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Abstract

The completeness problem of the bond market model with noise given by the inde-
pendent Wiener process and Poisson random measure is studied. Hedging portfolios are
assumed to have maturities in a countable, dense subset of a finite time interval. It is shown
that under some assumptions the market is not complete unless the support of the Lévy
measure consists of a finite number of points. Explicit constructions of contingent claims
which can not be replicated are provided.
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1 Introduction

Tradeable bonds are specified by a set of their maturities, which potentially can consist of
infinitely many points - it can be an interval or a half-line for example. Thus we have infinitely
many assets and this is a significant difference between a bond and stock market with a finite
number of stocks. This is also the reason why the bond market models are not covered by a
classical theory of financial markets and thus economic problems, like completeness, have to
be studied again.

∗Research supported by Polish KBN Grant P03A 034 29 „Stochastic evolution equations driven by Lévy noise”
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The problem of bond market completeness was treated in many different contexts depending
on the model settings as well as on the definition of completeness. A classical question of
the market completeness is to judge if it is possible to replicate any bounded random variable
X , i.e. to find a portfolio which is equal to X at the final time. However, it is sometimes
difficult to solve this problem in the set of all bounded random variables and thus another
spaces are also considered, for example L2(Ω) or even more exotic ones. In Taflin [11] it is
shown that the model driven by the infinite dimensional Wiener process is not complete in the
class D0 :=

⋂
p>1 L

p(Ω). In Carmona, Tehranchi [5] it is shown that each random variable
which is of a special form can be replicated.

Another concept connected with the notion of completeness is the existence of a unique
martingale measure. However, contrary to the finite dimensional stock market, this notion is
not equivalent to completeness. As it was shown in Björk et. al [3] and [4] in a jump diffusion
model uniqueness of the martingale measure is equivalent to the approximate completeness, i.e.
for any random variable X ∈ L2(Ω) there exists a sequence of random variables {Xn} which
converges to X in L2(Ω) s.t. each element of the sequence can be replicated.

It was shown in Baran, Jakubowski, Zabczyk [1] that a model driven by the infinite di-
mensional Wiener process is not complete, i.e. there exists a bounded random variable which
can not be replicated. In this paper we focus on a finite dimensional noise with jumps and for
simplicity assume that it is given by the one dimensional Wiener process and Poisson random
measure. We consider model with a finite time interval [0, T ∗]. Each bond is specified by its
maturity T and usually it is assumed that maturity can by any number from [0, T ∗]. We adopt
the assumptions from Eberlein, Jacod, Raible [6] and consider bonds with maturities in a dense,
countable subset of [0, T ∗] denoted by J . This set consists of all bonds’ maturities which can be
involved in the portfolios construction. A bond with maturity T and the price process P (·, T )

can be used by a trader if and only if T ∈ J . The completeness problem with the use of bonds
with maturities in J can be formulated in two ways:

1) Does there exist a unique equivalent measure Q such that the discounted price of bonds
P̂ (·, T ) is a Q-local martingale for each T ∈ J?

2) Can arbitrary F∗
T - measurable random variable, satisfying some regularity assumptions, be

replicated with the use of bonds with maturities in J?

As far as we consider analogous formulations to (1) and (2) for finite number of stocks, they
are equivalent - at least for a wide class of stock market models. However, as it was shown in
[3] and [4] they can no longer be equivalent if we examine bond market with infinite number of
assets. The problem of completeness with the use of bonds with maturities in J was originally
formulated in [6], where it was treated in the sense of the formulation (1). It was shown that
under some assumptions there exists exactly one martingale measure. In this paper we study the
problem of completeness in the sense of the formulation (2). This approach requires a precise
definition of portfolios which can be used by traders, see Section 3. We identify prices of bonds
with elements of a Banach space B consisting of all bounded sequences with the supremum
norm. The trader’s position is identified with an element of l1 - a subspace of the dual space B∗.
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The self-financing condition is expressed by the fact that portfolio is an integral of the l1-valued
strategy with respect to the bond price process.

The general idea in the solution of the completeness problem is to examine the possibility
of representing any martingale as a certain stochastic integral with l1-valued integrand. The
key tools used for this purpose are the representation theorem for local martingales, which
comes from Kunita [10], and a version of theorem solving the so called problem of moments.
The last one provides necessary and sufficient conditions for the existence of a linear, bounded
functional satisfying certain conditions. Generally speaking we apply this theorem to the real
and vector-valued functions defined on the support of the Lévy measure. Our main result states
that every market model with the Lévy measure having a concentration point is incomplete. We
provide an explicit construction of a bounded random variable which can not be replicated. If
there is no concentration point we prove incompleteness under additional assumptions in the
class of square integrable or bounded random variables. In the case when the Lévy measure has
a finite support and the model satisfies additional assumptions we prove completeness in the
class of integrable random variables. This is result is similar to Theorem 5.6 in [4] but requires
weaker assumptions.

The paper is organized as follows: in Section 2 we recall basic facts on stochastic integrals
and formulate the representation theorem for local martingales; Section 3 contains a description
of the model and definition of portfolios; in Section 4 we present the main results - this section
is divided into three parts with respect to the properties of the Lévy measure.

2 Local martingales representation

Let (Ω,F , P ) be a probability space with filtration {Ft, t ∈ [0, T ∗]} generated by the 1-
dimensional Wiener process W and Poisson random measure N defined on R+ × R\{0}. The
processes are assumed to be independent. By Ñ we denote the compensated Poisson random
measure, i.e. Ñ(dt, dx) = N(dt, dx) − ν(dx)dt, where ν is a Lévy measure corresponding to
N . Recall that ν satisfies integrability condition:

∫
R | x |

2 ∧ 1 ν(dx) <∞.

In order to formulate the representation theorem below, we briefly present description of the
class of integrable processes with respect to W and Ñ . We follow notation used in [10].

The process φ = φ(ω, t) is integrable with respect to the Wiener process if it is predictable and
satisfies integrability condition∫ T ∗

0

| φ(s) |2 ds <∞ P − a.s..

This class of processes is denoted by Φ. For any φ ∈ Φ the integral∫ t

0

φ(s)dW (s) :=

∫ T ∗

0

φ(s)1[0,t](s)dW (s)
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is well defined and the process
∫ ·

0
φ(s)dW (s) is a continuous locally square integrable martin-

gale.

The process ψ = ψ(ω, s, x) is called predictable if it is P × B(R) measurable, where P is a
predictable sigma-field. If ψ satisfies condition∫ T ∗

0

∫
R
| ψ(s, x) | ν(dx)ds <∞ P − a.s. (2.1)

then the integral∫ T ∗

0

ψ(s, x)Ñ(dx, ds) =

∫ T ∗

0

ψ(s, x)N(ds, dx)−
∫ T ∗

0

ψ(s, x)ν(dx)ds

is well defined and the process
∫ ·

0
ψ(s, x)Ñ(ds, dx) =

∫ T ∗

0
ψ(s, x)1(0,·](s)Ñ(ds, dx) is a local

martingale. The class of predictable processes satisfying (2.1) is denoted by Ψ1.

If a predictable process ψ satisfies condition∫ T ∗

0

∫
R
| ψ(s, x) |2 ν(dx)ds <∞ P − a.s. (2.2)

then the integral
∫ T ∗

0
ψ(s, x)Ñ(ds, dx) is constructed with the use of simple processes which

converge to ψ in L2. In this case
∫ ·

0
ψ(s, x)Ñ(ds, dx) =

∫ T ∗

0
ψ(s, x)1(0,·](s)Ñ(ds, dx) is a

locally square integrable martingale. A class of predictable processes satisfying (2.2) is denoted
by Ψ2.
A class of all predictable processes which satisfy conditions

ψ1{|ψ|>1} ∈ Ψ1 and ψ1{|ψ|≤1} ∈ Ψ2

will be denoted by Ψ1,2. In other words ψ ∈ Ψ1,2 if and only if∫ T ∗

0

∫
R
| ψ(s, x) |2 ∧ | ψ(s, x) | ν(dx)ds <∞.

For any ψ ∈ Ψ1,2 the integral∫ T ∗

0

ψ(s, x)Ñ(ds, dx) =

∫ T ∗

0

ψ(s, x)1{|ψ(s,x)|>1}(s, x)Ñ(ds, dx)

+

∫ T ∗

0

ψ(s, x)1{|ψ(s,x)|≤1}(s, x)Ñ(ds, dx)

is well defined and it is a local martingale as a function of the upper integration limit.

The next theorem comes from [10].
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Theorem 2.1 Let M be a local martingale. Then there exist φ ∈ Φ and ψ ∈ Ψ1,2 satisfying

Mt = M0 +

∫ t

0

φ(s)dW (s) +

∫ t

0

∫
R
ψ(s, x)Ñ(dx, ds). (2.3)

Moreover, the pair (φ, ψ) is unique i.e., if (φ
′
, ψ

′
) satisfies (2.3) then

φ = φ
′
w.r.to P ⊗ λ a.s. and ψ = ψ

′
w.r.to P ⊗ λ⊗ ν a.s.,

where λ is the Lebesgue measure on [0, T ∗].

3 Bond market model

We begin description of the model by specifying the dynamics of the forward rate

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t) +

∫
R
γ(t, x, T )N(dt, dx), t, T ∈ [0, T ∗]. (3.4)

The coefficients are assumed to be predictable and satisfy the following integrability conditions∫ T ∗

0

∫ T ∗

0

| α(t, T ) | dTdt <∞,

∫ T ∗

0

∫ T ∗

0

| σ(t, T ) |2 dTdt <∞,

∫ T ∗

0

∫ T ∗

0

∫
R
| γ(t, x, T ) | ν(dx)dTdt <∞,

where all the inequalities above hold P -a.s.. We put

α(t, T ) = 0, σ(t, T ) = 0, γ(t, x, T ) = 0 for t > T ∀x ∈ R. (3.5)

The value at time t of a bond paying 1 at maturity T ∈ [0, T ∗] is defined by

P (t, T ) := e−
∫ T

t f(t,s)ds. (3.6)

The short rate is defined by r(t) := f(t, t) and thus evolution of the money in the savings
account, given by

dB(t) = r(t)B(t)dt,

is determined by the model. Notice that condition (3.5) implies equality f(t, T ) = f(t, t) for
t > T . This corresponds to the fact that the holder of a bond transfers his money automatically
to the bank account after the bond’s expiration date. The discounted value of a bond P̂ (t, T ) =

B(t)−1P (t, T ) is thus given by

P̂ (t, T ) = P (t, T ) e−
∫ t
0 r(s)ds = e−

∫ T
t f(t,s)ds · e−

∫ t
0 f(t,s)ds = e−

∫ T
0 f(t,s)ds.
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Putting

A(t, T ) := −
∫ T

t

α(t, s)ds

S(t, T ) := −
∫ T

t

σ(t, s)ds

G(t, x, T ) := −
∫ T

t

γ(t, x, s)ds

one can check that P satisfies the following equation (see Proposition 2.2. in [4]):

dP (t, T ) = P (t−, T )

((
r(t) + A(t, T ) +

1

2
| S(t, T ) |2

)
dt+ S(t, T )dW (t)

+

∫
R

(
eG(t,x,T ) − 1

)
N(dt, dx)

)
. (3.7)

As a consequence of (3.7) and definition of P̂ we obtain

dP̂ (t, T ) = P̂ (t−, T )

((
A(t, T ) +

1

2
| S(t, T ) |2

)
dt+ S(t, T )dW (t)

+

∫
R

(
eG(t,x,T ) − 1

)
N(dt, dx)

)
.

As in the case of stock market we are interested in the existence of a martingale measure for the
discounted prices. A measure Q is a martingale measure if the process P̂ (·, T ) is a local mar-
tingale with respect to Q for each T ∈ [0, T ∗]. The set of all martingale measures is denoted by
Q. The setQ is not empty if the model satisfies theHJM -type conditions, that is if coefficients
in (3.4) are related in a special way. For more details see Theorem 3.13 in [4]. Throughout all
the paper we assume that the objective measure P is at the same time a martingale one. This
assumption allows us to write the following equation for P̂ , see Proposition 3.14 in [4]:

dP̂ (t, T ) = P̂ (t−, T )

(
S(t, T )dW (t) +

∫
R
(eG(t,x,T ) − 1)Ñ(dt, dx)

)
. (3.8)

Now, let us fix a set J which is assumed to be a dense, countable subset of [0, T ∗]. We assume
that only bonds with maturities in J are traded, i.e. only they can be used for the portfolio
construction. At the beginning we should precise a portfolio definition. Below it is shown a
motivation for the form of the portfolio processes used in the sequel.

Notice that P (t) = P (t, ·), given by (3.6), is a continuous function, so restricted to J it is a
bounded sequence. The space

B =
{
z = (z1, z2, ...) : sup

i
| zi |<∞

}
6



with the norm ‖z‖B = supi | zi | is thus the state space for the bond prices. In the classical
case of stock markets with the price process in Rd, where d < ∞, it is clear that the space of
portfolios can be identified with the dual space (Rd)∗ = Rd. This approach is being generalized
in the context of bond markets with infinite dimensional price process. For example in [4] and
[3] the price process takes values in C0[0,∞) - the space of continuous functions converging to
zero in infinity. The space of portfolios is thus C∗

0 [0,∞) - a space of measures with finite total
variation. In our model treating B∗ as a state space for portfolios does not seem to be justified.
The reason is that the dual space is to large and contains abstract elements with a doubtful
financial interpretation, for example generalized Banach limits. The portfolio space should be
chosen in such a way to be closer to practical aspects of trading. In practice the trader’s portfolio
can consists of finite number of bonds only, so the portfolio can be of the form

ϕ = (ϕ(Ti1), ϕ(Ti2), ..., ϕ(Tin)); Tij ∈ J, j = 1, 2, ..., n; n ∈ N.

Since the number of bonds held by a trader can be arbitrary large, we also allow the portfolio
to contain infinite number of bonds but such that the value of the investment is finite. Since the
bond prices are bounded it is thus natural to assume that the portfolio satisfies

ϕ = {ϕ(Tj)}∞j=1;
∞∑
j=1

| ϕ(Tj) |<∞.

Concluding, we choose l1 ⊂ B∗ as the portfolio space. The value of the investment is a value
of the functional ϕ on the element P ∈ B and is denoted by

< ϕ,P >B∗,B:=
∞∑
i=1

ϕ(Ti)P (Ti).

By trading strategy we mean any predictable process {ϕ(t); t ∈ [0, T ∗]} taking values in l1.
Besides investing in bonds one can also save money in a savings account. The wealth process
at time t is thus given by

X(t) = b(t) ·B(t)+ < ϕ(t), P (t) >B∗,B t ∈ [0, T ∗], (3.9)

where b(t), ϕ(t) correspond to money saved in a bank and investing in bonds respectively. Here
we use the notation P (t) for {P (t, T );T ∈ J} since the latter is treated as an element of the
Banach space B. This notation will be used with respect to other processes too.
As usual, the wealth process should be self-financing, so the additional requirement is supposed
to hold

dX(t) = b(t)dB(t)+ < ϕ(t), dP (t) >B∗,B t ∈ [0, T ∗]. (3.10)

Notice that applying the integration by parts formula to the process X̂(t) = B(t)−1X(t) and
using (3.9), (3.10) we obtain

dX̂(t) =B(t)−1
(
b(t)dB(t)+ < ϕ(t), dP (t) >

)
−

(
b(t)B(t)+ < ϕ(t), P (t) >

)
B(t)−2dB(t)

=< ϕ(t), B(t)−1dP (t)− P (t)B(t)−2dB(t) >

=< ϕ(t), dP̂ (t) >B∗,B .
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Taking (3.8) into account we can give a precise meaning for the the integral
∫
< ϕ(t), dP̂ (t) >B∗,B.

Definition 3.1 A process ϕ taking values in l1 is P̂ integrable if it is predictable and satisfies
the following conditions

< ϕ(s), P̂ (s−)S(s) >B∗,B∈ Φ, < ϕ(s), P̂ (s−)(eG(s,x) − 1) >B∗,B∈ Ψ1,2. (3.11)

If (3.11) holds we set:∫ t

0

< ϕ(s), dP̂ (s) >B∗,B :=

∫ t

0

< ϕ(s), P̂ (s−)S(s) >B∗,B dW (s) (3.12)

+

∫ t

0

∫
R
< ϕ(s), P̂ (s−)(eG(s,x) − 1) >B∗,B Ñ(ds, dx); t ∈ [0, T ∗].

Let us notice that integrands on the right hand side of (3.12) are well defined since P̂ (s−) =

P̂ (s−, ·) is a continuous function on [0, T ∗]. Indeed, let L be the Lévy process corresponding to
the jump measureN . Due to (3.8) we obtain ∆P̂ (t, T ) = P̂ (t−, T )(eG(t,∆L(t),T )−1) and putting
this value to the equality P̂ (t, T ) = P̂ (t−, T ) + ∆P̂ (t, T ) we obtain P̂ (t−, T ) = P̂ (t,T )

eG(t,∆L(t),T ) .
The last function is continuous with respect to T . As a consequence, we have

P̂ (t−)S(t) ∈ B, P̂ (t−)(eG(t,x) − 1) ∈ B ∀t ∈ [0, T ∗] ∀x ∈ R.

Summarizing, the wealth process can be identified with its discounted value through a pair
(x, ϕ) s.t.

X̂(t) = x+

∫ t

0

< ϕ(s), dP̂ (s) >B∗,B .

4 Completeness

We start this section with a definition of admissible strategies - a class of strategies involved in
the definition of the market completeness.

Definition 4.1 Assume that a process ϕ taking values in l1 is P̂ integrable. Then ϕ is an ad-
missible strategy if the (discounted) wealth process∫ ·

0

< ϕ(s), dP̂ (s) >B∗,B

is a martingale. The class of all admissible strategies will be denoted by A.

The definition of admissible strategies which imposes martingale property on the wealth process
is often considered in literature, see for example [9].
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Definition 4.2 LetA be a subset in the set of allFT ∗ measurable random variables. The market
is A-complete if for each X ∈ A there exists a strategy ϕ ∈ A which satisfies condition

X = x+

∫ T ∗

0

< ϕ(t), dP̂ (t) >B∗,B, (4.13)

for some x ∈ R. If there exists X ∈ A s.t. condition (4.13) does not hold, then the market is not
A-complete. If the random variable X satisfies (4.13) then we say that X can be replicated.

Lemma 4.3 Let ϕ ∈ A, φ ∈ Φ, ψ ∈ Ψ1,2. Assume that the proces∫ ·

0

φ(s)dW (s) +

∫ ·

0

∫
R
ψ(s, x)Ñ(ds, dx) (4.14)

is a martingale. If the equality

x+

∫ T ∗

0

< ϕ(s), dP̂ (s) >B∗,B= y +

∫ T ∗

0

φ(s)dW (s) +

∫ T ∗

0

∫
R
ψ(s, x)Ñ(ds, dx) (4.15)

holds for some x, y ∈ R then x = y and

φ(s) =< ϕ(s), P̂ (s−)S(s) >B∗,B P ⊗ λ a.s., (4.16)

ψ(s, x) =< ϕ(s), P̂ (s−)(eG(s,x) − 1) >B∗,B P ⊗ λ⊗ ν a.s.. (4.17)

Proof. Taking expectations in (4.15) we obtain x = y. The process

Mt : =

∫ t

0

< ϕ(s), dP̂ (s) >B∗,B −
∫ t

0

φ(s)dW (s)−
∫ t

0

∫
R
ψ(s, x)Ñ(ds, dx)

=

∫ t

0

(
< ϕ(s), P̂ (s−)S(s) >B∗,B −φ(s)

)
dW (s)

+

∫ t

0

∫
R

(
< ϕ(s), P̂ (s−)(eG(s,x) − 1) >B∗,B −ψ(s, x)

)
Ñ(ds, dx)

is thus a martingale equal to zero. With the use of Theorem (2.1) we obtain (4.16) and (4.17).
�

The fact of considering a specific class of admissible strategies in the completeness problem
is crucial in our approach. If we are looking for a replicating strategy for a given integrable
random variable X in the class A then we can identify X with a martingale E[X | Ft]. On the
other hand, in view of the decomposition

E[X | Ft] = EX +

∫ t

0

φX(s)dW (s) +

∫ t

0

∫
R
ψX(s, x)Ñ(ds, dx), (4.18)

and Theorem (2.1) this martingale is uniquely determined by the processes φX , ψX . Thus X
itself can be identified with the integrands φX , ψX . In virtue of Lemma (4.3) if there exists
ϕX ∈ A satisfying (4.16) and (4.17) with φ = φX , ψ = ψX then ϕX is a replicating strategy
for X . As a consequence, if (4.16) and (4.17) are not satisfied for any ϕ ∈ A then X can not be
replicated.
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Remark 4.4 If we do not impose any restrictions on the class of strategies or only forbid the
wealth process to take negative values thenX can not be uniquely identified with the integrands
φX , ψX given by (4.18). An example of two different integrands such that after integrating with
respect to the Wiener process give the same bounded random variable can be found in [1],
ex.3.10.

Our method of examining conditions (4.16), (4.17) is based on the following lemma which is
an extension of the moment problem solution, see Yosida [12].

Lemma 4.5 Let E be a normed linear space and U an arbitrary set. Let g : U −→ R and
h : U −→ E. Then there exists e∗ ∈ E∗ such that

g(u) =< e∗, h(u) >E∗,E ∀u ∈ U (4.19)

if and only if

∃ γ > 0 ∀ n ∈ N ∀ {βi}ni=1, βi ∈ R ∀ {ui}ni=1, ui ∈ U holds :

∣∣∣ n∑
i=1

βig(ui)
∣∣∣ ≤ γ

∥∥∥ n∑
i=1

βih(ui)
∥∥∥
E
. (4.20)

Proof. Necessity is obvious, (4.20) holds with γ = ‖e∗‖E∗ . To prove sufficiency let us define a
linear subspace of E as follows

M =
{
e ∈ E : e =

n∑
i=1

βih(ui); n ∈ N, βi ∈ R, ui ∈ U
}

and a linear transformation ẽ∗ : M −→ R by the formula

ẽ∗
( n∑
i=1

βih(ui)
)

=
n∑
i=1

βig(ui).

Notice, that for e1 =
∑n

i=1 βih(ui) and e2 =
∑m

j=1 β
′
jh(uj) by (4.20) we obtain

∣∣∣ẽ∗(e1)− ẽ∗(e2)
∣∣∣ =

∣∣∣ n∑
i=1

βig(ui)−
m∑
j=1

β
′

jg(uj)
∣∣∣

≤ γ
∥∥∥ n∑
i=1

βih(ui)−
m∑
j=1

β
′

jh(uj)
∥∥∥
E

= γ‖e1 − e2‖.

If e1 = e2 then ẽ∗(e1) = ẽ∗(e2), so this transformation is well defined, because its value does
not depend on the representation. It is also continuous and thus by the Hahn-Banach theorem it
can be extended to the functional e∗ ∈ E∗ which clearly satisfies (4.19). �

In the sequel we use the following proposition which simplifies examining conditions (4.16)
and (4.17).
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Proposition 4.6 Let (E1, E1, µ1), (E2, E2, µ2) be measurable spaces with sigma-finite measures
µ1, µ2 and (E1 × E2, E1 ⊗ E2, µ1 ⊗ µ2) be their product space. If two measurable functions
f1 : E1 × E2 −→ R, f2 : E1 × E2 −→ R satisfy condition

f1 = f2 µ1 ⊗ µ2 a.s. (4.21)

then there exists a set Ê1 ∈ E1 such that

Ê1 is of full µ1 measure (4.22)

∀x ∈ Ê1 the set {y : f1(x, y) = f2(x, y)} is of full µ2 measure. (4.23)

Proof. The assertion follows from the Fubini theorem applied to the function h = 1A where
A := {(x, y) ∈ E1 × E2 : f1(x, y) 6= f2(x, y)}.

�

4.1 Lévy measure with a finite support

In this section we assume that the support of the Lévy measure consists of finite number of
points: x1, x2, ..., xn.
We start with an auxiliary lemma on linear independence of infinite sequences. For the conve-
nience of the reader we provide its proof.

Lemma 4.7 Let M be an infinite matrix of the form

M =


z1

z2

...

zn

 =


z1
1 z1

2 z1
3 . . .

z2
1 z2

2 z2
3 . . .

...
...

...
...

zn1 zn2 zn3 . . .

 ,

with linearly independent rows z1, z2, ..., zn. Then there exists a set of n linearly independent
columns of the matrix M .

Proof. We will show that for some natural number m the following finite vectors

zk(m) := zk1 , z
k
2 , ..., z

k
m; k = 1, 2, ..., n

are linearly independent. Assume, to the contrary, that for each m there exist numbers α1(m),
α2(m) ,..., αn(m) such that

∑n
k=1 | αk(m) |> 0 and

n∑
k=1

αk(m)zk(m) = 0. (4.24)

Without a loss of generality we can assume that
n∑
k=1

| αk(m) |= 1, ∀m = 1, 2, ... .
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Then there exists a subsequence ml →∞ such that

αk(ml) −→ ᾱk, k = 1, 2, ..., n

and
∑n

k=1 | ᾱk |= 1. From 4.24, for each l, we have

n∑
k=1

αk(ml)z
k(ml) = 0.

Thus, for each m̄ ≤ ml,
n∑
k=1

αk(ml)z
k(m̄) = 0.

Consequently
n∑
k=1

ᾱkzk(m̄) = 0, ∀m̄ = 1, 2, ... .

Therefore we arrive at a contradiction. �

Theorem 4.8 Let us assume that the following vectors in the space B:

S(t), eG(t,x1) − 1, eG(t,x2) − 1, ... , eG(t,xn) − 1 (4.25)

are linearly independent P ⊗ λ a.s.. Then the market is L1-complete. Moreover, for each
X ∈ L1 there exists a replicating strategy consisting of n+ 1 bonds with different maturities.

Proof. In virtue of Lemma 4.7 one can find maturities Ti1 , Ti2 , ..., Tin+1 ∈ J such that vectors
S(t, Tij)

eG(t,x1,Tij
) − 1

...

eG(t,xn,Tij
) − 1

 , j = 1, 2, ..., n+ 1; (4.26)

form a set of linearly independent vectors in Rn+1. Consider anyX ∈ L1 and the representation
of the process E[X | Ft] given by Theorem 2.1

E[X | Ft] = EX +

∫ t

0

φX(s)dW (s) +

∫ t

0

∫
R
ψX(s, x)Ñ(ds, dx). (4.27)

Let us define a strategy ϕX(t, Tij); j = 1, 2, ..., n + 1 involving only bonds with maturities
Ti1 , Ti2 , ..., Tin+1 as a solution of the following system of linear equations

S(t, Ti1) ... S(t, Tin+1)

eG(t,x1,Ti1
) − 1 ... eG(t,x1,Tin+1

) − 1
...

...
eG(t,xn,Ti1

) − 1 ... eG(t,xn,Tin+1
) − 1




P̂ (t−, Ti1) · ϕX(t, Ti1)

P̂ (t−, Ti2) · ϕX(t, Ti2)
...

P̂ (t−, Tin+1) · ϕX(t, Tin+1)

 =


φX(t)

ψX(t, x1)
...

ψX(t, xn)
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The strategy is well defined because the matrix above is nonsingular. Moreover, ϕX is a repli-
cating strategy for X . Indeed, we have

X = x0 +

∫ T ∗

0

n+1∑
j=1

P̂ (t−, Tij)S(t, Tij)ϕX(t, Tij)dW (t)

+

∫ T ∗

0

∫
R

n+1∑
j=1

P̂ (t−, Tij)(e
G(t,x,Tij

) − 1)ϕX(t, Tij)Ñ(dt, dx)

= x0 +

∫ T ∗

0

< ϕX(t), dP̂ (t) >B∗,B .

�

Remark 4.9 Theorem 4.8 shows that the assumptions of Theorem 5.6. in [4] can be weak-
ened. Indeed, due to Lemma 4.7 the problem is reduced to the system of linear equations with
nonsingular matrix and thus additional assumption imposed on coefficients σ(t, ·), γ(t, ·) to be
analytic functions can be relaxed.

4.2 Lévy measure with a concentration point

We start examining the completeness problem in a more general setting by introducing the
following property of the Lévy measure.

Definition 4.10 The point x0 ∈ R is a concentration point of the measure ν if there exists a
sequence {εn}∞n=1 s.t. εn ↘ 0 satisfying

ν
{
B(x0, εn)\B(x0, εn+1)

}
> 0 ∀ n = 1, 2, ... (4.28)

where B(x0, ε) = {x ∈ R :| x− x0 |≤ ε}.

Let us notice that the condition formulated in Definition 4.10 is very often satisfied. For exam-
ple, every Lévy measure with a density has a concentration point. Thus the following theorem
covers a large class of models.

Theorem 4.11 Assume that the Lévy measure ν has a concentration point x0 6= 0. If γ(t, ·, T )

is differentiable for each t ∈ [0, T ∗], T ∈ [0, T ∗] and the following condition is satisfied

∀t ∈ [0, T ∗] ∃δ = δ(t) > 0 s.t.

∫ T ∗

t

sup
x∈B(x0,δ)

| γ′

x(t, x, s) | ds <∞ (4.29)

then the bond market is not L∞-complete.

Proof. We will construct a bounded random variable X which can not be represented in the
form (4.13) for any strategy ϕ ∈ A. At the beginning we construct an auxiliary function ψ such
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that there is no P̂ integrable process ϕ satisfying condition (4.17).
Let {εn}∞n=1 be a sequence satisfying (4.28) and define a deterministic function ψ by the formula

ψ(x) =


| x | ∧ 1 for x ∈ {B(x0, ε2k+1)\B(x0, ε2k+2)} k = 0, 1, ...

−(| x | ∧ 1) for x ∈ {B(x0, ε2k)\B(x0, ε2k+1)} k = 1, 2, ...

| x | ∧ 1 for x ∈ (−∞, x0 − ε1) ∪ (x0 + ε1) ∪ {x0}.

We will show that condition (4.17) is not satisfied by any P̂ integrable process ϕ. Let us fix any
pair (ω, t) ∈ Ω× [0, T ∗] and assume that equality

< ϕ(t), P̂ (t−)(eG(t,x) − 1) >B∗,B= ψ(x) (4.30)

holds ν a.s.. Thus there exists a set Aν(ω, t) of a full ν measure s.t. equality (4.30) is satisfied
for each x ∈ Aν(ω, t). Due to Lemma 4.5 there exists γ = γ(ω, t) > 0 such that

∀ n ∈ N ∀ {βi}ni=1, βi ∈ R ∀ {xi}ni=1, xi ∈ Aν(ω, t)∣∣∣ n∑
i=1

βiψ(xi)
∣∣∣ ≤ γ

∥∥∥ n∑
i=1

βiP̂ (t−)(eG(t,xi) − 1)
∥∥∥
B
. (4.31)

Let us notice that due to (4.28) we have

ν
{
Aν(ω, t) ∩

{
B(x0, εn)\B(x0, εn+1)

}}
> 0

so we can choose a sequence {ak}∞k=1 s.t.

ak ∈ Aν(ω, t) ∩
{
B(x0, εk)\B(x0, εk+1)

}
∀ k = 1, 2, ....

Let us examine the condition (4.31) with n = 2, β1 = 1, β2 = −1 and x1 = a2k+1, x2 = a2k+2

for k = 0, 1, .... Then the left hand side of (4.31) is of the form
1

γ

∣∣∣β1ψ(a2k+1) + β2ψ(a2k+2)
∣∣∣ =

1

γ

(
(| a2k+1 | ∧ 1) + (| a2k+2 | ∧ 1)

)
and thus satisfies

lim
k−→∞

1

γ

∣∣∣β1ψ(a2k+1) + β2ψ(a2k+2)
∣∣∣ =

2(| x0 | ∧ 1)

γ
6= 0.

In estimating of the right hand side of (4.31) we will use the inequality (4.32) and (4.33) below.
In view of (4.29) we have

sup
T∈J

sup
x∈B(x0,δ)

| G(t, x, T ) |≤ sup
T∈J

sup
x∈B(x0,δ)

∫ T

t

| γ(t, x, s) | ds

≤ sup
T∈J

∫ T

t

sup
x∈B(x0,δ)

| γ(t, x, s) | ds

≤ sup
T∈J

∫ T

t

{
| γ(t, x0, s) | + sup

x∈B(x0,δ)

| γ′

x(t, x, s) | 2δ
}
ds

≤
∫ T ∗

t

| γ(t, x0, s) | ds+ 2δ

∫ T ∗

t

sup
x∈B(x0,δ)

| γ′

x(t, x, s) | ds <∞. (4.32)
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The condition (4.29) implies differentiability of G(t, ·, T ) and the following estimation

sup
T∈J

sup
x∈B(x0,δ)

| G′

x(t, x, T ) | = sup
T∈J

sup
x∈B(x0,δ)

|
∫ T

t

γ
′

x(t, x, s)ds |

≤
∫ T ∗

t

sup
x∈B(x0,δ)

| γ′

x(t, x, s) | ds <∞. (4.33)

The right hand side of (4.31) can be estimated as follows∥∥∥P̂ (t−)(eG(t,a2k+1) − 1)− P̂ (t−)(eG(t,a2k+2) − 1)
∥∥∥
B

= sup
T∈J

∣∣∣P̂ (t−, T )(eG(t,a2k+1,T ) − 1)− P̂ (t−, T )(eG(t,a2k+2,T ) − 1)
∣∣∣

≤ sup
T∈J

|P̂ (t−, T )| sup
T∈J

∣∣∣eG(t,a2k+1,T ) − eG(t,a2k+2,T )
∣∣∣.

The first supremum is finite since P̂ (t−, ·) is a continuous function. To deal with the second
supremum let us notice that for sufficiently large k the points a2k+1, a2k+2 are in B(x0, δ) and
thus we have

sup
T∈J

∣∣∣eG(t,a2k+1,T ) − eG(t,a2k+2,T )
∣∣∣ ≤ sup

T∈J
sup

x∈B(x0,δ)

∣∣∣ d
dx
eG(t,x,T )

∣∣∣· | a2k+1 − a2k+2 |

≤ sup
T∈J

sup
x∈B(x0,δ)

e|G(t,x,T )| · sup
T∈J

sup
x∈B(x0,δ)

| G′

x(t, x, T ) | · | a2k+1 − a2k+2 | . (4.34)

In view of (4.32) and (4.33) we see that the last product in (4.34) goes to 0 when k →∞.

Thus we conclude that condition (4.31) is not satisfied for any (ω, t) ∈ Ω × [0, T ∗] and thus
(4.30) does not hold ν − a.s. for any (ω, t) ∈ Ω× [0, T ∗]. As a consequence of Proposition 4.6
there is no P̂ integrable process satisfying (4.17).

Now, with the use of the function ψ, we construct a bounded random variable X which can not
be replicated.

It is clear that ψ ∈ Ψ1,2. Let us define the stopping time τk by

τk = inf{t :
∣∣∣ ∫ t

0

∫
R
ψ(x)Ñ(ds, dx)

∣∣∣ ≥ k} ∧ T ∗

and choose a number k0 s.t. the set {(ω, τk0(ω));ω ∈ Ω} ⊆ Ω × [0, T ∗] is of positive P ⊗ λ

measure. Then the process ψ(x)1(0,τk0
](s) is predictable and bounded. The random variable

X =

∫ T ∗

0

∫
R
ψ(x)1(0,τk0

](s)Ñ(ds, dx) (4.35)
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is thus well defined and it is also bounded because |∆
∫ ·

0

∫
R ψ(x)Ñ(ds, dx)| ≤ 1. For any

(ω, t) ∈ {(ω, τk0(ω));ω ∈ Ω} condition (4.31) is not satisfied ν a.s.. As a consequence
of Proposition 4.6 condition (4.17) is not satisfied by any P̂ integrable process. Moreover,∫ ·

0

∫
R ψ(s, x)Ñ(ds, dx) is a martingale. As a consequence of Lemma 4.3 there is no admissible

strategy which replicates X . �

4.3 Lévy measure with a discrete support

In this section we consider the Lévy measure with a support consisting of infinite number of
discrete points denoted by {xi}∞i=1. To exclude the case studied in Section 4.2 we assume that
the support has no concentration point, so the sequence satisfies

lim
i→∞

| xi |= ∞. (4.36)

Let us notice, that in this case the Lévy measure is a sequence of positive numbers {ν(xi)}∞i=1

which, due to relation
∫

R | x | ∧ 1 ν(dx) <∞, satisfies condition

∞∑
i=1

ν({xi}) <∞. (4.37)

In the following theorem we show that under additional condition imposed on the coefficient γ
we obtain a result on incompleteness.

Theorem 4.12 Assume that the following set

A =
{

(ω, t) ∈ Ω× [0, T ∗] s.t. G(t, xi, T ) ≤ 0 ∀T ∈ [0, T ∗] ∀i = 1, 2, ...
}

is of positive P ⊗ λ measure. Then the market is not L2-complete.

Proof. We construct a random variableX ∈ L2 which can not be represented in the form (4.13).
At the beginning, using condition (4.37), let us define a sequence {ψ(xi)}∞i=1 which depends
neither on ω nor t in the following way

ψ(xi) =

{√
k for i = ik

0 for i 6= ik,
(4.38)

where ik := inf
{
i : ν(xi) ≤ 1

k3

}
. This sequence satisfies the following two conditions

lim sup
i→∞

| ψ(xi) |= ∞, (4.39)

∞∑
i=1

| ψ(xi) |2 ν({xi}) ≤
∞∑
k=1

1

k2
<∞. (4.40)

We show that the representation (4.17) which we write in the form

< ϕ(t), P̂ (t−)(eG(t)xi − 1) >B∗,B= ψ(xi) ∀i = 1, 2, ... (4.41)
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does not hold P ⊗ λ ⊗ ν a.s. for any P̂ integrable process ϕ. Let us fix (ω, t) ∈ A and
assume to the contrary that (4.41) is satisfied for some ϕ(t). Then by Lemma 4.5 there exists
γ = γ(ω, t) > 0 such that

∀ n ∈ N ∀ {βk}nk=1, βk ∈ R ∀ {xik}nk=1∣∣∣ n∑
k=1

βkψ(xik)
∣∣∣ ≤ γ

∥∥∥ n∑
k=1

βkP̂ (t−)(eG(t,xik
) − 1)

∥∥∥
B
. (4.42)

Let us check (4.42) with n = 1, β1 = 1 and for i1 = 1, 2, ... successively, that is∣∣∣ψ(xi)
∣∣∣ ≤ γ sup

T∈J

∣∣∣P̂ (t−, T )(eG(t,xi,T ) − 1)
∣∣∣ ∀i = 1, 2, .... (4.43)

By the definition of the set A for any i = 1, 2, ... we have

| eG(t,xi,T ) − 1 |≤ 1 ∀ T ∈ J.

Using inequality

sup
T∈J

∣∣∣P̂ (t−, T )(eG(t,xi,T ) − 1)
∣∣∣ ≤ sup

T∈J

∣∣∣P̂ (t, T )
∣∣∣ · sup

T∈J

∣∣∣eG(t,xi,T ) − 1
∣∣∣

and the fact that P̂ (t, ·) is continuous we see that

lim sup
i→∞

sup
T∈J

∣∣∣P̂ (t−, T )(eG(t,xi,T ) − 1)
∣∣∣ <∞.

However, recall that the left hand side of (4.43) satisfies (4.39), so the required constant γ does
not exist. We have shown that for any (ω, t) ∈ A the representation (4.41) does not hold. But
P ⊗λ(A) > 0, so in view of Proposition 4.6, the representation (4.41) does not hold P ⊗λ⊗ ν
a.s. for any P̂ integrable process.

In view of (4.40) we see that ψ ∈ Ψ1,2 and that the process
∫ ·

0

∫
R ψ(x)Ñ(ds, dx) is a martingale.

Thus with the use of Lemma 4.3 we conclude that the following random variable

X :=

∫ T ∗

0

∫
R
ψ(x)Ñ(ds, dx) (4.44)

can not be replicated by strategies from the class A. By application isometric formula to X we
obtain that X is square integrable. �

The next theorems are based on the behavior of the expression ‖ G(t, xi) ‖B for large i. Since
their proofs are similar to those presented earlier, we provide the sketches only.

Theorem 4.13 If the following condition holds

lim inf
|xi|→∞

‖ G(t, xi) ‖B= 0 P ⊗ λ− a.s. (4.45)

then the market in not L∞-complete.
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Proof. The condition (4.45) implies

lim inf
|xi|→∞

‖ eG(t,xi) − 1 ‖B≤ lim
|xi|→∞

e‖G(t,xi)‖B − 1 = 0

For ψ(xi) ≡ 1 condition (4.43) is thus not satisfied what we can check by calculating lim infi
for both sides.
The bounded random variable which can not be replicated is constructed in the same way as in
the proof of Theorem (4.11), see formula (4.35). �

Theorem 4.14 If the set

A =
{

(ω, t) ∈ Ω× [0, T ∗] : ∃α = α(ω, t); 0 < α <∞ s.t.

lim
|xi|→∞

‖ G(t, xi) ‖B= α
}

(4.46)

is of positive P ⊗ λ measure then the market in not L2-complete.

Proof. We use ψ constructed in the proof of Theorem 4.12, given by the formula (4.38). Then
(4.46) implies that

lim sup
|xi|→∞

| ψ(xi) |
‖ eG(t,xi) − 1 ‖B

= ∞

and thus condition (4.43) does not hold. A square integrable random variable which can not be
replicated is given by (4.44). �

To study the case when ‖ G(t, xi) ‖B tends to infinity we restrict ourselves to the linear form of
the coefficient γ, i.e. γ(t, x, T ) = γ(t, T )x. This is done to simplify a formulation of the next
theorem. Notice that in this case we have G(t, x, T ) = G(t, T )x.

Theorem 4.15 Assume that γ(t, x, T ) = γ(t, T )x. If there exists a constant G̃ > 0 such that
the set

A =
{

(ω, t) ∈ Ω× [0, T ∗] : ‖ G(t, T ) ‖B≤ G̃
}

is of positive P ⊗ λ measure and the Lévy measure has exponential moment of order 2(G̃ + ε)

for some ε > 0, i.e.

∞∑
i=1

e2(G̃+ε)|xi|ν({xi}) <∞

than the market is not L2-complete.
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Proof. Define

ψ(xi) = e(G̃+ε)|xi|, i = 1, 2, ....

For any (ω, t) ∈ A condition (4.43) is not satisfied because we have

lim
i→∞

| ψ(xi) |
‖ eG(t)xi − 1 ‖B

≥ lim
i→∞

| ψ(xi) |
| eG̃|xi| − 1 |

= ∞.

As a consequence the following random variable

X :=

∫ T ∗

0

∫
R
ψ(x)Ñ(ds, dx)

can not be replicated and it is square integrable because

E(X2) = E

∫ T ∗

0

∞∑
i=1

e2(G̃+ε)|xi|ν({xi})ds <∞.

�

Remark 4.16 In this paper we assume that only bonds with maturities in J can be traded and
thus we accepted B for the state space. However, if we admit for the portfolio construction all
bonds with maturities in [0, T ∗] and the state space C([0, T ∗]) - a space of continuous functions
with the supremum norm, then all the results remain true. This is because for any continuous
function h : [0, T ∗] −→ R we have

‖h‖B = sup
T∈J

| h(T ) |= sup
T∈[0,T ∗]

| h(T ) |= ‖h‖C([0,T ∗])

and thus all the arguments based on the norm in B can be automatically replaced by the norm
in C([0, T ∗]).
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