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Abstract: We consider a class of semilinear stochastic evolution equations driven
by an additive cylindrical stable noise. We investigate structural properties of the
solutions like Markov, irreducibility, stochastic continuity, Feller and strong Feller
properties, and study integrability of trajectories. The obtained results can be ap-
plied to semilinear stochastic heat equations with Dirichlet boundary conditions and
bounded and Lipschitz nonlinearities.

1 Introduction

The paper is concerned with structural properties of solutions to nonlinear stochastic
equations

dXt = AXtdt+ F (Xt)dt+ dZt, t ≥ 0, X0 = x ∈ H, (1.1)

in a real separable Hilbert space H driven by an infinite dimensional stable process
Z = (Zt). In particular, we study Markov, irreducibility, stochastic continuity, Feller
and strong Feller properties for the solutions, and investigate integrability of trajecto-
ries. The main results are gradient estimates for the associated transition semigroup

1 Supported by the M.I.U.R. research projects Prin 2004 and 2006 “Kolmogorov equations” and by
the Polish Ministry of Science and Education project 1PO 3A 034 29 “Stochastic evolution equations
with Lévy noise”.

2 Supported by the Polish Ministry of Science and Education project 1PO 3A 034 29 “Stochastic
evolution equations with Lévy noise”.
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(see Theorem 4.17 when F = 0 and Theorem 5.6 in the general case), from which we
deduce the strong Feller property, and a theorem on time regularity of trajectories
(see Theorem 4.6). To cover interesting cases, we consider processes Z which take
values in a Hilbert space U usually greater than H. Moreover A : dom(A) ⊂ H → H
is a linear possibly unbounded operator which generates a C0-semigroup (etA) on H
and F : H → H denotes a Lipschitz continuous and bounded function.

In the case when Z is a Wiener process the theory of equations (1.1) is well under-
stood. The situation changes completely in the stable noise case and new phenomena
appear. For instance, even in the linear case F = 0, it is not known when solutions
of (1.1) have càdlàg trajectories. That lack of càdlàg regularity is possible was noted
in ([15, Proposition 9.4.4]) in a similar situation. Another difficulty is related to the
fact that general necessary and sufficient conditions for absolute continuity of stable
measures on Hilbert spaces exist only in the subclass of Gaussian measures.

Structural properties of solutions in the case when Z is a cylindrical Wiener process
were an object of a large number of papers (see [5], [6] and the references therein).
Some results are also available when Z has a non-trivial Gaussian component (see
[19], [16] and the references therein). The situation is different if the Lévy process
Z has no a Gaussian part. Even the existence of regular densities for the transition
probability functions has been analyzed rather recently and only in finite dimensions,
i.e., for ordinary differential stochastic differential equations (see e.g. [17] and the
references therein).

According to a well known result due to Doob, see [6, Theorem 4.2.1], our Theo-
rems 5.4 and 5.6 about irreducibility and strong Feller property show that the process
X = (Xx

t ) in (1.1) has at most one invariant measure. We also deal with a closely
related question of existence of regular densities for the transition probability func-
tions. The lack of translation invariant measures in infinite dimensional spaces makes
these problems more difficult. We restrict our considerations to SPDEs with additive
noise as even in this case some new phenomena, related to the cylindrical Lévy noise,
appear. We hope that the results presented here will form a proper starting point to
treat general equations with multiplicative Lévy perturbations. Let us also mention
that the recent reference [15] is mostly concerned with existence questions for SPDEs
driven by Lévy noises rather than with structural properties of the solutions.

In this paper we consider a cylindrical α-stable process Z = (Zt), α ∈ (0, 2),
defined by the orthogonal expansion

Zt =
∑

n≥1

βnZ
n
t en, t ≥ 0, (1.2)

where (en) is an orthonormal basis of H and Zn
t are independent, real valued, nor-

malized, symmetric α-stable processes defined on a fixed stochastic basis. Moreover,
(βn) is a given, possibly unbounded, sequence of positive numbers.

The results of the paper apply to stochastic heat equations with Dirichlet bound-
ary conditions











dX(t, ξ) =
(

△X(t, ξ) + f(X(t, ξ))
)

dt + dZ(t, ξ), t > 0,

X(0, ξ) = x(ξ), ξ ∈ D,

X(t, ξ) = 0, t > 0, ξ ∈ ∂D,
(1.3)

in a given bounded domain D ⊂ R
d having Lipschitz-continuous boundary ∂D. Here

x(ξ) ∈ H = L2(D), f : R → R is bounded and Lispchitz continuous and the noise Z is
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a cylindrical α-stable process of the form (1.2), where (en) is a basis of eigenfunctions
for the Laplace operator △ (with Dirichlet boundary conditions).

After short Preliminaries, concerned with notations and basic definitions, in Sec-
tion 3, we deal with real and Hilbert space valued α-stable random variables. We
derive some useful lemmas about α-stable densities needed in the sequel. The most
important result here is a necessary and sufficient condition for the absolute continu-
ity of shifts of infinite products of symmetric α-stable, one dimensional distributions
(see Theorem 3.4). It is an improvement of an old result by Zinn (see [24]) with a
direct proof.

Section 4 is concerned with linear equations

dXt = AXtdt+ dZt, t ≥ 0, X0 = x ∈ H. (1.4)

We assume that vectors (en) from the representation (1.2) are eigenvectors of A.
The solutions, called Ornstein-Uhlenbeck processes, have received a lot of attention
recently (see, for instance, [4], [3], [11], [7], [19] and [15]).Transition semigroups deter-
mined by solutions X = (Xx

t ) to (1.4) are also studied under the name of generalized
Mehler semigroups.

In Proposition 4.4 we give if and only if conditions under which X, the solution
of (1.4), takes values in H, and establish its basic properties like measurability and
markovianity. Then we deal with the time regularity of trajectories. The main re-
sult here is Theorem 4.6, which establishes stochastic continuity of the solution and
integrability of its trajectories. Better regularity, like right or left continuity of tra-
jectories is established here in very special cases and is an open question for general
equations. Note that in [11] it is proved that trajectories of (Xx

t ) are càdlàg only in
some enlarged Hilbert space U containing H. This lack of time regularity introduces
additional difficulties into the theory (see also Proposition 9.4.4 in [15]). We establish
also irreducibility of the solution. Theorem 4.15 gives conditions under which all tran-
sition laws of X are equivalent and establishes a formula for the densities. Moreover
(see Theorem 4.17) under the assumptions of Theorem 4.15, the transition semigroup
corresponding to X is not only strong Feller but transforms bounded measurable
functions onto Fréchet differentiable functions with continuous derivative. Important
gradient estimates are established as well.

Theorems on Ornstein-Uhlenbeck processes are based on results about stable mea-
sures established in Section 3.

Section 5 is devoted to nonlinear equations (1.1). The proofs of the Markov
property and irreducibility require special attention due to the lack of càdlàg regularity
of the trajectories. They are given in Theorems 5.3 and 5.4. Then estimates of Section
4 are used to establish the strong Feller property of the solution to the nonlinear
equation (see Theorem 5.6). The main tool here is the so called mild version of the
Kolmogorov equation and Galerkin’s approximation. It is proper to add that the
classical approach to get strong Feller using the Bismut-Elworthy-Li formula is not
available in the non-Gaussian case. A related formula, but requiring a non trivial
Gaussian component in the Lévy noise, was established in finite dimensions in [18].
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2 Preliminaries

H will denote a real separable Hilbert with inner product 〈·, ·〉 and norm | · |. By
L(H) we denote the space of all bounded linear operators from H into H. We will
fix an orthonormal basis (en) in H. Through the basis (en) we will often identify H
with l2.

More generally, for a given sequence ρ = (ρn) of real numbers, we set

l2ρ = {(xn) ∈ R
∞ :

∑

n≥1

x2
nρ

2
n <∞}. (2.1)

The space Cb(H) (resp. Bb(H)) stands for the Banach space of all real, continuous
(resp. Borel) and bounded functions f : H → R, endowed with the supremum norm:
‖f‖0 = supx∈H |f(x)|.

The space Ck
b (H), k ≥ 1, is the set of all k-times differentiable functions f , whose

Fréchet derivatives Dif , 1 ≤ i ≤ k, are continuous and bounded on H, up to the
order k. Moreover we set C∞

b (H) = ∩k≥1 C
k
b (H).

Let us recall that a Lévy process (Zt) with values in H is an H-valued process
defined on some stochastic basis (Ω,F , (Ft)t≥0,P), having stationary independent
increments, càdlàg trajectories, and such that Z0 = 0, P-a.s..

One has that
E[ei〈Zt,s〉] = exp(−tψ(s)), s ∈ H, (2.2)

where ψ : H → C is a Sazonov continuous, negative definite function such that
ψ(0) = 0 (see [14] for more details). We call ψ the exponent of (Zt). Given ψ with the
previous properties, there exists a unique in law H-valued Lévy process (Zt), such
that (2.2) holds.

The exponent ψ can be expressed by the following infinite dimensional Lévy-
Khintchine formula,

ψ(s) =
1

2
〈Qs, s〉 − i〈a, s〉 −

∫

H

(

ei〈s,y〉 − 1 − i〈s, y〉
1 + |y|2

)

ν(dy), s ∈ H, (2.3)

where Q is a symmetric non-negative trace class operator on H, a ∈ H and ν is the
Lévy measure or the jump intensity measure associated to (Zt) (see [21] and [15]).

According to Proposition 3.3 (see Remark 4.1) our cylindrical α-stable process Z
appearing in (1.2) is a Lévy process taking values in a Hilbert space U = l2ρ, see (2.1),
with a properly chosen weight ρ.

Let (Pt) be a transition Markov semigroup acting on Bb(H),

Ptf(x) =

∫

H
f(y)pt(x, dy), f ∈ Bb(H), x ∈ H.

The semigroup (Pt) is called Feller, if Ptf ∈ Cb(H), for any t ≥ 0, f ∈ Cb(H). It
is called strong Feller, if

Ptf ∈ Cb(H), for any t > 0, f ∈ Bb(H). (2.4)

If all transition probability functions pt(x, ·), t > 0, x ∈ H, are equivalent, the semi-
group (Pt) is called regular.
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3 Stable measures on Hilbert spaces

A random variable ξ with values in H is called α-stable (α ∈]0, 2]) if, for any n, there
exists a vector an ∈ H, such that, for any independent copies ξ1, . . . , ξn of ξ, the
random variable

n−1/α(ξ1 + . . .+ ξn) − an

has the same distribution of ξ. A Borel probability measure µ on H is said to be
α-stable if it is the distribution of a stable random variable with values in H.

We will mainly consider stable measures which are product of infinitely many one
dimensional α-stable distributions.

3.1 Stable one dimensional densities

Let us consider a one dimensional, normalized, symmetric α-stable distribution µα,
α ∈]0, 2], having characteristic functions:

µ̂α(s) = e−|s|α , s ∈ R. (3.1)

The density of µα, with respect to the Lebesgue measure, will be denoted by pα. This
is known in closed form only if α = 1 or 2.

We need to know the precise asymptotic behaviour of the density pα, α ∈ (0, 2).

We have that for any α ∈ (0, 2), there exists Cα > 0 such that

pα(x) ∼ Cα

xα+1
, as x→ ∞, (3.2)

see [23] and [21, page 88]. According to [10, pages 582-583], one can derive (3.2) using
representations of pα by convergent power series.

The following result concerning the derivative of pα is straightforward.

Lemma 3.1. Let pα be the density of the standard one dimensional α-stable measure
in (3.1), α ∈ (0, 2). Then, for any α ∈ (0, 2), pα ∈ C∞(R) ∩ C0(R) and moreover

x2p′α(x) ∈ L∞(R). (3.3)

Proof. Let p = pα. It is well known that p ∈ C∞(R) ∩ C0(R) (see, for instance, [21,
Chapter 1]). To get the second assertion, we integrate by parts,

x2p′(x) = i

∫

R

x2eixyye−|y|αdy

x

∫

R

d

dy

(

eixy
)

ye−|y|αdy = −x
∫

R

eixye−|y|α
(

1 + α|y|α
)

dy

= −iα
∫

R

eixye−|y|α y

|y|2−α
dy − iα2

∫

R

eixye−|y|α
( y

|y|2−2α
+

y

|y|2−α

)

dy.

From this formula the assertion is clear.

We need the next technical lemma.
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Lemma 3.2. Let us consider the function

g(x) = 1 −
∫

R

p1/2
α (z) p1/2

α

(

z − x
)

dz, x ∈ (−1, 1).

We have

g(x) ∼ cαx
2 as x→ 0, where cα =

1

8

∫

R

p′α(z)2

pα(z)
dz. (3.4)

Proof. Let p = pα. In order to prove (3.4) we will apply Hopital’s rule. To this
purpose we prove that g is twice differentiable, with g′(0) = 0 and g′′(0) 6= 0. We
have, for |x| < 1,

g′(x) =
1

2

∫

R

p1/2(z)
1

p1/2
(

z − x
) p′(z − x) dz.

The differentiation is justified by (3.2) and (3.3). Indeed, for any M > 1, there exists
c > 0, such that, for any x ∈ (−1, 1), |z| > M > 1,

p1/2(z)
1

p1/2
(

z − x
) |p′(z − x)| ≤ c

|z|1/2+α/2

(|z| + 1)1/2+α/2

||z|2 − 1| .

The previous estimate also allows to get that g′(0) = −1
2

∫

R
p′(z) dz = 0. We show

now that there exists the second derivative of g. To this purpose, we write

g′(x) =
1

2

∫

R

p1/2(z + x)
1

p1/2
(

z
) p′(z) dz.

We have, for any x ∈ (−1, 1),

g′′(x) =
1

4

∫

R

p′(z + x)

p1/2(z + x)

1

p1/2
(

z
) p′(z) dz.

The differentiation can be done, since, for any M > 1, there exists c′ > 0, such that,
for any x ∈ (−1, 1), |z| > M > 1,

|p′(z + x)|
p1/2(z + x)

|p′(z)|
p1/2

(

z
) ≤ c′ (|z| + 1)1+α

||z|2 − 1|2 .

We have also that

g′′(0) =
1

4

∫

R

p′(z)2

p(z)
dz.

and so (3.4) is proved.

3.2 Supports of stable measures

Let us consider independent real random variables ξn, having all the same law µα,
defined on a probability space (Ω,F ,P). Take nonnegative numbers qn and consider
the random variable

ξ = (q1ξ1, . . . , qnξn, . . .) (3.5)

with values in R
∞. We start with a preliminary result, which is a special case of [13,

Corollary 2.4.2]. We provide a proof for the sake of completeness.
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Proposition 3.3. For any α ∈]0, 2], the random variable ξ in (3.5) takes values in
l2, P-a.s., if and only if

∑

n≥1

qα
n <∞. (3.6)

If, in addition to (3.6), qn > 0, k = 1, 2, . . . , then the support of the law of ξ is l2.

Proof. We will use the following theorem (see, for instance [12], page 70-71): let Un

be a sequence of independent and symmetric real random variables; then the following
statements are equivalent:

∑

n≥1 Un converge in distribution;
∑

n≥1 Un converges P-

a.s.;
∑

n≥1 U
2
n converges P-a.s..

We have, for any N ∈ N, h ∈ R,

E[ei
PN

n=1 qnξnh] =

N
∏

n=1

E[eiqnξnh] = e−t
PN

n=1 qα
n |h|α.

Then it is clear that
∑N

k=1 qkξk converges in distribution if and only if (3.6) holds.
Moreover if (3.6) holds, then we have convergence in distribution to the random
variable ξ1

(
∑∞

k=1 q
α
k )1/α. It follows that the series

∑

k≥1 qkξk converges, P-a.s., and
also that

∑

k≥1

q2k ξ
2
k <∞, P − a.s., (3.7)

and this proves the first part.

To prove the second assertion, we fix an arbitrary ball B ⊂ H, B = B(y, r) with
center in y = (yk) ∈ H and radius r > 0. Using independence, we find

P

(

∑

k≥1

(qkξk − yk)
2 < r2

)

≥ P

(

N
∑

k=1

(qkξk − yk)
2 < ǫ,

∑

k>N

(qkξk − yk)
2 < r2 − ǫ

)

≥ P

(

N
∑

k=1

(qkξk − yk)
2 < ǫ

)

P

(

∑

k>N

(qkξk − yk)
2 < r2 − ǫ

)

.

Now we use that each one dimensional measure µα has a positive density on R. This
implies that, for any N ∈ N, ǫ > 0,

P

(

N
∑

k=1

(qkξk − yk)
2 < ǫ

)

> 0.

Since P(
∑

k>N (qkξk − yk)
2 < r2 − ǫ) → 1, as N → ∞, the assertion follows.

3.3 Equivalence of shifts of stable measures

In general conditions for equivalence of stable measures in Hilbert spaces are not
known. Here we give necessary and sufficient conditions in order that shifts of infinite
products, of one dimensional α-stable distributions, are equivalent. The equivalence
result seems to be new. Moreover, according to Zinn [24] (see Remark 3.5) this result
is sharp.
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Theorem 3.4. Let us consider the l2-random variable ξ in (3.5) under the condition
qk > 0, k ≥ 1, and

∑

k≥1 q
α
k <∞. Take arbitrary u, v ∈ l2 such that

∑

k≥1

|uk − vk|2
q2k

<∞. (3.8)

Then the law of the random variable ξ + u and the one of ξ + v are equivalent.
In addition, if µ and ν denote the laws of ξ+u and ξ+ v respectively, the density

dµ
dν of µ with respect to ν is given by

dµ

dν
= lim

N→∞

N
∏

k=1

pα

(

zk−uk

qk

)

pα

(

zk−vk

qk

) in L1(ν), α ∈]0, 2].

The proof requires Lemma 3.2.

Proof of Theorem 3.4. Let pα = p with α ∈ (0, 2). The measures µ and ν can be
seen as Borel product measures in R

∞, i.e.,

µ =
∏

k≥1

µk, ν =
∏

k≥1

νk, where µk, νk have densities, respectively,

1

qk
p
(zk − uk

qk

)

and
1

qk
p
(zk − vk

qk

)

.

Now we will use the Hellinger integral. According to [5, Proposition 2.19], µ and ν
are equivalent if and only if

H(µ, ν) =
∏

k≥1

∫

R

(dµk

dνk

)1/2
νk(dzk) =

∏

k≥1

∫

R

(dµk

dzk

)1/2 (dνk

dzk

)1/2
(dzk) > 0.

Define

ak =

∫

R

(

dµk

dzk
(zk)

)1/2(dνk

dzk
(zk)

)1/2

dzk

=

∫

R

[

p1/2
(

zk − uk

qk

)

p1/2
(

zk − vk

qk

)

]

dzk.

Note that
∏

k≥1

ak =
∏

k≥1

(1 − (1 − ak)) = e
P

k≥1 ln(1−(1−ak))

Note that, if 0 < 1 − a < 1/2, then

ln(1 − (1 − a)) > −2 log 2 (1 − a).

Consequently, if there exists k0 such that, for all k ≥ k0,

1 − ak ≤ 1/2 then
∏

k≥k0

ak ≥ e−2 log 2
P

k≥k0
(1−ak).

We have, for any k ≥ k0

1 − ak = 1 −
∫

R

p1/2(zk − uk

qk
)p1/2(zk − vk

qk
) dzk1 −

∫

R

p1/2(z) p1/2
(

z − (
vk

qk
− uk

qk
)
)

dz.
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We write

1 − ak = g
(vk

qk
− uk

qk

)

,

where the function g is considered in Lemma 3.2.

Using (3.4) and (3.8), there exists k0 such that, for any k ≥ k0,

1 − ak ≤ cα
2

∣

∣

vk

qk
− uk

qk

∣

∣

2 ≤ 1/2. (3.9)

It follows that
∏

k≥k0

ak ≥ e
−cα log 2 (

P

k≥k0

|uk−vk|2

q2
k

)
> 0

and so
∏

k≥1 ak > 0. The second assertion follows from the first one, applying [5,
Proposition 2.19].

Remark 3.5. The result agrees with [24, Corollary 8.1], which shows that the law
of ξ + u, u ∈ H, is absolutely continuous with respect to the one of ξ if and only if

∑

k≥1

u2
k

q2k
<∞.

We point out that in [24], there are no conditions to assure the equivalence of α-stable
measures.

4 The linear stochastic PDE

Let (en) be the fixed reference orthonormal basis in H. We consider the linear equa-
tion

dXt = AXtdt + dZt, x ∈ H, (4.1)

where Z is a cylindrical α-stable process, α ∈ (0, 2), given by (1.2),

Zt =
∑

n≥1

βnZ
n
t en, t ≥ 0.

Here (βn) is a given sequence of positive numbers and (Zn
t ) are independent one di-

mensional α-stable processes (Zn
t ) defined on the same stochastic basis (Ω,F , (Ft),P),

satisfying the usual assumptions. We have, for any n ∈ N, t ≥ 0,

E[eiZ
n
t h] = e−t|h|α , h ∈ R.

Remark 4.1. Identifying, through the basis (en), the Hilbert space H with l2 and
using Proposition 3.3, one gets that our cylindrical Lévy process Z is a Lévy process
with values in the space l2ρ, see (2.1), where (ρn) is a sequence of positive numbers
such that

∑

n≥1 β
α
nρ

α
n <∞.

We make the following assumptions.
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Hypothesis 4.2. (i) A : D(A) ⊂ H → H is a self-adjoint operator such that the
fixed basis (en) of H verifies: (en) ⊂ D(A), Aen = −γnen with γn > 0, for any n ≥ 1,
and γn → +∞.

(ii)
∑

n≥1

βα
n

γn
<∞ (recall that βn > 0, for any n ≥ 1).

Clearly, under (i),

D(A) = {x = (xn) ∈ H :
∑

n≥1

x2
nγ

2
n < +∞}.

In addition A generates a compact C0-semigroup (etA) on H such that

etAek = e−γktek, k ∈ N, t ≥ 0.

Example 4.3. Consider the following linear stochastic heat equation on D = [0, π]d

with Dirichlet boundary conditions (see also (1.3))










dX(t, ξ) = △X(t, ξ) dt + dZ(t, ξ), t > 0,

X(0, ξ) = x(ξ), ξ ∈ D,

X(t, ξ) = 0, t > 0, ξ ∈ ∂D,

(4.2)

where Z is a cylindrical α-stable process with respect to the eigenfunctions

ej(ξ1, . . . , ξd) = (
√

2/π)d sin(n1ξ1) · · · sin(ndξd), ξ = (ξ1, . . . , ξd) ∈ R
d,

j = (n1, . . . , nd) ∈ N
d, of the Laplacian ∆ (with Dirichlet boundary conditions). The

corresponding eigenvalues are γj = −(n2
1+. . .+n

2
d). Define the operator A = −△ with

D(A) = H2(D) ∩H1
0 (D). It is well known that A verifies condition (i) in Hypothesis

4.2. Moreover (see [22, Section 4.4.3]) we have

D(Aα/2) =











Hα(D) ∩H1
0 (D) if 1 < α ≤ 2

Hα
0 (D) if 1/2 < α ≤ 1

Hα(D) if 0 < α ≤ 1/2.

If we identify H with l2 then D(Aα/2) can be identified with the weighted space l2ρ

(see (2.1)) where ρ = (ρj) and ρj = γ
α/2
j . The corresponding dual spaces can be

identified with l21/ρ or with Sobolev spaces of distributions H−α(D).

According to Hypothesis 4.2, we may consider our equation as an infinite sequence
of independent one dimensional stochastic equations, i.e.,

dXn
t = −γnX

n
t dt+ βndZ

n
t , Xn

0 = xn, n ∈ N, (4.3)

with x = (xn) ∈ l2 = H. The solution is a stochastic process X = (Xx
t ) which takes

values in R
∞ with components

Xn
t = e−γntxn +

∫ t

0
e− γn(t−s)βndZ

n
s , n ∈ N, t ≥ 0 (4.4)

(the previous stochastic integral can be defined as a limit in probability of Riemann
sums). It turns out that the process X takes values in H as the next result shows.
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Proposition 4.4. Assume (i) in Hypothesis 4.2. Then the process X given in (4.4)
takes values in H if and only if condition (ii) holds. Under (ii) it can be written as

Xx
t =

∑

n≥1

Xn
t en = etAx+ ZA(t), where (4.5)

ZA(t) =

∫ t

0
e(t−s)AdZs =

∑

n≥1

(

∫ t

0
e− γn(t−s)βndZ

n
s

)

en.

For any x ∈ H, the process (Xx
t ) is Ft-adapted. Moreover X is Markovian.

Proof. Let us consider the stochastic convolution

Y n
t = Zn

A(t) =

∫ t

0
e− γn(t−s)βndZ

n
s , n ∈ N, t ≥ 0. (4.6)

A direct calculation shows that, for any h ∈ R,

E[eihY n
t ] = exp

[

− βα
n |h|α

∫ t

0
e−α γn sds

]

= exp
[

− |h|α cαn(t)
]

,

where cn(t) = βn

(1 − e−α γnt

αγn

)1/α
.

(4.7)

It follows that
E[eih Y n

t ] = E[eih cn(t) Ln ], h ∈ R, (4.8)

where Ln denotes independent α-stable random variables having the same law µα (see
(3.1)). Now the first assertion follows directly from Proposition 3.3.

The property that (Xx
t ) is Ft-adapted is equivalent to the fact that each real process

〈Xx
t , ek〉 is Ft-adapted, for any k ≥ 1, and this clearly holds.

The Markov property follows easily from the identity

ZA(t+ h) − ehAZA(t) =

∫ t+h

t
e(t+h−s)AdZs, t, h ≥ 0.

Example 4.5. (Continuation of Example 4.3) By considering sequences (βj) of the
form (βj) = (γδ

j ) one can easily indicate Sobolev spaces of distributions in which
the cylindrical Lévy process Z might evolve and, at the same time, the Ornstein-
Uhlenbeck process X has trajectories in L2(D). Assume, for instance, that Z is a

standard cylindrical α-stable process, that is βj = 1, for any j ∈ N. Then Z ∈ H− 2
α

if and only if
∑

j(γj)
− 1

α < +∞, thus if and only if d < 2
α .

4.1 Time regularity of trajectories

If the cylindrical Lévy process Z in (4.1) takes values in the Hilbert space H then,
by the Kotelenez regularity result (see [15, Theorem 9.20]) trajectories of the process
X which solves (4.1) are càdlàg with values in H. However Zt ∈ H, for any t > 0, if
and only if

∑

k≥1

βα
k <∞, (4.9)
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and this is a very restrictive assumption. We conjecture that the càdlàg property
holds under much weaker conditions but, at the moment, we are able to establish a
weaker time regularity of the solutions.

Theorem 4.6. Assume Hypothesis 4.2. Then the Ornstein-Uhlenbeck process X =
(Xx

t ) satisfies:

(i) for any x ∈ H, X is stochastically continuous;

(ii) for any x ∈ H, T > 0, X has trajectories in Lp(0, T ;H), for any 0 < p < α,
P-a.s..

Proof. Let 0 < p < α. We set Yt = ZA(t), t ≥ 0, and first show that

E|Yt|p ≤ c̃p

(

∑

n≥1

|βn|α
(1 − e−αγnt)

αγn

)p/α
, (4.10)

where the constant c̃p depends only on p. Recall that (Xx
t ) and (Yt) are defined on the

same stochastic basis (Ω,F , (Ft)t≥0,P). Consider a new probability space (Ω′,F ′,P′)
where a Rademacher sequence (rn) is defined (i.e., rn : Ω′ → {1,−1} are independent
and identically distributed with P

′(rn = 1) = P
′(rn = −1) = 1/2).

The following Khintchine inequality holds, for arbitrary real numbers c1, . . . , cn,
for any p > 0,

(

∑

n≥1

c2n

)1/2
≤ cp

(

E
′
∣

∣

∣

∑

n≥1

rncn

∣

∣

∣

p)1/p
,

where the constant cp depends only on p (for p = 1, we have c1 =
√

2) and E
′ indicates

the expectation with respect to P
′.

We fix ω ∈ Ω, t ≥ 0, and write

(

∑

n≥1

|Y n
t (ω)|2

)1/2
≤ cp

(

E
′
∣

∣

∣

∑

n≥1

rnY
n
t (ω)

∣

∣

∣

p)1/p
.

Integrating with respect to ω and using the Fubini theorem on the product space
Ω × Ω′, we find

E|Yt|p ≤ cpp E

[

E
′
∣

∣

∣

∑

n≥1

rnY
n
t

∣

∣

∣

p]

= cpp E
′
[

E

∣

∣

∣

∑

n≥1

rnY
n
t

∣

∣

∣

p]

(4.11)

= cpp E
′
[

E

∣

∣

∣

∑

n≥1

rn

∫ t

0
e− γn(t−s)βndZ

n
s

∣

∣

∣

p]

.

Since, for any t ≥ 0, λ ∈ R (using also that |rn| = 1, n ≥ 1),

E[eiλ
P

n≥1 rnY n
t ] = e−|λ|α

P

n≥1 |βn|α
R t

0
e−α γn(t−s)ds,

we get easily assertion (4.10).

(i) Let us prove the stochastic continuity. We will show that, for any ǫ > 0,

lim
h→0+

sup
t≥0

P(|Yt+h − Yt| > ǫ) = 0. (4.12)

This will imply the stochastic continuity.
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Note that, for any t ≥ 0, h ≥ 0,

Yt+h − Yt =

∫ t+h

t
e(t+h−s)AdZs + ehA

∫ t

0
e(t−s)AdZs −

∫ t

0
e(t−s)AdZs

= ehAYt − Yt +

∫ t+h

t
e(t+h−s)AdZs.

Let us choose p ∈ (0, α). We have

P(|Yt+h − Yt| > ǫ) ≤ P(
∣

∣ehAYt − Yt

∣

∣ >
ǫ

2
) + P(

∣

∣

∫ t+h

t
e(t+h−s)AdZs

∣

∣ >
ǫ

2
)

≤ 2p E|ehAYt − Yt|p
ǫp

+ 2p E|
∫ h
0 e

sAdZs

∣

∣

p

ǫp
= I1(t, h) + I2(h).

But (see (4.10))

E|Yt|p ≤ cp

(

∑

n≥1

|βn|α
(1 − e−αγnt)

αγn

)p/α

and so
[I2(h)]

α/p → 0, as h→ 0+.

Concerning I1, we find, using again the Khintchine inequality,

|ehAYt − Yt| =
(

∑

n≥1

|(e−γnh − 1)Y n
t |2

)1/2
≤ cp

(

E
′
∣

∣

∣

∑

n≥1

rn(e−γnh − 1)Y n
t

∣

∣

∣

p)1/p

and, reasoning as in (4.11) with βn replaced by (1 − e−γnh)βn,

E|ehAYt−Yt|p ≤ cpp E
′
E

∣

∣

∣

∑

n≥1

rn(e−γnh−1)Y n
t

∣

∣

∣

p
≤ Cp

(

∑

n≥1

|(1−e−γnh)βn|α
(1 − e−αγnt)

αγn

)p/α

≤ Cp

αp/α

(

∑

n≥1

|(1 − e−γnh)βn|α
γn

)p/α
, t ≥ 0.

Since

lim
h→0+

(

∑

n≥1

|(1 − e−γnh)βn|α
γn

)p/α
= 0,

we get
lim

h→0+
sup
t≥0

I1(t, h) = 0

and so assertion (4.12) is proved.

(ii) We need to show that, for any x ∈ H, for any p ∈ (0, α),

∫ T

0
|Xx

t |pdt <∞, P − a.s..

To this purpose, it is enough to show that

E

∫ T

0

(

∑

n≥1

|Y n
t |2

)p/2
dt <∞, (4.13)
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where Yt = ZA(t), t ≥ 0. Using (4.10) we get

∫ T

0
E|Yt|pdt ≤ c̃p

∫ T

0

(

∑

n≥1

|βn|α
(1 − e−αγnt)

αγn

)p/α
dt ≤ Cp,α T

(

∑

n≥1

|βn|α
γn

)p/α
< +∞.

The proof is complete.

Remark 4.7. In the limiting Gaussian case of α = 2, the previous proof allows to
get the well known result that trajectories of X are in L2(0, T ;H), for any T > 0.

Recall that the σ-algebra P of predictable sets is the smallest σ-algebra on [0,∞[×Ω
containing the sets {0} × A0, ]s, t] × As, for any 0 < s < t, A0 ∈ F0, As ∈ Fs. A
stochastic process with values in H is said to be predictable if it is measurable as an
application from ([0,∞[×Ω,P) with values in (H,B(H)), where B(H) is the Borel
σ-algebra of H.

Using that X = (Xx
t ), x ∈ H, is stochastically continuous and Ft-adapted (see

Theorem 4.6 and Proposition 4.12) we can apply [5, Proposition 3.6] and obtain

Corollary 4.8. For any x ∈ H, the process (Xx
t ) has a predictable version.

For p ∈ (0, 1), Lp(0, T ;H) is a linear complete and separable metric space with respect
to the distance

dp(f, g) =

∫ T

0
|f(t) − g(t)|pdt, f, g ∈ Lp(0, T ;H).

From Theorem 4.6 it is straightforward to obtain

Corollary 4.9. Assume Hypothesis 4.2. Then, for any T > 0, x ∈ H, P-a.s.,
the Ornstein-Uhlenbeck process X = (Xx

t )t∈[0,T ] is a random variable with values in
Lp(0, T ;H), for any 0 < p < α.

4.2 Support

We start with a preliminary one dimensional result.

Proposition 4.10. Let L = (Lt) be a one dimensional α-stable process, α ∈ (0, 2),
γ ∈ R, and set

K(t) =

∫ t

0
eγ(t−s)dLs, t ≥ 0.

Then, for any p > 0, T > 0, the random variable (K,KT ) has full support in
Lp(0, T ) × R.

The proposition is a direct corollary of the following general lemma. Recall that
for an arbitrary Borel measure γ on R, we have the unique measure decomposition

γ = γac + γs (4.14)

where γac has a density and γs is singular with respect to the Lebesgue measure.

Lemma 4.11. Let L = (Lt) be a real valued Lévy process with intensity measure ν
(see (2.3)). Suppose that there exists R > 0 such that ν restricted to (−R,R) has an
absolutely continuous part with a strictly positive density (see (4.14)). Then, for any
p > 0, T > 0, the random variable (L,LT ) has full support in Lp(0, T ) × R.

14



Proof. We write ν = ν0 + ν1, where ν0, ν1 are positive measures and ν1 is a finite
measure with strictly positive density g on (−R,R). We can assume, by using the
Ito-Lévy-Khinchine decomposition (see [2]), that P-a.s.,

L = L1 + L0, i.e., Lt = L1
t + L0

t , t ≥ 0

where L1 and L0 are independent Lévy processes and L1 is a compound Lévy process
with the intensity measure ν1.

Since the law of (L,LT ) is the convolution of the laws of (L0, L0
T ) and (L1, L1

T ),
our assertion will follow from the fact that (L1, L1

T ) has full support in Lp(0, T ) × R.
Taking into account that pice-wise constant functions taking value 0 at t = 0 are

dense in Lp(0, T ), for any p > 0, we only have to prove that for a fixed pice-wise
constant function φ : [0, T ] → R, with φ(0) = 0, for a fixed a ∈ R and ǫ > 0,

P

(

∫ T

0
|L1

t + φ(t)|pdt+ |L1
T − a| < ǫ

)

> 0. (4.15)

We may assume that φ(T ) = a and that φ takes real values 0, x1, . . . , xk−1, xk = a,
respectively on intervals [0, t1[, . . . , [tk, T [, with 0 < t1 < . . . tk < T . Define

S = sup{|xi|, i = 1, . . . , k}.

Let 0 < τ1 < . . . < τk be the first k consecutive moments of jumps for the process L1

and denote by Y1, . . . , Yk the random variables L1
τ1 , . . . , L

1
τk

; set Y0 = 0 and τ0 = 0.
Note that τj − τj−1, j = 1, . . . , k, and Yj − Yj−1, j = 1, . . . , k, are independent

random variables. Moreover, τj − τj−1 have the same exponential distribution and
Yj − Yj−1 have the positive density g on (−R,R).

For arbitrary i, j ∈ {0, . . . , k}, δ > 0, M > S −R the independent events

{|τi − tj| ≤ δ}, {|Yi − xj| ≤M}

have all positive probabilities. Using this fact and the property of independence, we
get easily (4.15).

Proof of Proposition 4.10. We consider γ 6= 0 (the case γ = 0 follows from
Lemma 4.11). Using [20, Theorem 3.1], we know that there exists an α-stable process
Z = (Zt) such that

∫ t

0
e−γsdLs = Z(h(t)), where h(t) =

1 − e−αγt

αγ
, t ≥ 0.

Consequently, K(t) = eγtZ(h(t)). Using Lemma 4.11 and the fact that h ∈ C∞([0,+∞[)
with h′(t) 6= 0, t ≥ 0, we get the assertion.

Theorem 4.12. Assume Hypothesis 4.2 and fix T > 0, x ∈ H and p ∈ (0, α).
Consider the Ornstein-Uhlenbeck process X = (Xx

t )t∈[0,T ], solving (4.1). The support
of the random variable (X,XT ) : Ω → Lp(0, T ;H) ×H is Lp(0, T ;H) ×H.

Proof. It is enough to prove that, for any ǫ > 0, and for any (φ, a) ∈ Lp(0, T ;H)×H,
one has

P

(

∫ T

0

(

∑

n≥1

|Xn
t − φn(t)|2

)p/2
dt < ǫ,

∑

n≥1

|Xn
T − an|2 < ǫ

)

> 0.
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By using a density argument, we may assume that (φ, a) is of the form

φ(t) =
N

∑

k=1

φk(t)ek, a =
N

∑

k=1

akek,

for some N ∈ N. We write, using that p/2 < 1,

P

(

∫ T

0

(

N
∑

n=1

|Xn
t − φn(t)|2

)p/2
dt < ǫ,

N
∑

n=1

|Xn
T − an|2 < ǫ

)

≥ P

(

∫ T

0

N
∑

n=1

|Xn
t − φn(t)|pdt < ǫ,

N
∑

n=1

|Xn
T − an|2 < ǫ

)

≥ P

(

∫ T

0
|X1

t − φ1(t)|pdt < ǫ/N, |X1
T − a1|2 < ǫ/N

)

· · ·

· · ·P
(

∫ T

0
|XN

t − φN (t)|pdt < ǫ/N, |XN
T − aN |2 < ǫ/N

)

,

using independence. By Proposition 4.10 we know that the previous product of prob-
abilities is positive. The proof is complete.

Corollary 4.13. Under Hypothesis 4.2, for any x ∈ H, the OU process (Xx
t ) is

irreducible, i.e., for any open ball B ⊂ H, t > 0,

P(Xx
t ∈ B) > 0.

4.3 Equivalence of transition probabilities

Here we will assume Hypothesis 4.2 together with

Hypothesis 4.14. For any t > 0,

sup
n≥1

e−γnt γ
1/α
n

βn

= Ct <∞. (4.16)

Theorem 4.15. Assume Hypotheses 4.2 and 4.14. Then the laws µx
t and µy

t of Xx
t

and Xy
t , respectively, are equivalent, for any t > 0, x, y ∈ H. Moreover the density

dµx
t

dµy
t

of µx
t with respect to µy

t is given by

dµx
t

dµy
t

= lim
N→∞

N
∏

k=1

pα

(

zk−e−γktxk

ck(t)

)

pα

(

zk−e−γktyk

ck(t)

) in L1(µy
t ), where ck(t) = βk

(1 − e−α γkt

α γk

)1/α
.

(4.17)
where pα is the density of the one dimensional α-stable measure, α ∈ (0, 2), considered
in (3.1).

If (4.14) does not hold then for some x ∈ H, µx
t is not absolutely continuous with

respect to µ0
t .
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Remark 4.16. If we assume Hypothesis 4.2, then Hypothesis 4.14 is sharp in the
limiting Gaussian case of α = 2. Indeed, under Hypothesis 4.2 and α = 2, Hypothesis
4.14 is equivalent to each of the following facts:

(i) the laws of Xx
t and Xy

t are equivalent, for any t > 0, x, y ∈ H;

(ii) the Gaussian Ornstein-Uhlenbeck semigroup (Rt) is strong Feller (see [5, Section
9.4.1]).

In addition, under Hypothesis 4.2, the following regularizing property

Rtf ∈ C∞
b (H), t > 0, f ∈ Bb(H),

holds if and only if e−γnt
√

γn

β2
n

is a bounded sequence.

Proof of Theorem 4.15. Fix x = (xn) and y = (yn). Let p = pα and consider formulas

(4.4), (4.6) and (4.8). The density of the random variable Y k
t is clearly 1

ck(t)p
(

zk

ck(t)

)

so that the density of Xk
t is

1

ck(t)
p
(zk − e−γktxk

ck(t)

)

.

Note that µx
t and µy

t can be seen as Borel product measures in R
∞, i.e.,

µx
t =

∏

k≥1

µxk
t , µy

t =
∏

k≥1

µyk

t , where µxk
t , µyk

t have densities, respectively,

1

ck(t)
p
(zk − e−γktxk

ck(t)

)

and
1

ck(t)
p
(zk − e−γktyk

ck(t)

)

.

To get the assertion we will apply Theorem 3.4. To this purpose, one has to check
that

∑

k≥1

e−2γkt|xk − yk|2
ck(t)2

<∞.

This follows easily from (4.16).
If (4.16) does not hold, for some t > 0, then it is easy to see that there exists

x̂ = (x̂n) ∈ H such that
∑

k≥1

e−2γkt x̂2
k

ck(t)2
= ∞.

According to Remark 3.5, this condition means that µx̂
t , the law of X x̂

t , is not abso-
lutely continuous with respect to µ0

t , the law of X0
t = ZA(t).

4.4 Smoothing effect

We now consider the transition Markov semigroup (Rt) associated to (Xx
t ), i.e. Rt :

Bb(H) → Bb(H),

Rtf(x) = E[f(Xx
t )], x ∈ H, f ∈ Bb(H), t ≥ 0.

The next result shows not only that (Rt) is strong Feller, but also that it has a
smoothing effect, i.e., that gradient estimates hold for it.
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Theorem 4.17. Assume Hypotheses 4.2 and 4.14. Then, for any t > 0, the transition
semigroup (Rt) maps Borel and bounded functions into C1

b (H)−functions. Moreover,
for any k ∈ H, |k| ≤ 1, we have

sup
x∈H

|〈DRtf(x), k〉| ≤ 8cα Ct‖f‖0, f ∈ Bb(H), where Ct = sup
n≥1

e−γnt γ
1/α
n

βn

, t > 0

(4.18)
(cα is defined in (3.4)). Finally, for any t > 0, f ∈ Cb(H), x = (xn), h = (hn) ∈ H,
we have (see (4.17))

〈DRtf(x), h〉 =

∫

H
f(etAx+ y)

∑

k≥1

p′α( yk

ck(t))

pα( yk

ck(t))

e−γkt

ck(t)
hk µ

0
t (dy), (4.19)

where µ0
t is the law of X0

t = ZA(t).

Proof. We fix t > 0. The proof is divided into some steps. By the first three steps,
we will show that, for any f ∈ Cb(H), Rtf is Gâteaux differentiable at any x ∈ H
and moreover that equality (4.19) holds.

I Step. We assume that f ∈ Cb(H) is cylindrical, i.e., it depends only on a finite
numbers of coordinates. Identifying H with l2 through the basis (en), we have

f(x) = f̃(x1, . . . , xj), x ∈ H, (4.20)

for some j ≥ 1, and f̃ : R
j → R continuous and bounded. In this first step we also

assume that f̃ has bounded support in R
j.

Fix arbitrary x, h ∈ H. We want to show that there exists DhRtf(x), the direc-
tional derivative of Rtf at x, along the direction h. Set hN =

∑N
k=1 hkek so that

hN → h in H.
Since f is cylindrical, for m ≥ max(j,N), we get

Rtf(x) =

∫

H
f(y)

∏

k≥1

µxk
t (dy) =

∫

Rm

f̃(z)
m
∏

k=1

pα

(zk − e−γktxk

ck(t)

) 1

ck(t)
dzk.

Using our assumptions on f̃ , it is not difficult to show that there exists

DhN
Rtf(x) = −

∫

Rm

f̃(z)
(

N
∑

k=1

p′α

(

zk−e−γktxk

ck(t)

)

pα

(

zk−e−γktxk

ck(t)

)

e−γkthk

ck(t)

)

·

·
m
∏

k=1

pα

(zk − e−γktxk

ck(t)

) 1

ck(t)
dzk

= −
∫

H
f(z)

(

N
∑

k=1

p′α

(

zk−e−γktxk

ck(t)

)

pα

(

zk−e−γktxk

ck(t)

)

e−γkthk

ck(t)

)

∏

k≥1

µxk
t (dzk), N ∈ N.

In order to pass to the limit, as N → ∞, we show that

gN (t, x) =

N
∑

k=1

p′α

(

zk−e−γktxk

ck(t)

)

pα

(

zk−e−γktxk

ck(t)

)

e−γkthk

ck(t)
converges in L2(µx

t ). (4.21)
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Using that, for j 6= k,

e−γkthk

ck(t)

e−γjthj

cj(t)

∫

R2

p′α

(

zk−e−γktxk

ck(t)

)

pα

(

zk−e−γktxk

ck(t)

)

p′α

(

zj−e−γjtxj

cj(t)

)

pα

(

zj−e−γjtxj

cj(t)

) ·

·pα

(zk − e−γktxk

ck(t)

)

pα

(zj − e−γj txj

cj(t)

)

dzkdzj

=

∫

R

p′α(yk)dyk

∫

R

p′α(yj)dyj = 0

(since p′α is odd) we get, for N, p ∈ N,

∫

H

∣

∣

∣

N+p
∑

k=N

p′α

(

zk−e−γktxk

ck(t)

)

pα

(

zk−e−γktxk

ck(t)

)

e−γkthk

ck(t)

∣

∣

∣

2
µx

t (dz)

∫

Rp+1

∣

∣

∣

N+p
∑

k=N

p′α

(

zk−e−γktxk

ck(t)

)

pα

(

zk−e−γktxk

ck(t)

)

e−γkthk

ck(t)

∣

∣

∣

2
N+p
∏

k=N

pα

(zk − e−γktxk

ck(t)

) 1

ck(t)
dzk

=

∫

H

N+p
∑

k=N

(p′α)2
(

zk−e−γktxk

ck(t)

)

p2
α

(

zk−e−γktxk

ck(t)

)

e−2γkth2
k

c2k(t)
µx

t (dz)

=

N+p
∑

k=N

e−2γkth2
k

c2k(t)

∫

R

p′2α (yk)

pα(yk)
dyk ≤ 8cαC

2
t

N+p
∑

k=N

h2
k,

where 8cα =
∫

R

p′2α (y)
pα(y) dy (see (3.4)). This proves (4.21).

Note that, for any N ∈ N,

DhN
Rtf(x) = −

∫

H
f(z + etAx)

(

N
∑

k=1

p′α

(

zk

ck(t)

)

pα

(

zk

ck(t)

)

e−γkthk

ck(t)

)

µ0
t (dz).

Up to now we have showed that

Rtf(x+ shN ) −Rtf(x)

s
=

1

s

∫ s

0
DhN

Rtf(x+ rhN )dr, s ∈ (−1, 1). (4.22)

Using also (4.21), it is not difficult to show that, for any r ∈ (−1, 1), N ∈ N,

lim
N→∞

DhN
Rtf(x+ rhN ) = −

∫

H
f(z + etA(x+ rh))

(

∞
∑

k=1

p′α

(

zk

ck(t)

)

pα

(

zk

ck(t)

)

e−γkthk

ck(t)

)

µ0
t (dz).

(4.23)
Moreover, |DhN

Rtf(x+rhN )| ≤ 8cαCt|h|‖f‖0, for any r ∈ (−1, 1). Thus we can pass
to the limit, as N → ∞, in (4.22) and get

Rtf(x+ sh) −Rtf(x)

s
=

1

s

∫ s

0
u(t, x+ rh) dr, s ∈ (−1, 1), (4.24)
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where u(t, x + rh) is the right-hand side of (4.23). This shows that Rtf is Gâteaux
differentiable at x ∈ H along the direction h and moreover that (4.19) holds.

II Step. We consider f ∈ Cb(H) which is only cylindrical (i.e., f is given by (4.20)
but the function f̃ is not assumed to have bounded support in R

j).

Define f̃n(y) = f̃(y)φ( |y|n ), for any y ∈ R
j , where φ : [0,+∞[→ R+ is a continuous

function such that, φ(s) = 1, s ∈ [0, 1], φ(s) = 0, s ≥ 2.

We have that ‖f̃n‖0 ≤ ‖f̃‖0, n ∈ N, and moreover f̃n(y) → f̃(y), as n → ∞, for
any y ∈ R

j.
Let fn : H → R, fn(x) = f̃n(x1, . . . , xj), for any x ∈ H, n ∈ N.
We find by the previous step, for any n ∈ N and x ∈ H,

Rtfn(x+ sh) −Rtfn(x)

s
=

1

s

∫ s

0
DhRtfn(x+ rh)dr, s ∈ (−1, 1). (4.25)

Passing to the limit, as n → ∞, it is easy to see that (4.24) holds for f . This shows
the Gâteaux differentiability of Rtf on H and also the equality (4.19).

III Step. We consider an arbitrary f ∈ Cb(H). Let us introduce the cylindrical
functions gn,

gn(x) = f
(

n
∑

k=1

xkek

)

, n ∈ N, x ∈ H.

It is clear that ‖gn‖0 ≤ ‖f‖0, n ∈ N, and moreover gn(x) → f(x), for any x ∈ H.
Repeating the argument of the previous step, with fn replaced by gn, and passing to
the limit, we get that the assertion of the previous step holds even for any f ∈ Cb(H).

IV Step. Let f ∈ Cb(H) and consider the Gâteaux derivative of Rtf in x ∈ H

DRtf(x) =

∫

H
f(etAx+ y)

∑

k≥1

p′α( yk

ck(t) )

pα( yk

ck(t) )

e−γkt

ck(t)
ek µ

0
t (dy).

It is not difficult to show that DRtf : H → H is continuous. This gives that Rtf is
Fréchet differentiable at any x ∈ H.

Moreover, we have the required gradient estimate

‖DRtf‖0 ≤ 8cαCt‖f‖0

V Step. To complete the proof, take g ∈ Bb(H). A well known argument (see [6,
Chapter 7]) shows that Rtg is Lipschitz continuous on H. Then the semigroup law
gives that Rtg ∈ C1

b (H), for any t > 0. The proof is complete.

Remark 4.18. Under the assumptions of Theorem 4.17, one could show the following
regularizing property

Rtf ∈ C∞
b (H), t > 0, f ∈ Bb(H).

This generalizes the well known smoothing property of the Gaussian Ornstein-Uhlenbeck
semigroup (see also Remark 4.16).

Remark 4.19. Note that Theorem 4.15 can be also deduced from Theorem 4.17 and
Corollary 4.13 if one applies the Hasminkii theorem (see [6, Proposition 4.1.1]).
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5 Nonlinear stochastic PDEs

We pass now to the main object of our paper, namely nonlinear SPDEs of the form

dXt = AXtdt+ F (Xt)dt+ dZt, X0 = x ∈ l2 = H, (5.1)

where Z = (Zt) is a cylindrical α-stable Lévy process. Throughout the section, we
will assume Hypothesis 4.2 and also that

F : H → H is Lipschitz continuous and bounded. (5.2)

5.1 Existence, uniqueness and Markov property

We say that a predictable H-valued stochastic process X = (Xx
t ), depending on

x ∈ H, is a mild solution to equation (1.1) if, for any t ≥ 0, x ∈ H, it holds:

Xx
t = etAx+

∫ t

0
e(t−s)AF (Xx

s )ds + ZA(t), P − a.s., where

ZA(t) =

∫ t

0
e(t−s)AdZs,

(5.3)

see (4.5). In formula (5.3) we are considering a predictable version of the process
(ZA(t)) (see Corollary 4.8).

Note that, since F is bounded, the deterministic integral in (5.3) is a well defined
continuous process. Moreover, as far as the regularity of trajectories is concerned,
the mild solution will have the same regularity as (ZA(t)). In particular, according
to Theorem 4.6, any mild solution X will be stochastically continuous.

To show existence and uniqueness we need the following deterministic result which
is not standard in the case p ∈ (0, 1).

Proposition 5.1. Let F : H → H be Lipschitz continuous and bounded and f ∈
Lp(0, T ;H), for some p > 0. Let A : D(A) ⊂ H → H be the generator of a C0-
semigroup (etA).

(i) For any x ∈ H, the equation

y(t) = etAx+

∫ t

0
e(t−s)AF (y(s) + f(s))ds (5.4)

has a unique continuous solution y : [0, T ] → H.

(ii) There exists a constant C > 0 such that for solutions y and z ∈ C([0, T ];H)
corresponding respectively to functions f , g ∈ Lp(0, T ;H) and to the same x ∈ H, we
have the estimates

(a) ‖y − z‖C([0,T ];H) ≤ C
(

∫ T

0
|f(t) − g(t)|pdt

)1/p
, p ≥ 1;

(b) ‖y − z‖C([0,T ];H) ≤ C

∫ T

0
|f(t) − g(t)|pdt, p ∈ (0, 1).
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Proof. Assertion (i) follows easily by a fixed point argument. Let us consider (ii).
The proof of (ii) when p ≥ 1 is an easy application of the Gronwall lemma. Thus we
only prove (b).

We consider a family of equivalent norms ‖·‖λ on the Banach space E = C([0, T ];H),
for λ ≥ 0,

‖h‖λ = sup
t∈[0,T ]

e−λt|h(t)|, h ∈ E

(for λ = 0 we get the usual sup norm). For a fixed f ∈ Lp(0, T ;H), let us define the
operator Kf : E → E,

(Kfy)(t) = etAx+

∫ t

0
e(t−s)AF (y(s) + f(s))ds, y ∈ E, t ∈ [0, T ].

Note that there exists M ≥ 1 and ω ∈ R such that ‖etA‖L(H) ≤Meωt, t ≥ 0. We find
for λ > ω, for any y, z ∈ E,

‖Kfy −Kfz‖λ ≤ C sup
t∈[0,T ]

e−λt

∫ t

0
eω(t−s)A|y(s) − z(s)|ds

≤ C sup
t∈[0,T ]

∫ t

0
e−(λ−ω)(t−s)ds ‖y − z‖λ ≤ C

λ− ω
‖y − z‖λ.

Let us choose λ0 large enough such that c0 = C
λ0−ω < 1. We have

‖Kfy −Kfz‖λ0 ≤ c0‖y − z‖λ0 , y, z ∈ E. (5.5)

Let now f and g ∈ Lp(0, T ;H). We get, for any t ∈ [0, T ], y ∈ E,

|(Kfy)(t) − (Kgy)(t)| ≤M

∫ t

0
eω(t−s)|F (y(s) + f(s)) − F (y(s) + g(s))|ds.

Since F is bounded and Lipschitz continuous, it is also Hölder continuous of order p
and we find

‖Kfy −Kgy‖λ0 ≤ cMeωT

∫ T

0
|f(s) − g(s)|pds.

If we have solutions y and z corresponding to f and g, then y = Kfy and z = Kgz.
It follows

‖y − z‖λ0 = ‖Kfy −Kgz‖λ0

≤ ‖Kfy −Kfz‖λ0 + ‖Kfz −Kgz‖λ0 ≤ CT

∫ T

0
|f(s) − g(s)|pds+ c0‖y − z‖λ0

and the assertion follows.

Remark 5.2. Clearly the previous result holds when F is only Lipschitz continuous
and f ∈ Lp(0, T ;H) with p ≥ 1.

Theorem 5.3. Assume Hypothesis 4.2 and that F : H → H is Lipschitz continuous
and bounded. Then there exists a unique mild solution (Xx

t ) to the equation (5.3).
Moreover (Xx

t ) is a Markov process and its transition semigroup is Feller.
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Proof. Step 1. Existence and uniqueness. Uniqueness follows by the Gronwall lemma.
Let us prove existence. By using Proposition 5.1 we find that for x ∈ H there exists
P-a.s. a continuous functions Yt = Y x

t with values in H which solves

Yt = etAx+

∫ t

0
e(t−s)AF (Ys + ZA(s))ds, t ≥ 0.

Since ZA(t) is predictable it follows that Y = (Y x
t ) is predictable as well. Let us

define
Xx

t = Y x
t + ZA(t).

Clearly (Xx
t ) is the unique mild solution.

Step 2. Markov property. The proof of the Markov property is quite involved. Indeed
since our solution is not assumed to have càdlàg trajectories, we have to proceed
differently from [5, Theorem 7.10].

For any measurable function ψ : [0, T ] → H, let y(t) be the unique continuous
function with values in H which solves the equation

y(t) =

∫ t

0
e(t−s)AF (y(s) + ψ(s))ds.

Set y(t) = y(t, ψ), t ∈ [0, T ], to indicate the dependence on ψ. We have, for t, t+ h ∈
[0, T ],

y(t+ h, ψ) =

∫ t+h

0
e(t+h−s)AF (y(s, ψ) + ψ(s))ds

= ehA

∫ t

0
e(t−s)AF (y(s, ψ) + ψ(s))ds +

∫ t+h

t
e(t+h−s)AF (y(s, ψ) + ψ(s))ds

= ehA[y(t, ψ)] +

∫ h

0
e(h−s)AF (y(t+ s, ψ) + ψ(t+ s))ds.

Define a new function on [0, T − t],

v(·, ψ) := y(t+ ·, ψ) − e(·) A[y(t, ψ)]

We have

v(h, ψ) =

∫ h

0
e(h−s)AF (v(s, ψ) + esA[y(t, ψ)] + ψ(t+ s))ds, h ∈ [0, T − t].

By uniqueness, v(h, ψ) = y(h, e(·) A[y(t, ψ)]+ψ(t+·)) and so we get for t, t+h ∈ [0, T ],

y
(

h, e(·) A[y(t, ψ)] + ψ(t+ ·)
)

+ eh A[y(t, ψ)] = y(t+ h, ψ). (5.6)

Defining u(t, ψ) = y(t, ψ) + ψ(t), t ∈ [0, T ], we find

u(t+ h, ψ) − ψ(t+ h) = u
(

h, e(·)A[u(t, ψ) − ψ(t)] + ψ(t+ ·)
)

−ehA[u(t, ψ) − ψ(t)] − ψ(t+ h) + ehA[u(t, ψ) − ψ(t)]

and so we get

u(t+ h, ψ) = u(h, e(·)A[u(t, ψ) − ψ(t)] + ψ(t+ ·))
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which is the same formula of the end of [5, page 256]. Now the Markov property
follows arguing as in [5, page 257].

Step 3. Feller property. Fix x, y ∈ H. From the estimate,

|Xx
t −Xy

t | ≤ ‖etA‖|x− y| +
∫ t

0
‖e(t−s)A‖ |F (Xx

s ) − F (Xy
s )|ds, (5.7)

using the Lipschitz continuity of F and the Gronwall lemma, we find that, for any
T > 0, |Xx

t −Xy
t | ≤MT |x−y|, t ∈ [0, T ], x, y ∈ H, P-a.s.. The Feller property follows

easily.

5.2 Irreducibility

We establish now irreducibility of the solutions to (5.3). In fact we have the following
result.

Theorem 5.4. Assume Hypothesis 4.2 and F : H → H bounded and Lipschitz con-
tinuous. Then, for any x ∈ H, the mild solution X = (Xx

t ) to the equation (5.3) is
irreducible.

Proof. Fix x ∈ H, T > 0, and denote by X = (Xt) the solution to (5.3) starting from
x. Set

Yt = Xt − ZA(t), t ∈ [0, T ],

where
{

dZA(t) = AZA(t)dt + dZt,

ZA(0) = 0, t ≥ 0.
(5.8)

Note that

Yt = etAx+

∫ t

0
e(t−s)AF (Ys + ZA(s))ds.

Let zu and yu,x be the solutions, driven by a control function u ∈ L2(0, T ;H), of the
following control systems, respectively,







dz

dt
= Az(t) + u(t),

z(0) = 0, t ∈ [0, T ],
(5.9)







dy

dt
= Ay(t) + F (y(t)) + u(t),

y(0) = x ∈ H, t ∈ [0, T ].
(5.10)

Thus

zu(t) =

∫ t

0
e(t−s)Au(s)ds, t ∈ [0, T ], (5.11)

and yu,x is the solution of the following integral equation

y(t) = etAx+

∫ t

0
e(t−s)AF (y(s))ds + zu(t), t ∈ [0, T ].
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By Theorem 7.4.2 of [6] we know that the system (5.10) is approximately controllable
at time T > 0 in the sense that, for any x, a ∈ H and for any ǫ > 0, there exists a
control function u ∈ L2(0, T ;H) such that |yu,x(T ) − a| < ǫ.

Let
ȳ(t) = yu,x(t) − zu(t), t ∈ [0, T ].

Note that

ȳ(t) = etAx+

∫ t

0
e(t−s)AF (ȳ(s) + zu(s))ds.

Take p < α with p ∈ (0, 1). By estimate (b) in Proposition 5.1 we get, P-a.s.,

sup
t∈[0,T ]

|Yt − ȳ(t)| ≤ C

∫ T

0
|ZA(t) − zu(t)|pdt.

and so |YT − ȳ(T )| ≤ C
∫ T
0 |ZA(t) − zu(t)|pdt or, equivalently,

|XT − ZA(T ) − yu,x(T ) + zu(T )| ≤ C

∫ T

0
|ZA(t) − zu(t)|pdt.

We write, for any a ∈ H,

|XT − a| ≤ |XT − ZA(T ) − yu,x(T ) + zu(T )| + |ZA(T ) + yu,x(T ) − zu(T ) − a|

≤ C

∫ T

0
|ZA(t) − zu(t)|pdt+ |yu,x(T ) − a| + |ZA(T ) − zu(T )| = I1 + I2 + I3.

For a given ǫ > 0, let us fix a control function u such that I2 = |yu,x(T ) − a| < ǫ/3.
Using Proposition 4.12, we get with positive probability that I1 < ǫ/3 and I3 < ǫ/3.
The result follows.

5.3 Strong Feller property

Let (Pt) be the Markov semigroup associated to X = (Xx
t ), i.e. Pt : Bb(H) → Bb(H),

Ptf(x) = E[f(Xx
t )], x ∈ H, f ∈ Bb(H), t ≥ 0. (5.12)

To show the strong Feller property of (Pt), we will assume Hypotheses 4.2, assumption
(5.2) and

Hypothesis 5.5. There exist ĉ > 0, γ ∈ (0, 1), T0 > 0, such that

sup
n≥1

e−γnt γ
1/α
n

βn

= Ct ≤
ĉ

tγ
, t ∈ (0, T0).

Note that this hypothesis is stronger than Hypothesis 4.14. Our aim is to prove the
following result.

Theorem 5.6. Assume that Hypotheses 4.2 and 5.5 hold. Then, for any t > 0, the
transition semigroup (Pt) associated to (5.3) maps Borel and bounded functions into
Lipschiz continuous functions. Moreover, there exists C = C(γ, cα, ĉ, ‖F‖0, T0) > 0,
such that, for any x, y ∈ H, we have

|Ptf(x) − Ptf(y)| ≤ C‖f‖0
1

min(tγ , 1)
|x− y|, t > 0. (5.13)
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To prove the result we first investigate generalised solutions to the Kolmogorov
equation associated to (Pt) (or to (Xx

t )) as in [5, Section 9.4.2].
Note that the generator A0 of (Pt) is formally given by

A0f(x) = 〈Ax+ F (x),Df(x)〉 +
∑

k≥1

βα
k

∫

R

(f(x+ enz) − f(enz))
1

|z|1+α
dz, (5.14)

for regular and cylindrical functions f . The associated Kolmogorov equation is
{

∂tu(t, x) = A0u(t, ·)(x), t > 0, x ∈ H,

u(0, x) = f(x), x ∈ H.
(5.15)

Let us consider the space

Λ(0, T ) = {u ∈ C(]0, T ];C1
b (H)) : sup

t∈]0,T ]
tγ‖u(t, ·)‖1 <∞},

where ‖u(t, ·)‖1 = ‖u(t, ·)‖0 + ‖Dxu(t, ·)‖0 and γ ∈ (0, 1) is fixed in Hypothesis 5.5.
According to [5] a mild solution to the Kolmogorov equation (5.15) (on [0, T ] with
initial datum f ∈ Bb(H)) is a function u ∈ Λ(0, T ) such that

u(t, x) = Rtf(x) +

∫ t

0
Rt−s

(

〈F (·),Du(s, ·)〉
)

(x) ds, t ∈ [0, T ], x ∈ H, (5.16)

where D = Dx and (Rt) is the transition semigroup corresponding to the linear
equation (4.3). To stress the dependence on f , we will also write

u = u(t, x) = uf (t, x), t ∈ [0, T ], x ∈ H.

Note that using Theorem 4.17 and Hypothesis 5.5, we get that for any f ∈ Bb(H),

‖DRtf‖0 ≤ C0

tγ
‖f‖0, t ∈]0, T0], where C0 = 8cα ĉ. (5.17)

Thanks to (5.17), we can adapt the proof of [5, Theorem 9.24] and obtain that the
mapping S : Λ(0, T ) → Λ(0, T ),

S(u)(t, x) = Rtf(x) +

∫ t

0
Rt−s

(

〈F (·),Du(s, ·)〉
)

(x)ds, u ∈ Λ(0, T ), (5.18)

is a contraction for T small enough. Therefore, we obtain

Proposition 5.7. For any f ∈ Bb(H), T > 0, there exists a unique mild solution
u = uf to (5.15). Moreover, if we define

P̃tf(·) = uf (t, ·), t ≥ 0, f ∈ Bb(H),

then (P̃t) is a semigroup of bounded linear operators on Bb(H).

In the proof of the next lemma on smoothing properties of the semigroup (P̃t),
we will use the following Gronwall lemma. Let a, b, γ be non-negative constants, with
γ < 1. Let T > 0. For any integrable function v : [0, T ] → R,

0 ≤ v(t) ≤ at−γ + b

∫ t

0
(t− s)−γv(s)ds, t ∈ [0, T [ a.e., implies v(t) ≤ aMt−γ ,

(5.19)
t ∈ [0, T [, a.e.. (where M = M(b, γ, T )1 + b kγ T

1−γ).
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Lemma 5.8. There exists c = c(γ, cα, ĉ, ‖F‖0) > 0 such that, for any f ∈ Bb(H),
t ∈]0, T0],

‖DP̃tf‖0 ≤ c

tγ
‖f‖0.

Proof. We have

Du(t, x) = DRtf(x) +

∫ t

0
DRt−s

(

〈F (·),Du(s, ·)〉
)

(x) ds, x ∈ H.

Hence, by (5.17),

‖Du(t, ·)‖0 ≤ C0

tγ
‖f‖0 +

∫ t

0

C0

(t− s)γ
‖F‖0‖Du(s, ·)‖0ds, t ∈]0, T0].

The Gronwall lemma implies that

‖Du(t, ·)‖0 ≤ C0M

tγ
‖f‖0, t ∈]0, T0], M = M(γ, cα, ĉ, ‖F‖0) > 0.

Galerkin’s approximation. To show the regularizing effect of (Pt), it would be
enough as in [5, Theorem 9.27] to show that (Pt) and (P̃t) coincide. However the
proof of [5, Theorem 9.27] is not complete and we are unable to fill the gap in our
situation.

We therefore resort to Galerkin’s approximations and will only identify suitable
approximating semigroups of (Pt) and (P̃t).

Let πn : H → {e1, . . . , en} be an orthogonal projection. For any n ∈ N, define the
process

Y n
t = πn(Xπnx

t ), x ∈ H, t ≥ 0. (5.20)

Note that (Y n
t ) is the unique mild solution to

Yt = etAnx+

∫ t

0
e(t−s)An(πn ◦ F ◦ πn)(Ys)ds + ZAn(t), (5.21)

An = πn ◦ A. Let Fn = πn ◦ F ◦ πn. Note that, for any n ∈ N, it holds:

‖Fn‖0 ≤ ‖F‖0, Lip(Fn) ≤ Lip(F ), (5.22)

where Lip(Fn) denotes the Lipschitz constant of Fn.

Consider the mild solution un to the Kolmogorov equation corresponding to Y n
t , i.e.,

un(t, x) = uf
n(t, x) = Rn

t f(x) +

∫ t

0
Rn

t−s

(

〈Fn(·),Dun(s, ·)〉
)

(x)ds, x ∈ H,

where Rn
t f(x) = E[f(etAnx+ πnZA(t))] =

∫

H
f(etAnx+ πny)µ

0
t (dy).

(5.23)

Define two approximating semigroups on Bb(H):

Pn
t f(x) = E[f(Y n

t )], P̃n
t f(x) = uf

n(t, x), f ∈ Bb(H), (5.24)

see (5.21) and (5.23).
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Lemma 5.9. For any function f ∈ Bb(H), n ∈ N, we have

Pn
t f = P̃n

t f, t ≥ 0.

Proof. We fix n ∈ N. It is enough to prove the assertion for any function f ∈ Bb(H),
which depends only on the first n-coordinates. Identifying (Pn

t ) and (P̃n
t ) with the

corresponding semigroups acting on Bb(R
n), we have to prove that

Pn
t f = P̃n

t f, f ∈ Bb(R
n), t ≥ 0. (5.25)

To this purpose, first note that it is well known that (Pn
t ) is a strongly continuous

semigroup of positive contractions on C0(R
n) (see [2, Section 6.7]). Here C0(R

n)
denotes the space of all real continuous functions on R

n vanishing at infinity.

Let us consider now (P̃n
t ). We first show that P̃n

t (C0(R
n)) ⊂ C0(R

n), t ≥ 0.

Let f ∈ C0(R
n) and t ∈]0, T0]; we will use an inductive argument to prove that

P̃tf ∈ C0(R
n). By (5.18), we know that

P̃n
t f = lim

m→∞
Sm(0) = lim

m→∞
(S ◦ . . . ◦ S)(0) in Λ(0, T ).

We prove that for any m ∈ N, Sm(0)(t, ·) and DxS
m(0)(t, ·) ∈ C0(R

n). We have (for
m = 1) S1(0)(t, ·)(x) = Rtf(x), and so

DxS
1(0)(t, ·)(x) = DRn

t f(x) =

∫

Rn

f(etAnx+ y)Un(y, t) µn
t (dy), x ∈ R

n,

where µn
t has density

n
∏

k=1

pα

( yk

ck(t)

) 1

ck(t)
and

Un(y, t) =
n

∑

k=1

p′α( yk

ck(t) )

pα( yk

ck(t) )

e−γkt

ck(t)
ek ∈ L2(µn

t ; Rn).

(5.26)

It follows that S1(0)(t, ·) and DxS
1(0)(t, ·) ∈ C0(R

n). Assume that the assertion
holds for an arbitrary m ∈ N. Since

Sm+1(0)(t, ·)(x) = Rn
t f(x) +

∫ t

0
Rn

t−s

(

〈Fn(·),DSm(s, ·)〉
)

ds,

DxS
m+1(0)(t, ·)(x) = DRn

t f(x) +

∫ t

0
DRn

t−s

(

〈Fn(·),DSm(s, ·)〉
)

ds

= DRn
t f(x)

+

∫ t

0
ds

∫

Rn

〈Fn(e(t−s)Anx+ y),DSm(s, e(t−s)Anx+ y)〉Un(y, t− s) µn
t−s(dy),

x ∈ R
n, we have easily that the assertion holds also for m+ 1.

Using Lemma 5.8, we get that (P̃n
t ) is a strongly continuous semigroup of positive

bounded linear operators on C0(R
n).

We will prove (5.25) when f ∈ C0(R
n). Indeed, by a standard argument (see [9,

Chapter 4]) this is enough to get (5.25).
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By Ito formula D0 = C2
0 (Rn) = {f ∈ C0(R

n) : Df and D2f ∈ C0(R
n)} is invariant

for (Pn
t ) (compare with [2, Theorem 6.7.4]). Moreover, D0 ⊂dom (An), where An is

the generator of (Pn
t ). By a well known result, D0 is a core for (Pn

t ). Note that

Anf = 〈Anx+ Fn(x),Df(x)〉 +
n

∑

k=1

βα
k

∫

R

(f(x+ enz) − f(enz))
1

|z|1+α
dz, f ∈ D0.

Let us consider (P̃n
t ). If f ∈ D0, we can solve (by the contraction principle)

u(t, x) = Rn
t f(x) +

∫ t

0
Rn

t−s

(

〈Fn(·),Du(s, ·)〉
)

(x)ds, x ∈ R
n,

in the space C([0, T0];C
2
0 (Rn)) and get that D0 is also invariant for (P̃t).

A straightforward calculation, shows that D0 ⊂dom (Ãn), where Ãn is the gener-
ator of (P̃n

t ). Thus D0 is a core also for (P̃n
t ) and (Ãn) coincides with (An) on D0.

It follows that (Pn
t ) and (P̃n

t ) coincide on C0(R
n) (see Corollary III.5.15 in [8]) and

this finishes the proof.

Proof of Theorem 5.6.

I Step. We have for any f ∈ Cb(H) (see (5.23), Lemmas 5.8 and 5.9)

|un(t, x) − un(t, y)| = |Pn
t f(x) − Pn

t f(y)|
≤ |Rn

t f(x) −Rn
t f(y)|

+

∫ t

0
|Rn

t−s

(

〈Fn(·),Dun(s, ·)〉
)

(x) −Rn
t−s

(

〈Fn(·),Dun(s, ·)〉
)

(y)|ds

≤ C‖f‖0
1

min(tγ , 1)
|x− y|, x, y ∈ H, n ∈ N.

(5.27)

II Step. For any f : H → R which is Lipschitz continuous and bounded (with
Lipschitz constant indicated by Lip(f)), we have:

lim
n→∞

Pn
t f(x) = Ptf(x), x ∈ H, t ≥ 0.

Recall that Pn
t f(x) = E[f(πn(Xπnx

t ))] (see (5.20)).

Note that, for any compact set K ⊂ H, we have limn→∞ supx∈K |πnx− x| = 0.

Moreover (see (5.7)) we know that, for any t ≥ 0, the mapping:

x 7→ Xx
t is Lipschitz continuous from H into H.

For any compact set K ⊂ H, we get

sup
x∈K

|E[f(πn(Xπnx
t ))] − E[f(Xx

t )]| ≤ Lip(f)E
[

sup
x∈K

|πn(Xπnx
t )) −Xx

t |
]

≤ Lip(f)E
[

sup
x∈K

(

|πn(Xπnx
t )) − πn(Xx

t )| + |πn(Xx
t ) −Xx

t |
)]

≤ Lip(f)E
[

sup
x∈K

(

|Xπnx
t −Xx

t | + |πn(Xx
t ) −Xx

t |
)]

≤ Lip(f)ct E
[

sup
x∈K

(

|πnx− x| + |πn(Xx
t ) −Xx

t |
)]

.
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Passing to the limit, as n → ∞ (using that, P-a.s., the image of K under the map-
ping x 7→ Xx

t is again a compact set of H) we get the assertion by the dominated
convergence theorem.

III Step. Passing to the limit as n → ∞ in (5.27) we get the assertion (5.13) when
f is in addition Lipschitz continuous and bounded. Since any f ∈ UCb(H) can be
approximated in a uniform way on H by a sequence (fn) of Lipschitz continuous and
bounded functions, we have the assertion even for f ∈ UCb(H).

To finish we use an argument from the proof of [5, Theorem 9.28].

It holds, for any t > 0,

V ar
[

pt(x, ·) − (pt(y, ·)
]

= sup
f∈Bb(H), ‖f‖0≤1

|Ptf(x) − Ptf(y)|

= sup
f∈UCb(H), ‖f‖0≤1

|Ptf(x) − Ptf(y)| ≤ 2C ‖f‖0
1

min(tγ , 1)
|x− y|,

where pt(x, ·) is the kernel of Pt and V ar denotes the total variation. This completes
the proof.
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