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Introduction
The paper is concerned with the market containing a risk-free bond and defaultable bonds issued by com-
panies. A defaultable bond will default with a certain probability before or at maturity time T . The
probabilities of defaults depend on economic conditions of the firms and are reflected by rating classes
designated by rating agencies like Standard&Poor’s or Moody’s. If a default does not occur an owner of
the bond receives, as in the case of default-free bond, one currency unit. In the case of default the owner
obtains a part of the promised payoff. This part depends on the credit rating of the issuer of the bond and
on the adopted recovery scheme. To model defaultable bonds we use the intensity based models which are
the basic way of modeling (see e.g. Bielecki and Rutkowski [1], Lando [24]). In contrast to most papers
on the subject, which use Brownian motion for modeling (see e.g. Duffie and Singleton [11], Bielecki and
Rutkowski [1], [3]), we apply the theory of Lévy processes which admit discontinuous trajectories and con-
tain many standard processes like Brownian motion, Poisson processes, and generalized hyperbolic Lévy
motion.

It is well known that using Lévy processes to modeling has many advantages (see e.g. Eberlein and
Özkan [14], Eberlein and Kluge [15], Cont and Tankov [9], Özkan and Schmidt [25]) such as better cal-
ibration procedure for real world and also risk neutral data. Eberlein and Raible [13] and Eberlein and
Özkan [14] used finite dimensional Lévy processes with exponential moments in some neighborhood of
zero to model the term structure of defaultable forward rates. They generalize the approach of Bielecki and
Rutkowski [1] to defaultable bonds with rating migration. This approach is in the spirit of Heath, Jarrow
and Morton (hereafter HJM) methodology [17]. They assume that real-world defaultable forward rates
dynamics as well as recovery schemes are exogenously specified and they establish existence of an arbi-
trage free model that supports these objects. More precisely, they show that if the intensity matrix process
satisfies the so called "consistency condition" then one can construct a rating migration process and price
processes of defaultable bonds with credit migration that are, under an appropriate measure, local martin-
gales after discounting. The consistency conditions are interpreted as conditions on the intensity matrix of
the rating migration process. We should stress that these conditions do not determine the intensity matrix
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proces uniquely, so actually there can be infinitely many transition matrix processes satisfying those sys-
tems of equations. Neither Bielecki and Rutkowski nor Eberlein and Özkan attempt to generalize the HJM
condition to a condition on the drift term which guarantees that the HJM postulate is satisfied, i.e. that
the discounted bond prices are local martingales. In this paper we do this in the case of defaultable bonds.
We cover all situations of practical importance. The same question in the infinite dimensional case was
considered by Schmidt [27] with Brownian motion as a noise and by Özkan and Schmidt [25] with Lévy
noise and recovery of market value. [27] gives necessary and sufficient conditions for discounted prices
of defaultable bonds to be martingales in the case of rating based recovery of market value and recovery
of treasury value. Özkan and Schmidt’s [25] approach is based on Musiela parameterization and requires
more stringent conditions on the model than ours, since the Itô formula for processes with values in Hilbert
spaces is used. As we notice in Remark 4 their result is not true without some additional assumptions.

In this paper we give the generalized HJM conditions in the case of defaultable bonds and typical
recovery schemes. We consider fractional recovery of market value, fractional recovery of treasury value
and fractional recovery of par value. The multiple default case introduced by Schönbucher [29], which
allows one to consider company reorganization, is discussed as well. From the very beginning we assume
that the Lévy processes may be infinite dimensional. The importance of treating models with an infinite
number of factors was stressed in recent papers of Carmona and Tehranchi [7], Ekeland and Taflin [16],
Cont [8] and Schmidt [27].

In Section 1 we recall basic facts on forward rates driven by Lévy processes and the HJM-type condi-
tion for non-defaultable bonds provided that the market is arbitrage-free. Next, in Section 2, we describe
credit risk models with and without rating migration. The rating classes vary according to a conditional
continuous time Markov chain and the default time is equal to the time of entering the worst rating class.
In the main part (Section 3) we give HJM-type conditions for defaultable bonds with credit migration.
These conditions depend on the form of recovery and the rating migration process. From a structural point
of view, all equations follow a similar pattern, where one has the classical HJM drift condition plus an
additional term, depending on the particular recovery payment. All is proved under a natural assumption
on the default risk-adjusted short-term interest rate (hypothesis (H1)). More precisely, under hypothesis
(H1) we prove that in the general case the HJM postulate is equivalent to the HJM condition. It is worth
mentioning that in a model in which all processes are continuous, we do not need to assume (H1). Namely,
(H1) plus the HJM condition is equivalent to the HJM postulate. We also formulate HJM conditions in
terms of the derivative of the logarithm of the moment generating function of the Lévy noise (Section 4).
These forms are much more useful in applications (see e.g. [20]). In Section 5 we formulate, following [2],
consistency conditions involving the recovery structure, default intensities and bond prices. We prove that
these conditions are equivalent to the HJM type conditions derived in the previous sections. Hence, under
(H1), we can extend and generalize to the case of infinite dimensional Lévy processes the results of [1] and
[14]. The proofs of our results are given in the last section of the paper. The present paper is a revised and
significantly extended version of the preprint [18].

Summing up, the main contributions of the paper are necessary and sufficient conditions (generalized
HJM conditions) for the coefficients in the definition of the forward rates ensuring that the discounted prices
of defaultable bonds are martingales. These conditions are given for all typical recovery schemes and with
infinite dimensional Lévy noise as the source of uncertainty in the dynamics of defaultable forward rates,
which is the most general Lévy noise one can use. Our assumptions on the Lévy processes are weaker than
having exponential moments in some neighborhood of zero, as in [14], [15] and [25].

1 Preliminaries
We will consider processes on a complete probability space (Ω,F ,P). We take Lévy processes with
values in some abstract separable Hilbert space U as the source of uncertainty in a model. Let Z be a
Lévy process, i.e. a càdlàg process with independent and stationary increments and values in U with inner
product denoted by 〈·, ·〉U . Let F0

t = σ(Z(s); s ≤ t) be the σ-field generated by Z(t), t ≥ 0, and Ft be
the completion of F0

t by all sets of P probability zero. It is known that this filtration is right continuous,
so it satisfies the "usual conditions". We can associate with Z(t) a measure of its jumps, denoted by µ, i.e.
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for any A ∈ B(U) such that A ⊂ U\{0} we have

µ([0, t], A) =
∑

0<s≤t

11A(∆Z(s)).

The measure ν defined by
ν(A) = E(µ([0, 1], A))

is called the Lévy measure of the process Z. Stationarity of increments implies that E(µ([0, t], A)) =
tν(A). The Lévy-Khintchine formula shows that the characteristic function of the Lévy process has the
form

Eei〈λ,Z(t)〉U = etψ(λ),

with
ψ(λ) = i〈a, λ〉U −

1
2
〈Qλ, λ〉U +

∫

U

(ei〈λ,x〉U − 1− i〈λ, x〉U11{|x|U≤1}(x))ν(dx),

where a ∈ U , Q is a symmetric non-negative nuclear operator on U , ν is a measure on U with ν({0}) = 0
and ∫

U

(|x|2U ∧ 1)ν(dx) < ∞.

Let b be the Laplace transform of ν restricted to the complement of the ball {y : |y| ≤ 1},

b(u) =
∫

|y|U >1

e−〈u,y〉U ν(dy), (1)

and set
B = {u ∈ U : b(u) < ∞}.

Z has a well known Lévy-Itô decomposition:

Z(t) = at + W (t) + Z0(t),

where

Z0(t) =
∫ t

0

∫

|y|U≤1

y(µ(ds, dy)− dsν(dy)) +
∫ t

0

∫

|y|U >1

yµ(ds, dy),

and W is a Wiener process with values in U and covariance operator Q.
Let r(t), t ≥ 0, be the short rate process and

Bt = e
R t
0 r(σ)dσ.

Let B(t, θ), 0 ≤ t ≤ θ ≤ T ∗, be the market price at time t of a risk-free bond paying 1 at maturity time θ;
T ∗ is a finite horizon of the model. The forward rate curve is a function f(t, θ) defined for t ≤ θ and such
that

B(t, θ) = e−
R θ

t
f(t,s)ds. (2)

It is convenient to assume that once a bond has matured its cash equivalent goes to the bank account. Thus
B(t, θ), the market price at time t of a bond paying 1 at maturity time θ, is also defined for t ≥ θ by the
formula

B(t, θ) = e
R t

θ
r(σ)dσ. (3)

We postulate here the following dynamics for forward rates:

df(t, θ) = α(t, θ)dt + 〈σ(t, θ), dZ(t)〉U , (4)

where for each θ the processes α(t, θ), σ(t, θ), t ≤ θ, are assumed to be predictable with respect to a given
filtration (Ft) and such that the integrals in (4) are well defined. Sometimes we use another form of SDE
for forward rates,

df(t) = α̃(t)dt + σ̃(t)dZ(t), (5)
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where α̃(t) is a function on [0, T ∗] given by α̃(t)(θ) = α(t, θ) and σ̃(t) is a linear operator from U into
L2[0, T ∗] defined by

(σ̃(t)u)(θ) = 〈σ(t, θ), u〉U .

For t > θ we put
α(t, θ) = σ(t, θ) = 0. (6)

So we will assume that for given T ∗, the integrals in the definition of f exist in the sense of the Hilbert
space H = L2[0, T ∗] with scalar product (·, ·). We will regard the coefficients α and σ as, respectively, H-
and L(U,H)-valued predictable processes.

It follows from (4) that for t ≤ θ,

f(t, θ) = f(0, θ) +
∫ t

0

α(s, θ)ds +
∫ t

0

〈σ(s, θ), dZ(s)〉U ,

and for t ≥ θ, according to (6),

f(t, θ) = f(0, θ) +
∫ θ

0

α(s, θ)ds +
∫ θ

0

〈σ(s, θ), dZ(s)〉U .

Thus the process f(t, θ) for t ≥ θ is constant for each θ > 0, say equal to f(θ, θ), and it can be identified
with the short rate process

r(θ) = f(θ, θ) = f(0, θ) +
∫ θ

0

α(s, θ)ds +
∫ θ

0

〈σ(s, θ), dZ(s)〉U .

The HJM postulate states that the discounted bond prices

B̂(t, θ) =
B(t, θ)

Bt

are local martingales for each θ ∈ [0, T ∗]. Since for t > u we have f(t, u) = f(u, u), it follows that

Bt = e
R t
0 f(u,u)du = e

R t
0 f(t,u)du,

and thus the discounted bond prices can be written as

B̂(t, θ) = e−
R θ

t
f(t,u)due−

R t
0 f(t,u)du = e−

R θ
0 f(t,u)du,

and hence the HJM postulate is that the processes B̂(·, θ) , θ ∈ [0, T ∗], given by

B̂(t, θ) = e−
R θ
0 f(t,u)du = e−(f(t),11[0,θ]),

are local martingales. We will assume that the processes Z, α and σ satisfy the following conditions :
A1a: The processes α and σ are predictable and with probability one have bounded trajectories (the bound
may depend on ω).
A1b: For arbitrary r > 0 the function b given by (1) is bounded on {u : |u| ≤ r, b(u) < ∞}.
A2: For all θ ≤ T ∗, P- almost surely,

∫ θ

t

σ(t, v) dv ∈ B (7)

for almost all t ∈ [0, θ].
It is convenient to express the HJM condition in terms of the Laplace exponent of the Lévy process Z,

i.e. of the logarithm of the moment generating function of the process Z, that is, the functional J : U → R
given by

J(u) = −〈u, a〉U +
1
2
〈Qu, u〉U +

∫

{|y|U≤1}

(
e−〈u,y〉U − 1 + 〈u, y〉U

)
ν(dy)

+
∫

{|y|U >1}

(
e−〈u,y〉U − 1

)
ν(dy).
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The following theorem, under other assumptions, goes back to the paper [5] by Björk, Di Massi, Kabanov
and Runggaldier (see also Eberlein and Özkan [14]). We present it following Jakubowski and Zabczyk
[19].
Theorem A. Assume (A1) and (A2). The discounted bond prices are local martingales if and only if the
following HJM-type condition holds:

∫ θ

t

α(t, v)dv = J

( ∫ θ

t

σ(t, v)dv

)
, (8)

for each θ ∈ [0, T ∗] and almost all t ≤ θ.
Using integration by parts and the dynamics of the discounted bond, we obtain

Theorem 1. The processes of discounted price of the bond have the following dynamics:

dB̂(t, θ) = B̂(t−, θ)
(

ā(t, θ)dt

+
∫

U

[
e−〈

R θ
t

σ(t,v)dv,y〉
U − 1

]
(µ(dt, dy)− dtν(dy))−

〈∫ θ

t

σ(t, v)dv, dW (t)

〉

U

)
,

where

ā(t, θ) = −(11[0,θ], α̃(t)) + J(
∫ θ

t

σ(t, v)dv).

Corollary 1. The process of discounted bond price can be written in the following integral form:

B̂(t, θ) = B̂(0, θ) exp
(
−

∫ t

0

(11[0,θ], α̃(s))ds−
∫ t

0

〈∫ θ

s

σ(s, v)dv, dZ(s)

〉

U

)
,

and if the HJM-type condition (8) holds, then

B̂(t, θ) = B̂(0, θ) exp
(
−

∫ t

0

J
( ∫ θ

s

σ(s, v)dv
)
ds−

∫ t

0

〈∫ θ

s

σ(s, v)dv, dZ(s)

〉

U

)
.

In what follows we assume that condition (8) is fulfilled.

2 Description of credit risk models
In the default-free world, by a bond maturing at time θ with face value 1 we mean a financial instrument
whose payoff is 1 at time θ. In a defaultable case we have several variants describing the amount and
timing of so called recovery payment which is paid to bond holders if default has occurred before the
bond’s maturity. If we denote by τ the default time, then, generally speaking, the payoff of the defaultable
bond is as follows:

D(θ, θ) = 11{τ>θ} + 11{τ≤θ} · recovery payment .

If δ is a recovery rate process, then a recovery payment can take different forms (see e.g. [2] and references
there):

• δ(t)D(τ−, θ) Bθ

Bτ
– fractional recovery of market value – at time of default bondholders receive a

fraction of the pre-default market value of the defaultable bond (i.e. of D(τ−, θ)):

D(θ, θ) = 11{τ>θ} + 11{τ≤θ} · δτD(τ−, θ)
Bθ

Bτ
,

where δ(t) is an F- predictable process with values in [0, 1].
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• δ – fractional recovery of Treasury value – a fixed fraction δ of the bond’s face value is paid to
bondholders at the bond’s maturity date θ:

Dδ(θ, θ) = 11{τ>θ} + 11{τ≤θ} · δ.

• δBθ

Bτ
– fractional recovery of par value– a fixed fraction δ of the bond’s face value is paid to bond-

holders at default time τ :
D∆(θ, θ) = 11{τ>θ} + 11{τ≤θ} · δ

Bθ

Bτ
.

Our objective is to derive the HJM drift condition for models with different kinds of recovery and with
migration of credit ratings.

2.1 Models with rating migration
We give a short description of a model with rating migration; for details see Bielecki, Rutkowski [2]. We
assume that the credit rating migration process C1, which is a càdlàg process, is modeled by a conditional
Markov chain relative to F with values in the set of rating classes K = {1, . . . , K}, where state i = 1
represents the highest rank, i = K−1 the lowest rank, and i = K the default event. With state i, i ≤ K−1,
there is associated the pre-default term structure gi. We assume that the instantaneous defaultable forward
rates have dynamics gi(t, θ) given by

dgi(t, θ) = αi(t, θ)dt + 〈σi(t, θ), dZi(t)〉U , i ∈ {1, . . . , K − 1},
where Zi(t) are Lévy processes with values in U . By the Lévy-Itô decomposition, each Zi(t) has the form

Zi(t) = ait + Wi(t) +
∫ t

0

∫

|y|U≤1

y(µi(ds, dy)− dsνi(dy)) +
∫ t

0

∫

|y|U >1

yµi(ds, dy),

where ai ∈ U and µi is the jump measure of Zi. Let Di(t, θ) = e−
R θ

t
gi(t,u),du and denote the discounted

values of Di by D̂i(t, θ) = Di(t,θ)
Bt

. Applying the Itô lemma as in the default free case we have (below Ji

corresponds to Zi in the same way as J corresponds to Z).

Theorem 2. The dynamics of the process D̂i(t, θ) is given by

dD̂i(t, θ) = D̂i(t−, θ)
((

gi(t, t)− f(t, t) + āi(t, θ)
)
dt

+
∫

U

[
e−〈

R θ
t

σi(t,v)dv,y〉
U − 1

]
(µi(dt, dy)− dtνi(dy))−

〈∫ θ

t

σi(t, v)dv, dWi(t)

〉

U

)
,

where āi(t, θ) satisfies

āi(t, θ) = −(11[0,θ], α̃i(t)) + Ji

(∫ θ

t

σi(t, v)dv

)
. (9)

To preserve the interpretation of rating classes, i.e. the fact that higher rated bonds are more expensive
than lower rated ones, it is reasonable to assume that

gK−1(t, θ) > gK−2(t, θ) > . . . > g1(t, θ) > f(t, θ)

for all t ∈ [0, θ] and all θ ∈ [0, T ∗]. This condition implies that inter-rating spreads are positive.
If there are given two filtrations F and G, then the F-conditional infinitesimal generator of the process

C1 describing the credit rating migration at time t given the σ-field Ft has the form

Λ(t) =




λ1,1(t) λ1,2(t) · · · λ1,K−1(t) λ1,K(t)
λ2,1(t) λ2,2(t) · · · λ2,K−1(t) λ2,K(t)

...
...

. . .
...

...
λK−1,1(t) λK−1,2(t) · · · λK−1,K−1(t) λK−1,K(t)

0 0 · · · 0 0
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where the off-diagonal processes λi,j(t), i 6= j, are non-negative processes adapted to F ⊆ G, and the
diagonal elements are negative and determined by off-diagonals

λi,i(t) = −
∑

j∈K\{i}
λi,j(t).

For our purposes we specify G = F ∨ H where F = FẐ ∨ FΛ, Ẑ = (Z,Z1, . . . , ZK) and H = FC1
,

i.e. Ft = F Ẑ
t ∨ FΛ

t , Gt = F Ẑ
t ∨ FΛ

t ∨ FC1

t . A detailed construction of C1 in this case can be found in
Bielecki and Rutkowski [2], [3] or Lando [23].

To describe the credit risk we also need, besides the credit migration process C1 defined above, the
process C2 of the previous ratings. If we denote by τ1, τ2, τ3, . . . the consecutive jump times of the credit
migration process C1, then for t ∈ [τk, τk+1),

C1(t) := C1(τk), C2(t) := C1(τk−1).

We denote by C(t) the two-dimensional credit rating process defined by

C(t) = (C1(t), C2(t)).

Therefore the pre-default term structure depending on C1(t) is given by the formula

g(t, u) = gC1(t)(t, u) = 11{C1(t)=1}g1(t, u) + . . . + 11{C1(t)=K−1}gK−1(t, u).

We sum up to K − 1, since the last K-th rating corresponds to the default event

τ = inf
{
t > 0 : C1(t) = K

}
.

It is obvious that each recovery payment depends on the credit rating before default, i.e.

δ(t) = δC2(t)(t) = 11{C2(t)=1}δ1(t) + 11{C2(t)=2}δ2(t) + . . . + 11{C2(t)=K−1}δK−1(t),

where δi is a recovery payment connected with the i-th rating.
We make a standard assumption on the relationship between short term spread, recovery and the intensity
of migration into the default state for defaultable bonds (see e.g. Jarrow et al. [22], Duffie and Singleton
[10]).
Hypothesis (H1):

gi(t, t)− f(t, t) = λi,K(t)(1− δi(t)), i = 1, . . . , K − 1, t < T ∗ (10)

so the intensity of migration from rating i into the default state K is equal to the short term credit spread for
rating i divided by one minus recovery from rating i. Of course, this does not mean that the forward rates
f, g are strongly linked. It only means that we cannot specify arbitrarily the intensities of the migration
into the default state K if we have specified f , g and the recovery δ. Of course, (10) implies

gC1(t)(t, t) = f(t, t) + (1− δC1(t)(t))λC1(t),K(t), t < T ∗, (11)

Hypothesis (H1) is natural, which can be seen from the following facts.

Remark 1. If the price of a defaultable bond with fractional recovery of market value is given in a tradi-
tional way (see Duffie and Singleton [11]), then it is given by the intensity proces λ and the risk-free short
term rate r in the following way:

11{τ>t}D̂(t, θ) = 11{τ>t}E(e−
R θ

t
[r(u)+(1−δ(u))λ(u)]du|Ft).

Then, for bounded λ and r, we have

g1(t, t)
∆=− lim

θ↓t
∂

∂θ
lnE(e−

R θ
t

[r(u)+(1−δ(u))λ(u)]du|Ft) = − lim
θ↓t

∂
∂θE(e−

R θ
t

[r(u)+(1−δ(u))λ(u)]du|Ft)

E(e−
R θ

t
[r(u)+(1−δ(u))λ(u)]du|Ft)

= − lim
θ↓t

E( ∂
∂θ e−

R θ
t

[r(u)+(1−δ(u))λ(u)]du|Ft)

E(e−
R θ

t
[r(u)+(1−δ(u))λ(u)]du|Ft)

= lim
θ↓t

E([rθ + (1− δθ)λθ]e−
R θ

t
[r(u)+(1−δ(u))λ(u)]du|Ft)

E(e−
R θ

t
[r(u)+(1−δ(u))λ(u)]du|Ft)

= r(t) + (1− δ(t))λ(t),

so (10) holds.
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For models with ratings we can make a similar observation. We illustrate this in the next propositions
where we assume that the ex-dividend price of a bond has a natural form (12) (see e.g. Jakubowski and
Niewęgłowski [21]) and we demonstrate that this form of prices implies (10).

Proposition 1. Let a market of defaultable bonds with fractional recovery of par value be such that the
ex-dividend price D of a bond maturing at θ > 0 is, on the set {Ct = i}, i 6= K, equal to

D(t, θ)1{Ct=i} = 1{Ct=i}
K−1∑

j=1

E

(
e−
R θ

t
r(v)dvpi,j(t, θ) + δj

∫ θ

t

e−
R u

t
r(v)dvpi,j(t, u)λj,K(u)du|Ft

)
(12)

for t < θ, where δj is the recovery payment for rating j and p(t, u) is the solution to the (random)
conditional Kolmogorov forward equation

dp(t, u) = p(t, u)Λ(u)du; p(t, t) = I,

with the intensity matrix process Λ. Assume that r and Λ are bounded processes. Then

gi(t, t) = r(t) + (1− δi)λi,K(t),

for i < K and t < θ.

As we announced in the Introduction, the proof of this proposition, as well as other proofs, are given in
the last section of the paper.

It is worth noticing that the same conclusions can be drawn for other kinds of recovery. Next, we
assume that the credit migration process and bond price processes have no common jumps.
Hypothesis (H2): For the consecutive jump times (τk)k≥0 of the credit migration process and for all
θ ∈ [0, T ∗] we have

P(∆B(τk, θ) 6= 0) = 0, P(∆Di(τk, θ) 6= 0) = 0, ∀i = 1, . . . , K − 1.

Remark 2. For the credit migration process (C1(t))t∈[0,T∗] constructed in Bielecki and Rutkowski [2],
[3] hypothesis (H2) is fulfilled. This fact follows from Proposition 2 below.

We also impose the following natural assumption (see [2], Blanchet-Scalliet and Jeanblanc [4]):
Hypothesis (H3): For given filtrations F and G, with F ⊆ G, every F-local martingale is a G-local
martingale.

In the rest of the paper we assume (H1), (H2) and (H3) for all semimartingales under consideration.

2.2 Models without rating migration
We recall the classical description of such models. The default time τ is aG- stopping time, andG = F∨H,
where F = (Ft)t≥0 and H = (Ht)t≥0 are filtrations generated by observing the market and observing the
default time, i.e. Ht = σ({τ ≤ u} : u ≤ t), respectively. Let (H(t))t≥0 be the default indicator process,
i.e.

H(t) = 11{τ≤t}. (13)

We assume that τ admits an F-martingale intensity (λt)t≥0 which is an F-adapted process such that Mt

given by the formula

Mt = H(t)−
∫ t∧τ

0

λudu = H(t)−
∫ t

0

(1−H(u))λudu (14)

follows a G-martingale (see Bielecki and Rutkowski [1]).
Since we allow for enlarging the filtration, we need some additional assumptions under which an F-

Lévy process is aG-Lévy process. So we assume hypothesis (H3) holds for filtrations F andG. In Bielecki
and Rutkowski [1] hypothesis (H3) is also called condition (M.1) or Martingale Invariance Property of F
with respect to G. In our case, if τ is an F-stopping time, then G = F by definition, so hypothesis (H3)
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holds. If τ is not an F-stopping time, then hypothesis (H3) is equivalent to conditional independence of the
σ-fields F∞ and Gt given Ft for any t ∈ R+ (see Lemma 6.1.1 in Bielecki and Rutkowski [1]).
Moreover, if τ is not an F-stopping time, the assumption that τ has intensity can be given in an alternative
form, through the assumption that the process Ft := P(τ ≤ t|Ft) is increasing and absolutely continuous
w.r.t. Lebesgue measure. This means that there exists a nonnegative F-adapted process ft such that

Ft := P(τ ≤ t | Ft) =
∫ t

0

fudu.

If we assume that Ft < 1, t ≥ 0, then we can find an F-adapted process (λt)t≥0 such that

1− Ft = P(τ > t | Ft) = e−
R t
0 λudu. (15)

This process (λt)t≥0 is given by the formula

λt :=
ft

1− Ft
, (16)

and one can easily check that (λt)t≥0 is the F-martingale intensity of τ . Moreover,

P(τ > T | Gt) = 11{τ>t}E(e−
R T

t
λudu|Ft).

If
P(τ ≤ t | Ft) = P(τ ≤ t | F∞) ∀t ∈ R+, (17)

then Ft is increasing. Bielecki and Rutkowski [1] show that this condition (called Condition (F.1a)) is
equivalent to hypothesis (H3) (see Lemma 6.1.2 in [1]).

Example 1. Assume that τ is a random time with density f > 0 and probability distribution F independent
of the σ-field F. Then the F-intensity of τ is a deterministic function given by

λt =
ft

1− Ft
.

Indeed, independence implies P(τ ≤ t|Ft) = P(τ ≤ t) = Ft. Moreover M given by (14) is a G-
martingale, so λt is an F-martingale intensity.

Example 2 (Canonical construction of default time, see section 6.5 in [1] ). If the probability space is
sufficiently rich to support a random variable U uniformly distributed on [0, 1] and independent of F, then
for a given F adapted nonnegative process (λt)t≥0 satisfying

∫ +∞
0

λudu = +∞ we can construct a default
time τ with intensity (λt)t≥0 by the formula

τ := inf
{
t ≥ 0 : e−

R t
0 λudu ≤ U

}
.

One can easily show that (λt)t≥0 is the F-intensity of τ (formula (15) holds), and hence also the F-
martingale intensity. Under this construction (17) holds, which implies hypothesis (H3).

We also have

Proposition 2. Let (Xt) be an F-semimartingale, and τ a random time given by the canonical construction
with (λu)u a strictly positive F-intensity of τ . Then

P
(
∆Xτ 6= 0

)
= 0.

We do not want to assume that τ is given through the canonical construction, so we assume (H3)
throughout the rest of the paper. But we emphasize that if τ is given through the canonical construction,
then Hypothesis (H3) is redundant.

Remark 3. This model is a special case of the model with rating migration. Indeed, taking K = 2,
C(t) = 1 + H(t) and the intensity λ given by (16), we obtain the previous model (for details see [2], p.
396). The conditional generator of C is of the form

Λ(t) =
(−λt λt

0 0

)
.
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3 The HJM conditions for credit risk
We consider three types of recovery payment described in the previous section and fractional recovery with
multiple defaults. Since we investigate them separately, we use the same notation D for price processes
with different recovery payments (so D has different meanings in different subsections). Let us recall that
all results are obtained under assumptions (A1), (A2) for all Lévy processes considered and (H1), (H2) and
(H3).

3.1 Models with rating migration
3.1.1 Fractional recovery of market value with rating migration

Let us focus on defaultable bonds with fractional recovery of market value D(t, θ). This kind of bond pays
1 unit of cash if default has not occurred before maturity θ, i.e., if the default time satisfies τ > θ, and
if the bond defaults before θ we have recovery payment at the default time which is a fraction δ(t) of its
market value just before the default time, so the recovery payment is equal to δ(τ)D(τ−, θ). Therefore, in
the case of rating migration, the price process of the defaultable bond with credit migration and fractional
recovery of market value should satisfy

D(θ, θ) = 11{τ>θ} + 11{τ≤θ}δC2(τ)(τ)DC2(τ)(τ−, θ)
Bθ

Bτ
,

where τ = inf{t > 0 : C1(t) = K}. Hence we postulate that for t ≤ θ

D(t, θ) = 11{C1(t)6=K}DC1(t)(t, θ) + 11{C1(t)=K}δC2(τ)(τ)DC2(τ)(τ−, θ)
Bt

Bτ

=
K−1∑

i=1

11{C1(t)6=K}11{C1(t)=i}Di(t, θ) +
K−1∑

i=1

11{C1(t)=K}11{C2(t)=i}δi(τ)Di(τ−, θ)
Bt

Bτ
.

For i 6= j we define an auxiliary process Hi,j by the formula

Hi,j(t) =
∑

0<u≤t

Hi(u−)Hj(u), ∀t ∈ R+.

This process Hi,j counts the number of jumps of the migration process C1(t) from state i to state j up to
time t. Using the processes Hi and Hi,K we can write D in the form

D(t, θ) =
K−1∑

i=1

(
Hi(t)Di(t, θ) + Hi,K(t)δi(τ)Di(τ−, θ)

Bt

Bτ

)
. (18)

Theorem 3. The processes of discounted prices of a defaultable bond with credit migration and fractional
recovery of market value are local martingales if and only if the following condition holds:
for all θ ∈ [0, T ∗] and for almost all t ≤ θ on the set {τ > t}
∫ θ

t

αC1(t)(t, v)dv = JC1(t)

( ∫ θ

t

σC1(t)(t, v)dv

)
+

K−1∑

i=1,i6=C1(t)

[
Di(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),i(t). (19)

It is worth pointing out that from the proof of Theorem 3 we obtain immediately

Theorem 4. If the processes Di, āi, Λ have continuous trajectories then the HJM postulate is equivalent
to the following two conditions: (11) and the HJM-type condition (19).

So in this case the HJM postulate implies the HJM-type condition (19) without assuming hypothesis
(H1). Theorem 4 appears for the first time in [27], but in terms of the derivative of the Laplace exponent (see
points i) and ii) of Theorem 10). The same conclusion is true for other types of recovery with analogous
proofs, but we do not formulate these facts as separate statements.

Remark 4. Theorem 4 is not true in the case of Lévy noise: see an example in the last section. Therefore,
Theorem 4.2 in [25], which was proved under the stronger assumption than ours (since in the proof the Itô
formula for processes with values in Hilbert spaces is used) is not true without some additional assumption.
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3.1.2 Fractional recovery of Treasury value with rating migration

The holder of a defaultable bond with fractional recovery of Treasury value receives 1 if there is no default
by θ, and if default has occurred before maturity θ, then a fixed amount δ ∈ [0, 1] is paid to the bondholder
at maturity. Therefore, since paying δ at maturity θ is equivalent to paying δB(τ, θ) at the default time τ ,
in the case of fractional recovery of Treasury value with rating migration we have

D(θ, θ) = 11{τ>θ} + 11{τ≤θ}δC2(τ),

hence

D(t, θ) = 11{C1(t)6=K}DC1(t)(t, θ) + 11{C1(t)=K}δC2(t)B(t, θ)

=
K−1∑

i=1

11{C1(t) 6=K}11{C1(t)=i}Di(t, θ) +
K−1∑

i=1

11{C1(t)=K}11{C2(t)=i}δiB(t, θ)

or, equivalently,

D(t, θ) =
K−1∑

i=1

(
Hi(t)Di(t, θ) + Hi,K(t)δiB(t, θ)

)
. (20)

Theorem 5. The processes of discounted prices of a defaultable bond with fractional recovery of Treasury
value are local martingales if and only if the following condition holds:
for all θ ∈ [0, T ∗] and for almost all t ≤ θ on the set {τ > t}

∫ θ

t

αC1(t)(t, u)du = JC1(t)

( ∫ θ

t

σC1(t)(t, v)dv

)
+ δC1(t)

[
B(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),K(t) (21)

+
K−1∑

j=1,j 6=C1(t)

[
Dj(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),j(t).

3.1.3 Fractional recovery of par value with rating migration

In the case of fractional recovery of par value the holder of a defaultable bond receives 1 unit cash if there
is no default prior to maturity and if the bond has defaulted a fixed fraction δ of the par value is paid at the
default time. Therefore the payoff at maturity has the form

D(θ, θ) = 11{τ>θ} + 11{τ≤θ}δC2(t)
Bθ

Bτ
,

hence

D(t, θ) = 11{C1(t)6=K}DC1(t)(t, θ) + 11{C1(t)=K}δC2(t)
Bt

Bτ

=
K−1∑

i=1

11{C1(t)6=K}11{C1(t)=i}Di(t, θ) +
K−1∑

i=1

11{C1(t)=K}11{C2(t)=i}δi
Bt

Bτ

or, equivalently,

D(t, θ) =
K−1∑

i=1

(
Hi(t)Di(t, θ) + Hi,K(t)δi

Bt

Bτ

)
.

Theorem 6. The processes of discounted prices of defaultable bond with fractional recovery of par value
are local martingales if and only if the following condition holds:
for all θ ∈ [0, T ∗] and for almost all t ≤ θ on the set {τ > t}

∫ θ

t

αC1(t)(t, u)du =JC1(t)

( ∫ θ

t

σC1(t)(t, v)dv

)
+ δC1(t)

[
1

DC1(t)(t−, θ)
− 1

]
λC1(t),K(t) (22)

+
K−1∑

j=1,j 6=C1(t)

[
Dj(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),j(t).
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3.1.4 Fractional recovery with multiple defaults and rating migration

The HJM models with fractional recovery with multiple defaults were introduced by Schönbucher [29].
This model describes a situation where a company that has had to declare default is not liquidated but
is restructured. After restructuring the firm may again default in the future. Schönbucher investigated
defaultable bonds whose face value is reduced by a fraction Lτi at each default time τi, where Ls is an
F-predictable process taking values in [0, 1]. Therefore, a holder of such a defaultable bond receives, at
maturity θ,

Dm(θ, θ) =
∏

τi≤θ

(1− Lτi).

If we introduce a process Vt by the formula

Vt =
∏

τi≤t

(1− Lτi
),

then Dm(θ, θ) = Vθ and for t ≤ θ,

Dm(t, θ) = Vte
− R θ

t
g1(t,u)du = VtD1(t, θ). (23)

Moreover, we assume that τi are jump times of a Cox process Nt (doubly stochastic Poisson process) with
stochastic intensity process (γt)t≥0. It can be shown that Vt solves the following SDE:

dVt = −Vt−LtdNt, (24)

and the process

Mt = Nt −
∫ t

0

γudu (25)

is a G-martingale (Lando [23]).
In this paper we add a rating migration process to the model. We assume that the default times are

jumps of a Cox process with intensity (γt)t≥0. Since the company is restructured after default, the rating
migration process has no absorbing state and for the rating migration process C we take a càdlàg process,
which is an F-conditional Markov chain with values in the set {1, . . . , K − 1} without absorbing state.
Moreover, we assume that the process describing fractional losses does not depend on the credit migration
process.

Remark 5. Note that 1 − Lt can be interpreted as a recovery process and therefore we will denote it by
δ(t). Thus δ(t) = 1− Lt.

Thus the bond price process should satisfy the following terminal condition:

D(θ, θ) = Vθ =
∏

τi≤θ

(1− Lτi) =
∏

τi≤θ

δτi ,

and before maturity it should be given by the formula

D(t, θ) = VtDC1(t)(t, θ) = Vt

K−1∑

i=1

Hi(t)Di(t, θ).

Remark 6. In this case the filtration G is specified as G = F ∨ FN ∨ FC , i.e. Gt = Ft ∨ FN
t ∨ FC

t , and
hypothesis (H1), i.e. formula (10), takes the form

gC1(t)(t, t) = f(t, t) + (1− δ(t))γt .

Theorem 7. The discounted prices of a bond with fractional recovery with multiple defaults and rating
migration are local martingales if and only if the following condition holds:
for all θ ∈ [0, T ∗] and for almost all t ≤ θ on the set {Vt− > 0}

∫ θ

t

αC1(t)(t, v)dv = JC1(t)

( ∫ θ

t

σC1(t)(t, v)dv

)
+

K−1∑

j=1,j 6=C1(t)

[
Dj(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),j(t) .

(26)
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3.2 Models without rating migration
As we know, taking K = 2 in the model with rating migration we obtain results for models of defaultable
bonds with one credit rate, so for models without rating migration. To give a clear picture of markets
with defaultable bonds, and for the sake of completeness, we formulate the HJM drift conditions for these
models:

Theorem 8. The discounted prices of a defaultable bond are local martingales if and only if the following
condition holds for all θ ∈ [0, T ∗] and for almost all t ≤ θ on the set {τ > t}:
1) for fractional recovery of market value

∫ θ

t

α1(t, v)dv = J1

( ∫ θ

t

σ1(t, v)dv

)
. (27)

2) for fractional recovery of Treasury value

∫ θ

t

α1(t, v)dv = J1

( ∫ θ

t

σ1(t, v)dv

)
+ δ

(
B(t−, θ)
D1(t−, θ)

− 1
)

λt. (28)

3) for fractional recovery of par value

∫ θ

t

α1(t, v)dv = J1

( ∫ θ

t

σ1(t, v)dv

)
+ δ

(
1

D1(t−, θ)
− 1

)
λt. (29)

Theorem 9. The discounted prices of a defaultable bond with multiple defaults and fractional recovery
are local martingales if and only if the following condition holds:
for all θ ∈ [0, T ∗] and for almost all t ≤ θ on the set {Vt− > 0},

∫ θ

t

α1(t, v)dv = J1

( ∫ θ

t

σ1(t, v)dv

)
. (30)

4 The HJM condition in terms of the derivative of the Laplace expo-
nent

If the derivative of the Laplace exponent exists, then the HJM conditions have simpler forms. To obtain
these forms we use some facts on such derivatives, including

Lemma 1. Let G be a functional defined on an open subset B1 of U , of the form

G(x) =
∫

U

(
e−〈x,y〉U − 1 + 11|y|U≤1(y)〈x, y〉U

)
ν(dy),

where ν is a Lévy measure which has exponential moments
∫

{|y|U >1}
e〈c,y〉U ν(dy) < +∞ (31)

for all c ∈ B1. Then G is differentiable at each x ∈ B1 and

DG(x) = −
∫

U

(
e−〈x,y〉U − 11|y|U≤1(y)

)
y ν(dy).

The proof is straightforward. We use the existence of exponential moments of the form (31) for all
c ∈ B1.

Hence, for models with ratings, after straightforward calculations we obtain the HJM conditions in
terms of the derivatives of the Laplace exponents Ji, i = 1, 2, . . . , k − 1.
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Theorem 10. Assume that for i = 1, 2, . . . ,K − 1
∫

{|y|≥1}
e−〈u,y〉U νi(dy) < ∞ (32)

for all u from some neighborhood of the set in which
∫ θ

t
σi(t, v)dv takes values. Then

i) Condition (19) for fractional recovery of market value and condition (26) for fractional recovery with
multiple defaults have the form

αC1(t)(t, θ) =
〈
DJC1(t)

( ∫ θ

0

σC1(t)(t, v)dv

)
, σC1(t)(t, θ)

〉
U

+
K−1∑

i=1,i 6=C1(t)

λC1(t),i(t)
(
gC1(t)(t−, θ)− gi(t−, θ)

)
e
R θ

t
(gC1(t)(t−,u)−gi(t−,u))du.

ii) Condition (21) for fractional recovery of Treasury value has the form

αC1(t)(t, θ) =
〈
DJC1(t)

( ∫ θ

0

σC1(t)(t, v)dv

)
, σC1(t)(t, θ)

〉
U

+
K−1∑

i=1,i6=C1(t)

λC1(t),i(t)
(
gC1(t)(t−, θ)− gi(t−, θ)

)
e
R θ

t
(gC1(t)(t−,u)−gi(t−,u))du

+ δC1(t)λC1(t),K

(
gC1(t)(t−, θ)− f(t−, θ)

)
e
R θ

t
(gC1(t)(t−,u)−f(t−,u))du.

iii) Condition (22) for fractional recovery of par value has the form

αC1(t)(t, θ) =
〈
DJC1(t)

( ∫ θ

0

σC1(t)(t, v)dv

)
, σC1(t)(t, θ)

〉
U

+
K−1∑

i=1,i6=C1(t)

λC1(t),i(t)
(
gC1(t)(t−, θ)− gi(t−, θ)

)
e
R θ

t
(gC1(t)(t−,u)−gi(t−,u))du

+ δC1(t)λC1(t),KgC1(t)(t−, θ)e
R θ

t
gC1(t)(t−,u)du.

For infinite dimensional Brownian motion points i) and ii) of Theorem 10 were proved in [27]. As a
simple consequence of Theorem 10 we obtain

Corollary 2. Under the assumption of Theorem 10 on J1, the conditions for models without ratings have
a simpler form, namely:
i) Condition (27) for fractional recovery of market value has the form

α1(t, θ) =
〈
DJ1

( ∫ θ

0

σ1(t, v)dv

)
, σ1(t, θ)

〉
U

.

ii) Condition (28) for fractional recovery of Treasury value has the form

α1(t, θ) =
〈
DJ1

( ∫ θ

0

σ1(t, v)dv

)
, σ1(t, θ)

〉
U

+δλt

(
g1(t−, θ)− f(t−, θ)

)
e
R θ

t
(g1(t−,u)−f(t−,u))du.

iii) Condition (29) for fractional recovery of par value has the form

α1(t, θ) =
〈
DJ1

( ∫ θ

0

σ1(t, v)dv

)
, σ1(t, θ)

〉
U

+ δλtg1(t−, θ)e
R θ

t
g1(t−,u)du.
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5 Comparison of consistency conditions and HJM conditions
In this section we investigate the relationships between consistency conditions formulated by Bielecki and
Rutkowski and the HJM conditions introduced in the previous section. The papers [1] and [14] provide an
exogenously specified term structure of defaultable forward rates corresponding to a given finite collection
of credit ratings and then the authors look for an arbitrage free model that supports these objects. They
are interested in whether there exists a rating migration process such that defaultable bond price processes
have prespecified defaultable forward rates. They require this system of prices to be consistent in the sense
that the discounted defaultable price processes are local martingales under an appropriately chosen equiv-
alent probability measure. They provide conditions for the intensity matrix processes which guarantee this
kind of "consistency", which means that the HJM postulate is satisfied. Hence the "consistency condition"
should be related in some way to the HJM drift-condition derived in the previous section. Now we investi-
gate this relation. First, note that the consistency conditions in Bielecki and Rutkowski [1] and Eberlein and
Özkan [14] are given under a real-world probability measure, and our HJM conditions are related to a risk-
neutral world. So we formulate consistency conditions assuming that we are in a risk-neutral world. We
start with the case of fractional recovery of market value with rating migration. We say that the consistency
condition (cf. [2], [14]) holds if the equalities

K−1∑

i=1,i6=C1(t)

[(
Di(t−, θ)−DC1(t)(t−, θ)

)
λC1(t),i(t)

]
+ (33)

+(δC1(t)(t)DC1(t)(t−, θ)−DC1(t)(t−, θ))λC1(t),K(t)

+
(
gC1(t)(t, t)− f(t, t) + āC1(t)(t, θ)

)
DC1(t)(t−, θ) = 0

are satisfied on the set {C1(t) 6= K} for all θ ∈ [0, T ∗] and all t ≤ θ. We recall that āi(t, θ) is defined by
(9).

The following theorem states that the consistency condition and HJM type condition are equivalent
under Hypothesis (H1).

Theorem 11. Assume that Hypothesis (H1) holds. For defaultable bonds with credit migration and frac-
tional recovery of market value the consistency condition (33) holds if and only if the HJM type condition
(19) holds.

This theorem allows us to generalize, under (H1), the results of [1] and [14] to the case of infinite
dimensional Lévy processes.

Corollary 3. Assume that Hypothesis (H1) holds. If the consistency condition (33) holds, then the market
is arbitrage free.

Moreover, we also have an inverse implication:

Corollary 4. Assume that Hypothesis (H1) holds. If the HJM postulate is satisfied, then the consistency
condition (33) holds.

In the case of other kinds of recoveries we have a similar situation although consistency conditions have
a slightly different form. For fractional recovery of treasury value with rating migration the consistency
condition is of the form

K−1∑

j=1,j 6=C1(t)

[
(Dj(t−, θ)−DC1(t)(t−, θ))λC1(t),j(t)

]
(34)

+(δC1(t)B(t−, θ)−DC1(t)(t−, θ))λC1(t),K(t)

+
(
gC1(t)(t, t)− f(t, t) + āC1(t)(t, θ)

)
DC1(t)(t−, θ) = 0

on the set {C1(t) 6= K} for all θ ∈ [0, T ∗] and all t ≤ θ.
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In the case of fractional recovery of par value with rating migration the consistency condition has the form

K−1∑

i=1,i 6=C1(t)

[(
Di(t−, θ)−DC1(t)(t−, θ)

)
λC1(t),i(t)

]
+ (35)

(δC1(t)(t)−DC1(t)(t−, θ))λC1(t),K(t) +
(
gC1(t)(t, t)− f(t, t) + āC1(t)(t, θ)

)
DC1(t)(t−, θ) = 0.

In the case of fractional recovery with multiple defaults with rating migration the consistency condition has
the form

K−1∑

i=1,i6=C1(t)

[(
Di(t−, θ)−DC1(t)(t−, θ)

)
λC1(t),i(t)

]
+ (36)

+(δtDC1(t)(t−, θ)−DC1(t)(t−, θ))λt

(
gC1(t)(t, t)− f(t, t) + āC1(t)(t, θ)

)
DC1(t)(t−, θ) = 0.

Arguing as in Theorem 11 we obtain

Theorem 12. Assume that Hypothesis (H1) holds. Then
i) The HJM-type condition (21) for defaultable bonds with credit migration and fractional recovery of
treasury value is equivalent to the consistency condition (34) .
ii) The HJM-type condition (22) for defaultable bonds with credit migration and fractional recovery of par
value is equivalent to the consistency condition (35).
iii) The HJM-type condition (26) for defaultable bonds with credit migration and multiple defaults with
fractional recovery is equivalent to the consistency condition (36).

It is worth noticing that we can formulate and prove results analogous to those in Corollaries 3 and 4
for all kinds of recoveries. We have just shown that if Hypothesis (H1) holds then HJM type conditions
are equivalent to equalities known as consistency conditions. We should stress however that Bielecki and
Rutkowski [1] and also Eberlein and Özkan [14] treated these conditions as conditions on the intensity
matrix process. They show that if we specify a real-world dynamics of defaultable forward rates, and then
construct a migration process with intensity matrix satisfying the "consistency condition", then we obtain
an arbitrage free model of defaultable bonds. Note that if we specify the transition intensity matrix then we
cannot specify the volatilities arbitrarily. More precisely, this means that if the transition intensity matrix
is specified and we are in an arbitrage free framework then we calculate prices (conditional prices, i.e. on
the sets {Ct = i}) and then extract from them the defaultable forward rates, to finally get the volatilities.
In our framework hypothesis (H1) gives intensities of migration to the default state, and by specifying the
volatilities and then choosing λi,j for j 6= K in such a way that the HJM condition holds we have specified
a risk-neutral dynamics of defaultable forward rates.

6 Proofs
In what follows we use the following facts from Bielecki and Rutkowski [2] (see also [26], [6]).
If Hi(t) = 11{i}(C1(t)), then

Mi(t) = Hi(t)−
∫ t

0

λC1(u),i(u)du

is a G-martingale. Recall that

Hi,j(t) =
∑

0<u≤t

Hi(u−)Hj(u), ∀t ∈ R+.

For arbitrary i, j ∈ K, i 6= j, the processes

Mi,j(t) = Hi,j(t)−
∫ t

0

λi,j(u)Hi(u)du = Hi,j(t)−
∫ t

0

λC1(u),j(u)Hi(u)du
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and

MK(t) = HK(t)−
∫ t

0

K−1∑

i=1

λi,KHi(u)du = HK(t)−
∫ t

0

λC1(u),K(1−HK(u))du

are G-martingales.
Using these facts and assumption (H2) we obtain very useful representations of d(Hi(t)

Di(t,θ)
Bt

):

d
(
Hi(t)

Di(t, θ)
Bt

)
= d(Hi(t))

Di(t−, θ)
Bt

+ Hi(t−)d
(Di(t, θ)

Bt

)
+ d

[
Hi(·), Di(·, θ)

B·

]c

t︸ ︷︷ ︸
=0

+∆Hi(t)∆
Di(t, θ)

Bt︸ ︷︷ ︸
=0

= d(Hi(t))
Di(t−, θ)

Bt
+ Hi(t−)d

(Di(t, θ)
Bt

)
. (37)

Since the process Mi(t) = Hi(t)−
∫ t

0
λC1(u),i(u)du is a G-martingale, using (37) we obtain

d
(
Hi(t)

Di(t, θ)
Bt

)
=

Di(t−, θ)
Bt

(
dMi(t) + λC1(t),i(t)dt + Hi(t−)(gi(t, t)− f(t, t) + āi(t, θ))dt

+ Hi(t−)
∫

U

[
e〈
R θ

s
σi(s,v)dv,y〉

U − 1
]
(µi(dt, dy)− dtνi(dy))−Hi(t−)

〈∫ θ

s

σi(s, v)dv, dWi(t)

〉

U

)
.

(38)

Proof of Proposition 1. Let Di(t, θ) be the price process on the set {Ct = i}, i.e.

Di(t, θ) := D(t, θ)1{Ct=i} =
K−1∑

j=1

E

(
e−
R θ

t
rvdvpi,j(t, θ) + δj

∫ θ

t

e−
R u

t
rvdvpi,j(t, u)λj,K(u)du|Ft

)
.

Obviously,

gi(t, t) := − lim
θ↓t

∂

∂θ
ln Di(t, θ) = − lim

θ↓t

∂
∂θ Di(t, θ)
Di(t, θ)

. (39)

First note, by definition of Di, that
lim
θ↓t

Di(t, θ) = 1

for i 6= K. Let

Ai,j(t, θ) := e−
R θ

t
rvdvpi,j(t, θ), Bi,j(t, θ) := δj

∫ θ

t

e−
R u

t
rvdvpi,j(t, u)λj,K(u)du.

Then

∂

∂θ
Di(t, θ) =

K−1∑

j=1

E
(

∂

∂θ
Ai,j(t, θ) +

∂

∂θ
Bi,j(t, θ)|Ft

)

since r and Λ are bounded processes. Next we calculate the derivatives using the conditional Kolmogorov
forward equation for P (t, θ), and letting θ ↓ t we obtain

lim
θ↓t

∂

∂θ
Ai,j(t, θ) = −rt%i,j +

K∑

k=1

%i,kλk,j(t) = −rt%i,j + λi,j(t), lim
θ↓t

∂

∂θ
Bi,j(t, θ) = δj%i,jλj,K(t),

where %i,j denotes the Kronecker delta. Therefore, by passing to the limit inside the conditional expectation
we have

lim
θ↓t

∂

∂θ
Di(t, θ) = −rt +

K−1∑

j=1

λi,j(t) + δiλi,K(t) = −rt − (1− δi)λi,K(t),

since
∑K−1

j=1 λi,j(t) = −λi,K(t). This and (39) complete the proof.
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Proof of Proposition 2. Let σ be a jump time of (Xt), and τ be a random time given by the canonical
construction. Since e−

R σ
0 λudu is Fσ−measurable and U is uniformly distributed on [0, 1] and independent

of Fσ we obtain

P(τ = σ) = P
(
e−
R τ
0 λudu = e−

R σ
0 λudu

)
= P

(
U = e−

R σ
0 λudu

)

= E
(
E

(
11{U=e−

Rσ
0 λudu}

∣∣∣Fσ

))
= E

(
E

(
11{U=x}

)∣∣∣
x=e−

Rσ
0 λudu

)
= 0.

Since a semimartingale is a càdlàg process, the set of jump times of X is countable, so

P
(
∆Xτ 6= 0

)
= P

( ⋃

n≥1

{τ = σn}
)
≤

∞∑
n=0

P(τ = σn) = 0.

Proof of Theorem 3. By (18),

d
(D(t, θ)

Bt

)
=

K−1∑

i=1

(
d
(
Hi(t)

Di(t, θ)
Bt

)
+ d

(
Hi,K(t)δi(τ)

Di(τ−, θ)
Bτ

))
. (40)

The first term in this sum is given by (38), and the second has the form

d
(
Hi,K(t)δi(τ)

Di(τ−, θ)
Bτ

)
= δi(t)

Di(t−, θ)
Bt

d
(
Hi,K(t)

)
.

Since the process Mi,K(t) = Hi,K(t)− ∫ t

0
λi,K(u)Hi(u)du is a G-martingale, we have

δi(t)
Di(t−, θ)

Bt
d
(
Hi,K(t)

)
=

Di(t−, θ)
Bt

δi(t)dMi,K(t) +
Di(t−, θ)

Bt
δi(t)λi,K(t)Hi(t)dt.

Combining these results we see that the drift term I of (40) is given by

I(t, θ) =
∫ t

0

K−1∑

i=1

Hi(s)
Di(s−, θ)

Bs
(gi(s, s)− f(s, s) + āi(s, θ) + δi(s)λi,K(s))ds

+
∫ t

0

K−1∑

i=1

Di(s−, θ)
Bs

λC1(s),i(s)ds (41)

=
∫ t

0

(1−HK(s))
DC1(s)(s−, θ)

Bs
(gC1(s)(s, s)− f(s, s) + āC1(s)(s, θ) + δC1(s)(s)λi,K(s))ds

+
∫ t

0

K−1∑

i=1

Di(s−, θ)
Bs

λC1(s),i(s)ds. (42)

Since DC1(s) > 0 and

K−1∑

i=1

Di(s−, θ)
DC1(s)(s−, θ)

λC1(s),i(s) =
K−1∑

i=1,i6=C1(s)

Di(s−, θ)
DC1(s)(s−, θ)

λC1(s),i(s) + λC1(s),C1(s)(s)

=
K−1∑

i=1,i6=C1(s)

[
Di(s−, θ)

DC1(s)(s−, θ)
− 1

]
λC1(s),i(s)− λC1(s),K(s),

we can split I into two parts: I1(s), independent of θ, and I2(s, θ), depending on both s and θ, i.e.

I(t, θ) =
∫ t

0

(1−HK(s))
DC1(s)(s−, θ)

Bs
(I1(s) + I2(s, θ))ds,
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where

I1(s) =
(

gC1(s)(s, s)− f(s, s)− (1− δC1(s)(s))λC1(s),K(s)
)

,

and

I2(s, θ) =
(

āC1(s)(s, θ) +
K−1∑

i=1,i 6=C1(s)

[
Di(s−, θ)

DC1(s)(s−, θ)
− 1

]
λC1(s),i(s)

)
.

If (11) and (19) hold, then I1(t) = 0 and I2(t, θ) = 0, which implies that the drift term I(·, θ) vanishes for
any θ, so the HJM postulate is satisfied.
Conversely, if the drift term vanishes for each θ ∈ [0, T ∗], then on the set {C1(t) 6= K} = {τ > t},

I1(t) + I2(t, θ) = 0 for almost all t ∈ [0, θ], (43)

since
DC1(s)(s−,θ)

Bs
> 0. From (11) we obtain I1(t) = 0. Therefore I2(t, θ) = 0 for almost all t ∈ [0, θ],

which is equivalent to (19).

Proof of Theorem 4 . Since I1 and I2(·, θ) are right continuous, vanishing of the drift term I for each
θ ∈ [0, T ∗] implies that

I1(t) + I2(t, θ) = 0 ∀t < θ.

Since I2(θ, θ) = 0 by definition, we obtain I1(θ−) = 0 for θ < T ∗. Hence we deduce that I1(t) = 0 for
t < T ∗, which is equivalent to (11).

Proof of Remark 4 The reason why we could not omit the assumption (11) in Theorem 3, so Theorem
4 is not true without the continuity assumption, is that (43) does not imply I1(θ)+ I2(θ, θ) = 0 for θ < T ∗

a.s., which gives I1(θ) = 0 for θ < T ∗ a.s., i.e. (11).
An example that shows that this implication does not hold is obtained by taking as λi,K , i = 1, 2, . . . ,K−1,
some càdlàg processes such that

P(∃θ ∈ [0, T ∗] : |λC1(θ),K(θ)− λC1(θ),K(θ−)| > 0) > 0

and then defining
gC1(t)(t, t) := f(t, t) + (1− δC1(t))λC1(t),K(t−).

We note that this choice of gi gives

I1(θ) = (1− δC1(θ))(λC1(θ),K(θ−)− λC1(θ),K(θ)),

so

P
(
∃θ ∈ [0, T ∗] : |I1(θ)| > 0

)
= P

(
∃θ ∈ [0, T ∗] : |λC1(θ),K(θ)− λC1(θ),K(θ−)| > 0

)
> 0

even though we have I1(s) = 0 ds× dP almost surely.
Proof of Theorem 5. By (20), the discounted value of a defaultable bond with fractional recovery of

Treasury value equals

d
(D(t, θ)

Bt

)
=

K−1∑

i=1

(
d
(
Hi(t)

Di(t, θ)
Bt

)
+ d

(
Hi,K(t)δi

B(t, θ)
Bt

) )
. (44)

By integration by parts we have

d

(
Hi,K(t)δi

B(t, θ)
Bt

)
= δi

B(t−, θ)
Bt

(
dMi,K(t) +

(
λi,K(t)Hi(t) + ā(t, θ)Hi,K(t−)

)
dt

+Hi,K(t−)
( ∫

U

[
e−〈

R θ
t

σ(t,v)dv,y〉
U − 1

]
(µ(dt, dy)− dtν(dy))−

〈∫ θ

t

σ(t, v)dv, dW (t)

〉

U

))
.
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Together with (38) this implies that the drift term I in (44) is given by

I = I1 + I2 + I3,

where

I1 =
K−1∑

i=1

Hi(t−)
Di(t−, θ)

Bt

(
(gi(t, t)− f(t, t) + āi(t, θ)) + δi

B(t−, θ)
Di(t−, θ)

λi,K(t)
)

dt,

I2 =
K−1∑

j=1

Dj(t−, θ)
Bt

λC1(t),j(t)dt,

I3 =
B(t−, θ)

Bt
ā(t, θ)

K−1∑

i=1

δiHi,K(t−)dt = HK(t)
(

B(t−, θ)
Bt

ā(t, θ)
K−1∑

i=1

δi11{C2(t)=i}dt

)
.

Now I3 = 0, because the HJM-type condition for default-free bonds holds (condition (8)). Moreover

I2 =
K−1∑

j=1

Dj(t−, θ)
Bt

λC1(t),j(t)dt =
K−1∑

j=1

Dj(t−, θ)
Bt

K−1∑

i=1

Hi(t)λi,j(t)dt

=
K−1∑

i=1

Hi(t)
Di(t−, θ)

Bt

( K−1∑

j=1,j 6=i

Dj(t−, θ)
Di(t−, θ)

λi,j(t) + λi,i(t)
)

dt

=
K−1∑

i=1

Hi(t)
Di(t−, θ)

Bt

( K−1∑

j=1,j 6=i

[
Dj(t−, θ)
Di(t−, θ)

− 1
]
λi,j(t)− λi,K(t)

)
dt. (45)

Since Hi(t) = 1 on the set {C1(t) = i} and zero on its complement we can write

I1 + I2 = (1−HK(t))
DC1(t)(t−, θ)

Bt

(
gC1(t)(t, t)− f(t, t)− (1− δC1(t))λC1(t),K(t) + āC1(t)(t, θ)

+ δC1(t)

[
B(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),K(t) +

K−1∑

j=1,j 6=C1(t)

[
Dj(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),j(t)

)
dt,

where we have also used the fact that we sum only up to K − 1. We conclude the argument as in Theorem
3.

Proof of Theorem 6. We have

d
(D(t, θ)

Bt

)
=

K−1∑

i=1

(
d
(
Hi(t)

Di(t, θ)
Bt

)
+ d

(
Hi,K(t)

δi

Bτ

))
. (46)

The first part was calculated before (see (38)). The second part can be written using the martingale Mi,K

as
δi

Bt
dHi,K(t) =

δi

Bt
dMi,K(t) +

δi

Bt
Hi(t)λi,K(t)dt.

Hence by (45) the drift term I of (46) is given by
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I =
K−1∑

i=1

(
Di(t−, θ)

Bt

(
λC1(t),i(t) + Hi(t−)(gi(t, t)− f(t, t) + āi(t, θ))

)
dt +

δi

Bt
Hi(t)λi,K(t)dt

)

=
K−1∑

i=1

Hi(t−)
Di(t−, θ)

Bt

(
gi(t, t)− f(t, t) + āi(t, θ) + δi

[
1

Di(t−, θ)
− 1

]
λi,K(t)

+
K−1∑

j=1,j 6=i

[
Dj(t−, θ)
Di(t−, θ)

− 1
]
λi,j(t)− (1− δi)λi,K(t)

)
dt

= (1−HK(t))
DC1(t)(t−, θ)

Bt

(
gC1(t)(t, t)− f(t, t) + āC1(t)(t, θ)− (1− δC1(t))λC1(t),K(t)

+ δC1(t)

[
1

DC1(t)(t−, θ)
− 1

]
λC1(t),K(t) +

K−1∑

j=1,j 6=C1(t)

[
Dj(t−, θ)

DC1(t)(t−, θ)
− 1

]
λC1(t),j(t)

)
dt.

Arguing as before we complete the proof.

Proof of Theorem 7. By the Itô lemma

d

(
D(t, θ)

Bt

)
=Vt−

K−1∑

i=1

d

(
Hi(t)

Di(t, θ)
Bt

)
+

( K−1∑

i=1

Hi(t)
Di(t, θ)

Bt

)
dVt (47)

+ ∆
( K−1∑

i=1

Hi(t)
Di(t, θ)

Bt

)
∆Vt = I1 + I2 + I3.

By assumption (H2) we have I3 = 0.
By (24), (25) and the fact that Di(·, θ) is a càdlàg process, we obtain

−I2 =
( K−1∑

i=1

Hi(t)
Di(t, θ)

Bt

)
Vt−LtdMt +

( K−1∑

i=1

Hi(t)
Di(t, θ)

Bt

)
Vt−Ltγtdt

=
( K−1∑

i=1

Hi(t)
Di(t, θ)

Bt

)
Vt−LtdMt +

( K−1∑

i=1

Hi(t)
Di(t−, θ)

Bt

)
Vt−Ltγtdt.

Hence, taking into account (47), (38), we see that the drift term of d(D(t,θ)
Bt

) is given by

K−1∑

j=1

Vt−
Dj(t−, θ)

Bt
λC1(t),j(t)dt +

K−1∑

i=1

Hi(t)Vt−
Di(t−, θ)

Bt

(
gi(t, t)− f(t, t) + āi(t, θ)− Ltγt

)
dt.

Since

K−1∑

j=1

Vt−
Dj(t−, θ)

Bt
λC1(t),j(t) =

K−1∑

i=1

Hi(t)Vt−
Di(t−, θ)

Bt

K−1∑

j=1

Dj(t−, θ)
Di(t−, θ)

λi,j(t)

=
K−1∑

i=1

Hi(t)Vt−
Di(t−, θ)

Bt

( K−1∑

j=1,j 6=i

Dj(t−, θ)
Di(t−, θ)

λi,j(t) + λi,i(t)
)

=
K−1∑

i=1

Hi(t)Vt−
Di(t−, θ)

Bt

K−1∑

j=1,j 6=i

[
Dj(t−, θ)
Di(t−, θ)

− 1
]
λi,j(t),
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the drift term is given by

K−1∑

i=1

Hi(t)Vt−
Di(t−, θ)

Bt

(
gi(t, t)− f(t, t) + āi(t, θ)− Ltγt +

K−1∑

j=1,j 6=i

[
Dj(t−, θ)
Di(t−, θ)

− 1
]
λi,j(t)

)
dt.

Arguing as in the previous sections, we obtain the theorem.

Proof of Theorem 10. Theorem 10 follows from Lemma 1 by using the following facts on derivatives
(the details are left to the reader):
i) for fractional recovery of Treasury value

∂

∂θ

(
B(t−, θ)
D1(t−, θ)

− 1
)

=
(
g1(t−, θ)− f(t−, θ)

)
e
R θ

t
(g1(t−,u)−f(t−,u))du,

ii) for fractional recovery of par value

∂

∂θ

(
1

D1(t−, θ)
− 1

)
= g1(t−, θ)e

R θ
t

g1(t−,u)du,

iii) for fractional recovery of market value with rating migration

∂

∂θ

(
Di(t−, θ)

DC1(t)(t−, θ)
− 1

)
=

(
gC1(t)(t−, θ)− gi(t−, θ)

)
e
R θ

t
(gC1(t)(t−,u)−gi(t−,u))du,

iv) for fractional recovery of treasury value with rating migration

∂

∂θ

(
B(t−, θ)

DC1(t)(t−, θ)
− 1

)
=

(
gC1(t)(t−, θ)− f(t−, θ)

)
e
R θ

t
(gC1(t)(t−,u)−f(t−,u))du,

v) for fractional recovery of par value with rating migration

∂

∂θ

(
1

DC1(t)(t−, θ)
− 1

)
= gC1(t)(t−, θ)e

R θ
t

gC1(t)(t−,u)du.

Proof of Theorem 11. Under hypothesis (H1) we can write (33) in the form

K−1∑

i=1,i6=C1(t)

[(
Di(t−, θ)−DC1(t)(t−, θ)

)
λC1(t),i(t)

]
+

−(1− δC1(t)(t))DC1(t)(t−, θ)λC1(t),K(t)

+
(
(1− δC1(t)(t))λC1(t),K(t) + āC1(t)(t, θ)

)
DC1(t)(t−, θ) = 0.

By definition of āi(t, θ) we see that this condition is equivalent to

K−1∑

i=1,i 6=C1(t)

(
Di(t−, θ)

DC1(t)(t−, θ)
− 1

)
λC1(t),i(t)−

∫ θ

t

αC1(t)(t, u)du + JC1(t)

(∫ θ

t

σi(t, v)dv

)
= 0 (48)

which is exactly the condition (19).
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