IM PAN Preprint 678 (2007)

Stanisław Janeczko, Zbigniew Jelonek

Diffeomorphisms that are Symplectomorphisms

Published as manuscript

Received 15 March 2007
DIFFEOMORPHISMS THAT ARE SYMPLECTOMORPHISMS

STANISLAW JANECZKO & ZBIGNIEW JELONEK

Abstract. Let (X, ω_X) and (Y, ω_Y) be compact symplectic manifolds of dimension $2n > 2$. Let us fix a number k with $0 < k < n$ and assume that a diffeomorphism $\Phi : X \to Y$ transforms all $2k$-dimensional symplectic submanifolds of X onto symplectic submanifolds of Y. Then Φ is a conformal symplectomorphism, i.e., there is a constant $c \neq 0$ such that $\Phi^* \omega_Y = c \omega_X$.

1. Introduction.

Let (X, ω_0) be a standard symplectic affine space over \mathbb{R} of dimension $2n$, i.e., $X \cong \mathbb{R}^{2n}$ and $\omega_0 = \sum_i dx_i \wedge dy_i$ is the standard non-degenerate skew-symmetric form on X. Linear symplectomorphisms of (X, ω_0) are characterized (cf. [3]) as linear automorphisms of X preserving some minimal, complete data defined by ω_0 on systems of linear subspaces. In this way the linear symplectic group $\text{Sp}(X)$ may be characterized geometrically together with its natural conformal and anti-symplectic extensions.

The purpose of this paper is to put the linear considerations of symplectic invariants into a more general context. Let (X, ω_X) and (Y, ω_Y) be compact symplectic manifolds of dimension $2n$ (all manifolds in this paper are assumed to be connected). We say that a diffeomorphism $F : X \to Y$ is a conformal symplectomorphism if there is a non-zero constant $c \in \mathbb{R}$ such that $F^* \omega_Y = c \omega_X$. Recall that a submanifold $Z \subset X$ is a symplectic submanifold of X if it is closed and the pair $(Z, \omega_X|_{TZ})$ is itself a symplectic manifold. Our main result is:

Theorem. Let (X, ω_X) and (Y, ω_Y) be compact symplectic manifolds of dimension $2n > 2$. Fix a number $0 < s < n$. Assume that $\Phi : X \to Y$ is a diffeomorphism which transforms all $2s$-dimensional symplectic (closed) submanifolds of X onto symplectic (closed) submanifolds of Y. Then Φ is a conformal symplectomorphism.

In other words, for any fixed s as above, the conformal symplectic structure on X is uniquely determined by the family of all $2s$-dimensional (closed) symplectic submanifolds of X.
2. Generators of the group $Sp(2n)$

Here we recall some basic facts about the linear symplectic group. Let (X, ω) be a symplectic vector space. There exists a basis of X, called a symplectic basis, $u_1, \ldots, u_n, v_1, \ldots, v_n$, such that
\[\omega(u_i, u_j) = \omega(v_i, v_j) = 0, \quad \omega(u_i, v_j) = \delta_{ij}.\]

Let (X, ω_X) and (Y, ω_Y) be symplectic vector spaces. We say that a linear isomorphism $F : X \to Y$ is a symplectomorphism (or is symplectic on X) if $F^* \omega_Y = \omega_X$, i.e., $\omega_X(x, y) = \omega_Y(F(x), F(y))$ for every $x, y \in X$. The group of automorphisms of (X, ω) is called the symplectic group and is denoted by $Sp(X, \omega)$. Via a symplectic basis, X can be identified with the standard symplectic space $(\mathbb{R}^{2n}, \omega_0)$ and $Sp(X, \omega)$ can be identified with the group of $2n \times 2n$ real matrices A which satisfy $A^T J_0 A = J_0$, where J_0 is the $2n \times 2n$ matrix of ω_0 (in the standard basis), i.e.,
\[
J_0 = \begin{pmatrix}
0 & \ldots & 0 & -1 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & \ldots & -1 \\
1 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 1 & 0 & \ldots & 0
\end{pmatrix}.
\]

Let $c \in \mathbb{R}$ and $i < j$. We can define following "elementary" symplectomorphisms:

1) $L_i(c)(x_1, \ldots, x_n, y_1, \ldots, y_n) = (x_1, \ldots, x_{i-1}, y_i + cy_i, y_{i+1}, \ldots, y_n),$

2) $L_{ij}(c)(x_1, \ldots, x_n, y_1, \ldots, y_n) = (x_1, \ldots, x_i, y_i + cy_i, x_{i+1}, \ldots, y_{j-1}, y_{j-1}, y_j + cy_j, y_{j+1}, \ldots, y_n),$

3) $R_i(c)(x_1, \ldots, x_n, y_1, \ldots, y_n) = (x_1, \ldots, x_{i-1}, x_i + cy_i, x_{i+1}, \ldots, x_n, y_1, \ldots, y_n),$

4) $R_{ij}(c)(x_1, \ldots, x_n, y_1, \ldots, y_n) = (x_1, \ldots, x_{i-1}, x_i + cy_i, x_{i+1}, \ldots, x_{j-1}, x_j + cy_j, x_{j+1}, \ldots, x_n, y_1, \ldots, y_n).$

We have the following basic result:

Theorem 2.1. Let $X = (\mathbb{R}^{2n}, \omega_0)$ be the standard symplectic vector space. Then the group $Sp(X)$ is generated by the following family of elementary symplectomorphisms:

\[\left\{ L_i(c), L_{ij}(c), R_i(c), R_{ij}(c) : 0 < i < j \leq n \text{ and } c \in \mathbb{R} \right\}.\]

Proof. We reason by induction. For $n = 1$ we have $Sp(\mathbb{R}^2) = SL(2)$ and the result is well known from linear algebra. Assume $n > 1$.

Let $S : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ be a linear symplectomorphism. Denote coordinates by $x_1, y_1, \ldots, x_n, y_n$ (where $\omega_0 = \sum_i dx_i \wedge dy_i$). We have
\[
S(x_1, y_1, \ldots, x_n, y_n) = (\sum_i a_{1,i}x_i + \sum_j b_{1,j}y_j, \ldots, \sum_i a_{2n,i}x_i + \sum_j b_{2n,j}y_j).
\]

Observe how the rows of the matrix of S are transformed under composition $S \circ L$ with an elementary symplectomorphism L (for simplicity we consider only the first row and we take the coordinates $x_1, \ldots, x_n, y_1, \ldots, y_n$). After composition

\[
S(x_1, y_1, \ldots, x_n, y_n) = (\sum_i a_{1,i}x_i + \sum_j b_{1,j}y_j, \ldots, \sum_i a_{2n,i}x_i + \sum_j b_{2n,j}y_j).
\]
with $L_i(c)$ we have:

1) $(a_{11}, ..., a_{1n}, b_{11}, ..., b_{1n}) \to (a_{11}, ..., a_{1i} + cb_{1j}, ..., a_{1n}, b_{11}, ..., b_{1n})$,

with $L_{ij}(c)$ we have:

2) $(a_{11}, ..., a_{1n}, b_{11}, ..., b_{1n}) \to (a_{11}, ..., a_{1i} + cb_{1j}, ..., a_{1n}, b_{11}, ..., b_{1n})$,

with $R_i(c)$ we have:

3) $(a_{11}, ..., a_{1n}, b_{11}, ..., b_{1n}) \to (a_{11}, ..., a_{1n}, b_{11}, ..., b_{1i} + ca_{1j}, ..., b_{1n})$,

with $R_{ij}(c)$ we have:

4) $(a_{11}, ..., a_{1n}, b_{11}, ..., b_{1n}) \to (a_{11}, ..., a_{1n}, b_{11}, ..., b_{1i} + ca_{1j}, ..., b_{1n})$.

Transformations 1) - 4) will be called elementary operations. Now we show that using only elementary operations we can transform the first row of S to $(1, 0, ..., 0)$ and the second to $(0, ..., 0, 1, 0, ..., 0)$ (here the unit corresponds to b_{1n}).

Indeed, consider the first row. Of course it has a non-zero element, say b_{11}. Using $L_1(c)$ we can assume that also $a_{11} \neq 0$. Now using $L_{is}(c)$ and $R_{js}(d)$ for sufficiently general c and d we can assume that all elements of the first row are non-zero. Again applying $R_i(c)$ for $i > 1$ we can now transform the first row to $(a_{11}, ..., a_{1n}, 1, 0, ..., 0)$. Using $L_{1j}(c)$ we can transform this row to $(1, 0, ..., 0, 1, 0, ..., 0)$ and finally using $R_1(-1)$ we obtain $(1, 0, ..., 0)$. Now consider the second row (after these transformations): $(a_{21}, ..., a_{2n}, b_{21}, ..., b_{2n})$. We can apply our method to the subrow $(a_{22}, ..., a_{2n}, b_{22}, ..., b_{2n})$ (if it is non-zero) and obtain finally the row $(a_{21}, 1, 0, ..., 0, b_{21}, 0, ..., 0)$ (or $(a_{21}, 0, ..., 0, b_{21}, 0, ..., 0)$). Since the value of ω_0 on these two rows is 1 we conclude that $b_{21} = 1$. Now (in the first case) we can use $L_{12}(-1)$ to obtain a row of the form $(a_{21}, 0, ..., 0, 1, 0, ..., 0)$. Finally applying $L_1(-a_{12})$ we get $(0, ..., 0, 1, 0, ..., 0)$.

Thus under all these compositions the matrix of S in the coordinates $x_1, y_1, ..., x_n, y_n$ has the form

\[
\begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
* & * & a_{33} & \cdots & b_{3n} \\
* & * & a_{43} & \cdots & b_{4n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
* & * & a_{n3} & \cdots & b_{n1}
\end{bmatrix}
\]

Let r_i denote the i^{th} row of the matrix of S. For $j > 2$ we have $\omega_0(r_1, r_j) = 0$ and $\omega_0(r_2, r_j) = 0$.

We can easily conclude that all the * in the matrix of S are 0. Since

\[
\begin{bmatrix}
a_{33} & \cdots & b_{3n} \\
a_{43} & \cdots & b_{4n} \\
\vdots & \vdots & \vdots \\
a_{n3} & \cdots & b_{n1}
\end{bmatrix}
\]

is a symplectic matrix we can apply the induction hypothesis. \qed
We conclude this section by recalling (and extending) some result from [3].

Definition 2.2. Let $\mathcal{A}_{l,2r} \subset G(l, 2n)$ denote the set of all l-dimensional linear subspaces of X on which the form ω has rank $\leq 2r$.

Of course $\mathcal{A}_{l,2r} \subset \mathcal{A}_{l,2r+2}$ if $2r + 2 \leq l$. We have the following (see [3], Theorem 6.2):

Proposition 2.3. Let (X, ω) be a symplectic vector space of dimension $2n$ and let $F : X \to X$ be a linear automorphism. Let $0 < 2r < 2n$. Assume F transforms $\mathcal{A}_{2r,2r-2}$ into $\mathcal{A}_{2r,2r-2}$. Then there is a non-zero constant c such that $F^*\omega = c\omega$.

From Proposition 2.3 we can deduce the following interesting fact:

Proposition 2.4. Let (X, ω_X) and (Y, ω_Y) be symplectic vector spaces of dimension $2n$ and let $F : X \to Y$ be a linear isomorphism. Fix a number $s : 0 < s < n$ and assume that F transforms all $2s$-dimensional symplectic subspaces of X onto symplectic subspaces of Y. Then there is a non-zero constant c such that $F^*\omega_Y = c\omega_X$.

Proof. Via a symplectic basis we can assume that $(X, \omega_X) \cong (\mathbb{R}^{2n}, \omega_0) \cong (Y, \omega_Y)$. By assumption the mapping F^* induced by F transforms the set $A = \mathcal{A}_{2s,2s} \setminus \mathcal{A}_{2s,2s-2}$ into the same set A. Of course $F^* : A \to A$ is an injection. Since A is a smooth algebraic variety and F^* is regular, the Borel Theorem (see [1]) implies that F^* is a bijection. This means that F transforms $\mathcal{A}_{2s,2s-2}$ into the same set, and we conclude the proof by applying Proposition 2.3. □

We end this section by:

Proposition 2.5. Let X be a vector space of dimension $2n$ and let ω_1, ω_2 be two symplectic forms on X. If $\text{Sp}(X, \omega_1) \subset \text{Sp}(X, \omega_2)$, then there exists a non-zero constant c such that $\omega_2 = c\omega_1$.

Proof. If $n = 1$, then theorem is obvious. Assume that $n > 1$. Let A_1 (A_2) be a set of all ω_1 (ω_2) symplectic 2 dimensional subspaces of X. These sets are open and dense in the Grassmannian $G(2, 2n)$. Hence $A_1 \cap A_2 \neq \emptyset$. Take $H \in A_1 \cap A_2$. We have $A_1 = \text{Sp}(X, \omega_1)H \subset \text{Sp}(X, \omega_2)H = A_2$. Now apply Proposition 2.4 to $X = (X, \omega_1)$, $Y = (X, \omega_2)$ and $F = \text{identity}$. □

3. **Technical Results**

Let $X = (\mathbb{R}^{2n}, \omega_0)$ be the standard symplectic vector space. In X we consider the norm $\| (a_1, \ldots, a_{2n}) \| = \max_{i=1}^{2n} |a_i|$. Take a smooth function $H : X \times \mathbb{R} \ni (z, t) \to \mathbb{R}$ and consider a system of differential equations

$$\phi'(t, x) = J_0(\nabla_x H)(\phi(t), t), \quad \phi(0, x) = x.$$
Assume that this system has a solution $\phi(t, x)$ for every x and every t (this is satisfied, e.g., if supports of all functions H_t, $t \in \mathbb{R}$ are contained in a compact set). Then we can define the diffeomorphism...
(3.1) \(\Phi(x) = \phi(1, x) \)

It is not difficult to check that \(\Phi \) is a symplectomorphism.

Definition 3.1. Let \(\Phi : X \to X \) be a symplectomorphism. We say that \(\Phi \) is a *hamiltonian symplectomorphism* if it is given by the formula (3.1) for some smooth function \(H \). We also say that \(H \) is a Hamiltonian of \(\Phi \).

Lemma 3.2. All elementary linear symplectomorphisms are hamiltonian symplectomorphisms.

Proof. Indeed, we have:

1) \(L_i(c) \) is given by the Hamiltonian \(H(x, y) = (c/2)x_i^2 \),
2) \(L_{ij}(c) \) is given by the Hamiltonian \(H(x, y) = cx_ix_j \),
3) \(R_i(c) \) is given by the Hamiltonian \(H(x, y) = -(c/2)y_i^2 \),
4) \(R_{ij}(c) \) is given by the Hamiltonian \(H(x, y) = -cy_iy_j \). \(\square \)

Now we show how to compute a Hamiltonian of a linear symplectomorphism:

Theorem 3.3. Let \(L : \mathbb{R}^{2n} \to \mathbb{R}^{2n} \) be a linear symplectomorphism. Then \(L \) has a polynomial Hamiltonian

\[
H_L(z, t) = \sum_{i,j=1}^{2n} a_{i,j}(t)z_iz_j,
\]

where \(a_{i,j}(t) \in \mathbb{R}[t] \) are polynomials of one variable \(t \). Moreover, we can compute \(H_L \) effectively.

Proof. Let \(L = L_m \circ \cdots \circ L_1 \) where the \(L_i \) are elementary symplectomorphisms. We proceed by induction with respect to \(m \). If \(m = 1 \) then we can use Lemma 3.2. In this case the flow \(L_1(t) \) depends linearly on \(t \).

Now consider \(L' = L_{m-1} \circ \cdots \circ L_1 \). By the induction hypothesis \(L'(t) = L_{m-1}(t) \circ \cdots \circ L_1(t) \) is given by the Hamiltonian \(H' \) of the form 3.2. Let \(H'' \) be the Hamiltonian of \(L_m \) (as in Lemma 3.2). Now the flow \(L(t) = L_m(t) \circ L'(t) \) is given by the Hamiltonian

\[
H(z, t) = H''(z) + H'(L_m(t)^{-1}(z), t).
\]

Of course it has also the form 3.2. Since we can decompose \(L \) into the product \(L = L_m \circ \cdots \circ L_1 \) effectively (see the proof of Theorem 2.1), we can also compute \(H \) in effective way. \(\square \)

Proposition 3.4. Let \(L : \mathbb{R}^{2n} \to \mathbb{R}^{2n} \) be a hamiltonian symplectomorphism given by the flow \(x \to \phi(t, x) \); \(t \in \mathbb{R} \). Assume that \(\phi(t, 0) = 0 \) for \(t \in [0, 1] \). For every \(\eta > 0 \) there is an \(\epsilon > 0 \) and a hamiltonian symplectomorphism \(\Phi : \mathbb{R}^{2n} \to \mathbb{R}^{2n} \) such that

1) \(\Phi(x) = L(x) \) for all \(x \) with \(\|x\| \leq \epsilon \),
2) \(\Phi(x) = x \) for all \(x \) with \(\|x\| \geq \eta \).
Proof. We know that $L(x) = \phi(1, x)$, where $\phi(t, x)$ is the solution of some differential equation

$$
\phi'(t) = J_0(\nabla_z H)(\phi(t), t); \quad \phi(0) = x.
$$

Since $\phi(t, 0) = 0$ for every $t \in [0, 1]$, we can find $\epsilon > 0$ so small, that all trajectories $\{\phi(t, x), 0 \leq t \leq 1\}$, which start from the ball $B(0, \epsilon)$ are contained in the ball $B(0, \eta/2)$. Let $\sigma : \mathbb{R}^{2n} \to \mathbb{R}$ be a smooth function such that

$$
\sigma(z) = \begin{cases}
1 & \text{if } ||z|| \leq \eta/2, \\
0 & \text{if } ||z|| \geq \eta.
\end{cases}
$$

Take $S = \sigma H$. The Hamiltonian symplectomorphism Φ given by the differential equation

$$
\phi'(t) = J_0(\nabla_z S)(\phi(t), t), \quad \phi(0) = x,
$$

is well defined on the whole of \mathbb{R}^{2n} and

$$
\Phi(x) = \begin{cases}
L(x) & \text{if } ||x|| \leq \epsilon, \\
x & \text{if } ||x|| \geq \eta.
\end{cases}
$$

□

Now Theorem 3.3 easily yields the following important:

Corollary 3.5. Let $L : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ be a linear symplectomorphism. For every $\eta > 0$ there is an $\epsilon > 0$ and a Hamiltonian symplectomorphism $\Phi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ such that

1) $\Phi(x) = L(x)$ for all x with $||x|| \leq \epsilon$,

2) $\Phi(x) = x$ for all x with $||x|| \geq \eta$.

Before we formulate our next result we need the following:

Lemma 3.6. Let $X = (\mathbb{R}^{2n}, \omega_0)$ be the standard symplectic vector space. Fix $\eta > 0$ and let $a, b \in B(0, \eta)$. Then there exists a symplectomorphism $\Phi : X \to X$ such that

$$
\Phi(a) = b \text{ and } \Phi(x) = x \text{ for } ||x|| \geq 2\eta.
$$

Proof. Let $c = (c_1, \ldots, c_{2n}) = b - a$. Define a sequence of points as follows:

1) $a_0 = a$,

2) $a_i = a_{i-1} + (0, \ldots, 0, c_i, 0, \ldots, 0)$.

Of course $a_i \in B(0, \eta)$ and $a_{2n} = b$. Now consider the translation

$$
T_i : \mathbb{R}^{2n} \ni (x, y) \mapsto (x, y) + (0, \ldots, 0, c_i, 0, \ldots, 0) \in \mathbb{R}^{2n}.
$$

We have $T_i(a_{i-1}) = a_i$ for $i = 1, \ldots, 2n$.

The translation T_i is a Hamiltonian symplectomorphism given by the Hamiltonian

$$
H_i(x, y) = \begin{cases}
-c_iz_i & \text{if } i \leq n, \\
c_ix_{i-n} & \text{if } i > n.
\end{cases}
$$
Let \(V_i \) be the symplectic vector field which is determined by the Hamiltonian \(H_i \). Since the ball \(B(0,r) \) is a convex set, all trajectories \(\phi(t) \), \(0 \leq t \leq 1 \), of the symplectic vector fields \(V_i \), which begin at \(a_i \) lie in the ball \(B(0,\eta) \). Let \(\sigma: \mathbb{R}^{2n} \to \mathbb{R} \) be a smooth function such that

\[
\sigma(x) = \begin{cases}
1 & \text{if } \|x\| \leq \eta, \\
0 & \text{if } \|x\| \geq 2\eta.
\end{cases}
\]

Now let \(F_i: \mathbb{R}^{2n} \to \mathbb{R}^{2n} \) be the hamiltonian symplectomorphism given by the Hamiltonian \(G_i = \sigma H_i \). Then

\[
G_i(a_{i-1}) = a_i \text{ and } G_i(x) = x \text{ if } \|x\| \geq 2\eta.
\]

Now it is enough to take \(\Phi = G_{2n} \circ G_{2n-1} \circ \cdots \circ G_{1} \).

We apply Proposition 3.5 to the general case:

Theorem 3.7. Let \((X,\omega)\) be a symplectic manifold. Let \(a_1, \ldots, a_m \) and \(b_1, \ldots, b_m \) be two families of points of \(X \). For every \(i = 1, \ldots, n \) choose a linear symplectomorphism \(L_i: T_{a_i}X \to T_{b_i}X \). Then there is a symplectomorphism \(\Phi: X \to X \) such that

1) \(\Phi(a_i) = b_i \),

2) \(d_{a_i}\Phi = L_i \).

Proof. By the Darboux Theorem every point \(x \in X \) has an open neighborhood \(V_x \) which is symplectically isomorphic to the ball \(B(0,r_x) \) in the standard vector space \((\mathbb{R}^{2n},\omega_0)\). Denote by \(U_x \subset V_x \) the open set which corresponds to the ball \(B(0,r_x/3) \).

Since \(\dim X \geq 2 \) the manifold \(X \setminus \{a_2, \ldots, a_m\} \) is also connected. Hence there exists a smooth path \(\gamma: I \to X \) such that \(\gamma(0) = a_1, \gamma(1) = b_1 \) and \(\{a_2, \ldots, a_m\} \cap \gamma(I) = \emptyset \). Additionally we can assume that the sets \(V_x \) which cover \(\gamma(I) \) are also disjoint from \(\{a_2, \ldots, a_m\} \).

Let \(\epsilon \) be a Lebesgue number for the function \(\gamma: I \to X \) with respect to the cover \(\{U_x\}_{x \in X} \) and choose an integer \(N \) with \(1/N < \epsilon \). If \(I_k := [k/N,(k+1)/N] \), then \(\gamma(I_k) \) is contained in some \(\{U_x\} \); denote it by \(U_k \), the set \(V_x \) by \(V_k \), and \(r_x \) by \(r_k \). Let \(A_k := \gamma(k/N) \), in particular \(A_0 = a_1, A_N = b_1 \).

Since \(V_k \cong B(0,r_k) \) and \(A_k, A_{k+1} \in B(0,r_k/3) \) we can apply Lemma 3.6 to obtain a symplectomorphism \(\Phi: B(0,r_k) \to B(0,r_k) \) such that

\[
\Phi(A_k) = A_{k+1} \text{ and } \Phi(x) = x \text{ for } \|x\| \geq (2/3)r_k.
\]

We can extend \(\Phi \) to the whole of \(X \) (we glue it with the identity); denote this extension by \(\Phi_k \). Put

\[
\Psi = \Phi_N \circ \Phi_{N-1} \circ \cdots \circ \Phi_0.
\]

Then \(\Psi(a_1) = b_1 \) and \(\Psi(a_i) = a_i \) for \(i > 1 \). Repeating this process, we finally arrive at a symplectomorphism \(\Sigma: X \to X \) such that \(\Sigma(a_i) = b_i \) for \(i = 1, \ldots, m \). In a similar way using Proposition 3.5 we can construct a symplectomorphism \(\Pi: X \to X \) such that

1) \(\Pi(b_i) = b_i \).
2) $d_b \Pi = L_i \circ (d_{a_i} \Sigma)^{-1}$.

Now it is enough to take $\Phi = \Pi \circ \Sigma$. \hfill \square

Now we need the following result which is due to S.K. Donaldson (see [2]):

Theorem 3.8. Let (X, ω_X) be a compact symplectic manifold of dimension $2n > 2$. Fix a number $0 < s < n$. There exists a closed $2s$-dimensional symplectic submanifold $Z \subset X$.

Using Theorem 3.7 we can restate this result as follows:

Proposition 3.9. Let (X, ω) be a compact symplectic manifold of dimension $2n > 2$. Let a_1, \ldots, a_m be a family of points of X. Take $0 < s < n$. For every $i = 1, \ldots, m$ choose a linear $2s$-dimensional symplectic subspace $H_i \subset T_{a_i}X$. Then there is a closed symplectic $2s$-dimensional submanifold $Y \subset X$ such that

1) $a_i \in Y$,
2) $T_{a_i}Y = H_i$.

Proof. Let $Z \subset X$ be as in Theorem 3.8. Take points $b_1, \ldots, b_m \in Z$. Let $S_i = T_{b_i}Z$. There are linear symplectomorphisms $L_i : T_{b_i}X \to T_{a_i}X$ such that $L_i(S_i) = H_i$ for $i = 1, \ldots, m$. By Theorem 3.7 there is a symplectomorphism $\Phi : X \to X$ such that

1) $\Phi(b_i) = a_i$,
2) $d_b \Phi = L_i$.

Now it is enough to take $Y = \Phi(Z)$. \hfill \square

4. Main result

Finally we show that a symplectomorphism can be described as a diffeomorphism which preserves symplectic submanifolds.

Theorem 4.1. Let (X, ω_X) and (Y, ω_Y) be compact symplectic manifolds of dimension $2n > 2$. Fix a number $0 < s < n$. Assume that $\Phi : X \to Y$ is a diffeomorphism which transforms all $2s$-dimensional symplectic submanifolds of X onto symplectic submanifolds of Y. Then Φ is a conformal symplectomorphism, i.e., there exists a non-zero number $c \in \mathbb{R}$ such that

$$\Phi^* \omega_Y = c \omega_X.$$

Proof. Fix $x \in X$ and let $H \subset T_x X$ be a $2s$-dimensional symplectic subspace of $T_x X$. By Proposition 3.9 (applied for $m = 1$, $a_1 = x$ and $H_1 = H$) there exists a $2s$-dimensional symplectic submanifold M of X such that $x \in M$ and $T_x M = H$.

Let $\Phi(M) = M'$, $x' = \Phi(x)$. By assumption the submanifold $M' \subset Y$ is symplectic. This means that the space $d_{x'} \Phi(H) = T_{x'} M'$ is symplectic. Hence the mapping $d_x \Phi$ transforms all linear $2s$-dimensional symplectic subspaces of $T_x X$ onto subspaces of the same type. By Proposition 2.4
this implies that $d_x \Phi$ is a conformal symplectomorphism, i.e.,
\[(d_x \Phi)^* \omega_Y = \lambda(x) \omega_X,\]
where $\lambda(x) \neq 0$. This means that there is a smooth function $\lambda : X \to \mathbb{R}^* (= \mathbb{R} \setminus \{0\})$ such that
\[\Phi^* \omega_Y = \lambda \omega_X.\]
But since the form ω_X is closed, so is $\Phi^* \omega_Y$. Since $n > 1$ this implies that the derivative $d\lambda$ vanishes, i.e., the function λ is constant. □

Corollary 4.2. Let X be a compact manifold of dimension $2n > 2$. Let ω_1 and ω_2 be two symplectic forms on X. Fix a number $0 < k < n$. Assume that the family of all $2k$-dimensional ω_1-symplectic submanifolds of X is contained in the family of all $2k$-dimensional ω_2-symplectic submanifolds of X. Then there exists a non-zero number $c \in \mathbb{R}$ such that
\[\omega_1 = c \omega_2.\]

Proof. It is enough to apply Theorem 4.1 to $X = (X, \omega_1)$, $Y = (X, \omega_2)$ and $\Phi = \text{identity}$. □

Corollary 4.3. Let (X, ω) be a compact symplectic manifold of dimension $2n > 2$. Fix a number $0 < s < n$. Assume that $\Phi : X \to X$ is a diffeomorphism which transforms all $2s$-dimensional symplectic submanifolds of X onto symplectic submanifolds. Then Φ is a symplectomorphism or antisymplectomorphism, i.e., $\Phi^* \omega = \pm \omega$. If Φ preserves an orientation and n is odd, then Φ is a symplectomorphism. Moreover, if n is even, then Φ has to preserve the orientation.

Proof. Indeed, we have $\Phi^* \omega = c \omega$. We have

\[(4.1) \quad \text{vol}(X) = \int_X \omega^n = \pm \int_X \Phi^* \omega^n = \pm c^n \int_X \omega^n\]

hence $c = \pm 1$. Moreover, if Φ preserves an orientation and n is odd, then we get that $c = 1$. If n is even then $(-\omega)^n = \omega^n$ and Φ has to preserve the orientation. □

Example 4.4. We show that in the general case Φ do not need be a symplectomorphism. Let $Y = (S^2, \omega)$ (where ω is a standard volume form on the sphere) and let $(X_n, \omega_n) = \prod_{i=1}^n Y$ be a standard symplectic product. Further let $\sigma : S^2 \ni (x, y, z) \to (x, y, -z) \in S^2$ be a mirror symmetry. Of course $\sigma^* \omega = -\omega$. More general if $\Sigma = \prod_{i=1}^n \sigma : X_n \to X_n$, then $\Sigma^* \omega_n = -\omega_n$. Hence it is possible that Φ from Corollary 4.3 is an antisymplectomorphism.

However, in any case either Φ or $\Phi \circ \Phi$ is a symplectomorphism.

Now let (X, ω) be a symplectic manifold and let us denote by $\text{Symp}(X, \omega)$ the group of symplectomorphisms of X. At the end of this note we show that this group also determine a conformal symplectic structure on X:
Theorem 4.5. Let X be a smooth manifold of dimension $2n > 2$ and let ω_1, ω_2 be two symplectic forms on X. If $\text{Symp}(X, \omega_1) \subset \text{Symp}(X, \omega_2)$, then there exists a non-zero constant c such that $\omega_2 = c\omega_1$.

Proof. Take $x \in X$ and consider symplectic vector spaces $V_1 = (T_xX, \omega_1)$ and $V_2 = (T_xX, \omega_2)$. By Theorem 3.7 we have that for every linear symplectomorphism S of V_1, there is a symplectomorphism $\Phi_S \in \text{Symp}(X, \omega_1)$, such that

a) $\Phi_S(x) = x$,

b) $d_x\Phi_S = S$.

Since $\text{Symp}(X, \omega_1) \subset \text{Symp}(X, \omega_2)$ we easily obtain that $\text{Sp}(V_1) \subset \text{Sp}(V_2)$. Consequently by Proposition 2.5 there exist a non-zero number $\lambda(x)$ such that $\omega_2(x) = \lambda(x)\omega_1(x)$. Now we finish the proof as in the proof of Theorem 4.1. □

References

(S. Janeczko) Instytut Matematyczny PAN, ul. Śniadeckich 8, 00-950 Warszawa, Poland, and Wydział Matematyki i Nauk Informacyjnych, Politechnika Warszawska, Pl. Politechniki 1, 00-661 Warszawa, Poland

E-mail address: janeczko@mini.pw.edu.pl

(Z. Jelonek) Instytut Matematyczny PAN, Św. Tomasza 30, 31-027 Kraków, Poland

E-mail address: najelone@cyf-kr.edu.pl