INSTITUTE OF MATHEMATICS of the Polish Academy of Sciences

IM PAN Preprint 678 (2007)

Zbigniew Jelonek

On the Cancellation Problem

Published as manuscript

ON THE CANCELLATION PROBLEM

ZBIGNIEW JELONEK

Abstract

Let k be an algebraically closed field. For every $n \geq 8$ we give examples of Zariski open, dense, affine subsets of the affine space $A^{n}(k)$ which do not have the cancellation property.

1. Introduction.

Let k be an algebraically closed field and let X be an affine variety over k. We say that X has the cancellation property (CP) if for every affine variety Y, if $X \times k \cong Y \times k$, then $X \cong Y$.

There exist smooth affine varieties without CP (see [2], [3], [5], [6]); all the examples given so far are based on the so called Danielewski construction. It is an interesting and in general still open problem whether the affine space $A^{n}(k)$ has CP. Here, using a new approach, we show that for every $n \geq 8$ there are Zariski open, dense affine subsets of $A^{n}(k)$ without CP.

Our idea is as follows. Let X be a smooth affine variety. Denote a trivial algebraic vector bundle of rank r on X by \mathbf{E}_{r}. Assume that X admits an algebraic vector bundle \mathbf{F} which is stably trivial (of type 1), i.e., $\mathbf{F} \oplus \mathbf{E}_{1}=\mathbf{E}_{n+1}$, but not trivial. Let F denote the total space of \mathbf{F}. We have

$$
F \times k \cong X \times k^{n+1} \cong\left(X \times k^{n}\right) \times k
$$

but we show that $F \not \neq X \times k^{n}$ if X is not k-uniruled.
Accordingly, to find an affine variety without CP it is enough to find a smooth affine non- k-uniruled variety with a stably trivial, but not trivial algebraic vector bundle on it. In particular we obtain in this way the following example. Let $n \geq 3$ be an integer. Consider the polynomial $h(x, y)=\sum_{i=1}^{n} x_{i} y_{i} \in k\left[x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right]$. Now let
$X_{2 n}=\left\{(x, y) \in k^{2 n}: h(x, y) \neq 0,1+x_{i}(h(x, y)-1) \neq 0,1+y_{i}(h(x, y)-1) \neq 0, i=1, \ldots, n\right\}$.
Then the cylinder $Y_{3 n-1}=X_{2 n} \times k^{n-1}$ (which is a Zariski open, dense subset of $A^{3 n-1}(k)$) does not have CP. We also show that for every $m \geq 8$, we can find a Zariski open, dense affine subset U_{m} of $A^{m}(k)$ which fails CP.

2. Preliminaries

Let X be an affine variety (which is assumed to be irreducible) over k and let $R=k[X]$ be the ring of polynomial functions on X. Let us recall some basic facts about algebraic

[^0]vector bundles over X, which we identify with finitely generated projective R-modules. We say that an algebraic vector bundle \mathbf{E} is stably trivial (of type t) if
$$
\mathbf{E} \oplus \mathbf{E}_{t}=\mathbf{E}_{s}
$$
for some trivial vector bundles \mathbf{E}_{t} and \mathbf{E}_{s}. Recall that a sequence $\left(f_{1}, \ldots, f_{r}\right) \in R^{r}$ is called a unimodular row if $\left(f_{1}, \ldots, f_{r}\right)=R$ (as an ideal). This is equivalent to the fact that f_{1}, \ldots, f_{r} have not common zeros on X. A unimodular row $f=\left(f_{1}, \ldots, f_{r}\right) \in R^{r}$ determines uniquely a vector bundle $\mathbf{F}(f)=R^{r} / R f$. Of course $\mathbf{F} \oplus \mathbf{E}_{1}=\mathbf{E}_{r}$. It is easy to see that the vector bundle $\mathbf{F}(f)$ is trivial if and only if the unimodular row $f=\left(f_{1}, \ldots, f_{r}\right)$ can be extended to an $n \times n$ matrix with determinant 1 . In other words, $\mathbf{F}(f)$ is trivial if and only if there exists a matrix $\left[f_{i j}\right] \in R^{n^{2}}$ such that

1) $\operatorname{det}\left[f_{i j}\right]=1$,
2) $f_{i}=f_{1 i}$ for $i=1, \ldots, n$.

3. Open subsets of $A^{n}(k)$ without the cancellation property

Let us recall the definition of a k-uniruled variety which was introduced in our paper [7]. First recall that an affine parametric line in X is the image of the affine line $A^{1}(k)$ under a non constant morphism $\phi: A^{1}(k) \rightarrow X$. Now we have:

Definition 3.1. An affine variety X is said to be k-uniruled if it is of dimension ≥ 1 and there exists a Zariski open, non-empty subset U of X such that for every point $x \in U$ there is a parametric affine line in X passing through x.

We have the following important examples of non- k-uniruled varieties:
Proposition 3.2. Let $h \in k\left[x_{1}, \ldots, x_{n}\right]$ be a non-constant polynomial. The variety

$$
X(h)=\left\{x \in k^{n}: h(x) \neq 0,1+x_{i}(h(x)-1) \neq 0 \text { for } i=1, \ldots, n\right\}
$$

is not k-uniruled.
Proof. Let $\phi: k \rightarrow X(h)$ be a regular mapping. Thus $\phi=\left(\phi_{1}(t), \ldots, \phi_{n}(t)\right)$, where ϕ_{i} are polynomials. Moreover $h \circ \phi \neq 0$ for every t, which implies that $h \circ \phi$ is a non-zero constant. Similarly $1+\phi_{i}(t)(h \circ \phi(t)-1)$ is a constant. Consequently, either $h \circ \phi(t)=1$ or all ϕ_{i} are constant. This means that outside the hypersurface $\left\{x \in k^{n}: h(x)=1\right\}$ there are no affine parametric curves in $X(h)$.

In the sequel we need the following nice elementary lemma, which was proved in [4] (for the sake of completeness we include a proof):
Lemma 3.3. Let $f: U \times k^{r} \rightarrow X$ be a dominant morphism of affine varieties. If there is $u \in U$ such that $\operatorname{dim} f\left(\{u\} \times k^{r}\right)>0$ then X is k-uniruled.

Proof. We can assume that $X \subset k^{m}$. Hence $f=\left(f_{1}, \ldots, f_{m}\right)$. Let $Z=\{u \in U$: $\operatorname{dim} f\left(\{u\} \times k^{r}\right)=0$. The set Z is closed in U. Indeed $Z=\bigcap_{s, t \in k^{r}}\left\{u \in U: f_{i}(u, t)=\right.$ $f_{i}(u, s)$ for $\left.i=1, \ldots, m\right\}$. By the assumption we have $Z \neq U$. Since the mapping f is dominant and the variety $(U \backslash Z) \times k^{r}$ is dense in $U \times k^{r}$, we have that also the mapping $f:(U \backslash Z) \times k^{r} \rightarrow X$ is dominant. Let l_{u} denote a line in k^{r} passing through 0 , such that the mapping f restricted to $\{u\} \times l$ is not constant. We have $f\left((U \backslash Z) \times k^{r}\right)=$ $\bigcup_{u \in U \backslash Z, l_{u} \subset k^{r}} f\left(\{u\} \times l_{u}\right)$. Since the set $f\left((U \backslash Z) \times k^{r}\right)$ contains a Zariski open subset of X, the proof is complete.

The following observation is important for this paper:

Theorem 3.4. Let X be a non-k-uniruled smooth affine variety. Let \mathbf{F} be an algebraic vector bundle on X of rank r. If the total space of \mathbf{F} is isomorphic to $X \times k^{r}$, then \mathbf{F} is a trivial vector bundle.

Proof. Let F denote the total space of \mathbf{F}. In what follows, we will identify X with the zero section $X \times\{0\} \subset F$. Note that

$$
\mathbf{F}=\left.T F\right|_{X} / T X
$$

Assume that there exists an isomorphism $\Phi: F \rightarrow X \times k^{r}$. Let $\pi: X \times k^{r} \rightarrow X$ be the projection and take $f=\pi \circ \Phi$. Since the vector bundle \mathbf{F} is locally trivial in the Zariski topology, Lemma 3.3 shows that $\Phi\left(\mathbf{F}_{x}\right)=f(x) \times k^{r}$ for every $x \in X$. Consequently, the mapping $\sigma:=f \mid X: X \rightarrow X$ is an isomorphism. Let $\Sigma=\sigma^{-1} \times$ identity $: X \times k^{r} \ni$ $(x, t) \mapsto\left(\sigma^{-1}(x), t\right) \in X \times k^{r}$. If we replace Φ by $\Sigma \circ \Phi$ then $\sigma=$ identity.

In particular $\Phi: X \in x \mapsto(x, t(x)) \in X \times k^{r}$. Let us denote coordinates in the product $X \times k^{r}$ by $\left(x, t_{1}, \ldots, t_{r}\right)$. By the above, we have $t_{i}=t_{i}(x) \bmod I(\Phi(X))$. Consider the isomorphism $G: X \times k^{r} \ni(x, t) \mapsto(x, t-t(x)) \in X \times k^{r}$. Again we can replace Φ by $G \circ \Phi$ to obtain $\Phi \mid X: X \times\{0\} \ni(x, 0) \mapsto(x, 0) \in X \times k^{r}$. Hence we can assume that Φ transforms the zero section into the zero section, and moreover it induces the identity on the zero section. Hence $d \Phi(T X)=T X$ and the mapping

$$
d \Phi:\left.T F\right|_{X} /\left.T X \cong \mathbf{F} \rightarrow T\left(X \times k^{r}\right)\right|_{X} / T X \cong \mathbf{E}_{\mathbf{r}}
$$

is an isomorphism. Consequently, the bundle \mathbf{F} is trivial.
Now we give examples of Zariski open, affine subsets of $A^{n}(k)$ which do not have the cancellation property. We start with the following nice classical example of Raynaud (see [8] for $k=\mathbb{C}$ and [9] for an arbitrary field k):

Example 3.5. Let $n \geq 3$ and

$$
R=\frac{k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]}{\left(\sum_{i=1}^{n} x_{i} y_{i}-1\right)}
$$

Then the stably free submodule of R^{n} given by the unimodular row $\left(x_{1}, \ldots, x_{n}\right)$ is not free.
Now we can prove our main result.
Theorem 3.6. Let $n \geq 3$ be an integer and let $h=\sum_{i=1}^{n} x_{i} y_{i} \in k\left[x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right]$. Define

$$
\begin{gathered}
X_{2 n}(h)=\left\{(x, y) \in k^{2 n}: h(x, y) \neq 0,1+x_{i}(h(x, y)-1) \neq 0\right. \\
\left.1+y_{i}(h(x, y)-1) \neq 0, i=1, \ldots, n\right\}
\end{gathered}
$$

Then the cylinder $Y_{3 n-1}=X_{2 n} \times k^{n-1}$ (which is a Zariski open, dense affine subset of $\left.k^{3 n-1}\right)$ fails $C P$.

Proof. Let $Z=\left\{(x, y) \in k^{2 n}: h(x, y)=1\right\}$. By the Raynaud example we know that a row $\left(x_{1}, \ldots, x_{n}\right)$ which is unimodular on Z cannot be extended on Z to an $n \times n$ matrix with determinant 1 (cf. section 2). Let us note that this row is also unimodular on the variety $X_{2 n}(h)$. Indeed, we have $\sum_{i=1}^{n} x_{i} y_{i}=h \neq 0$ on $X_{2 n}(h)$. I claim that this row cannot be extended on $X_{2 n}(h)$ to an $n \times n$ matrix with determinant 1 . To see this, first note that $Z \subset X_{2 n}(h)$. Now, the restriction to Z of such a matrix would give a similar matrix on Z, a contradiction. From this we conclude that a unimodular row $\left(x_{1}, \ldots, x_{n}\right)$ determines on $X_{2 n}(h)$ a non-trivial algebraic vector bundle \mathbf{F}. In particular we have $\mathbf{F} \oplus \mathbf{E}_{1}=\mathbf{E}_{n}$ and \mathbf{F} is a non-trivial vector bundle. Let us denote by F the total space of \mathbf{F}. Then

$$
F \times k \cong X_{2 n}(h) \times k^{n} \cong\left(X_{2 n}(h) \times k^{n-1}\right) \times k
$$

Since the variety $X_{2 n}(h)$ is not k-uniruled (see Proposition 3.2), Theorem 3.4 shows that the variety F is not isomorphic to the cylinder $X_{2 n}(h) \times k^{n-1}$.
Remark 3.7. If we have one open subvariety $X_{2 n}(h) \subset k^{3 n-1}$ without CP, we can easily construct infinitely many pairwise non-isomorphic open subvarieties of this type. Indeed, choose sufficiently general polynomials $a_{i} \in k[x, y], i=1,2, \ldots$. Let $Y_{k}=\{(x, y) \in$ $\left.X_{2 n}(h): 1 \neq a_{i}(1-h), i=1, \ldots, k\right\}$. In this way we obtain a strictly descending sequence of open subvarieties $Y_{0} \supset Y_{1} \supset Y_{2} \supset \ldots$, which do not have CP. They are pairwise non-isomorphic by the Ax Theorem (see [1]).

By a slight modification of the proof of Theorem 3.6 we get:
Theorem 3.8. For every $n \geq 8$, we can find a Zariski open, dense affine subset U_{n} of $A^{n}(k)$ which fails $C P$.

Proof. Let $n=8+s$. Consider the ring $R=k\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, z_{1}, \ldots, z_{s}\right]$. Let $h=$ $\sum_{i=1}^{3} x_{i} y_{i} \in R$. Define

$$
\begin{gathered}
Y_{n-2}(h)=\left\{(x, y, z) \in k^{3} \times k^{3} \times k^{s}: h(x, y) \neq 0,1+x_{i}(h(x, y)-1) \neq 0,1+y_{i}(h(x, y)-1) \neq 0,\right. \\
\left.i=1,2,3 ; z_{j} \neq 0 \text { for } j=1, \ldots, s\right\} .
\end{gathered}
$$

As in the proof of Proposition 3.2 we see that the variety $Y_{n-2}(h)$ is not k-uniruled.
Let $Z^{\prime}=\left\{(x, y, z) \in k^{3} \times k^{3} \times k^{s}: h(x, y)=1 ; z_{j}=1\right.$ for every $\left.j=1, \ldots, s\right\}$. By the Raynaud example we know that a row (x_{1}, x_{2}, x_{3}) which is unimodular on Z^{\prime} cannot be extended on Z^{\prime} to a 3×3 matrix with determinant 1 . This row is also unimodular on the variety $Y_{n-2}(h)$ and it also cannot be extended on $Y_{n-2}(h)$ to a 3×3 matrix with a determinant 1. Indeed, the restriction to Z^{\prime} of such a matrix would give a similar matrix on Z^{\prime}, a contradiction. From this, as before, we conclude that a unimodular row $\left(x_{1}, x_{2}, x_{3}\right)$ determines on $Y_{n-2}(h)$ a non-trivial algebraic vector bundle \mathbf{F}. Now arguing as in the proof of Theorem 3.6 we see that the variety $U_{n}=Y_{n-2}(h) \times k^{2}$ does not have CP.

Corollary 3.9. Let $n \geq 8$. Then there exists a non-zero polynomial $g \in k\left[x_{1}, \ldots, x_{n}\right]$ and a finitely generated k-algebra F such that

$$
k\left[x_{1}, \ldots, x_{n}\right]_{g} \otimes_{k} k[T]=F \otimes_{k} k[T]
$$

but $k\left[x_{1}, \ldots, x_{n}\right]_{g} \neq F$.

References

[1] Ax, J., Injective endomorphisms of varieties and schemes, Pacific Journal of Mathematics, 31, 1-7, (1969).
[2] Carachiola, A., On automorphisms of Danielewski surfaces, Journal of Algebraic Geometry, 15, 111132, (2006).
[3] Danielewski, W., On a cancellation problem and automorphism groups of affine algebraic varieties, preprint, Warsaw, (1989).
[4] Dryło, R., Non uniruledness and the cancellation problem II, Ann. Polon. Math., to appear.
[5] Dubouloz, A., Additive group actions on Danielewski varieties and the cancellation problem, Math. $Z, \mathbf{2 5 5}, 77-93,(2007)$.
[6] Fieseler, K., On complex affine surfaces with \mathbb{C}_{+}actions, Comment. Math. Helvetici, 69, 5-27, (1989).
[7] Jelonek, Z., Testing sets for properness of polynomial mappings, Math. Ann., 315, 1-35, (1999).
[8] Raynaud, M., Modules projectives universeles, Invent. Math. 6, 1-26, (1968).
[9] Swan, R.G., Vector bundles, projective modules and the K-theory of spheres, Algebraic topology and algebraic K-theory (Princeton, N.J., 1983), 432-522, Ann. of Math. Stud. 113, 1987.
(Z. Jelonek) Instytut Matematyczny, Polska Akademia Nauk, Św. Tomasza 30, 31-027 Kraków, Poland,

E-mail address: najelone@cyf-kr.edu.pl

[^0]: Date: April 1, 2007.
 1991 Mathematics Subject Classification. 14 R 10.
 Key words and phrases. algebraic vector bundle, unimodular row, cancellation of affine varieties.
 The author was partially supported by the grant of Polish Ministry of Science, 2006-2009.

