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Abstract

We study geometry of a system (F ) of ordinary differential equations
x(k+1) = F (t, x, x′, . . . , x(k)). We show that it defines canonical fields of tan-
gent cones on k-jets space. If all Wilczynski invariants of the system vanish
then these cones project to the space of solutions of (F ). Moreover, they
determine locally (F ) up to contact transformations.

1 Introduction

In this article we study geometry of systems of ordinary differential equations (F )
in the form

x(k+1) = F (t, x, x′, . . . , x(k)),

where x ∈ Rm. The case k = 2 and m = 1 was analyzed by S-S. Chern [1] (see also
[3]). He showed that if certain relation on derivatives of F (called Wuenschmann
condition) holds then there is a conformal metric defined on the space of solutions of
(F ). In [4, 5] Y. Se-ashi considered the case of arbitrary dimension, but with linear
right hand side. He has generalized results of E. J. Wilczynski [6] and reinterpreted
them in terms of Cartan connections. Recently B. Doubrov [2] has extended a defi-
nition of Wilczynski invariants to non-linear systems. He has also characterized all
systems (F ) which are equivalent to the trivial one x(k+1) = 0. Our aim is to present
construction of invariants of (F ) from a slightly different perspective. In particular
in order to define Wilczynski invariants we omit the process of linearization which
appears in [2]. Our results are valid for arbitrary k > 1 and m ≥ 1.

The present paper begins with a study of the geometry of a pair (X ,V) on
manifold M , where X is a line field and V is a distribution of rank m (a subbundle
of the tangent bundle). We denote V i = (adi

XV mod X ) and assume that V i

has constant rank (i + 1)m. Provided that this assumption holds we construct
invariants of (X ,V). Our reasoning essentially repeats Wilczynski constructions but
additionally we define fields of tangent cones on M . We call them characteristic

cones and denote Ci(X ,V), i = 0, . . . , k. They can be considered as curves in
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Grassmann bundle Grm(V i). If m = 1 then these curves are Veronese curves of
order i.

In the second part of the article we apply our constructions to systems of ODE.
As a base manifold M we take space Jk(1,m) of k-jets of functions R → Rm, X is
spanned by total derivative, and V is Cauchy characteristic of Cartan distribution
Ck−2. We say that generalized Wuenschmann condition holds if all Wilczynski in-
variants vanish. If this is the case then characteristic cone Ck(X ,V) is well projected
to the solution space of (F ). We prove that if k = 2 and m = 1 then projection of
C2(X ,V) is the cone of light directions of Chern conformal metric. We summarize
our main results in the following theorem (all notions will be clarified later).

Theorem 1.1 Let (F ) be a system of m ordinary differential equations of order k.

1. (F ) defines canonical fields of tangent cones Ci(X ,V), i = 0, . . . , k, on Jk(1,m),
which are invariant under contact transformations.

2. If the generalized Wuenschmann condition holds for (F ) then Ck(X ,V) projects

to the space of solutions of (F ).

3. If the generalized Wuenschmann condition holds for (F ) then the projection of

Ck(X ,V) to the space of solutions determines locally system (F ), uniquely up

to contact transformations.

We would like to emphasis that characteristic cones are already defined on
Jk(1,m). Thus, they can be used to define conformal tensors not only on solu-
tion space as in e.g. [1] but also on Jk(1,m). We will clarify this in future work.

Geometry of (X ,V) is also applicable in different context. For instance, it can be
used for construction of invariants of Pfaffian systems or, more general, invariants
of arbitrary sub-manifolds of cotangent bundle.

2 Geometry of the Distribution in the Presence

of the Line Field

2.1 Curvature Operators and Characteristic Cones

Let M be a differentiable manifold and let V be a rank m subbundle of the tangent
bundle TM . In other words, for x ∈M , V(x) is an m dimensional subspace of TxM

and V(x) depend smoothly on x. Let X ⊆ TM be a smooth line field. We will
investigate geometry of the pair (X ,V). In this section we reformulate results of E.
J. Wilczynski [6], but additionally we construct canonical fields of tangent cones on
M . We include proofs, which are mainly reduced to calculations, for two reasons.
Firstly for completeness and secondly because we need some formulas for further
purposes.

If X and Y are vector fields then the Lie bracket [X,Y ] is denoted adXY and
adi+1

X Y = adX(adi
XY ). If V is a subbundle of TM then adi

XV denotes the subbundle
spanned by adi

XY , for any local section Y of V . Note that the rank of adi
XV may

vary even if V has a constant rank. We will use a matrix notation. Namely, for a
tuple V = (V1, . . . , Vm) we will denote a tuple (adi

XV1, . . . , adiVm) by adi
XV .
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Definition. We call (X ,V) good if there exists a number k ≥ 1 such that the
following relations hold

rk(adi
XV mod X ) = m(i+ 1) (1)

for i = 0, . . . , k and

rk(adk+1
X V mod X ) = m(k + 1), (2)

where X is an arbitrary vector field which spans X . We denote V i = adi
XV mod X .

In other words (X ,V) is good if the dimensions of adi
XV increase as much as

possible for i = 1, . . . , k, and adk
XV mod X is invariant with respect to the action

of adX . The definition does not depend on the choice of X, as can be easily checked.

Proposition 2.1 Let (X ,V) be a good pair and let X be an arbitrary vector field

which spans X . Locally, there exist independent vector fields V1, . . . , Vm, which span

V, and are such that adk+1
X Vi = 0 mod adk−1

X V for i = 1, . . . ,m.

Proof. Let W = (W1, . . . ,Wm) be any tuple of vector fields which locally span V .
We will find functions G = (gij) such that Vi =

∑m

j=1 gijWj, for i = 1, . . . ,m, are
desired vector fields. In the matrix notation we write V = GW . We have

adk+1
X V = Gadk+1

X W + (k + 1)X(G)adk
XW mod adk−1

X V .

Assume that
adk+1

X W = Hadk
XW mod adk−1

X V ,

for a certain H = (hij). Since adk
XV = Gadk

XW mod adk−1
X V , we obtain the follow-

ing equation
GH + (k + 1)X(G) = 0 (3)

It can be solved locally and if G is a solution then adk+1
X V = 0 mod adk−1

X V . �

Definition. Vector fields V = (V1, . . . , Vm) are called normal (for a fixed vector
field X) if

adk+1
X V = 0 mod adk−1

X V .

Note that (3) implies that if both V and W = GV are normal then X(G) = 0.
Hence, adi

XW = Gadi
XV for any i. We deduce that the distributions

V i
X = span{adi

XV1, . . . , adi
XVm}

do not depend on the choice of normal vector fields V = (V1, . . . , Vm). Distribution
Vk

X will be called connection and denoted HX . We stress that

rkV i
X = m
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and

adi
XV = V0

X ⊕ · · · ⊕ V i
X ,

for i = 0, . . . , k. In particular

adk
XV = V0

X ⊕ · · · ⊕ Vk−1
X ⊕HX .

The last relation defines projections πVi

X : adk
XV → V i

X and πH
X : adk

XV → HX .
Let us notice that operators I ij

X : V i
X → VX

j , for i = 0, . . . , k and j = i, . . . , k

defined by formula
I

ij
X = πX

Vj
◦ adj−i

X

are vector bundle isomorphisms. By Iji
X we denote an inverse of I ij

X . Additionally, for
i = 0, . . . , k− 1, we have the following homomorphism of vector bundles J i

X : HX →
V i

X

J i
X = πX

Vi
◦ adX .

Definition. An i-th curvature operator Ki
X ∈ End(V) is

Ki
X = −IX

i0 ◦ JX
i ◦ IX

0k : V → V .

In a fixed base of the space V i
X(x) operator Ki

X(x) is represented by s×s matrix,
also denoted Ki

X(x). Note that, if V = (V1, . . . , Vm) are normal, then curvature
matrices in the base V are defined by the following equation

adk+1
X V +Kk−1

X adk−1
X V + · · · +K1

XadXV +K0
XV = 0. (4)

Proposition 2.2
trKfX

k−1 = f 2trKk−1
X −mckS

X(f), (5)

where ck = − 1
24
k(k + 1)(k + 2) is a constant, and

SX(f) = 2fX2(f) −X(f)2. (6)

Proof. Let V be normal for X, and GV be normal for fX. We compute directly

adk+1
fX GV = Gfk+1adk+1

X V +
k

∑

i=0

fk+1−iX(f iG)adk
XV

+
k−1
∑

i=0

k−1−i
∑

j=0

fk−i−jX(f j+1X(f iG))adk−1
X V mod adk−2

X V , X . (7)

From normality of V and GV it follows

k
∑

i=0

fk+1−iX(f iG) = 0.
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Application of Leibnitz rule gives

fX(G) = −k
2
X(f)G, (8)

and by differentiation we obtain

f 2X2(G) =
(

(

k
2

+ k2

4

)

X(f)2 − k
2
fX2(f)

)

G. (9)

From (8) and (9) we get

k−1
∑

i=0

k−1−i
∑

j=0

fk−i−jX(f j+1X(f iG)) =
k−1
∑

i=0

k−1−i
∑

j=0

fk+1X2(G) +
k−1
∑

i=0

k−1−i
∑

j=0

ifkX2(f)G

+
k−1
∑

i=0

k−1−i
∑

j=0

(2i+ j + 1)fkX(f)X(G)

+
k−1
∑

i=0

k−1−i
∑

j=0

i(i+ j)fk−1X(f)2G

= Gfk−1

k
∑

i=0

(k − i)
(

(− i
2

+ i2

2
+ k

4
− ki

4
)X(f)2

+ (i− k
2
)fX2(f)

)

.

One can see that

k
∑

i=0

(k − i)(i− k
2
) = −2

k
∑

i=0

(k − i)(− i
2

+ i2

2
+ k

4
− ki

4
).

We denote ck = 1
2

∑k

i=0(k − i)(i− k
2
). Then (7) imply

adk+1
fX GV = Gfk+1adk+1

X V +Gfk−1ckS
X(f)adk−1

X V mod adk−2
X V , X .

We have adk−1
fX GV = fk−1Gadk−1

X V mod adk−2
X V , and hence

K
fX
k−1 = f 2GKk−1

X G−1 − ckS
X(f)Id.

�

Remark. Operator SX defined by formula (6) is called Schwartzian. It is
justified by the following reasoning. Let γ : t 7→ γ(t) be a curve representing X. It
means that X(g)◦γ = d

dt
(g◦γ) for any function g. Let us consider reparametrization

ϕ : s 7→ ϕ(s), such that γ ◦ ϕ represents vector field fX. Then f(γ ◦ ϕ) = ϕ′ and

SX(f)(γ ◦ ϕ) = 2ϕ′

( 1

ϕ′

d

ds

)2

(ϕ′) −
( 1

ϕ′

d

ds
ϕ′

)2

= 2
d

ds

(ϕ′′

ϕ′

)

−
(ϕ′′

ϕ′

)2

= 2
ϕ′′′

ϕ′
− 3

(ϕ′′

ϕ′

)2

.
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The last term is equal to the Schwartz derivative of ϕ.

Definition. X is called projective vector field if trKk−1
X = 0.

Proposition 2.2 implies that projective vector fields form a 2-parameter family
on any integral curve of X . Non-constant solutions to the equation SX(f) = 0 are
of the form

f(x) = a(x+ b)2,

where x is a parameter on an integral line of X.

Definition. Let P be the family of projective vector fields. Characteristic

cones of (X ,V) at x ∈M are the following sets

Ci(X ,V)(x) = cl
⋃

X∈P

V i
X(x),

where i = 0, . . . , k. Ck(X ,V)(x) = cl
⋃

X∈P
HX(x) is also called connection cone at

x.

The field of connection cones will be the most important object in this paper.

Lemma 2.3 Let X and fX be projective vector fields. Assume that V and GV are

corresponding normal vector fields. Then for i = 0, . . . , k

adi
fXGV =

i
∑

j=0

cijf
jX(f)i−jGadj

XV mod X ,

where cij = (−1)i+j (k−j)···(k−i+1)
2i−j

(

i

j

)

. Moreover adk+1
fX GV = fk+1Gadk+1

X V mod X .

Proof. Let us recall that SX(f) = 2fX2(f)−X(f)2 = 0 and 2fX(G) = −kX(f)G
(equations (5) and (8)). Then

fX(f j+1X(f)i−j−1G) = (j + 1)f j+1X(f)i−jG+ (i− j − 1)f j+2X(f)i−j−2X2(f)G

+ f j+2X(f)i−j−1X(G)

=
i+ j + 1 − k

2
f j+1X(f)i−jG. (10)

Let dij denotes the coefficient at adj
XV in the expansion of adi

fXGV . We shall prove
that dij = cijf

jX(f)i−jG. We compute di0 by induction. For i = 0 this coefficient
equals G. Then di+10 = fX(di0). We use (10) with j = −1 and obtain

di+10 = fX((−1)i k!

2i(k − i)!
X(f)iG) = (−1)i+1 k!

2i+1(k − i− 1)!
X(f)i+1G,
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as required. The rest of coefficients dij is also computed by induction

di+1j+1 = fdij + fX(dij+1)

= (−1)i+j (k − j) · · · (k − i+ 1)

2i−j

(

i

j

)

f j+1X(f)i−jG

+ (−1)i+j+1 (k − j − 1) · · · (k − i+ 1)

2i−j−1

(

i

j + 1

)

fX
(

f j+1X(f)i−j−1G
)

= (−1)i+j (k − j) · · · (k − i+ 1)

2i−j

(

i

j

)

f j+1X(f)i−jG

+ (−1)i+j+1 (k − j − 1) · · · (k − i+ 1)

2i−j−1

(

i

j + 1

)

i+ j + 1 − k

2
f j+1X(f)i−jG

= (−1)i+j (k − j − 1) · · · (k − i)

2i−j

(

i+ 1

j + 1

)

f j+1X(f)i−jG.

Expression adk+1
fX GV = fk+1Gadk+1

X V is proved by differentiation of adk
fXGV . �

From Lemma 2.3 we get the following description of characteristic cones Ci(X ,V).

Proposition 2.4 Let X be a projective vector field and V be a corresponding normal

vector field then

Ci(X ,V)(x) = {ci0a
iGV (x) + ci1a

i−1bGadXV (x) + · · · + ciib
iGadi

XV (x)

| a, b ∈ R, G ∈ Rm×m} mod X . (11)

Let us notice that Ci(X ,V)(x) can be considered as an algebraic curve of order i in
Grassmann manifold Grm(V i(x)) ofm dimensional subspaces in (i+1)m dimensional
vector space V i(x) = (adi

XV(x) mod X ). Since all adi
XVj are independent, this

curve has no self intersections.
We will analyze geometry of Ci(X ,V)(x) in more detail in the future work. In

particular we will show how they define conformal tensors. Let us only notice here
an obvious fact that if m = 1 then C2(X ,V)(x) defines conformal Lorentzian metric
on bundle V2, which is of rank 3.

2.2 Wilczynski Invariants

Let A ∈ End(V) and X be a section of X . Lie derivative LX(A) is defined as

LX(A) = πX
V0

◦ adX ◦ A− A ◦ πX
V0

◦ adX .

From Lemma 2.3 one can deduce the following theorem of E. J. Wilczynski (see [6],
and also [4, 5]).

Theorem 2.5 (E. J. Wilczynski) Let P be the family of projective vector fields.

There exist constants wij ∈ Q such that the following mapping P ∋ X → W i(X) ∈
End(V)

W i(X) = Ki
X +

k−i−1
∑

j=1

wijL
j
X(Ki+j

X )
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is homogeneous of order k− i+1, i.e. if X, fX ∈ P are projective, then W i(fX) =
fk−i+1W i(X).

Definition. W i is called i-th Wilczynski invariant.

If A is a m×m matrix then let σi(A) denote coefficient at tm−i in characteristic
polynomial det(A − tId). For instance, σ1 = tr and σm = det. We get that W i

j =
σjW

i are homogeneous functions P → R of order j(k − i + 1). If some of them is
non-degenerate then it defines a length element on the integral lines of X . Thus, it
defined canonical sections of X : we call X canonical if W i

j (X) ≡ ±1.

Definition. Let X be a canonical section of X defined by W i
j . Curvature

operator K l
X is called (ijl)-canonical curvature operator, and is denoted Kil

j .

We have the following determinacy result.

Proposition 2.6 If Wilczynski invariant W i
j of (X ,V) is non-degenerate along cer-

tain integral curve of X then corresponding canonical curvature operators determine

V uniquely modulo X along this curve.

Proof. It follows directly from equation (4) with K l
X = Kil

j . This equation de-
scribes an evolution of V modulo X along integral curves of X . �

From Proposition 2.6 we get that canonical curvature operators corresponding
to one Wilczynski invariant determine all other canonical curvature operators (cor-
responding to different Wilczynski’s invariants). Hence, in general, it is sufficient
to know only one Wilczynski invariant. If Kk−1

X ≡ · · · ≡ Ki+1
X ≡ 0 then the defini-

tion implies W i(X) = Ki
X , so the formula for the first non-degenerate Wilczynski

invariant is relatively simple.

3 Applications to Systems of ODE

3.1 Preliminary Remarks

Let us consider the following system (F )

x
(k+1)
1 = F1(t, x1, . . . , xm, x

′

1, . . . , x
′

m, . . . , x
(k)
1 , . . . , x(k)

m )

x
(k+1)
2 = F2(t, x1, . . . , xm, x

′

1, . . . , x
′

m, . . . , x
(k)
1 , . . . , x(k)

m )
...

x(k+1)
m = Fm(t, x1, . . . , xm, x

′

1, . . . , x
′

m, . . . , x
(k)
1 , . . . , x(k)

m ),

where F1, . . . , Fm are smooth functions and k > 1. Let Jk(1,m) denote the space

of k-jets of functions R → Rm. Then (t, x1, . . . , xm, x
′
1, . . . , x

′
m, . . . , x

(k)
1 , . . . , x

(k)
m )
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constitutes a system of coordinates on Jk(1,m). We recall that Cartan distributions
Ci are defined as

Ci =
⋂

j=1,...,i

kerω1
j ∩ . . . ∩ kerωm

j .

where ωi
r = dx

(i)
r − x

(i+1)
r dt, for r = 1, . . . ,m and i = 0, . . . , k − 1. We denote XF a

line bundle spanned by total derivative

XF = ∂t + x′1∂x1 + · · · + x′m∂xm
+ · · · +

x
(k−1)
1 ∂

x
(k−2)
1

+ · · · + x(k−1)
m ∂

x
(k−2)
m

+

F1∂x
(k−1)
1

+ · · · + Fm∂x
(k−1)
m

.

Integral lines of XF correspond to solutions of (F ). Let VF be Cauchy characteristic
of Ck−2, i.e.

VF = Ch(Ck−2) = span{∂
x
(k−1)
1

, . . . , ∂
x
(k−1)
m

}.

The following lemma is obvious.

Lemma 3.1 For any system (F ) pair (XF ,VF ) is good.

We say that systems (F ) and (F̃ ) are equivalent (by contact transformation of
coordinates) if there exists diffeomorphism Ψ: Jk(1,m) → Jk(1,m) such that

Ψ∗XF = XF̃

and
Ψ∗Ci = Ci.

In particular
Ψ∗VF = VF̃ .

In fact it is sufficient to assume that Ψ∗XF = XF̃ and Ψ∗VF = VF̃ , since Cartan
distributions are generated by Lie brackets of XF and VF .

Definition. Characteristic cones of (F ) at x ∈ Jk(1,m) are the following sets

Ci
F (x) = Ci(XF ,VF ),

where i = 0, . . . , k. Ck
F (x) is also called connection cone of (F ).

By definition, characteristic cones of (F ) are preserved by contact transforma-
tions. In this way we proved the first part of Theorem 1.1.

We conclude also that Wilczynski invariants are assigned to any system (F ).
If they are non-degenerate then the canonical curvature operators are defined too.
All these objects are invariantly assigned to (F ). Note that canonical curvature
operators are functional invariants. In the case of linear systems they determine
(F ) uniquely.

Proposition 3.2 Let (F ) be a linear system. If there is a Wilczynski invariant

which does not vanish then the corresponding canonical curvature operators deter-

mine (F ) uniquely up to contact transformations.
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Proof. It is implied by Proposition 2.6. Namely, it is straightforward that lin-
ear system are determined by VF along one integral curve of XF . By Proposition
2.6 canonical curvature operators determine VF uniquely modulo XF . Additionally
VF is determined uniquely in the direction of XF by condition that it is integrable. �

3.2 Generalized Wuenschmann Condition

Let us consider first the case of one equation of order 3

x′′′ = F (t, x, x′, x′′).

It is the classical case of S-S. Chern [1]. In this situation VF is a line bundle and
J2(1, 1) is of dimension 4. Thus, the only possibly non-trivial Wilczynski invariant
is W 0. The following fact is well known (see e.g. [2]); (symbol f,i denotes partial
derivative ∂x(i)f).

Proposition 3.3 W0 ≡ 0 if and only if Wuenschmann condition holds

A = F,0 +XF (B) −
2

3
F,2B = 0,

where

B =
1

6
XF (F,2) −

1

9
F 2

,2 −
1

2
F,1.

In fact W 0 ≡ A.

It was proved by S-S. Chern [1] that if Wuenschmann condition holds then there
is defined a conformal metric of signature (+,+,−) on the solutions space. Let us
denote the space of solutions of (F ) by SF , and let

q : J2(1, 1) → SF

be the quotient map. Wuenschmann condition implies that connection cone C2
F is

preserved via the flow of XF (see Lemma 3.5 below). Hence, its projection to SF is
well defined. We call it quotient connection cone and denote q∗C

2
F .

Proposition 3.4 The quotient connection cone of equation x′′′ = F (t, x, x′, x′′) co-

incides with the cone of null directions of Chern conformal metric

[g] = 2dx · (dx′′ −
1

3
F,2dx

′ +Bdx) − dx′ · dx′,

where as before B = 1
6
X(F,2) −

1
9
F 2

,2 −
1
2
F,1.

Proof. Let X = XF = ∂t + x′∂x + x′′∂x′ + F∂x′′ be a total derivative and let
V = ∂x′′ . Assume that fX is a projective vector field, and GV is normal. We have
the following relations modulo XF

adfXGV = fGadXV + fX(G)V,

ad2
fXGV = fX(fG)adXV + fGad2

XV + f 2X(G)adXV + fX(f(XG))V,

ad3
fXGV = f 3Gad3

XV + fX(f 2G)ad2
XV + f 2X(fG)ad2

XV + fX(fX(fG))adXV

+f 3X(G)ad2
XV + fX(f 2X(G))adXV + f 2X(fX(G))adXV

+fX(fX(fX(G)))V. (12)

10



Moreover, we compute directly that

ad3
XV = H2ad2

XV +H1adXV +H0V,

where H0 = −F,0 +X(F,1) −X2(F,2), H1 = (F,1 − 2X(F,2)) and H2 = −F,2. From
normality of GV and (12) it follows that

f 3GH2 + fX(f 2G) + f 2X(fG) + f 3X(G) = 0. (13)

Let x ∈ J2(1, 1) be fixed. We can assume that f(x) = 1, G(x) = 1 and f ′(x) = 0.
Then (13) yields

H2(x) + 3X(G)(x) = 0. (14)

By differentiation of (13) we get

H2X(G)(x) +X(H2)(x) + 3X2(f)(x) + 3X2(G)(x) = 0. (15)

The fact that fX is projective and (12) imply

H1(x) +X2(f)(x) + 3X2(G)(x) = 0. (16)

Then, from (14), (15) and (16) we compute that at point x

X(G) = −
1

3
H2,

X2(G) = −
1

2
H1 −

1

18
H2

2 +
1

6
X(H2).

From above we see (we substitute X(G), X2(G) and Hi to (12))

adfXGV (x) = −∂x′ −
2

3
F,2(x)∂x′′ ,

ad2
fXGV (x) = ∂x +

1

3
F,2(x)∂x′ +

(1

2
F,1(x) +

5

18
F,2(x)

2 −
1

6
X(F,2)(x)

)

∂x′′ .

Hence

[g](q∗ad2
fXGV, q∗ad2

fXGV ) = 2
(1

2
F,1 +

5

18
F 2

,2 −
1

6
X(F,2) −

1

9
F 2

,2

+
1

6
X(F,2) −

1

9
F 2

,2 −
1

2
F,1

)

−
1

9
F 2

,2

= 0.

So, for the vector field Y = fX at point q(x) the connection q∗H
Y is a null direction

of [g]. Let us denote W = GV . In the rest of the proof we will need the following
relations which hold at x and which can be easily deduced from above

[g](q∗W, q∗W ) = 0, [g](q∗adYW, q∗adYW ) = −1,

[g](q∗adYW, q∗W ) = 0, [g](q∗ad2
YW, q∗W ) = 1, [g](q∗ad2

YW, q∗adYW ) = 0.

Let us consider an arbitrary projective vector field. It is of the form fY for a
certain f such that SY (f) = 0 (it is now a different f than the one we had before).
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We have fY 2(f) = 1
2
Y (f)2, and if GW is normal for fY , then fY (G) = −GY (f).

Without the lost of generality we assume G(x) = 1 and compute

ad2
fYGW (x) = f 2(x)ad2

YW (x) − f(x)Y (f)(x)adYW (x) +
1

2
Y (f)(x)2W (x).

Then

[g](q∗ad2
fYGW, q∗ad2

fYGW ) =
1

4
[g](q∗W, q∗W ) + f 2X(f)2[g](q∗adYW, q∗adYW )

+f 4[g](q∗ad2
YW, q∗ad2

YW ) − 2
1

2
fX(f)3[g](q∗adYW, q∗W )

+2
1

2
f 2X(f)2[g](q∗ad2

YW, q∗W ) − 2f 3X(f)[g](q∗ad2
YW, q∗adYW )

= 0.

�

We return now to the general system of ODE.

Definition. We say that generalized Wuenschmann condition holds for (F ) if
all Wilczynski invariants vanish.

This condition was considered by B. Doubrov [2] as the necessary condition for
contact trivialization of one equation. As in the case of Chern we denote by

q : Jk(1,m) → SF

the quotient map to the solution space SF .

Lemma 3.5 Let X be a projective vector field. If generalized Wuenschmann con-

dition holds then

[X,Vk
X ] = Vk

X mod X .

Hence projection q∗C
k
F is well defined.

Proof. Wuenschmann condition is equivalent to vanishing of all curvatures Ki
X (it

is a direct consequence of the definition). Hence [X, adk
XV ] = adk+1

X V = 0 for any
normal sections V (equation (4)). Thus lemma follows, because Vk

X = span{adk
XV }.

�

Definition. Assume that generalized Wuenschmann condition holds for (F )
and let x ∈ Jk(1,m). Quotient connection cone of (F ) at q(x) ∈ SF is the following
set

q∗C
k
F (x) = q∗(C

k(XF ,VF )).

In this way we proved the second part of Theorem 1.1. The rest of the paper
is devoted to its third part - determinacy result. We assume that Wuenschmann
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condition holds and we treat connection cones as curves in Grassmann manifold.
We denote ”grassmannization” of q∗C

k
F by GF . Then (11) implies that q∗VF (x) ∈

GF (q(x)) for any x ∈ Jk(1,m).

Lemma 3.6 The mapping

ΦF : Jk(1, s) ∋ x 7→ q∗VF (x) ∈ GF

is a local diffeomorphism.

Proof. ΦF is obviously differentiable and ΦF∗ has maximal rank on spaces transver-
sal to X . Let us assume that in a certain coordinate system in a neighborhood of
x a vector field X = ∂0 is projective. Then Wuenschmann condition and equation
(4) imply that an evolution of VF is described modulo XF along a certain integral
curve of X by the equation

∂
(n+1)
0 u = 0.

Hence

VF (expt∂0
(x)) = span{V (x) +

t

1!
adXV (x) + · · · +

tn

n!
adn

XV (x)} mod X ,

and q∗VF (expt∂0
(x)) 6= q∗VF (x) for t 6= 0. Moreover, one can see that ΦF∗(∂0) 6= 0. �

Now we are in position to prove the following result, which clarify the last part
of Theorem 1.1.

Theorem 3.7 Assume that generalized Wuenschmann condition holds for (F ) and

(F̃ ). Let x0, x̃0 ∈ Jk(1,m). There exists a local contact transformation of (F ) and

(F̃ ) from a neighborhood of x0 onto a neighborhood of x̃0 iff there exists a local

diffeomorphism ψ : SF → SF̃ such that

ψ∗(ΦF (x0)) = ΦF̃ (x̃0)

and

ψ∗q∗CF = q∗CF̃ .

Proof. If (F ) and (F̃ ) are locally equivalent then obviously the hypothesis is true.
For a proof in the opposite direction let us observe that by Lemma 3.6 the following
mapping

Ψ = Φ−1

F̃
◦ ψ∗ ◦ ΦF

is a diffeomorphism in the neighborhood of x0. We shall show that it is a contact
transformation. The relation Ψ∗XF = XF̃ , is the consequence of the fact that Ψ
transforms fibers of q : Jk(1,m) → SF onto fibers of q : Jk(1,m) → SF̃ . So it is
sufficient to prove that Ψ∗VF = VF̃ mod XF̃ . It follows from the construction.
Indeed, if we denote projection GF → SF by π, we get

π∗ ◦ ΦF∗VF (x) = q∗VF (x) = ΦF (x),

for any x ∈ Jk(1, s), and analogously for (F̃ )

π∗ ◦ ΦF̃∗
VF̃ (x) = q∗VF̃ (x) = ΦF̃ (x).
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A composition of these relations gives the desired relation. �

Note that GF (i.e. the ”grassmannization” of the quotient connection cone) can
be treated as the model space for equation (F ). We understand this in the follow-
ing way. Let FG be the class of equations (F ) such that Wuenschmann condition
is fulfilled and GF is equivalent to G. For any (F ) ∈ FG we have the mapping
ΦF : Jk(1,m) → G. If (F̃ ) ∈ FG is another system and the composition Φ−1

F̃
◦ ΦF

exists on some domain then, as in the proof of Theorem 3.7, it is a local contact
transformation. Therefore one can treat (F ) and (F̃ ) as two parts of one equation.
But it is of course possible that two mappings ΦF and ΦF̃ have disjoint images.
Namely, one can take one equation and cut domain t into small intervals. Each of
these intervals can be spread onto R so that new equations are obtained. Generi-
cally (if G has small symmetry group) two different resulting equations will be non
equivalent.

There exists the canonical contact structure on G (i.e. sequence of distributions
locally diffeomorphic to Cartan distributions on the jets space). It can be defined
in two equivalent ways. One possibility is to push it forward from Jk(1,m) via all
ΦF such that (F ) ∈ FG. But it can be also defined intrinsically. If π : G → S is
the projection to solution space then we define XG = kerπ∗. Moreover, there is a
distribution D on G which comes from grassmannian structure, i.e.

D(y) = {Y ∈ TyG | π∗Y ∈ y}

and one can define VG = Ch([XG, D]). Lie brackets of VG and XG defines the desired
contact structure. We conclude that

π∗C
k(XG,VG) = q∗C

k
F = G

for any (F ) ∈ FG - this follows immediately from Theorem 3.7.
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