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Abstract

We establish a small branching fluctuation limit theorem for a class of catalytic

superprocesses with immigration. The limit process, under some additional condi-

tions, can be represented as an L2-valued Ornstein-Uhlenbeck process. This note

aims to extend results of [2] to larger class of superprocesses.
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1 Introduction

In [2] the authors consider a small branching fluctuation limits of a catalytic super-

process with immigration. Their assumption that the “particle motion process” is

absorbing barrier Brownian motion (ABM), seems to be restrictive. In the note we

extend their results to a broader class of superprocesses, assuming that the “motion

process” can be any symmetric α-stable Lévy process. In the case of α ∈ (0, 1]

additional, technical assumptions were needed in the definition of the catalyst. It

is not quite clear if they can be relaxed. The assumptions we put on the branching

mechanism and immigration are not restrictive. More details and formal definition

of the superprocesses is in Section 2.

A sequence of such superprocesses converges to a deterministic process X when the

branching is being suppressed (what is more the limit process is constant if X0 = λ,

where λ is the Lebesgue measure i.e. the invariant measure of α-stable motion). In

order to make the presentation more comprehensive we explain this convergence in

an intuitive (though not quite formal) way. Recall, that a superprocess arises as

a limit of branching particle systems by increasing the initial number of particles

(and changing other parameters of the systems appropriately). Let us consider now

one of this branching systems. It converges to a system consisting of independent
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particles moving according to the α-stable Lévy motion when the branching is being

suppressed. In turn such a system gives rise to the deterministic superprocesses X.

We want to study the properties of the convergence to X in terms of a central limit

theorem. The studies of this kind of convergence, called also small branching fluc-

tuations, were initiated in [6]. Typically the limit process is an Ornstein-Uhlenbeck.

In our case under additional assumptions the limit process was proved to be an

L2-valued Ornstein-Uhlenbeck process with Lévy noise. This form can be explained

intuitively by competition of two antagonistic forces - particles motion vs. branch-

ing (see also Remark 3.1).

The note is organised as follows. In Section 2 we describe the branching particle

system formally. In Section 3 we give results. Next, in Section 4 we present results.

Finally, at the end of the note we pose some open questions and propose possible

extensions.

In the proofs we basically follow the lines of proofs in [2] resolving some technical

issues arising in our more general case.

Notation

M(Rd) - space of finite Borel measures on R
d endowed with the topology of weak

convergence,

B+(Rd) - bounded positive Borel functions,

〈ν, f〉 , ν(f) -
∫

f(x)ν(dx),

λ - the Lebesgue measure,

⇒fdd - weak finite-dimensional convergence

S ′(Rd) - space of tempered distribution (dual to the space of Schwartz functions)

2 Catalytic superprocess with immigration

In this section we describe the “ingredients” of the class of superprocesses we study.

Let us note that the class is quite broad in fact only assumptions imposed on the

motion are really restrictive. In each paragraph we comment on the assumptions

but the reader is also encouraged to read the questions at the end of note to see

possible extensions.

Motion The “motion” of the superprocess will be given by a symmetric α-stable

Lévy motion, α ∈ (0, 2], denoted by (ϑt)t. This is the major extensions compared

to [2] and [6]. On the one hand this give a large class of superprocesses on the other

the α-stable Lévy motion has still good properties which allow analytical treatment.

What is more this allows other assumptions to be quite general and yields a result,

which seems to be elegant.

We denote the semigroup and the transition density of a symmetric α-stable Lévy

motion by (Pt)t≥0 and (pt)t≥0 respectively. Moreover we denote its Riesz kernel by
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R. It is well known that

R(x) = Γ

(

d− α

2

)(

2απ
d

2 Γ

(

d

α

))−1

|x|α−d,

and slightly abusing notation by R we denote also Riesz potential

Rµ(x) =

∫

Rd

R(x− y)µ(dy).

We have

Rµ(x) =

∫ +∞

0
P ∗

s µ(x)ds.

Branching law Consider a function

Φ(x, z) = c(x)z2 +

∫ +∞

0

(

e−zu − 1 + zu
)

m(x,du), (1)

where c is a bounded, positive measurable function and m is a measure such that

u2m(x,du) is a bounded kernel (ie. x →
∫

u2m(x,du)) is bounded. This function

corresponds to the generating function of branching law of “underlying” branching

particle system. This form is very general covering almost any possible branching

law. Note also that it admits the dependence on the space.

Catalysis First papers concerning catalysis appeared in early nineties (e.g. [1]).

Intuitively it models interaction of the particles of the system with a catalyst par-

ticles which can be concentrated on a “small set”. Mathematically a concentration

of the catalyst is described by a measure which affects a branching intensity.

The branching intensity is determined by a positive additive functional L. It is well

known fact that the functionals are in one-to-one (Revuz) correspondence with mea-

sures (under some technical assumptions). Denote by η the measure corresponding

to L. Roughly speaking η defines how the branching intensity varies in space. The

most interesting case is when there are points (or set of 0 Lebesgue measure) with

positive mass

We consider two classes

• when α ∈ (0, 1] and d = 1 or α ∈ (0, 2) and d > 1. By [5] we know that η have

to fulfil

sup
x
Rη(x) < +∞.

Admissibility We also assume that Rη(x) is continuous and η can be decom-

posed η = η1 such that Rη1(x) converges to 0 as x → +∞ and Rη2(x) is

periodic.

• when α ∈ (1, 2] η and d = 1 L can be represented by

Lt = 〈η, lt〉 ,

where (lt)t≥0 denotes a local time of ϑ and measure η fulfilling

Admissibility We assume that

η([x, x+ l]) ≤ cl,∀x,

for positive constants c, l.

3



The second case is particularly illustrative, by putting η = δx we make the branching

be possible only when a particle is in x which corresponds to a particle of catalyst

in this point.

Aside for the admissibility conditions, the assumptions imposed in this section are

very mild. They are just assumptions required to existence of an additive functional

L. The assumptions of admissibility is not very restrictive but can be potentially

weakened, this issue will be addressed in Section 4 too. Now we can define a catalytic

superprocess

Proposition 2.1. There exists a measure-valued (ie. M(Rd)) process Markov pro-

cess (Xt)t≥0 with the Laplace functional

Eµe
−〈Xt,ϕ〉 = exp {−µ(Vtϕ)} , ϕ ∈ B+(Rd),

where Vt is a non-linear semigroup satisfying equation

Vtϕ(x) = Ptϕ(x) −

∫ s

0

∫

Rd

Φ(y, Vs(y))pt−s(x− y)η(dy)ds ϕ ∈ B+(Rd). (2)

We will refer to this as a (P, η,Φ)−superprocess.

Immigration Now let γ be a purely excessive measure for Pt (ie. P ∗
t γ < γ).

Hence there exist an (unique) entrance law (κt)t>0 (ie. P ∗
s κt = κs+t) such that

∫ +∞

0
κtdt = γ. (3)

Later we assume also that the κt has density kt in respect to Lebesgue measure.

The assumption of the excessiveness is natural it just says that the entrance law is

consistent with the motion process ϑ. The assumption of the continuity of κ with

respect to the Lebesgue measure is technical and is likely to be removed in future.

Consider now a (P, η,Φ)-superprocess. It is known (see e.g. [8]) that κ can be lifted

to a entrance law K for superprocess which is defined by the Laplace functional

∫

M(Rd)
e−〈ν,f〉Kt(dν) = exp {−St(κ, f)} , f ∈ B+(Rd),

where

S(κ, f) = κt(f) −

∫ t

0

∫

Rd
Φ(y, Vsf(y))κt−s(y)η(dy). (4)

Now we are ready to define a catalytic superprocess with immigration

Proposition 2.2. There exists a measure-valued (ie. M(Rd)) process Markov pro-

cess (Xt)t≥0 with the Laplace functional

Eµe
−〈Xt,ϕ〉 = exp

{

−µ(Vtϕ) −

∫ t

0
Sr(κ, f)dr

}

, ϕ ∈ B+(Rd).

This process will be referred to it as a (P,L,Φ, κ)-immigration superprocess.
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3 Results

Small branching fluctuations

Define

Φθ(x, z) = Φ(x, θz), θ > 0. (5)

Roughly speaking this corresponds to changing intensity and size of branching.

Let γ be excessive measure for P . Let (bθ)θ be a sequence Borel functions on R
d

such that bθ > cθ > 0, cθ ∈ R and bθ → 0 uniformly. Define semigroup P θ by

P θf(x) = Exf(ϑt) exp

{

−

∫ t

0
bθ(ϑs)ds

}

.

It is easy to check that γ is purely excessive with respect to each P θ hence by

(3) we have an entrance law κθ. Finally by (Xθ
t )t≥0 we denote the (P θ, L,Φθ, κ

θ)-

immigration superprocess, with Xθ
0 = γ.

Note that in the case when γ is purely excessive for Pt there is no need to define

P θ and one can simply consider (P,L,Φθ, κ) superprocess. This case has obvious

intuitive meaning since it corresponds to suppressing the branching. It can be

checked that

Xθ → X, as θ → 0, (6)

where X is a deterministic process Xt = γ. We want to determine the speed of this

convergence in terms of a central limit theorem. In order to do this we define the

fluctuations process

Y θ =
1

θ

(

Xθ − γ
)

. (7)

The main result of the paper identifies the limit of Y θ

Theorem 3.1. Let Y θ be the fluctuation process (7). Under assumptions from

Section 2 the following convergence holds

Y θ ⇒fdd Y, as θ → 0, (8)

where Y is a S ′(Rd)-valued Markov process with semigroup Rt such that

∫

S′(Rd)
e−ν(f)Rt(µ, ν) = exp

{

−µ(Ptf) +

∫ t

0
η(Φ(Psf))ds

}

, f ∈ S(Rd)+. (9)

and ⇒fdd is in a sense of the topology of S ′(Rd).

What is more, under additional assumptions the limit process Y has a regular

realisation.

Theorem 3.2. Assume d = 1, α > 1.

Suppose that c in (1) is bounded and η defining catalysis is finite. Let W be a

white random noise on [0,+∞) × R
d with covariance 2c(x)dsη(dx) and N be a

compensated Poisson random field on [0,+∞)×R
0 ×R

d with the intensity measure

dsm(x,du)η(dx). Moreover, assume that W,N are independent. Then the process

Zt(y) :=

∫ t

0

∫

Rd

pt−s(y−x)W (ds,dx)+

∫ t

0

∫

R0

∫

Rd

upt−s(y−x)N(ds,du,dx), (10)
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is well-defined in the L2(Ω×R
d,P×λ) sense. What is more it is an L2(Rd, λ)-valued

Markov process in with semigroup
∫

L2(Rd,λ)
eiν(f)Rt(µ, ν) = exp

{

iµ(Ptf) +

∫ t

0
η(Φ(iPsf))ds

}

, f ∈ L2(Rd, λ).

(11)

Remark 3.1. Informally, the process (Zt)t≥0 fulfils an equation

Zt = ∆αZt + dLt, (12)

where ∆α is the infinitesimal operator of a symmetric Lévy α-stable motion and

dL = dW + dN is an L2-valued random noise. Hence Z can be regarded as an

L2-valued Ornstein-Uhlenbeck process.

We can interpret Z in terms of the limiting superprocesses (recall Theorem 3.1).

Process Z can be viewed as a result of the struggle of two antagonistic forces. One is

the motion, which “attracts” Z towards the invariant measure (∆α is its infinitesimal

semigroup of α-stable motion). The other is branching, which contributes random

Lévy noise dL and “repels” Z from the invariant measure.

Remark 3.2. Assumptions α > 1 and d = 1 are sharp in a sense that without them

the integral (10) is not well defined.

4 Proofs

The proofs of Proposition 2.1 and Proposition 2.2 are technical. They include

checking that the objects in Section 2 are well defined. The existence of the additive

functional defining the catalysis follows from the theorems in [5]. The main tool used

in the proof of Proposition 2.1 is [4, Theorem 4.1]. Its application requires checking

number of technical conditions imposed on the “ingredients” of a superprocess. In

Section 2 we imposed admissibility conditions on measure η, using them one can

check that the additive functional L is admissible in a sense of the definition in

Section 3.3 of [4]. Although these conditions can potentially be weakened there is

not much hope of obtaining “necessary” conditions in more elegant form. Other

conditions of [4, Theorem 4.1] are rather straightforward and we skip them. The

existence of the process announced in Proposition 2.2 follows from discussion in [8]

and “lifting techniques” presented in [3].

Convergence Now we concentrate on the proof of Theorem 3.1. Simple calculations

using equations (4), (3) yield

∫ t

0
Sr(κ, f)dr = γ(f − Vtf) −

∫ t

0
η(Φ(Vsf))ds.

Y θ defined by (7) are signed-measure-values processes but from now on we will treat

them as S ′(Rd)-valued. Consider Y 1, t is easy to check that it is a Markov process

with transition semigroup (T 1
t )t≥0 given by the Laplace functional

∫

S′(Rd)
eν(f)T 1

t (µ,dν) = exp

{

−µ(Vt) +

∫ t

0
Φ(y, Vsf(y))η(dy)ds

}

, f ∈ S(Rd)+.
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Similarly, it is easy to check that each Y θ is a Markov process too. Its semigroup

(T θ)t>0 is given by the Laplace functional (recall also (5))

∫

S′(Rd)
eν(f)T θ

t (µ,dν) = exp

{

−µ(θV θ
t ) +

∫ t

0
Φ(y, θV θ

s f(y))η(dy)ds

}

, f ∈ S(Rd)+,

(13)

where (V θ
t )t≥0 is defined by (recall also (2))

V θ
t ϕ(x) = Ptϕ(x) −

∫ s

0

∫

Rd

Φθ(y, V θ
s (y))pt−s(x− y)η(dy)ds, ϕ ∈ B+(Rd).

Fix 0 = t0 < t1 < t2 < . . . < tn, and fi ∈ S(Rd)+. Now using Markov prop-

erty and (13) and we can calculate the Laplace functional of the finite-dimensional

distributions (Y θ
t1 , Y

θ
t2 , . . . , Y

θ
tn), namely

Eexp

{

−
n

∑

k=1

〈

Y θ
tk
, fk

〉

}

= exp

{

n
∑

k=1

∫ tk−tk−1

0
Ψ(y, θV θ

s (hθ
k/θ)(y)η(dy)ds

}

,

where hθ
j are defined inductively

hθ
k := fk + θVtk+1−tk(hθ

k+1/θ), k ∈ {1, . . . , n− 1} , (14)

hθ
n := fn.

A simple lemma (see [2, Lemma 4.1]) holds

Lemma 4.1. If fθ → f ∈ B(Rd)+ boundly as θ → 0 then

θV θ
t (fθ/θ) → Ptf, boundly as θ → 0. (15)

By this lemma one can easily prove that hθ
j → hj as θ → 0, where hj are defined

as follows

hk := Ptk+1−tkhk+1, k ∈ {1, . . . , n − 1} ,

hn := fn.

Finally, we can write

lim
θ→0

Eexp

{

−
n

∑

k=1

〈

Y θ
tk
, fk

〉

}

= exp

{

n
∑

k=1

∫ tk−tk−1

0
Ψ(y, Pshk(y))η(dy)ds

}

This, following the lines of reasoning in [7], proves convergence announced in the

Theorem 3.1.

Representation Now we proceed to the proof of Theorem 3.2, recall definitions

of the random objects there. By properties of the integration with respect to a

Gaussian random fields we have
∫

R

E

(
∫ t

0

∫

R

pt−s(y − x)W (ds,dx)

)2

dy =

∫

R

∫ t

0

∫

R

p2
t−s(y − x)dsη(dx)dy =

Applying Fubini’s theorem and inequality ‖ps‖
2
2 ≤ ct−1/α (see eg. [9, (3.29)] ) one

gets
∫

R

∫ t

0
‖ps‖

2
2dsη(dx) ≤

∫ t

0
s−1/αds

∫

Rd

c(x)η(dx) < +∞
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Analogously by properties of the integration with respect to a (compensated) Pois-

son random field we have

∫

R

E

(
∫ t

0

∫

R0

∫

Rd

upt−s(y − x)N(ds,du,dx)

)2

dy =

∫

R

∫ t

0

∫

R0

∫

Rd

u2p2
t−s(y−x)m(x,du)η(dx)dy =

∫

R

∫ t

0

∫

R0

u2‖ps‖
2
2m(x,du)η(dx) ≤

Using inequality ‖ps‖
2
2 ≤ ct−1/α again, we get

∫ s

0
s−1/αds

∫

R

∫

R0

u2m(x,du)η(dx) < +∞

This taking into account the independence of N and W proves that Zt lays in

L2(Ω × R
d,P × λ). It is easy to check that (11) defines a semigroup on bounded

functions on L2(Rd, λ) hence it generates a Markov family (Ttg + Yt)T≥0. The last

step of the theorem is to show that the finite-dimensional distributions of (Yt)t≥0 and

(Zt)t≥0 are equal. As an example we will prove that this in case of two dimensional-

distributions. Let t1 < t2 taking into account the fact thatN andW are independent

one can write

E exp {−i (〈Zt1 , f1〉 + 〈Zt2 , f2〉)} = A(f1, f2)B(f1, f2)

where

A(f1, f2) = E exp

{

−i

(
∫ t1

0

∫

Rd

Tt1−sf1(x)W (ds,dx) +

∫ t2

0

∫

Rd

Tt2−sf1(x)W (ds,dx)

)}

and

B(f1, f2) = E exp

{

−i

(
∫ t1

0

∫

R0

∫

Rd

uTt1−sf(x)N(ds,du,dx) +

+

∫ t2

0

∫

R0

∫

Rd

uTt2−sf(x)N(ds,du,dx)

)}

Direct calculations yield

A(f1, f2) = E exp

{

−i

(
∫ t1

0

∫

Rd

Tt1−s (f1 + Tt2−t1f2) (x)W (ds,dx) +

∫ t2

t1

∫

Rd

Tt2−sf1(x)W (ds,dx)

)}

The integrals on disjoint intervals are independent hence

A(f1, f2) = E exp

{

−i

(
∫ t1

0

∫

Rd

Tt1−s (f1 + Tt2−t1f2) (x)W (ds,dx)

)}

E exp

{

−i

(
∫ t2

t1

∫

Rd

Tt2−sf1(x)W (ds,dx)

)}

=
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By the theory of integration with respect to a Gaussian random field we get

A(f1, f2) = exp

{

−

∫ t1

0

∫

Rd

[Tt1−s (f1 + Tt2−t1f2)]2 (x)c(x)η(dx)

}

exp

{

−

∫ t2

t1

∫

Rd

[Tt2−sf2]2 (x)c(x)η(dx)

}

Hence

A(f1, f2) = exp

{

−

∫ t1

0

∫

Rd

[Tt1−sf1]2 (x)c(x)η(dx)

}

exp

{

−

∫ t2

0

∫

Rd

[Tt2−sf2]2 (x)c(x)η(dx)

}

B(f1, f2) can be treated analogously, we get

B(f1, f2) =

exp

{

−

∫ t1

0

∫

Rd

∫

Rd

[exp(iuTt1−sf1(x) − 1 − iuTt1−sf1(x))c(x)η(dx)m(x,du)]

}

exp

{

−

∫ t2

0

∫

Rd

∫

Rd

[exp(iuTt2−sf2(x) − 1 − iuTt2−sf2(x))c(x)η(dx)m(x,du)]

}

Finally

E exp {−i (〈Zt1 , f1〉 + 〈Zt2 , f2〉)} =

exp

{
∫ t1

0

∫

Rd

φ(Tt1−sf1(x))dxds+

∫ t2

0

∫

Rd

φ(Tt2−sf2(x))dxds

}

where φ(x, z) = Φ(x, iz),recall (1), namely ψ(x, z) = −c(x)z2+
∫ +∞
0

(

e−izu − 1 + zu
)

m(x,du).

Now it is enough to check that this the Markov process generated by (Rt)t≥0 (re-

call (11)) has the same two-dimensional distributions. The same argument can be

applied in order to check that n-dimensional distributions coincide.

5 Further questions

The problem exhibited in the paper still may be the field of further studies. The

assumptions imposed on the system can be relaxed in various ways, as described in

Section 2. Further in Theorem 3.1 the question of convergence in a functional space

(e.g. Skorohod space D([0, 1],S ′(Rd))) arises. Remark 3.2 explains why condition

α > 1, d = 1 is sharp but it is possible to extend the representation of Theorem 3.2

to a space larger than L2.
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