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NONLINEAR SEPARABLE EQUATIONS

IN LINEAR SPACES AND COMMUTATIVE LEIBNIZ ALGEBRAS

D. Przeworska-Rolewicz (Warszawa)

Introduction.

The purpose of the present paper is to find solutions of some nonlinear equations
in linear spaces and commutative algebras by a ”separation of variables” obtained by
means of the methods of Algebraic Analysis (cf. the author PR[1] and following papers).

Recall that the classical variables separation theorem for ordinary differential equa-
tions with separate variables can be stated as follows:

Theorem 0.1. (cf. Triebel Tr[1]) Suppose that −∞ < a < b < +∞, −∞ < c <
d < +∞, f1 ∈ C1[a, b], f2 ∈ C1[c, d], f2(y) 6= 0 for y ∈ [c, d], x0 ∈ [a, b], y0 ∈ [c, d].
Then a unique solution of the equation

(0.1) y′ = f1(x)f2(y)

with the initial condition

(0.2) y(x0) = y0

can be calculated from the equation

(0.3) F (x, y) = 0, where F (x, y) = F2(y)− F1(x),

F2(y) =
∫ y

y0

dv

f2(v)
, F1(x) =

∫ x

x0

f1(u)du.

A basic example for this theorem is the following

Example 0.1. Consider in C[a, 1], 0 < a < 1, the separable equation

(0.4)
dy
dx

=
y

x
i.e.

dy
y

=
dx
x
.

2000 Mathematics Subject Classification: 47 J 25, 47 A 05, 34 A 05
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Here we have: f1(x) = 1
x , f2(y) = y for x, y ∈ C1[a, 1]. This implies ln y = lnx+ ln c =

ln(cx), where O < c ∈ R is arbitrary. Then y = cx.

If we require Condition (0.2) to be satisfied for x0, y0 ∈ [a, 1] then we get y0 = cx0.
If it is the case, then c = x0

y0
. So that F1(y) = ln y− ln y0 = ln y

y0
, F1(x) = lnx− lnx0 =

ln x
x0

and F (x, y) = ln y
y0
− ln x

x0
. �

It is shown that the structures of linear spaces and commutative algebras (even
if they are Leibniz algebras, i.e. such algebras that the product satisfies the Leibniz
condition) are not rich enough for our purposes. Therefore, in order to generalize the
method used for separable differential equations (cf. Theorem 0.1 and Example 0.1),
we have to admit that in Leibniz algebras under consideration there exist logarithms
(cf. PR[3] and following papers).

Section 1 contains some basic notions and results (without poofs) of Algebraic
Analysis. In Section 2 there are considered equations in linear spaces. Section 3 con-
tains results for commutative Leibniz algebras. In Section 4 basic notions and facts
(without proofs) about logarithmic and antilogarithmic mappings are collected. Sec-
tion 5 is devoted to separable nonlinear equations in commutative Leibniz algebras with
logarithms.

Separable ordinary and partial nonlinear differential equations haves been consid-
ered by several mathematicians, from L. Euler (cf. E[1]) to (for instance) J. S. Ritt
(cf. R[1], also R[2]), where the main tool was the implicit function theorem.

1. Basic notions of Algebraic Analysis

We recall here the following notions and theorems (without proofs; cf. PR[1], PR[2],
PR[3], PR[4]).

Denote by N, N0, R, C, Z, Q the fields of positive integers, nonnegative integers,
reals, complexes, integers and rational numbers, respectively, and by F any field of
scalars. If F is a field of numbers then by F[t] is denoted the set of all polynomials in t
with coefficients in F.

Let X be a linear space (in general, without any topology) over a field F of scalars
of the characteristic zero.

• L(X) is the set of all linear operators with domains and ranges in X;
• dom A is the domain of an A ∈ L(X);
• kerA = {x ∈ dom A : Ax = 0} is the kernel of an A ∈ L(X);
• L0(X) = {A ∈ L(X) : dom A = X};
• I(X) is the set of all invertible elements in X;
• In(X) = {x ∈ X : ∃y∈X yn = x} (n ∈ N); if x ∈ In(X) and x = yn then

y = x1/n is said to be an nth root of x.

An operator D ∈ L(X) is said to be right invertible if there is an operator R ∈
L0(X) such that RX ⊂ dom D and DR = I, where I denotes the identity operator.
The operator R is called a right inverse of D. By R(X) we denote the set of all right
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invertible operators in L(X). Let D ∈ R(X). Let RD ⊂ L0(X) be the set of all right
inverses for D, i.e. DR = I whenever R ∈ RD. We have dom D = RX ⊕ kerD,
independently of the choice of an R ∈ RD. Elements of kerD are said to be constants,
since by definition, Dz = 0 if and only if z ∈ kerD. The kernel of D is said to be the
space of constants. We should point out that, in general, constants are different than
scalars, since they are elements of the space X. If two right inverses commute each with
another, then they are equal.

An element y ∈ dom D is said to be a primitive for an x ∈ X if y = Rx for an
R ∈ RD. Indeed, by definition, x = DRx = Dy. Again, by definition, all x ∈ X have
primitives. Let

FD = {F ∈ L0(X) : F 2 = F ;FX = kerD and ∃R∈RD
FR = 0}.

Any F ∈ FD is said to be an initial operator for D corresponding to R. One can prove
that any projection F ′ onto kerD is an initial operator for D corresponding to a right
inverse R′ = R− F ′R independently of the choice of an R ∈ RD.

If two initial operators commute each with another, then they are equal. Thus this
theory is essentially noncommutative. An operator F is initial for D if and only if
there is an R ∈ RD such that

(1.1) F = I −RD on dom D.

Even more. Write RD = {Rγ}γ∈Γ. Then, by (1.1), we conclude that RD induces in a
unique way the family FD = {Fγ}γ∈Γ of the corresponding initial operators defined by
means of the equality Fγ = I − RγD on dom D (γ ∈ Γ). Formula (1.1) yields (by a
two-lines induction) the Taylor Formula:

(1.2) I =
n∑
k=0

RnFDn +RnDn on dom Dn (n ∈ N).

It is enough to know one right inverse in order to determine all right inverses and
all initial operators. Note that a superposition of a finite number of right invertible
operators is again a right invertible operator.

The equation Dx = y (y ∈ X) has the general solution x = Ry+z, where R ∈ RD
is arbitrarily fixed and z ∈ kerD is arbitrary. However, if we put an initial condition:
Fx = x0, where F ∈ FD and x0 ∈ kerD, then this equation has a unique solution
x = Rx+ x0.

If T ∈ L(X) belongs to the set Λ(X) of all left invertible operators, then kerT =
{0}. If D is invertible, i.e. D ∈ I(X) = R(X)∩Λ(X), then FD = {0} andRD = {D−1}.

If P (t) ∈ F[t] then all solutions of the equation

(1.3) P (D)x = y, y ∈ X,
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can be obtained by a decomposition of the rational function 1/P (t) into vulgar fractions.
One can distinguish subspaces of X with the property that all solutions of Equation
(1.3) belong to a subspace Y whenever y ∈ Y (cf. von Trotha vT[1], PR[2]).

If X is an algebra over F with a D ∈ L(X) such that x, y ∈ dom D implies
xy, yx ∈ dom D, then we shall write D ∈ A(X). The set of all commutative algebras
belonging to A(X) will be denoted by A(X). Let D ∈ A(X) and

(1.4) fD(x, y) = D(xy)− cD[xDy + (Dx)y] for x, y ∈ dom D,

where cD is a scalar dependent on D only. Clearly, fD is a bilinear (i.e. linear in each
variable) form which is symmetric when X is commutative, i.e. when D ∈ A(X). This
form is called a non-Leibniz component (cf. PR[1]). If D ∈ A(X) then the product rule
in X can be written as follows:

D(xy) = cD[xDy + (Dx)y] + fD(x, y) for x, y ∈ dom D.

If D ∈ A(X) and if D satisfies the Leibniz condition:

(1.5) D(xy) = xDy + (Dx)y for x, y ∈ dom D,

then X is said to be a Leibniz algebra. It means that in Leibniz algebras cD = 1 and
fD = 0. The Leibniz condition implies that xy ∈ dom D whenever x, y ∈ dom D. If X
is a Leibniz algebra with unit e then e ∈ kerD, i.e. D is not left invertible.

Non-Leibniz components for powers of D ∈ A(X) are determined by recurrence
formulae (cf. PR[1], PR[3]).

Suppose that D ∈ A(X) and λ 6= 0 is an arbitrarily fixed scalar. Then λD ∈ A(X)
and cλD = cD, fλD = λfD.

If D1, D2 ∈ A(X), the superposition D = D1D2 exists and D1D2 ∈ A(X), then

(1.6) cD1D2 = cD1cD2 and for x, y ∈ dom D = dom D1 ∩D2

fD1D2(x, y) = fD1(x, y) +D1fD2(x, y) + +cD1cD2 [(D1x)D2y + (D2x)D1y].

For higher powers of D in Leibniz algebras, by an easy induction from Formulae
(1.6) and the Leibniz condition, we obtain the Leibniz formula:

(1.7) Dn(xy) =
n∑
k=0

(
n

k

)
(Dkx)Dn−ky for x, y ∈ dom Dn (n ∈ N).

2. Equations in linear spaces.

We begin with a theorem which may look on the first point of view rather artificial.
However, it plays some role in our subsequent considerations.
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Theorem 2.1. (cf. PR[1]) Suppose that X is a linear space over a field F of scalars
(with the characteristic zero) D ∈ R(X), dim ker D 6= 0 and F is an initial operator for
D corresponding to an R ∈ RD. Let {Hx}x∈X be a family of mappings of the space X
into itself (in general, nonlinear) with respect to x. Then

(i) Every solution x ∈ dom D of the equation

(2.1) Dx = Hxy, where y ∈ X is given,

is a solution of the equation

(2.2) x−RHxy = z, where z ∈ ker D is arbitrary.

Conversely,

(ii) if a solution x of Equation (2.2) belongs to dom D then it is a solution of
Equation (2.1).

(iii) If x is a solution of Equation (2.1) with the initial condition

(2.3) Fx = x0, where x0 ∈ ker D is given,

then it is a solution of the equation

(2.4) x−RHxy = x0.

Proof. If an x ∈ dom D satisfies Equation (2.1) then, by our assumptions,

0 = Dx−Hxy = Dx−DRHx = D(x−RHxy),

which implies (2.2). Conversely, if an x ∈ dom D satisfies (2.2) then

0 = Dz = D(x−RHx) = Dx−DRHxy = Dx−Hxy,

i.e. x satisfies (2.1).
(iii) By (i), an x ∈ dom D satisfies the initial value problem for Equation (2.1) with

Condition (2.3) if it satisfies Equation (2.2) with Condition (2.3). Since, by definitions,
FR = 0 and Fz = z whenever z ∈ ker D, we find

z = Fz = F (x−RHxy) = Fx− FRHxy = x0,

i.e. x satisfies Equation (2.4). �

Example 2.1. Let F = R, X = C[0, 1], D = d
dt , R =

∫ t
0
, (Fx)(t) ≡ c, (c ∈ R), for

t ∈ [0, 1], x ∈ X. Then an ordinary differential equation with separable variables

(2.5) x′(t) = ax(t), where Hx = a, a ∈ F is given,
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is equivalent to a Volterra integral equation

(2.6) x(t)−
∫ t

0

ax(s)ds = c, where c ∈ R is an arbitrary constant.

It is well-known that this equation has a unique solution for an arbitrarily fixed c ∈
R. On the other hand, X = C[0, 1] is an algebra with the respect to the pointwise
multiplication of functions as a structure operation. Therefore, any solution x 6= 0 of
(2.5) satisfies the equation

(2.7)
x′(t)
x(t)

= a, i.e.
d
dt

lnx(t) = a,

which implies

lnx(t) = a

∫ t

0

ds+ ln c = ln exp(a
∫ t

0

ds) + ln c = ln[c exp(a
∫ t

0

ds)] = ln eat,

where c ∈ R \ {0} is arbitrary. Finally, we conclude that

x(t) = ceat, where c ∈ R \ {0}.

(cf. also Triebel Tr[1] and Example 0.1). Note that for the operator D = d
dt there is a

much richer family of initial operators than that given here (determined by the values
of functions at the given points (cf. PR[1], PR[3]). �

Example 2.2. (cf. PR[1]) Suppose that D ∈ R(X), dim ker D 6= 0, R0,...,RM+N−1

∈ RD,

(2.8) Q(D) =
N−1∑
k=0

QkD
k, where Q0, ..., QN−1 ∈ L0(X),

(2.9) Qo =
N−1∑
k=1

Q0RM+k...RM+N−1

and the operator I + Qo is invertible. Let {Hx}x∈X be defined as in Theorem 2.1, i.e.
it is a family of nonlinear mappings of X into itself depending on x ∈ X. Then we have

D1 = Q(D)DM ∈ R(X), R1 = R0...RM+N−1(I +Qo)−1 ∈ RD,

ker D1 = {z = (I −R1D1)x : x ∈ dom D} =

= {z = R0...RM+N−1(I +Qo)−1
(N−1∑
m=0

Qm

N−1∑
k=m+1

Rm...Rk−1zm+k + zM+m

)
+
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+
N−1∑
k=0

R0...Rk−1zk : z0, ..., zM+N−1 ∈ ker D}.

We therefore conclude that any x ∈ dom Q(D)DM satisfies the equation

(2.10) Q(D)DMx = Hxy, where y ∈ X (M ≥ 0)

if and only if x satisfies the equation

(2.11) x−R0...RM+N−1(I +Qo)−1Hxy = z, z ∈ ker Q(D)DM .

This is a generalization of Theorem 2.1 for operators of order greater than 1, �

Example 2.3. (cf. PR[1]) Let all assumptions of Example 2.2 be satisfied and let
R0, ..., RN−1 = R. Then every solution x of Equation (2.10) belongs to dom Q(D)DM

and satisfies the equation

(2.12) x−RN+M [Q(I,R)]−1Hxy = z,

(2.13) where z = RN+M [Q(I,R)]−1
(N−1∑
m=0

N−1∑
k=m

Rk−mzk
)
+

+
M+n−1∑
k=0

Rkzk ∈ ker DM+N whenever z0, ..., zM+N−1 ∈ ker D,

(2.14) Q(t, s) =
N∑
k=0

Qkt
k
N−k, Q(I,R) = I +Qo

is invertible. Conversely, every solution of Equation (2.12) belonging to dom Q(D)DM

satisfies Equation (2.10). A similar result can be obtained for the operator QMQ(D).
�

Example 2.4. Let X be a linear space (over F). Let D ∈ R(X) and let R ∈ RD.
Suppose that a ∈ kerD, b ∈ F \ {0}, y ∈ X and the mapping f of X into itself (not
necessarily linear) are given. By definitions, Da = 0, D(bx) = bDx whenever x ∈ X.
Consider the equation

(2.15) Dx = f(a+ bx)y.

Observe that here we have a particular case of Equation (2.1), where we put Hx =
f(a+ bx) for x ∈ X. Write: u = a+ bx. Then Du = D(a+ bx) = bDx and Dx = b−1u.
Then Equation (2.15) may be rewritten as b−1Du = f(u)y, i.e.

(2.16) Du = bf(u)y.
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Since bRx = R(bx) whenever b ∈ ker D, x ∈ X, we conclude that u ∈ dom D = dom X
is a solution of Equation (2.16) if and only if it is a solution of the equation

(2.17) u− bR[f(u)y] = z, where z ∈ ker D is arbitrary.

It means that x = b−1(u−a) is a solution of Equation (2.15) if and only if u is a solution
of Equation (2.17) belonging to dom D.

Let F be an initial operator for D corresponding to R. By definition, FR = 0
and Fz = z whenever z ∈ ker D. Then for a given x0 ∈ ker D and the initial value
condition

(2.18) Fx = x0

we find

z = Fz = F{u− bR[f(u)y]} = Fu− bFR[f(u)y] = F (a+ bx) = Fa+ bFx = a+ bx0,

i.e. Equation (2.17) with Condition (2.18) satisfies the equation

(2.19) u− bR[f(u)y] = x0.

Since u = a+ bx, Equation (2.19) can be rewritten as

(2.20) a+ bx− bR[f(a+ bx)y] = x0.

We therefore conclude that x ∈ dom D is a solution of the initial value problem (2,15),
(2.17): Dx = f(a+ bx)y, Fx = x0, if and only if x ∈ dom D is a solution of Equation
(2.20). �

Clearly, equations considered in Examples 2.2-2.4 are, in a sense, analogues (in
linear spaces) of the classical ordinary differential equations with separable variables.
However, in order to solve their resolving equations in a close form, we need some more
rich structures.

3. Equations in commutative Leibniz algebras.

Let a commutative algebra X (over a field F of scalars) with D ∈ R(X), e ∈ dom D
satisfy the Leibniz condition (1.5):

(3.1) D(xy) = xDy + yDx for x, y ∈ dom D.

Then X is a D-algebra, since xy ∈ dom D whenever x, y ∈ dom D. The set of all such
algebras will be denoted by L(D). Recall that e ∈ ker D (cf. Example 6.11 in PR[1]),
i.e. the unit e is a constant. Here and in the sequel we shall use the following properties
(cf. also PR[1]):
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Suppose that X ∈ L(D) and F is an initial operator for D corresponding to an
R ∈ RD. Write: g = Re ∗). Then we have Dg = DRe = e. So that, by an easy
induction, we obtain

(3.2) Dng = 0 (n ∈ N \ {1}), Dg = e.

Since e ∈ ker D, we have Fe = e. Since FR = 0, we find Fg = FRe = 0. If F is
multiplicative then (again by an easy induction):

(3.3) Fgn = (Fg)n = 0 (n ∈ N).

By Formula (3.3), we have

(3.4) Fp(g) = p(0) = p0e for p(t) ∈ F[t],

(3.5), Fw(g) = w(0) =
p0

p̃0
for w(t) ∈ Q[t], w =

p

p̃
, p̃0 6= 0, i.e. p̃(0) ∈ I(X).

where

(3.6) p(t) =
n∑
k=0

pkt
k, p̃(t) =

n∑
k=0

p̃kt
k ∈ F[t].

Indeed, p(0) = p0e and

Fp(g) = F
n∑
k=0

pkg
k =

N∑
k=0

Fgk =
n∑
k=0

pk(Fg)k = p0e = p(0),

i.e. p(0) is invertible if and only if p0 6= 0. Similarly, p̃(0) = p̃0e.

Proposition 3.1. Suppose that X ∈ L(D), F is a multiplicative initial operator
for D corresponding to an R ∈ RD and g = Re ∈ I(X). Then Fg−1 is not well-defined
(does not exists).

Proof. By (3.3) and (3.5), we have Fg−1 = (Fg)−1. However, Fg = 0. �

Example 3.1. Suppose that all conditions of Example 2.1 are satisfied. If we
consider X = C[0, 1] as an algebra (over R) with respect to the pointwise multiplication
of functions as the structure operation then X = L( d

dt ), since the Leibniz condition
holds:

(3.1) (xy)′ = xy′ + yx′ for x, y ∈ C1[0, 1], where

∗) Elements of the form g = Re, where R ∈ RD, play the role of an argument, since
in the case considered in Example 2.1 we have g(t) =

∫ t
0

1 ds = t for t ∈ [0, 1].
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Dx =
d
dt
x = x′, dom D = C1[0, 1].

Let (Fx)(t) = x(0) for x ∈ X. Then Fg−1 = (Fg)−1 does not exists. Clearly, also g−1

does not exists for g(0) = 0.

Note that the algebra X described above is not a unique Leibniz algebra known in
the classic Analysis. We mention here only two examples:

(a) Let X = C[Ω], where Ω = {(t, s) : a ≤ t ≤ b, c ≤ s ≤ d} with the pointwise
multiplication of functions as a structure operation. Let D1 = ∂

∂t , D2 = ∂
∂s . Then

X is a Leibniz D1-algebra and, simultaneously, a Leibniz D2-algebra, i.e. X ∈ L(Di)
(i = 1, 2 (cf. PR[1]).

(b) The space Xa = {x ∈ C[0, T ] : x(t) = 0 for 0 ≤ t ≤ a < T} (a ∈ R is
arbitrarily fixed) with the multiplication defined by convolution :

(x ∗ y)(t) =
∫ t

0

x(s)y(t− s)ds for x, y ∈ C[0, T ]

and with D defined by means of the equality (Dx)(t) = tx(t) for x ∈ Xa is a Leibniz
D-algebra, i.e. Xa = L(D) (without unit and with zero divisors) (cf. PR[1]). �

Example 3.2. Suppose that X ∈ L(D), R ∈ RD, g = Re ∈ I(X) and f is a
mapping of X into itself (in general, nonlinear). Consider the equation

(3.8) Dx = f(g−1x) (x ∈ dom D).

Write: x = gu. Then u = g−1 and, by the Leibniz condition, we have

f(u) = f(g−1x) = Dx = D(gu) = uDg + gDu = ue+ gDu = u+ gDu, i.e.

(3.9) Du = h(u), where h(u) = g−1[f(u)− u] (u ∈ dom D.

We therefore conclude that Equation (3.8) has a solution x ∈ dom D if and only if
Equation (3.9) (with separable variables) has a solution u ∈ dom D. If it is the case,
then solutions of (3.8) are of the form: x = gu.

In the classical case Equation (3.8) is the so-called homogeneous ordinary differen-
tial equation y′ = f( yx ) (cf. Tr[1], also Example 0.1).

Let F be a multiplicative initial operator corresponding to the given R ∈ RD.
Then FR = 0 and Fu = F (g−1x) = (Fg−1)Fx. Hence, by Proposition 3.1, Fu is not
well-defined. Then Fu 6∈ ker D, which implies that Fx = F (gu) = (Fg)(Fu) 6∈ ker D,
i.e. x 6∈ dom D.

Clearly, if R1 6= R, R1 ∈ RD then the corresponding initial operator F1 = (I −
R1D) 6= F and, by definitions, we have F1R = −FR1. So that, if F1 is multiplicative
and F1g = F1Re 6= 0 is invertible then the element F1g

−1 = (F1g)−1 is well-defined. �
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Example 3.3. Suppose that X, D, F , R satisfy all conditions of Example 3.2.
Let h be a mapping (in general, nonlinear) of X into itself. Then the equation

(3.10) Dx = h(x)y, where y ∈ X is given (x ∈ dom D)

with separable variables is equivalent to the equation

(3.11) x−R[h(x)y] = z, where z ∈ ker D is arbitrary.

The proof is similar to that given in Example 3.2 for Equations (3.8), (3.9). However,
in order to solve Equation (3.10), we may apply another way. Suppose now that h(x) ∈
I(dom D) whenever x ∈ dom D. Again we obtain a separable equation equivalent to
(3.10):

(3.12) [h(x)]−1Dx = y.

The element h1(x) = R{[h(x)]−1Dx} is a primitive for [h(x)]−1Dx, whenever x ∈
dom D. Indeed, Equation (3.12) implies that

Dh1(x) = DR{[h(x)]−1Dx} = [h(x)]−1Dx = DRy, i.e. D[h1(x)−Ry] = 0.

Hence we obtain the equation

(3.13) h1(x) = Ry + z, where z ∈ ker D is arbitrary.

If h1(x) is a one-to-one mapping then we conclude that

(3.14) x = h−1
1 (Ry + z), where z ∈ ker D is arbitrary.

�

Example 3.3 can be generalized as follows.

Proposition 3.2. Suppose that X ∈ L(D), F is a multiplicative initial operator
for D corresponding to an R ∈ RD and h is a mapping of X into itself (in general,
nonlinear) such that h(x) ∈ I(dom Dn) whenever x ∈ dom Dn (n ∈ N). Then the
equation

(3.15) Dnx = h(x)y, where y ∈ X is given (x ∈ dom Dn)

is equivalent to the equation

(3.16) x−Rn[h(x)y] = z, where z ∈ ker Dn is arbitrary.

Write:

(3.17) h1(x) = Rn{[h(x)]−1Dnx} for x ∈ dom Dn (n ∈ N).
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If h1 is a one-to-one mapping of X into itself then all solutions of Equation (3,16) are
of the form;

(3.18) x = h−1
1 (Rny + z), where

n−1∑
k=0

Rkzk ∈ ker Dn,

z0, ..., zn−1 ∈ ker D are arbitrary,

Proof. Similarly, as before, Equation (3.15) may be rewritten as

y = [h(x)]−1Dnx = DnRn[h(x)]−1 = Dnh−1
1 (x),

which implies Equation (3.16). �

Corollary 3.1. Suppose that all assumptions of Proposition 3.1 are satisfied,
g = Re and y = gm (where ∈ N is fixed. Then the equation

(3.19) Dnx = h(x)gm (m,n ∈ N)

has all solutions of the form:

(3.20) x = h−1
1 (

gn+m

(n+ 1)...(n+m)
+ z), where z =

n−1∑
k=0

Rkzk ∈ ker Dn,

z0, ..., zn−1 ∈ ker D are arbitrary.

Proof. By Proposition (3.1), Equation (3.19) has all solutions of the form (3.18)
with y = gm. Recall that constants are non zero divisors, because X is a Leibniz algebra.
Since F is multiplicative, we have

(3.21) Rke =
(Re)k

k!
=
gk

k!
(k ∈ N)

(cf. von Trotha PRvT[1], PR[1]), Then for all m,n ∈ N we have

Rny = Rngn = Rn(Re)m = Rnm!Rme = m!Rn+me = m!
gn+m

(n+m)
=

=
gn+m

(n+ 1)...(n+m)
,

which yields Formula (3.21). �

Equations of the form (3.20) will be solved in Section 5 in another way.

Proposition 3.2. Suppose that X ∈ L(D), R ∈ RD and a ∈ X. Then
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(i) x ∈ dom D is a solution of the equation

(3.22) Dx = ax+ y, y ∈ X is given,

if and only if x ∈ dom D satisfies the equation

(3.23) x−R(ax) = Ry + z, where z ∈ ker D is arbitrary.

(ii) If F is an initial operator for D corresponding to R and we have an initial value
condition

(3.24) Fx = x0, x0 ∈ ker D is given,

then a solution of the initial value problem (3.23),(3.24) (if it exists) satisfies the equation

(3.25) x−R(ax) = Ry + x0.

(iii) If the operator I − Ra is invertible then Equation (3.23) (hence also (3.22))
has all solutions of the form:

(3.25) x = (I −Ra)−1(Ry + z) where z ⊂ ker D is arbitrary

and the initial value problem (3.22),(3,24) has a unique solution

x = (I −Ra)−1(Ry = x0)

(cf. PR[1], PR[3]).

Proof. If x satisfies (3.22) thenDRy = y = Dx−ax=Dx−DR(ax) =D[x−R(ax)],
i.e. D[x−R(ax)−y] = 0, which implies (3.23). Conversely, if x satisfies Equation (3.23)
then y = D(Ry + z) = D[x − R(ax0] = Dx − DR(ax) = Dx − ax. If I − Ra is an
invertible mapping then (3.23) immediately implies (3.26). If F is an initial operator
for D corresponding to R then, by (3.25), we have z = Fz = F [x − R(ax) − Ry] =
Fx− FR(ax)− FRy = Fx = x0 (cf. Propositions 5.2, 5.3 and Corollary 5.1). �

Example 3.4. Suppose that X ∈ L(D) and R ∈ RD. Recall that

(3.28) Dxn = nxn−1Dx, whenever n ∈ N, x ∈ dom D

(cf. PR[1]). This formula holds also for negative integers, i.e. we have

(3.29) Dx−n = −nx−n−1Dx, whenever n ∈ N, x ∈ dom D ∩ I(X)

Indeed, Dx−1 = x−2Dx. Then for n ≥ 2 we have

Dx−1 = (Dx−1)n = D(x−1)n = n(x−1)n−1Dx−1 = −nx−n+1x−2Dx = −nx−n−1Dx.

13



Consider the equation

(3.30) Dx = axm, where a ∈ X, m ∈ N.

By (3.29), this equation can be rewritten as follows:

Dx−(m+1) = −(m+ 1)x−mDx = −(m+ 1)x−maxm = −(m+ 1)a,

which implies that

(3.31) x−(m+1) = R[−(m+1)a]+z = z− (m+1)Ra, where z ∈ ker D is arbitrary.

Suppose now that there is a z ∈ ker D such that the element z−(m+1)Ra is invertible.
Then xm+1 = [z − (m+ 1)Ra]−1. If [z − (m+ 1)Ra]−1 ∈ Im+1(X) then

x = {[z − (m+ 1)Ra]−1}1/(m+1) = [z − (m+ 1)Ra]−1/(m+1).

Similarly, in order to solve the equation

(3.32) Dx = ax−m (m ∈ N)

we have to rewrite (3.31) as follows:

Dxm+1 = (m+ 1)xmDx = (m+ 1)xmax−m = (m+ 1)a,

which implies xm+1 = (m + 1)Ra + z, where z ∈ ker D is arbitrary. If there is a
z ∈ ker D such that (m+ 1)Ra+ z ∈ Im+1(X) then

(3.33) x = [z + (m+ 1)Ra]1/(m+1).

To summarize, we conclude that the equations ∗)

(3.34) Dx = ax∓m (m ∈ N)

have solutions of the form:

(3.35) x = [z ± (m+ 1)Ra]±1/(m+1),

respectively, if there are z ∈ ker D such that elements of the form (3.34) exist (cf. also
Example 5.3). �

∗) To be short, we write here and in the sequel ±n (n ∈ N) for two different equations,
i.e. either for n ∈ N or for −n ∈ N, and so on. This means that, as a matter of fact, we
consider two types of equations (cf. also Section 5).

14



4. Algebras with logarithms.

We start with

Definition 4.1. Suppose that D ∈ A(X). Let a multifunction Ω : dom D −→
2dom D be defined as follows:

(4.1) Ωu = {x ∈ dom D : Du = uDx} for u ∈ dom D.

The equation

(4.2) Du = uDx for (u, x) ∈ graph Ω

is said to be the basic equation. Clearly,

Ω−1x = {u ∈ dom D : Du = uDx} for x ∈ dom D.

The multifunction Ω is well-defined and dom Ω ⊃ kerD \ {0}.

Suppose that (u, x) ∈ graph Ω, L is a selector of Ω and E is a selector of Ω−1.
By definitions, Lu ∈ dom Ω−1, Ex ∈ dom Ω and the following equations are satisfied:
Du = uDLu, DEx = (Ex)Dx.

Any invertible selector L of Ω is said to be a logarithmic mapping and its inverse
E = L−1 is said to be a antilogarithmic mapping. By G[Ω] we denote the set of all pairs
(L,E), where L is an invertible selector of Ω and E = L−1. For any (u, x) ∈ dom Ω
and (L,E) ∈ G[Ω] elements Lu, Ex are said to be logarithm of u and antilogarithm of
x, respectively. The multifunction Ω is examined in PR[3]. The assumption that X is
a commutative algebra is admitted here for simplicity and the sake of brevity only. �

Clearly, by definition, for all (L,E) ∈ G[Ω], (u, x) ∈ graph Ω we have

(4.3) ELu = u, LEx = x; DEx = (Ex)Dx, Du = uDLu.

A logarithm of zero is not defined. If (L,E) ∈ G[Ω] then L(kerD \ {0}) ⊂ kerD,
E(kerD) ⊂ kerD. In particular, E(0) ∈ kerD.

If D ∈ R(X) then logarithms and antilogarithms are uniquely determined up to a
constant.

Let D ∈ A(X) and let (L,E) ∈ G[Ω]. A logarithmic mapping L is said to be of
the exponential type if L(uv) = Lu + Lv for u, v ∈ dom Ω. If L is of the exponential
type then E(x+y) = (Ex)(Ey) for x, y ∈ dom Ω−1. We have proved that a logarithmic
mapping L is of the exponential type if and only if X is a commutative Leibniz algebra
(cf. PR[3]). Moreover, Le = 0, i.e. E(0) = e. In Leibniz commutative algebras with
D ∈ R(X) a necessary and sufficient conditions for u ∈ dom Ω is that u ∈ I(X) (cf.
PR[3]).

15



By Lg(D) we denote the class of these commutative algebras with D ∈ R(X) and
with unit e ∈ dom Ω for which there exist invertible selectors of Ω, i.e. there exist
(L,E) ∈ G[Ω]. By L(D) we denote the class of these commutative Leibniz algebras
with unit e ∈ dom Ω for which there exist invertible selectors of Ω. By these definitions,
X ∈ Lg(D) is a Leibniz algebra if and only if X ∈ L(D) and D ∈ R(X). This class
we shall denote by L(D). It means that L(D) is the class of these commutative Leibniz
algebras with D ∈ R(X) and with unit e ∈ dom Ω for which there exist invertible
selectors of Ω, i.e. there exist (L,E) ∈ G[Ω].

If kerD = {0} then either X is not a Leibniz algebra or X has no unit. Thus, by
our definition, if X ∈ L(D) then kerD 6= {0}, i.e. the operator D is right invertible but
not invertible.

Theorem 4.1. Suppose that X ∈ L(D), F is an initial operator for D corre-
sponding to an R ∈ RD, (L,E) ∈ G[Ω] and A is an algebra isomorphism of X. Let
D′ = A−1DA and let Ω′ : dom D′ −→ 2dom D′

be defined as follows:

(4.4) Ω′u = {x ∈ dom D′ : D′u = uD′x} for u ∈ dom D′.

Then there are (L′, E′) ∈ G[Ω′] and L′ = A−1LA, E′ = A−1EA.

5. Equations in Leibniz algebras with logarithms.

We start with

Proposition 5.1. Suppose that X ∈ L(D), (L,E) ∈ G[Ω] and g = Re for an
R ∈ RD. Then g ∈ I(X) and

(5.1) DLg = g−1.

Proof. By definitions, g ∈ dom Ω−1. Since X is a Leibniz algebra, this implies that
g ∈ I(X). Moreover, g ∈ dom Ω ⊂ dom D. We therefore conclude that DLg = g−1Dg
= g−1DRe = g−1e = g−1, since the basic equation (4.1) is satisfied by g. �

Proposition 5.2. Suppose that all assumptions of Proposition 5.1 are satisfied
and Ra + z ∈ dom Ω−1 for an a ∈ X and arbitrary z ∈ ker D. Then all invertible
solutions of the equation

(5.2) Dx = ax

are of the form

(5.3) x = zERa, where z ∈ ker D is arbitrary.

If F is a multiplicative initial operator for D corresponding to R then the initial value
problem

(5.4) Dx = ax, Fx = x0, where x0 ∈ dom D is given,
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has a unique solution which is of the form:

(5.5) x = x0ERa.

Proof. By definition, if x is a solution of Equation (5.2) then x ∈ I(X) ∩ dom D.
Hence DLx = x−1Dx = a+DRa, i.e. D(Lx−Ra) = 0. This implies that Lx−Ra =
z′ ∈ ker D (z′ is arbitrary). Write: z = Ez′. Then we get x = ELx = E(Ra + z′) =
(Ez′)(ERa) = zERa, since the Leibniz condition holds. Now, we shall prove that

(5.6) EF = FE, LF = FL.

Indeed, by definitions, EL = LE = I. Write; A = FE. Then AL = FEL = F =
LEF = LA, which implies FE = A = ELA = EF . In order to prove the second
equality, write: B = FL. Then BE = FLE = F = ELF = EB and F = ELF = EB
= BE, which implies FL = BEL = B = LF .

If Fx = x0 ∈ ker D then F 2x = Fx0 = x0 and, by Formulae (5.6) and the
multiplicativity of F , we find x0 = Fx = F 2x = F (zRa) = (Fz)(FERa) = zEFRa =
zE(0) = ze = z, which implies Formula (5.5). �

An initial operator F ∈ FD is said to be almost averaging if

(5.7) F (zx) = zFx whenever x ∈ X, z ∈ ker D.

Clearly, every multiplicative initial operator F is almost averaging for F (zx) = (Fz)(Fx)
= zFx, but not conversely, even if dim ker D = 1 (cf. PR[1]).

Corollary 5.1. Proposition 5.2 holds for almost averaging F .

Indeed, for all z ∈ ker D, we have x0 = Fx = F (zERa) = zFERa = zEFRa =
zE(0) = ze = z, i.e. x is of the form (5.5). �

Proposition 5.3. Suppose that X ∈ L(D), (L,E) ∈ G[Ω], ±Ra ∈ dom Ω−1 for an
a ∈ X and F is an almost averaging initial operator for an R ∈ RD. Then the equation

(5.8) Dx = ax+ y, where y ∈ X is given,

has all solutions of form:

(5.9) x = (ERa)RE(−Ra) + zERa, where z ∈ ker D is arbitrary.

Proof. We are looking for solutions of Equation (5.8) which are of the form: x =
uv, where v = ERa and u is to be determined. By the Leibniz condition and our
assumptions, we have Dv = DERa = (ERa)DRa = aERa = av, i.e. v is a solution of
Equation (5.2). Then

y = Dx− ax = D(uv)− auv = uDv + vDu− auv = uvDu+ vDu− auv =
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= uva+ vDu− auv = vDu.

Since v = ERa ∈ I(X) and v−1 = (ERa)−1 = E(−Ra), we find Du = v−1y =
yE(−Ra), i.e.

(5.10) u = R[yER(−a)] + z, where z ∈ ker D is arbitrary.

Then
x = uv = (ERa){R[yE(−Ra)] + z} = (ERa)R[yE(−Ra)] + zERa,

i.e. x is of the form (5.9) (cf. also PR[3]). �

Corollary 5.2. Suppose that all assumptions of Proposition 5.3 are satisfied and
F is a multiplicative initial operator for D corresponding to R. Then an initial value
problem for Equation (5.8) with the initial condition

(5.11) Fx = x0, where x0 ∈ ker D is given,

has a unique solution

(5.12) x = (ERa)R[yE(−Ra)] + x0ERa.

Proof. By our assumptions and Formulae (5.6), (5.9), we find Fv = FERa =
EFRa = E(0) = e, and Fu = F{R[yE(−Ra)] + z} = FR[yE(−Ra)] + Fz = z. This
implies that x0 = Fx = F (uv) = (Fu)(Fv) = ez = z, which was to be proved. �

Note 5.1. We have seen that (according to Proposition 3.1), in order to solve
equations in question in a closed form, we had to assume that the operator I − Ra is
invertible and to calculate its inverse. In several cases this way could be much more
complicate than a use of logarithms and antilogarithms. Also it may appear a necessity
of some metric properties of the space and operators under consideration. �

Example 5.1. (Generalized Pearson equation). Suppose that all assumptions of
Proposition 5.3 are satisfied, g = Re and a = w(g), where w(t) ∈ Q[t]. Consider the
equation

(5.13) Dx = w(g)x.

By definitions, if x ∈ I(X) ∩ dom D is a solution of Equation (5.13) then DLx =
x−1Dx = w(g), i.e. Lx = Rw(g) + z′, where z′ ∈ ker D is arbitrary. Write: z = Ez′.
Then ∈ ker D and x = ELx = E[Rw(g) + z′] = (Ez′)ERw(g) = zERw(g) (cf. also
Example 3.4 for m = −1). Observe that again [Rw(g)](t) ∈ Q[t]. The equation

(5.14) Dx = w(g)x+ y, where y ∈ X is given,

has all solutions of the form

x = [ERw(g)]R{yE[−Rw(g)]}+ zERw(g), where 0 6= z ∈ ker D is arbitrary.
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Example 5.2. Suppose that all assumptions of Proposition 5.3 are satisfied, g =
Re ∈ I(X) and a = e. Then the equation

(5.15) Dx = g−1xLx

has all solutions belonging to dom Ω ∩ dom Ω−1 of the form:

(5.16) x = E(zERg−1), where z ∈ ker D is arbitrary.

Indeed, by our assumptions, whenever x ∈ dom Ω ∩ dom Ω−1, Equation (5.15) implies
DLx = x−1Dx = g−1x, i.e Lx = zERg−1, where z ∈ ker D is arbitrary (cf. Proposition
5.3). Then x = ELx = E(zERg−1) (cf. Example 5.10).

Suppose that F is an almost averaging initial operator for D corresponding to R.
By Formulae (5.6), for an arbitrary z ∈ ker D we have

Fx = FE(zERg−1) = EF (zERg−1) = E(zFERg−1) = E(zEFRg−1 =

= E[zE(0)] = E(ze) = Ez ∈ ker D

(cf. Corollary 5.1)). Observe that, by definition, a z ∈ ker D such that Ez = 0 does
not exists. Hence we have to admit that Fx 6= 0, i.e. x0 6= 0. We therefore conclude
that an initial condition Fx = x0 (where x0 ∈ ker D \ {0} is given) for Equation
(5.15) holds if and only if z = LEz = LFx = Lx0 ∈ ker D. If it is the case, then
the corresponding initial value problem has a unique solution x = E[(Lx0)ERg−1].
Observe that Lg = Rg−1. Hence Formula (5.15) can be rewritten in the following way:
x = E(zERg−1) = E(zELg) = E(zg), which implies that the unique solution of the
initial value problem under question is x = E(gLx0). �

Example 5.3. Suppose that all assumptions of Proposition 5.3 are satisfied and
a is a mapping of X into itself such that a(x) 6= e whenever x ∈ dom Ω. Consider the
equation

(5.17) Dx = a(x)xLx.

The case a(x) ≡ e has been considered in Example 5.2, Similarly, as in that exam-
ple, we obtain the equalities DLx = x−1Dx = a(x)Lx, which implies x = ELx =
E{R[a(x)Lx] + Lz′} = E{zR[a(x)Lx]}, where z = Lz′, z′ ∈ ker D is arbitrary. Then,
by Formulae (5.6), we find

Fx = FE{zR[a(x)Lx]} = EF{zR[a(x)Lx]} = E{zFR[a(x)]Lx} = E(0) = e.

We therefore conclude that a necessary condition for Equation (5.17) to have a solution
x is that Fx = e. �
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Theorem 5.1. Suppose that X ∈ L(D), (L,E) ∈ G[Ω], ±Ra ∈ dom Ω for an a ∈ X
and an R ∈ RD and F is an almost averaging initial operator for D corresponding to
R. For a given m ∈ N write

(5.18) v± = z ∓ (m+ 1)Ra,

whenever there exist z ∈ ker D such that

(5.19) v± ∈ Im+1(X) ∩ dom Ω.

If Condition (5.19) is satisfied then equations

(5.20) Dx = ax∓m

have solutions of the form:

(5.21) x± = (v±)1/(m+1) = E[∓ 1
m+ 1

Lv±],

respectively (cf. footnote in Example 3.4.)

Proof. Let m ∈ N. Consider the equation Dx = axm. By our assumptions, we
have Dx−(m+1) = −(m + 1)x−mDx = −(m + 1)x−maxm = −(m + 1)a, which implies
x−(m+1) = v+, where v+ is determined by Formula (5.18). This, and Condition (5.19)
together imply that x+ is a solution, we are looking for. A similar proof for −m ∈ N.

�

Corollary 5.4. Suppose that all assumptions of Theorem 5.1 and Condition (5.19)
are satisfied. Then an initial condition

(5.22) Fx = x0, where x0 ∈ ker D is given,

holds if and only if

x0 = E(∓ 1
m+ 1

Lz) = z∓1/(m+1), i.e. z = x
∓(m+1)
0 = E(∓ 1

m+ 1
Lx0).

Proof. By our assumptions, Formulae (5.6) and Theorem 5.1, we have

Fv± = F [z ± (m+ 1)Ra] = Fz ± (m+ 1)FRa = z,

x0 = Fx± = FE(∓ 1
m+ 1

Lv±) = EF (∓ 1
m+ 1

Lv±) =

= E(∓ 1
m+ 1

FLv±) = E(∓ 1
m+ 1

LFv±) = E(∓ 1
m+ 1

Lz) =

= ELz∓1/(m+) = z∓1/(m+1), i.e. x0 = ELx0 = E[∓(m+ 1)Lz] = z∓(m+1).
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Corollary 5.2. Suppose that all assumptions of Theorem 5.1 and Condition (5.19)
are satisfied. Then solutions of the equations

(5.23) Dy = ay(Ly)±m

are of the form:

(5.24) y± = Ex±, where x± are defined by Formulae (5.21).

Proof. Let m ∈ N. Let x = Ly. By (5.23), we have y = ELy = Ex, Dx = DLy =
y−1Dy = a(Ly)m = axm. It means that x is a solution of Equation (5.21), hence it is
of the form (5.21). We therefore conclude that a solution y = Ex is of the form (5.24).
A similar proof for −m ∈ N. �

Proposition 5.4. Suppose that all assumptions of Proposition 5.3 are satisfied
and Rb ∈ dom Ω−1, where b ∈ X is given. Then all solutions of the equation

(5.25) Dx = axLx+ bx

are of the form:

(5.26) x = Ew, where w = (ERa)R[bE(−Ra)] + zERa, z ∈ ker D is arbitrary.

Proof. Write: w = Lx. Then x = Ew and, by (5.25), we have Dw = x−1Dx =
aLx+ b = aw+ b. This, and Proposition 5.3 together imply that w is defined by (5.26).

�

Propositions 5.3 and 5.4 together imply

Corollary 5.3. Suppose that all assumptions of Proposition 5.3 are satisfied. Then
the initial value problem for Equation (5.25) with the initial condition Fx = x0 has a
unique solution

(5.27) x = Ew0, where w0 = (ERa)R[bE(−Ra)] + x0ERa.

Theorem 5.2. Suppose that X ∈ L(D), (L,E) ∈ G[Ω], a ∈ dom Ω, h is an
invertible mapping of X into itself such that

R[ah(x)] ⊂ dom Ω ∩ dom Ω−1 for an R ∈ RD whenever x ⊂ dom D

and F is an initial operator for D corresponding to R. Then

(i) Equations

(5.28) Dx = axh(x)(Lx)±n (n ∈ N)
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have solutions x if and only if the equations for n 6= −1

(5.29) x = E2
{
∓ 1
n+ 1

L{∓(n+ 1)R[ah(x)] + z}
}

(respectively) have solutions for a z ∈ ker D.

If n = −1 then the only solution of (5.28) is an x ∈ ker D (i.e. x is a constant). If
it is the case then Fx = x, FDx = 0.

(iii) If x is a solution of Equation (5.29) for n 6= −1 Then the initial condition
Fx = x0 (x0 ∈ ker D) is satisfied if and only if

(5.30) z = (Lx0)±(n+1) provided that x0 6= 0

(i.e. there is no solutions such that Fx = 0.)

(iv) If for n 6= −1, Condition (5.30) is satisfied and F is multiplicative then FDx
is not well-determined.

Proof. Write: u = Lx, h̃ = ahE. Then x = Eu and h̃L = ahEL = ah. This,
Equation (5.28) and our assumptions together imply that for ±n (n ∈ N)

Du∓(n+1) = ∓(n+ 1)u∓nDu = ∓Du = ∓(n+ 1)(Lx)∓nDLx =

= ∓(n+ 1)(Lx)∓nx−1Dx = ∓(n+ 1)ah(x) = ∓(n+ 1)ahEu = ∓(n+ 1)h̃(u).

If n 6= −1 (i.e. n+ 1 6= 0) then

E(∓(n+ 1)Lu) = u∓(n+1) = ∓(n+ 1)Rh̃(u) + z, where z ∈ ker D, i.e.

∓(n+ 1)Lu = LE[∓(n+ 1)Lu] = L[∓(n+ 1)Rh̃(u) + z].

This implies that

x = Eu = E2Lu = E2{∓ 1
n+ 1

L[∓(n+ 1)Rh̃(u) + z]} =

= E2
{
{∓ 1

n+ 1
L[∓(n+ 1)R[ahE(Lx)] + z}

}
=

= E2
{
∓ 1
n+ 1

L{∓(n+ 1)R[ah(x)] + z]}
}

where z ∈ ker D.

This means that Equation (5.29) should be satisfied for a z ∈ ker D.

(ii) If n = −1 then we get Du−1 = 0, which implies that u−1 = z̃ ∈ ker D and
x = ELx = Eu = Ez̃−1 = z ∈ ker D, i.e. x is a constant. Hence Fx = Fz = z = x.
Then Dx = 0. So that, FDx = 0.
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(iii) Suppose that n 6= −1, x± satisfy Equations (5.29) and the initial value condi-
tions

(5.31) F±x = x±0 , where x±0 ∈ ker D are given,

respectively. This means that there are z ∈ ker D such that

x±0 = Fx±0 = FE2
{
∓ 1
n+ 1

FL∓ (n+ 1)R[ah(x)] + z}
}

=

= E2
{
∓ 1
n+ 1

FL{∓(n+ 1)R[ah(x)] + z}
}

=

= E2
{
∓ 1
n+ 1

L{∓(n+ 1)FR[ah(x)] + Fz}
}

=

= E2[∓ 1
n+ 1

Lz] = E2Lz∓
1

n+1 = Ez∓
1

n+1 ,

and z = (Lx0)∓(n+1).

(iv) If (iii) is satisfied and F is multiplicative then

FDx = F [ah(x)(Lx)n] = (Fa) · 0 · [Fh(x)](LFx)n.

However, LFx = L(0) is not well-determined, so FDx does. �

Example 5.4. Suppose that all assumptions of Theorem 5.2 are satisfied. Then
x ∈ dom D is a solution of the equation

(5.32) Dx = axh(x)

if and only if x ∈ dom D is a solution of the equation

(5.33) x = zER[ah(x)] for a z ∈ ker D.

indeed, we have DLx = x−1Dx = axh(x). Hence x = ELx = E{R[ah(x)] + Lz} =
(ELz)ER[ah(x)] = zER[ah(x)], where z ∈ ker D. If F is an almost averaging initial
operator for D corresponding to R then the initial value condition Fx = x0 (x0 ∈ ker D
is given) implies that

x0 = F{zER[ah(x)]} = zFER[ah(x)] = zEFR[ah(x)] = zE(0) = z · e = z,

i.e. x should satisfy the equation

(5.34) x = x0ER[ah(x)].

�
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Example 5.5. Suppose that all assumptions of Theorem 5.2 are satisfied, g =
Re ∈ I(X), a = g−1, Rg−1 ∈ dom Ω and h(x) = x(x− e). Observe that

x−1 + (x− e)−1 = 2x−1(x− e)−1 = 2[x(x− e)]−1, whenever x, x− e ∈ I(X).

Similarly, as before, we conclude that the equation

(5.35) Dx = 2g−1x(x− e)

has a solution x ∈ dom D if and only x ∈ dom D satisfies the equation

(5.36) x(x− e) = zg2 for a z ∈ ker D.

If it is the case and F is multiplicative, then the initial condition Fx = x0 (x0 ∈ ker D
is given) leads to the equality x0(x0−e) = zFg2 = z(Fg)2 = 0. This implies that either
x0 = 0 or x0 = e ∗). If Fx = e then we find x− e = RD(x− e) = RDx, i.e.

x = RDx+ e = [2g−1x(x− e)] + e = R[2g−1zg2] + e+ 2zRg = 2zR2e = zg2.

We therefore conclude that e = Fx = F (zg2) = z(Fg)2 = 0, which is a contradiction.
Hence Fx 6= e. So that Fx = 0. By similar arguments, as before, we find that FDx is
not well defined, i.e. there is no z ∈ ker D such that FDx = z. Hence Equation (5.36)
has no solutions. �

Example 5.6. Suppose that all assumptions of Theorem 5.2 are satisfied, g =
Re ∈ I(X), a = g−1 and F is an almost averaging initial operator for D corresponding
to R. Then the equation

(5.37) Dx = g−1xh(x)Lx

has a solution x ∈ dom D if and only if the equation

(5.38) x = E{zER[g−1h(x)]}

has a solution x ∈ dom D for a z ∈ ker D. Indeed, write: u = Lx. Then x = Eu and
we have Du = DLx = x−1Dx = g−1h(x)Lx = g−1h(Eu)u. Hence DLu = u−1Du =
g−1h(Eu), which implies that for z ∈ ker D

x = E2L2x = E2L{zER[g−1h(x)]} = E{zER[g−1h(x)]}.

If x is a solution of (5.38) satisfying the initial condition Fx = x0, where x0 ∈ ker D,
then

x0 = FxFE{zER[g−1h(x)]} = EF{zER[g−1h(x)]} =

= E{zEFR[g−1h(x)]} = E[zE(0)] = E(z · e) = Ez.

Let x0 = 0. Since there is no z ∈ ker D such that Ez = x0 = 0, we conclude that Fx
is not well-determined, hence there is no solution belonging to dom D. Similarly, as in
previous examples, we can show that in this case also FDx is not well-determined. �

∗) Note that in Leibniz algebras constants are not zero divisors (cf. PR[1]).
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D. Przeworska-Rolewicz

NONLINEAR SEPARABLE EQUATIONS IN LINEAR SPACES AND
COMMUTATIVE LEIBNIZ ALGEBRAS

Abstract. There are considered nonlinear equations in linear spaces and algebras
which can be solved by a ”separation of variables” obtained due to Algebraic Analysis. It
is shown that the structures of linear spaces and commutative algebras (even if they are
Leibniz algebras) are not rich enough for our purposes. Therefore, in order to generalize
the method used for separable ordinary differential equations, we have to admit that
in algebras under consideration there exist logarithmic mappings. Section 1 contains
some basic notions and results of Algebraic Analysis. In Section 2 there are considered
equations in linear spaces. Section 3 contains results for commutative Leibniz algebras.
In Section 4 basic notions and facts about logarithmic and antilogarithmic mappings are
collected. Section 5 is devoted to separable nonlinear equations in commutative Leibniz
algebras with logarithms.
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