of X onto symplectic submanifolds of Y. Then Φ is a conformal symplectomorphism, i.e., there exists a non-zero number $c \in \mathbb{R}$ such that

$$
\Phi^{*} \omega_{Y}=c \omega_{X}
$$

Proof. Fix $x \in X$ and let $H \subset T_{x} X$ be a $2 s$-dimensional symplectic subspace of $T_{x} X$. By Proposition 3.9 (applied for $m=1, a_{1}=x$ and $H_{1}=H$) there exists a $2 s$-dimensional symplectic submanifold M of X such that $x \in M$ and $T_{x} M=H$.

Let $\Phi(M)=M^{\prime}, x^{\prime}=\Phi(x)$. By assumption the submanifold $M^{\prime} \subset Y$ is symplectic. This means that the space $d_{x} \Phi(H)=T_{x^{\prime}} M^{\prime}$ is symplectic. Hence the mapping $d_{x} \Phi$ transforms all linear $2 s$ dimensional symplectic subspaces of $T_{x} X$ onto subspaces of the same type. By Proposition 2.4
this implies that $d_{x} \Phi$ is a conformal symplectomorphism, i.e.,

$$
\left(d_{x} \Phi\right)^{*} \omega_{Y}=\lambda(x) \omega_{X}
$$

where $\lambda(x) \neq 0$. This means that there is a smooth function $\lambda: X \rightarrow \mathbb{R}^{*}(=\mathbb{R} \backslash\{0\})$ such that

$$
\Phi^{*} \omega_{Y}=\lambda \omega_{X}
$$

But since the form ω_{X} is closed, so is $\Phi^{*} \omega_{Y}$. Since $n>1$ this implies that the derivative $d \lambda$ vanishes, i.e., the function λ is constant.

Corollary 4.2. Let X be a compact manifold of dimension $2 n>2$. Let ω_{1} and ω_{2} be two symplectic forms on X. Fix a number $0<k<n$. Assume that the family of all $2 k$-dimensional ω_{1}-symplectic submanifolds of X is contained in the family of all $2 k$-dimensional ω_{2}-symplectic submanifolds of X. Then there exists a non-zero number $c \in \mathbb{R}$ such that

$$
\omega_{1}=c \omega_{2}
$$

Proof. It is enough to apply Theorem 4.1 to $X=\left(X, \omega_{1}\right), Y=\left(X, \omega_{2}\right)$ and $\Phi=$ identity.

Corollary 4.3. Let (X, ω) be a compact symplectic manifold of dimension $2 n>2$. Fix a number $0<s<n$. Assume that $\Phi: X \rightarrow X$ is a diffeomorphism which transforms all $2 s$-dimensional symplectic submanifolds of X onto symplectic submanifolds. Then Φ is a symplectomorphism or antisimplectomorphism, i.e., $\Phi^{*} \omega= \pm \omega$. If Φ preserves an orientation and n is odd, then Φ is a symplectomorphism. Moreover, if n is even, then Φ has to preserve the orientation.

Proof. Indeed, we have $\Phi^{*} \omega=c \omega$. We have

$$
\begin{equation*}
\operatorname{vol}(X)=\int_{X} \omega^{n}= \pm \int_{X} \Phi^{*} \omega^{n}= \pm c^{n} \int_{X} \omega^{n} \tag{4.1}
\end{equation*}
$$

hence $c= \pm 1$. Moreover, if Φ preserves an orientation and n is odd, then we get that $c=1$. If n is even then $(-\omega)^{n}=\omega^{n}$ and Φ has to preserve the orientation.

Example 4.4. We show that in the general case Φ do not need be a symplectomorphism. Let $Y=\left(S^{2}, \omega\right)$ (where ω is a standard volume form on the sphere) and let $\left(X_{n}, \omega_{n}\right)=\prod_{i=1}^{n} Y$ be a standard symplectic product. Further let $\sigma: S^{2} \ni(x, y, z) \rightarrow(x, y,-z) \in S^{2}$ be a miror symmetry. Of course $\sigma^{*} \omega=-\omega$. More general if $\Sigma=\prod_{i=1}^{n} \sigma: X_{n} \rightarrow X_{n}$, then $\Sigma^{*} \omega_{n}=-\omega_{n}$. Hence it is possible that Φ from Corollary 4.3 is an antisimplectomorphism.

However, in any case either Φ or $\Phi \circ \Phi$ is a symplectomorphism.

Now let (X, ω) be a symplectic manifold and let us denote by $\operatorname{Symp}(X, \omega)$ the group of symplectomorphisms of X. At the end of this note we show that this group also determine a conformal symplectic structure on X :

Theorem 4.5. Let X be a smooth manifold of dimension $2 n>2$ and let ω_{1}, ω_{2} be two symplectic forms on X. If $\operatorname{Symp}\left(X, \omega_{1}\right) \subset \mathbf{S y m p}\left(X, \omega_{2}\right)$, then there exists a non-zero constant c such that $\omega_{2}=c \omega_{1}$.

Proof. Take $x \in X$ and consider symplectic vector spaces $V_{1}=\left(T_{x} X, \omega_{1}\right)$ and $V_{2}=\left(T_{x} X, \omega_{2}\right)$. By Theorem 3.7 we have that for every linear symplectomorphism S of V_{1}, there is a symplectomorphism $\Phi_{S} \in \operatorname{Symp}\left(X, \omega_{1}\right)$, such that
a) $\Phi_{S}(x)=x$,
b) $d_{x} \Phi_{S}=S$.

Since $\operatorname{Symp}\left(X, \omega_{1}\right) \subset \mathbf{S y m p}\left(X, \omega_{2}\right)$ we easily obtain that $\mathbf{S p}\left(V_{1}\right) \subset \mathbf{S p}\left(V_{2}\right)$. Consequently by Proposition 2.5 there exist a non-zero number $\lambda(x)$ such that $\omega_{2}(x)=\lambda(x) \omega_{1}(x)$. Now we finish the proof as in the proof of Theorem 4.1.

References

[1] A. Borel Injective endomorphisms of algebraic Nash varieties, Arch. Math. 20, 531-537, (1969).
[2] S, Donaldson, Symplectic submanifolds and almost-complex geometry, J of Diff. Geometry 44, 666-705, (1996).
[3] S. Janeczko, Z. Jelonek, Linear automorphisms that are symplectomorphisms, J. London Math. Soc. 69, 503-517, (2004).
(S. Janeczko) Instytut Matematyczny PAN, ul. Śniadeckich 8, 00-950 Warszawa, Poland, and Wydzià Matematyki i Nauk Informacyjnych, Politechnika Warszawska, Pl. Politechniki 1, 00-661 Warszawa, Poland

E-mail address: janeczko@mini.pw.edu.pl
(Z. Jelonek) Instytut Matematyczny PAN, Św. Tomasza 30, 31-027 Kraków, Poland

E-mail address: najelone@cyf-kr.edu.pl

