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1 Introduction

The theorem on equivalence of measures corresponding to the real valued Lévy
processes can be found e.g. in Gihman, Skorohod (1966) or in a recent mono-
graph Sato (1999). Besides its theoretical value it finds applications for example
in detection theory (see e.g. Kailath, Poor (1998)) or mathematical finance (see
e.g. Cont, Tankov (2004)). Our goal is to give a counterpart of this theorem in
a Hilbert space setup. To the authors’ knowlegde the proof of the result is not
documented in the literature.

The proof basically follows Sato (1999) (see the proofs of Theorems 33.1 and
33.2). To show the necessary conditions one uses Lévy–Itô decomposition and
deals with the gaussian and the jump part separately. As opposed to the Sato
(1999) we used Feldman–Hajek theorem and the law of large numbers, similarly
as in Gihman, Skorohod (1966). The latter allowed us to avoid the explicit
use of the Hellinger integral (which in turn appears in the proof of Feldman–
Hajek theorem). The proof of the sufficent conditions benefits from the theory
of integration with respect to Poisson random measures.

2 Preliminaries

We assume that H is a separable Hilbert space with scalar product 〈·, ·〉. For
any x ∈ H we write |x| =

√
〈x, x〉. Consider D = D([0, T ], H) = {f : [0, T ] →

0This work was partially supported by the EC FP6 Marie Curie ToK programme: SPADE2
and the Polish MNiI SPB-M, at IMPAN.
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H : f is cádág} together with a measure µ defined on σ–field FD of Borel cylin-
der sets. We define an H–valued process X = {X(t) : t ≥ 0} with cádlág sample
paths as a cannonical process on D, i.e. X(t)(ω) = ω(t) for all ω ∈ D.

The H–valued cádlág process X is called a Lévy process if

(i) given 0 < t0 < . . . < tn <∞, the H–valued random vairables

X(t1)−X(t0), . . . , X(tn)−X(tn−1)

are independent;

(ii) given 0 < s < t <∞, Xt −Xs is equal in distribution to Xt−s;

(iii) X is stochastically continuous, i.e.

lim
s→t

µ(|X(t)−X(s)| > ε) = 0, ∀ε > 0;

(iv) µ(X0 = 0) = 1.

The above conditions readly depend on the measure µ, so to emphasize this
we will also write that {X,µ} is a Lévy process. From the definition one can
deduce that the characteristic function of X(t) is given by the formula

Eei〈x,Xt〉 = e−tψ(x),

for some function ψ. The Lévy-Khinchine formula gives the formula for ψ, that
is

ψ(x) = −i〈γ, x〉+ 1
2
〈Ax, x〉 −

∫
H

(ei〈x,y〉 − 1− i〈x, y〉1|y|≤1(y))ν(dy), ∀x ∈ H,

where γ ∈ H, A is nonnegative and trace class operator1 and ν is measure on H
satisfying ν({0}) = 0 and

∫
H

(1 ∧ |y|2)ν(dy) < ∞. The tuple (A, ν, γ) is called
the generating triplet of X. Moreover, Lévy–Itô decomosition yelds that one
can decompose the sample paths of X into the continuous part, Xc, and pure
jump part, Xd, in the following way:

X(t) = Xc(t) +Xd(t),

where

Xc(t) = X(t)−
∫ t

0

∫
|x|<1

x(π(ds, dx)− dtν(dx))−
∫ t

0

∫
|x|≥1

xπ(ds, dx),

Xd(t) = X(t)−Xc(t).

Additionally Xc is a Brownian motion (with drift γ and covariance operator A)
independet of Xd.

Finally we define the Poisson random measure corresponding to X as

π([0, t],Γ) = #{s ≤ t : ∆X(s) ∈ Γ}, Γ ∈ B(H).

The measure π̂(ds, dx) = π(ds, dx)−dsν(dx) is called the compensated Poisson
random measure.

1A linear, bounded operator Λ: H → H is called a trace class if there exist {ak}, {bk} ⊂ H,P
k |ak||bk| <∞ such that Λu =

P
k bk〈u, ak〉, see Da Prato, Zabczyk (1992).
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3 The main theorem

In the following we consider two measures µ1 and µ2 defined on the space
(D,FD). If {X,µi} is a Levy process with generating triplet (Ai, νi, γi), i = 1, 2,
then we define the corresponding compensated Poisson random measure

π̂i(ds, dx) = π(ds, dx)− dsνi(dx).

Theorem 1. Let {X,µ1} and {X,µ2} be two H–valued Levy processes with
generating triplets (A1, ν1, γ1) and (A2, ν2, γ2) respectively. Then µ1 ∼ µ2 if
and only if the following conditions hold

(i) A1 = A2 =: A;

(ii) ν1 ∼ ν2 and the function ρ defined by dν2
dν1

(x) = eρ(x) satisfies∫
H

(eρ(x)/2 − 1)2ν1(dx) <∞;

(iii) The integral
∫
|x|<1

x(dν2−dν1)(x) is well defined and γ2−γ1−
∫
|x|<1

x(dν2−
dν1)(x) ∈ A1/2(H).

Let Xc
1 denote the continous part of X with respect to µ1, that is

Xc
1(t) = X(t)−

∫ t

0

∫
|x|<1

xπ̂1(ds, dx) +
∫ t

0

∫
|x|≥1

xπ(ds, dx).

Then, provided that (i)− (iii) hold, we get

dµ2

dµ1

∣∣∣∣
Ft

(X(·)) = exp

{
〈b,Xc

1(t)〉 − t

2
|A1/2b|2 − t〈γ1, b〉

+
∫ t

0

∫
H

ρ(x)[π(ds, dx)− 1(−1,1)(ρ(x))dsν1(dx)]

−
∫ t

0

∫
H

[eρ(x) − 1− ρ(x)1(−1,1)(ρ(x))]dsν1(dx)

}
,

for any b ∈ H such that γ2 − γ1 −
∫
|x|<1

x(dν2 − dν1) = A1/2b.

Remark 1. The essential difference between arbitrary separable Hilbert space
and H = Rd is that one has to consider the image of A1/2 and not A (see
condition (iii)). Of course when H = Rd then A(H) = A1/2(H).

Proof. It can be proven (see Sato (1999), page 220) that assumption∫
H

(eρ(x)/2 − 1)2ν1(dx) <∞

is equivalent to the following three conditions∫
|ρ(x)|<1

ρ2(x)ν1(dx) <∞, (S1)
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∫
ρ(x)≥1

eρ(x)ν1(dx) <∞, (S2)∫
ρ(x)≤−1

ν1(dx) <∞. (S3)

Necessity. Step 1. Suppose ν1 = ν2 ≡ 0. First we prove (i). For any
h ∈ H the process Yh(t) = 〈Xt, h〉 is a real–valued brownian motion with drift
and Yh(t) has a normal distribution N(t〈γi, h〉, t〈Aih, h〉) under µi, i = 1, 2.
Absolute continuity of µ1 and µ2 implies that 〈A1h, h〉 = 〈A2h, h〉 (see e.g
Sato (1999), page 229). Since h and A1, A2 are covariance operators we have
A1 = A2. Furthermore, the condition (iii) follows directly from the Feldman-
Hayek theorem (see Appendix, Theorem 2). Indeed, the measures µi(X(1) ∈ ·),
i = 1, 2, are equivalent and gaussian N(γi, Ai).

Step 2. Let π be a Poisson random measure corresponding to X. Then

µ1(π([0, t],Γ) = 0) = e−tν1(Γ),

µ2(π([0, t],Γ) = 0) = e−tν2(Γ).

By absolute continuity of µ1 and µ2 we get that ν1(Γ) = 0 implies ν2(Γ) = 0
and vice versa, so ν1 ∼ ν2. As a result there exists function ρ defined by
dν2
dν1

(x) = eρ(x). Similarly, ν1(Γ) <∞ if and only if ν2(Γ) <∞.
To prove the integrability condition (ii) observe that∫

H

(eρ(x)/2−1)2ν1(dx) ≤
∫
|ρ(x)|<ε

(eρ(x)/2−1)2ν1(dx)+
∫
|ρ(x)|≥ε

(eρ(x) +1)ν1(dx)

=
∫
|ρ(x)|<ε

(eρ(x)/2 − 1)2ν1(dx) + ν2(|ρ(x)| ≥ ε) + ν1(|ρ(x)| ≥ ε),

for ε > 0. It is therefore sufficient to show that the terms on the right hand side
are finite.

Suppose that ν2( : ρ(x) ≥ ε) =∞. Let Bn ⊂ [0, T ]× {ρ(x) ≥ ε} be disjoint
sets such that

⋃∞
k=1Bk = [0, T ]× {ρ(x) ≥ ε} and∫∫

Bn

dsν2(dx) = 1.

The family {Bn} can be constructed, as the measure dt ⊗ v(dx) does not
have any atoms. Because π is a Poisson random measure π(B1), π(B2), . . .
are i.i.d. Poisson random variables with intensity 1 under µ2. By Remark 2,
n−1

∑n
k=1 π(Bk) → 1 w.r.t. µ2 as n → ∞. From absolute continuity it follows

that n−1
∑n
k=1 π(Bk)→ 1 w.r.t. µ1 as n→∞. Since π(B1), π(B2), . . . are inde-

pendent Poisson random variables with intensity measure dt⊗dν1 = e−ρdt⊗dν2

we get Eµ1π(Bk) =
∫∫
Bk
dtν1(dx) ≤ e−ε. Therefore from Remark 2 it follows

that

n−1

(
n∑
k=1

π(Bk)−
n∑
k=1

Eµ1π(Bk)

)
→µ1 0.

This is a contradiction, because the left hand side is greater then n−1
∑n
k=1 π(Bk)−

e−ε, which tends to 1 − e−ε w.r.t. µ1 as n → ∞. Thus νi(ρ(x) ≥ ε) < ∞ for
i = 1, 2. Interchanging ν2 with ν1, µ2 with µ1 and ρ with −ρ we get the same
result with −ρ instead of ρ. As a consequence νi(|ρ(x)| ≥ ε) <∞, for i = 1, 2.
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Suppose now that ∫
0<ρ(x)<ε

(eρ(x)/2 − 1)2ν1(dx) =∞.

Let Bn ⊂ [0, T ]× {0 < ρ(x) < ε} be disjoint sets such that
⋃∞
k=1Bk = [0, T ]×

{0 < ρ(x) < ε} and ∫∫
Bn

(eρ(x)/2 − 1)2dsν1(dx) = 1. (1)

From (1) we know that the following random variables are well defined

Zk =
∫∫

Bk

(eρ(x)/2 − 1)π̂1(dt, dx). (2)

By Theorem 3 we get

Eµ1Zk = 0, D2
µ1
Zk =

∫∫
Bk

(eρ(x)/2 − 1)2dtν1(dx) = 1.

As the sets {Bk} are disjoint the random variables Z1, Z2, . . . are independent.
Moreover, since

Eµ2Zk =
∫∫

Bk

(eρ(x)/2−1)dt(ν2−ν1)(dx) =
∫∫

Bk

(eρ(x)/2−1)2(eρ(x)/2+1)dtν1(dx)

it follows that 1 ≤ Eµ2Zk ≤ 1 + eε/2. Additionally

D2
µ2
Zk =

∫∫
Bn

(eρ(x)/2 − 1)2dtν2(dx) =
∫∫

Bk

(eρ(x)/2 − 1)2eρ(x)dtν1(dx) ≤ eε.

From Remark 2 we get n−1
∑n
k=1 Zk → 0 w.r.t. µ1 as n → ∞. By absolute

continuity of measures µ1, µ2 we get n−1
∑n
k=1 Zk → 0 w.r.t. µ2 as n → ∞.

Moreover, it follows from Remark 2 that

n−1

(
n∑
k=1

Zk −
n∑
k=1

Eµ2Zk

)
→µ2 0.

But this is impossible since the left hand side is smaller then n−1
∑n
k=1 Zk − 1

which tends to −1 w.r.t. µ2 as n → ∞. Interchanging ν1 with ν2, µ1 with µ2

and ρ with −ρ we get the same result with −ρ instead of ρ. Thus∫
|ρ(x)|<ε

(eρ(x)/2 − 1)2ν1(dx) <∞.

Step 3. By Step 2 the condition (ii) is satisfied. To show that
∫
|x|<1

x(ν2−
ν1)(dx) =

∫
|x|<1

x(eρ(x) − 1)ν1(dx) is well defined we follow Sato (1999):∫
|x|<1

|x||eρ(x)−1|ν1(dx) ≤
∫
|x|<1,|ρ(x)|<1

|x||eρ(x)−1|ν1(dx)+
∫
|ρ(x)|≥1

|eρ(x)−1|ν1(dx)
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≤

(∫
|x|<1

|x|2ν1(dx)

)1/2(∫
|ρ(x)|<1

|eρ(x) − 1|2ν1(dx)

)1/2

+
∫
|ρ(x)|≥1

|eρ(x) − 1|ν1(dx) <∞,

where we have used the Hölder’s inequality. The first integral in the last ex-
pression is finite from the definition of Lévy measure ν1. The finiteness of the
second term follows from the inequality (S1) and the basic fact that for any
a ∈ R, |a| < 1, |ea − 1| < e|a|. The finiteness of the last term follows from (S2)
and (S3).

By Lévy–Itô decomposition it follows that

Xc
1(t) = X(t)−

∫ t

0

∫
|x|<1

xπ̂1(ds, dx)−
∫ t

0

∫
|x|≥1

xπ(ds, dx)

−
∫ t

0

∫
|x|<1

xds(ν2 − ν1)(x) +
∫ t

0

∫
|x|<1

xds(ν2 − ν1)(dx)

= X(t)−
∫ t

0

∫
|x|<1

xπ̂2(ds, dx)−
∫ t

0

∫
|x|≥1

xπ(ds, dx)−
∫ t

0

∫
|x|<1

xds(ν2−ν1)(dx).

The last equality can be justified by the approximation argument. Consequently

Xc
1(t) = Xc

2(t)−
∫ t

0

∫
|x|<1

xds(ν2 − ν1)(dx)

meaning that, under the measure µ2, Xc
1 is a Brownian motion with drift

γ2 −
∫
|x|<1

x(ν2 − ν1)(dx) and covariance matrix A2. Finally, because measures
induced on D by (Xc

1 , µ1) and (Xc
1 , µ2) are equivalent, the whole statement

follows from the Step 1 and Step 2.
Sufficiency. Define

U(t) = 〈b,Xc
1(t)〉 − t

2
|A1/2b|2 − t〈γ1, b〉 (3)

+
∫ t

0

∫
|ρ|<1

ρ(x)π̂1(ds, dx) +
∫ t

0

∫
|ρ|≥1

ρ(x)π(ds, dx)

−
∫ t

0

∫
H

[eρ(x) − 1− ρ(x)1(−1,1)(ρ(x))]dsν1(dx).

Step 1. We will show that the integrals in (3) are well defined and that the
process eU(t) defines a change of measure. The conditions (S1) − (S3) imply
that ∫ t

0

∫
H

|eρ(x) − 1− ρ(x)1(−1,1)(ρ(x))|dsν1(dx) <∞.

Thus by Theorem 3

Eµ1 exp

{∫ t

0

∫
|ρ(x)|≥1

ρ(x)π(ds, dx)

}
= exp

{∫ t

0

∫
|ρ(x)|≥1

(
eρ(x) − 1

)
dsν1(dx)

}
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and

Eµ1 exp

{∫ t

0

∫
|ρ(x)|<1

ρ(x)π̂1(ds, dx)

}
= exp

{∫ t

0

∫
|ρ(x)|<1

(
eρ(x) − 1− ρ(x)

)
dsν1(dx)

}
.

This proves that the required integrals are well defined. Moreover, by Theorem
3, all term in (3) are independent and we get

Eµ1e
U(t) = 1.

Step 2. We will show that for every u ∈ R the following equality holds

Eµ1e
i〈z,X(t)〉+iuU(t) = exp

{
it〈γ1, z〉 −

itu

2
|A1/2b|2 − t

2
〈A(z + ub), (z + ub)〉 (4)

−iu
∫ t

0

∫
H

(eρ(x) − 1− ρ(x)1[−1,1](ρ(x)))dsν1(dx)

+
∫ t

0

∫
H

(ei〈x,z〉+iuρ(x) − 1− i〈x, z〉1{|x|<1}(x)− iuρ(x)1(−1,1)(ρ(x)))dsν1(dx)
}
.

Indeed, from Lévy–Itô decomposition and the linearity of the integral we get

Eµ1e
i〈z,X(t)〉+iuU(t) = Eµ1 exp

{
i〈Xc

1(t), z + ub〉 − iut

2
|A1/2b|2 − iut〈γ1, b〉

+i
∫ t

0

∫
|x|<1

〈x, z〉π̂1(ds, dx) + i

∫ t

0

∫
|x|≥1

〈x, z〉π(ds, dx)

+iu
∫ t

0

∫
|ρ(x)|<1

ρ(x)π̂1(ds, dx) + iu

∫ t

0

∫
|ρ(x)|≥1

ρ(x)π(ds, dx)

−iu
∫ t

0

∫
H

[eρ(x) − 1− ρ(x)1(−1,1)(ρ(x))]dsν1(dx)

}

= exp

{
it〈γ1, z〉 −

iut

2
〈Ab, b〉 − t2

2
〈A(z + ub), (z + ub)〉

}

× exp

{
− iu

∫ t

0

∫
H

[eρ(x) − 1− ρ(x)1(−1,1)(ρ(x))]dsν1(dx)

}

×Eµ1 exp

{
i

∫ t

0

∫
|x|<1

〈x, z〉π̂1(ds, dx) + i

∫ t

0

∫
|x|≥1

〈x, z〉π(ds, dx)

+iu
∫ t

0

∫
|ρ(x)|<1

ρ(x)π̂1(ds, dx) + iu

∫ t

0

∫
|ρ(x)|≥1

ρ(x)π(ds, dx)

}
= I1I2I3.

Define the following disjoint sets

B00 = [0, t]× {|x| < 1, |ρ(x)| < 1}, B01 = [0, t]× {|x| < 1, |ρ(x)| ≥ 1},

B10 = [0, t]× {|x| ≥ 1, |ρ(x)| < 1}, B11 = [0, t]× {|x| ≥ 1, |ρ(x)| ≥ 1}.
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Then

I3 = Eµ1 exp

{
i

∫∫
B00

(〈x, z〉+uρ(x))π̂1(ds, dx)+i
∫∫

B11

(〈x, z〉+uρ(x))π(ds, dx)

+i
∫∫

B01

〈x, z〉π̂1(ds, dx) + i

∫∫
B01

uρ(x)π(ds, dx)

+i
∫∫

B10

uρ(x)π̂1(ds, dx) + i

∫∫
B10

〈x, z〉π(ds, dx)

}
Since ν1(|x| ≥ 1) <∞ and ν1(|ρ| ≥ 1) <∞ (see (S2)− (S3)) we have∫

B10

|ρ(x)|ν1(dx) ≤ ν1(|x| ≥ 1) <∞,

∫
B01

|〈x, z〉|ν1(dx) ≤ |z|
∫
B01

|x|ν1(dx) ≤ |z|ν1(|ρ| ≥ 1) <∞,

and the integrals
∫∫
B01
〈x, z〉π(ds, dx),

∫∫
B10
〈x, z〉π(ds, dx),

∫∫
B01

ρ(x)π(ds, dx),∫∫
B10

ρ(x)π(ds, dx) are µ1–well defined. Thus we can write

I3 = Eµ1 exp

{
i

∫∫
B00

(〈x, z〉+uρ(x))π̂1(ds, dx)+i
∫∫

B11

(〈x, z〉+uρ(x))π(ds, dx)

+i
∫∫

B01

(〈x, z〉+ uρ(x))π(ds, dx)− i
∫∫

B01

〈x, z〉dsν1(dx)

+i
∫∫

B10

(〈x, z〉+ uρ(x))π(ds, dx)− i
∫∫

B10

uρ(x)dsν1(dx)

}
Because the sets B00, B10, B01, B11 are disjoint it follows from the Theorem 3
that

I3 = exp

{∫∫
B00

(ei(〈x,z〉+uρ(x)) − 1− i(〈x, z〉+ uρ(x)))dsv1(dx)

}

× exp

{∫∫
B11

(ei(〈x,z〉+uρ(x)) − 1)dsv1(dx)

}

× exp

{∫∫
B01

(ei(〈x,z〉+uρ(x)) − 1)dsν1(dx)− i
∫∫

B01

〈x, z〉dsv1(dx)

}

× exp

{∫∫
B10

(ei(〈x,z〉+uρ(x)) − 1)dsν1(dx)− i
∫∫

B10

uρ(x)dsv1(dx)

}
.

Thus the identity (4) holds.
Step 4. Let fz(c) and hz(c) denote the left hand side and the right hand

side of the equation (4), respectively, with fixed z and c instead of u. Denote
F = {c ∈ C : Imc ∈ [−1, 0]}. Then fz is continuous on F . This follows from
the dominated convergence and the estimate

|ei〈z,X(t)〉+icU(t)| = e−ImcU(t) ≤ (1 + Imc)eU(t) − Imc ≤ eU(t) + 1,
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where the first inequality follows from convexity of the function t → et. It is
also analytic in intF since it is the limit of analytic functions

Eµ1(ei〈z,X(t)〉+icU(t)
1{|U(t)|<n}).

Similar arguments show that h is also continuous on F and analytic on intF .
As a result they can be analytically extended to F̂ = {c ∈ C : Imc ∈ [−1, 1]}.
Moreover, by Step 3, fz(c) = hz(c) for all c such that Imc = 0. Since the set
{c ∈ C : Imc = 0} has a accumulation point belonging to intF̂ the functions fz
and hz coincide on F̂ .

Step 5. By Step 4 we get

hz(−i) = exp

{
it〈γ2, z〉−

t

2
〈A2z, z〉+t

∫
H

(ei〈x,z〉−1−i〈x, z〉1{|x|<1}(x))v2(dx)
}
.

Define the measure µ̃2(A) = Eµ1(eUt1A), for A ∈ Ft. Then

Eeµ2e
i〈z,X(t)〉 = hz(−i). (5)

Observe that the process (X,U) is a Levy process under µ1, as a sum of in-
dependent Levy processes (corresponding to the continuous and discontinuous
part). Thus by (5) it follows that under µ̃2, the process X is a Levy process
with generating triplet (A2, γ2, ν2). Therefore, µ̃2 and µ2 must coincide and as
a result µ2 ∼ µ1.

4 Appendix

For the convinience of the reader we recall some well known facts.

Theorem 2 (Feldman-Hajek, see Da Prato, Zabczyk (1992), Theorem ). Let
µ, ν be two measures on separable Hilbert space. Then the following statements
hold

(i) Suppose that µ = N(m1, Q1), ν = N(m2, Q2). Then µ and ν are either
singular or equivalent.

(ii) µ and ν are equivalent if and only if the following conditions hold:

(a) Q
1/2
1 (H) = Q

1/2
2 (H) =: H0

(b) m1 −m2 ∈ H0;

(c) Q
−1/2
1 Q2Q

−1/2
1 − I is a Hilbert-Schmidt operator2 defined on H0.

Let π be the Poisson random measure with intensity measure dsν(dx). The
following theorem summarizes properties of the integrals with respect to Pois-
son random measures and can be found in many texts, like Kingman (1993),
Applebaum (2004), Peszat, Zabczyk (2007), to name a few.

Theorem 3. Let f : H → R+ such that
∫
H
|f(x)|ν(dx) <∞. Then

2We say that a linear, bounded operator Λ: H → H is a Hilbert-Schmidt operator if there
exists in H an orthonormal and complete basis (ek) such that

P∞
k,j=1 |〈Λej , ek〉|2 < ∞, see

Da Prato, Zabczyk (1992).
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(i)
∫ t

0

∫
H
f(x)π(ds, dx) is well defined.

(ii) E exp
{
c
∫ t

0

∫
H
f(x)π(ds, dx)

}
= exp

{∫ t
0

∫
H

(ecf(x) − 1)dsν(dx)
}

for all
c ∈ C such that the right hand side converges.

(iii) E|
∫ t

0

∫
H
f(x)π(ds, dx)| <∞ and E

∫ t
0

∫
H
f(x)π̂(ds, dx) = 0.

(iv) Assume additionally that
∫
H
|f(x)|2ν(dx) <∞. Then

E|
∫ t

0

∫
H

f(x)π̂(ds, dx)|2 =
∫ t

0

∫
H

|f(x)|2dsν(x).

(v) Let f1, . . . , fn satisfy the same conditions as f and A1, . . . , An be the dis-
joint subsets of [0, T ]×H. Then

∫
A1
f1(x)π(ds, dx), . . . ,

∫
An

fn(x)π(ds, dx)
are independent.

Remark 2 (Law of Large Numbers). Let X1, . . . , Xn be a sequence of real
random variables on a certain probability space (Ω,F ,P). Suppose that

lim
n→∞

n−2D2(
n∑
k=1

Xk) = 0.

Then Chebyshev’s inequality implies that

n−1

(
n∑
k=1

Xk − E
n∑
k=1

Xk

)
→n→∞ 0 w.r.t. P.
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