
INSTITUTE OF MATHEMATICS
of the

Polish Academy of Sciences
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Abstract

Credit spread is defined as a difference between forward rates corresponding to
bond facing the default risk and forward rates corresponding to risk-free bond. We
give conditions under which credit spread is a positive process, considering joint
model for rates.

1 Introduction

Let P (t, θ) and P (t, θ) be the prices, at time t, of risk free and of defaultable bond paying
1, at the maturity time θ ≥ t. Let f(t, θ), f(t, θ), be the corresponding forward rates,
then

P (t, θ) = e−
R θ

t f(t,η)dη, P (t, θ) = e−
R θ

t f(t,η)dη, 0 ≤ t ≤ θ (1.1)

If τ denotes the time of default of the defaultable bond then, for t < τ, one should have

P (t, θ) ≥ P (t, θ), 0 ≤ t ≤ θ, (1.2)

an inequality implied by:
f(t, θ) ≤ f(t, θ), 0 ≤ t ≤ θ. (1.3)

The difference
s(t, θ) = f(t, θ)− f(t, θ), 0 ≤ t ≤ θ, (1.4)

is called spread, see e.g. [12], and its positivity is thus a natural modeling assumption.

Modeling and properties of spread processes were recently discussed in[12], where a specific
equation for s, implying positivity, was imposed. In the present note we derive sufficient
conditions for positivity of spreads, close to necessary, for general bond processes satisfying
HJM conditions and driven by Lévy type noise. In [12] perturbations were Gaussian.

We work with the parametrization proposed by Musiela [11]. Thus if ξ is the time to
maturity then we set:

ft(ξ) = − ∂

∂ξ
lnP (t, t+ ξ), f t(ξ) = − ∂

∂ξ
lnP (t, t+ ξ) t, ξ ≥ 0. (1.5)

∗Supported by the Polish Ministry of Science and Education project 1PO 3A 034 29 ”Stochastic
Evolution Equations with Levy noise”.
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We assume that f, f , satisfy general equations, on appropriate Hilbert spaceH of functions
defined on [0,+∞),

dft =

(
∂

∂ξ
ft + α(ft)

)
dt+ σ(ft)dL(t) + b(ft)dW (t), (1.6)

df t =

(
∂

∂ξ
f t + α(ft, f t)

)
dt+ σ(ft, f t)dL(t) + b(ft, f t)dW (t), (1.7)

where coefficients α, σ, b and α, σ b are mappings from H×H into H. Moreover L is a one-
dimensional Lévy martingale and W a real Wiener process. We restrict our considerations
to one dimensional stochastic perturbations to simplify presentation, but our methods are
applicable to vector or even infinite dimensional noise processes.

Our main results are sufficient conditions on volatilities b, σ, b, σ implying positivity of
spreads, see Theorem 1, Theorem 2 and Theorem 3. To derive them we use a generalized
version of a comparison result by Milian [10]. Special attention is paid to models with
linear volatilities. As was discovered in [13], contrary to models with Gaussian perturba-
tions, which explode, there exists a larg family of models with Lévy perturbation without
explosions. For them we give necessary and sufficient conditions for positivity of spreads.
We believe that they will have interesting applications for pricing.

In Section 2 we describe the model and formulate theorems. In Section 3 we give examples
and in Section 4 proofs.

2 Model and results

2.1 HJM conditions

We will consider processes on a complete probability space (Ω,F ,P). We assume that
the Lev́y process L has no gaussian component and that EL(1) = 0. It admits the
representation

L(t) =

t∫
0

∫
R

y (π(ds, dy)− ds ν(dy)) ,

where π is the Poisson random measure corresponding to L and ν is the jump intensity
measure of L. Moreover, it is well-known that∫

R

(
|y|2 ∧ 1

)
ν(dy) <∞.
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The absence of arbitrage on the market implies, see [2],[5] and [9], that the following
formulas, called HJM conditions, must hold for α : H → H, α : H ×H → H,

α(f)(ξ) = b(f)(ξ)

 ξ∫
0

b(f)(η)dη


+ σ(f)(ξ)

∫
R

y

1− exp

−y
ξ∫

0

σ(f)(η)dη


 ν(dy),

α(f, f)(ξ) = b(f, f)(ξ)

 ξ∫
0

b(f, f)(η)dη


+ σ(f, f)(ξ)

∫
R

y

1− exp

−y
ξ∫

0

σ(f, f)(η)dη


 ν(dy).

Note that the above integrals are well-defined if ν has support in [−m,+∞) for some
m ≥ 0 and

σ(f) ≥ 0, σ(f, f) ≥ 0.

Let L2
w denote the space of all functions f : R+ → R such that

+∞∫
0

|f(ξ)|2w(ξ)dξ < +∞,

where w is some positive weight function, with inner product

〈f, g〉L2
w

=

+∞∫
0

f(ξ)g(ξ)w(ξ)dξ.

For f, h ∈ L2
w we shall write f ≥ h instead of

f(ξ) ≥ h(ξ), ξ − a.e.

We shall consider equations (1.6) and (1.7) on space L2
w with w given by

w(ξ) = e−2γξw(ξ), w(η) ≤M2w(ξ), 0 ≤ η ≤ ξ. (2.1)

for some γ ∈ R and M ≥ 1.
For explicit conditions implying existence of solutions ft to(1.6) we refer to paper [13]. In
the same spirit one can derive conditions of Lipschitz type implying existence of solutions
ft, f t to the pair of equations (1.6) and (1.7).

2.2 Theorems

We begin with a theorem that gives sufficient conditions for (2.9) to hold, under the
assumption that the Lévy process L does not have negative jumps.
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Theorem 1. Assume that ν has support in [0,+∞). If for every f, f ∈ L2
w, such that

f ≥ f , we have

f(ξ) = f(ξ) =⇒ σ(f, f)(ξ) = σ(f)(ξ), ξ − a.e. (2.2)

f(ξ) = f(ξ) =⇒ b(f, f)(ξ) = b(f)(ξ), ξ − a.e. (2.3)

0 ≤ σ(f) ≤ σ(f, f), (2.4)

0 ≤ b(f) ≤ b(f, f), (2.5)

then
f 0 ≥ f0 =⇒ f t ≥ ft.

If L has also negative jumps, condition (2.2) has to be replaced by a stronger one presented
in the next theorem.

Theorem 2. Assume that ν has support in [−m,+∞) for some m > 0. If for every
f, f ∈ L2

w such that f ≥ f , conditions (2.3)-(2.5) are satisfied, and

σ(f, f)− σ(f) ≤ m−1
(
f − f

)
, (2.6)

then
f 0 ≥ f0 =⇒ f t ≥ ft.

Let us finally consider an important case of models with linear volatilities,

dft(ξ) =

 ∂

∂ξ
ft(ξ) + J ′

 ξ∫
0

af(η)dη

 af(ξ)

 dt+ aft(ξ)dL(t), (2.7)

df t(ξ) =

 ∂

∂ξ
f t(ξ) + J ′

λ ξ∫
0

f(η)dη + λ

ξ∫
0

f(η)dη

 (
λft(ξ) + λ f t(ξ)

) dt

+
(
λft(ξ) + λ f t(ξ)

)
dL(t), (2.8)

for some a, λ, λ ≥ 0. For existence purposes we assume that the equations do not have
Gaussian component i.e. b = b = 0. As in [13] one can show that if the jump measure
ν has support in [−m,+∞),for some m ≥ 0 and a < m−1, λ < m−1, then there exist
solutions to (2.7), (2.8) which, to some extent, can be expressed in an explicit way.

Theorem 3. Assume that the jump measure ν has support in [−m,+∞), for some m ≥ 0
and a < m−1, λ < m−1. The following conditions are equivalent,

f 0 ≥ f0 =⇒ f t ≥ ft, t ≥ 0, (2.9)

P 0 ≤ P0 =⇒ P t ≤ Pt, t ≥ 0, (2.10)

λ+ λ = a (2.11)

The proofs of Theorem 2 and Theorem 3 are left to the final section, and Theorem 1 may
be proved in the same way as Theorem 2.
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3 Examples

Note that conditions (2.2), (2.3) imply that for every f ∈ L2
w the coefficients b, σ, α satisfy

b(f, f) = b(f),

σ(f, f) = σ(f),

α(f, f) = α(f).

Example 1. Suppose that ν has support in [−m,+∞) and σ, σ are given by

σ(f)(ξ) =

(
λ1

f(ξ)

f(ξ) + 1

)
1{f(ξ)≥0},

σ(f, f)(ξ) =

(
λ1

f(ξ)

f(ξ) + 1
+ λ2 ln

(
f(ξ) + 1

f(ξ) + 1

))
1{f(ξ)≥f(ξ)≥0},

for some λ1, λ2 ≥ 0. Then (2.4), (2.6) are satisfied if

λ1 + λ2 ≤ m−1.

Example 2. Assume that for every f ∈ L2
w, we have σ(f) ≥ 0, and σ is given by

σ(f, f)(ξ) = σ(f)(ξ) + ψ
(
f(ξ)− f(ξ)

)
,

for some ψ : R → R+. Then condition (2.2) holds if

ψ(0) = 0,

and condition (2.6) holds if
ψ(u) ≤ m−1u, u ≥ 0.

If the coefficients σ, σ are Niemytskii operators, i.e.

σ(f)(ξ) = g(ξ, f(ξ)),

σ(f, f)(ξ) = g(ξ, f(ξ), f(ξ)),

for some g : R+ × R → R, g : R+ × R× R → R, then condition (2.2) implies that

g(ξ, x, x) = g(ξ, x), ξ ≥ 0, x ∈ R

Example 3. Assume that ν has support in [−m,+∞) for some m > 0 and

σ(f)(ξ) = g(ξ, f(ξ), f(ξ)),

σ(f, f)(ξ) = g(ξ, f(ξ), f(ξ)),

for some g : R+ × R × R → R. Then (2.4), (2.6) are fulfilled if and only if for every
x ∈ R, ξ, u ≥ 0 we have

0 ≤ g(ξ, x, x) ≤ g(ξ, x, x+ u) ≤ g(ξ, x, x) +m−1u.

5



4 Proofs

4.1 Proof of Theorem 2

The proof of the theorem is based on an extension of a comparison theorem due to Milian
[10]. The theorem gives sufficient conditions for the inequality X ≥ Y , where the pair
X, Y is the solution to the system of stochastic evolution equations

dX = (AX +D(t,X)) dt+B(t,X)dW,

dY = (AY + d(t, Y )) dt+ b(t, Y )dW.

In the above equations, A stands for the generator of a strongly continuous semigroup
SA(t)t≥0 on L2

w, W is a real valued Wiener process and operators D, d,B, b act from
R+ × L2

w → L2
w. However the proof from [10] works for more general equations

dX = (AX +D(t,X, Y )) dt+B(t,X, Y )dW, (4.1)

dY = (AY + d(t,X, Y )) dt+ b(t,X, Y )dW, (4.2)

where now D, d,B, b : R+ × L2
w × L2

w → L2
w. In fact the following result holds.

Theorem 4. (Milian) Assume that:

(i) The semigroup SA, generated by A, preserves positivity, i.e. f ≥ 0 =⇒ SA(t)f ≥ 0.

(ii) There exists C > 0 such that for all t, s > 0 and x, y, f, h ∈ L2
w,

‖D(t, x, y)−D(s, f, h)‖L2
w

+ ‖B(t, x, y)−B(s, f, h)‖L2
w

≤ C
(
|t− s|+ ‖x− f‖L2

w
+ ‖y − h‖L2

w

)
,

‖d(t, x, y)− d(s, f, h)‖L2
w

+ ‖b(t, x, y)− b(s, f, h)‖L2
w

≤ C
(
|t− s|+ ‖x− f‖L2

w
+ ‖y − h‖L2

w

)
.

(iii) For every t ≥ 0, all non-negative continuous h ∈ L2
w and all x, y ∈ L2

w such that
x ≥ y satisfying 〈x, h〉L2

w
= 〈y, h〉L2

w
one has 〈D(t, x, y), h〉L2

w
≥ 〈d(t, x, y), h〉L2

w
and

〈B(t, x, y), h〉L2
w

= 〈b(t, x, y), h〉L2
w
.

Let X(t), Y (t), t ≥ 0 be mild solutions to (4.1) and (4.2) respectively, such that X(0) ≥
Y (0). Then

P {X(t) ≥ Y (t), t ≥ 0} = 1.

Note that condition (iii) from Theorem 4 is equivalent to the following condition (iv):

(iv) For every t ≥ 0 and all x, y ∈ L2
w such that x ≥ y, we have

x(ξ) = y(ξ) =⇒ D(t, x, y)(ξ) ≥ d(t, x, y)(ξ),
B(t, x, y)(ξ) = b(t, x, y)(ξ),

ξ − a.e.
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Indeed. Let h, x, y ∈ L2
w be such that h ≥ 0, x ≥ y and

〈x− y, h〉L2
w

=

∫
R+

(x(ξ)− y(ξ))h(ξ)w(ξ)dξ = 0.

Then h = 0 a.e. on set {ξ ≥ 0 : x(ξ) > y(ξ)}, thus

〈B(t, x, y)− b(t, x, y), h〉L2
w

=

∫
R+

(B(t, x, y)(ξ)− b(t, x, y)(ξ))h(ξ)w(ξ)dξ

=

∫
{ξ≥0:x(ξ)=y(ξ)}

(B(t, x, y)(ξ)− b(t, x, y)(ξ))h(ξ)w(ξ)dξ,

and

〈D(t, x, y)− d(t, x, y), h〉L2
w

=

∫
{ξ≥0:x(ξ)=y(ξ)}

(D(t, x, y)(ξ)− d(t, x, y)(ξ))h(ξ)w(ξ)dξ.

To check that assumptions of the theorem are satisfied in our situation remark that A = ∂
∂ξ

generates the semigroup of shift operators S(t)t≥0 given by (S(t)f)(ξ) = f(ξ + t). If w
satisfies (2.1) then f ∈ L2

w implies that S(t)f ∈ L2
w, since we have

‖S(t)f‖2
L2

w
=

+∞∫
0

|f(η + t)|2e−2γηw(η)dη

≤
+∞∫
0

|f(η + t)|2e−2γηM2w(η + t)dx

= e2γt

+∞∫
t

|f(ξ)|2e−2γξw(ξ)dξ

≤M2e2γt ‖f‖2
L2

w
.

If f(·) ≥ 0 then also f(t + ·) ≥ 0, thus condition (i) from Theorem 4 holds. Let us
approximate L by a sequence {Ln} of processes satisfying |∆Ln(t)| ≥ 1/n, t ≥ 0, n ∈ N.
We assume that Ln converges P-a.s. to L uniformly on each compact time interval. The
existence of such a sequence follows from the Lévy–Khinchin decomposition. Let the pair

f (n), f
(n)

be the solution to the problem

df
(n)
t =

(
∂

∂ξ
f

(n)
t + α

(
f

(n)
t

))
dt+ σ

(
f

(n)
t

)
dLn(t) + b

(
f

(n)
t

)
dW (t),

df
(n)

t =

(
∂

∂ξ
f

(n)

t + α
(
f

(n)
t , f

(n)

t

))
dt

+ σ
(
f

(n)
t , f

(n)

t

)
dLn(t) + b

(
f

(n)
t , f

(n)

t

)
dW (t).

7



For every stochastic process (Xt)t≥0 with values in L2
w, we have

sup
0≤t≤T

E

∥∥∥∥∥∥
t∫

0

S(t− s)σ (Xs) d (Ln − L) (s)

∥∥∥∥∥∥ =

∫
0≤y≤ 1

n

|y|2 ν(dy) sup
0≤t≤T

E

∥∥∥∥∥∥
t∫

0

S(t− s)σ (Xs)

∥∥∥∥∥∥ .
Thus

·∫
0

S(· − s)σ (Xs) dLn(s) converges to
·∫

0

S(· − s)σ (Xs) dL(s) and by local inversion

theorem (see e.g. Lemma 9.2 in [4]) we obtain that f
(n)
t converges to ft. In the same

way we obtain that f
(n)

t converges to f t. Thus it is enough to show that f
(n)

t ≥ f
(n)
t , if

f
(n)

0 ≥ f
(n)
0 . To do this note that Ln has only isolated jumps. Between the jumps the

driving process is Wiener and f(ξ) = f(ξ) implies

b(f, f)(ξ) = b(f)(ξ),

σ(f, f)(ξ) = σ(f)(ξ),

α(f, f)(ξ) ≥ α(f)(ξ),

thus, by Milian Theorem, f
(n)

t ≥ f
(n)
t till the first jump time τ of Ln. From the assump-

tions of our theorem, we have(
σ

(
f

(n)
τ−

)
(ξ)− σ

(
f

(n)
τ− , f

(n)

τ−

)
(ξ)

)
(Ln(τ)− Ln(τ−)) ≤ f

(n)

τ−(ξ)− f
(n)
τ− (ξ).

Indeed, if Ln(τ) − Ln(τ−) ≥ 0, then the left hand side is non-positive, and if Ln(τ) −
Ln(τ−) < 0, then we know that Ln(τ−)− Ln(τ) ≤ m, so

(Ln(τ−)− Ln(τ))
(
σ

(
f

(n)
τ− , f

(n)

τ−

)
(ξ)− σ

(
f

(n)
τ−

)
(ξ)

)
≤ m

(
σ

(
f

(n)
τ− , f

(n)

τ−

)
(ξ)− σ

(
f

(n)
τ−

)
(ξ)

)
≤ f

(n)

τ−(ξ)− f
(n)
τ− (ξ).

Since

f (n)
τ (ξ) = f

(n)
τ− (ξ) + σ

(
f

(n)
τ−

)
(ξ) (Ln(τ)− Ln(τ−)) ,

f
(n)

τ (ξ) = f
(n)

τ−(ξ) + σ
(
f

(n)
τ− , f

(n)

τ−

)
(ξ) (Ln(τ)− Ln(τ−)) ,

we get

f
(n)

τ (ξ)− f (n)
τ (ξ) ≥ 0.

4.2 Proof of Theorem 3

Write

ut(ξ) =

ξ∫
0

ft(η)dη, ut(ξ) =

ξ∫
0

f t(η)dη.
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If the pair ft, f t is the solution to (2.7), (2.8), then the pair ut, ut is the solution to the
following problem:

dut(ξ) =

(
∂

∂ξ
ut(ξ) + J (aut(ξ))

)
dt+ aut(ξ)dL(t),

dut(ξ) =

(
∂

∂ξ
ut(ξ) + J

(
λut(ξ) + λut(ξ)

))
dt+

(
λut(ξ) + λut(ξ)

)
dL(t).

Inequality ut ≥ ut will imply the inequality between prices of bonds

P (t, θ) ≤ P (t, θ), 0 ≤ t ≤ θ.

As in the proof of Theorem 2 the following conditions for ut ≥ ut should hold:

λ+ λ = a, λ ≤ m−1, (4.3)

which imply also the stronger inequality

f 0 ≥ f0 =⇒ f t ≥ ft.
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