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Abstract

The paper deals with Cauchy’s problem ∂
∂t
u(t, x) = P (D)u(t, x), u(0, x) =

u0(x), t ≥ 0, x ∈ Rn, for Cm-valued u and P (D) =
∑
|α|≤pAαi

−|α|(∂/∂x1)
α1

· · · (∂/∂xn)αn where Aα are m ×m matrices with constant complex entries.
Let ω0 = sup{Reλ : λ ∈ σ(

∑
|α|≤p ξ

αAα), ξ ∈ Rn} where σ stands for the

spectrum. Let E denote any of the three l.c.v.s.: (i) the T. Ushijima space
{u ∈ L2(Rn;Cm) : P (D)ku ∈ L2(Rn;Cm) for every k ∈ N}, (ii) the space
of Cm-valued rapidly decreasing C∞-functions on Rn, (iii) the space of Cm-
valued tempered distributions on Rn. It is proved that the operator P (D)|E
is the infinitesimal generator of a (C0)-semigroup (St)t≥0 ⊂ L(E) if and only
if ω0 < ∞, and then ω0 = inf{ω ∈ R : the semigroup (e−ωtSt)t≥0 ⊂ L(E) is
equicontinuous}.

MSC: Primary 35E15, 47D06; Secondary 46F05, 15A42
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1. Introduction

1.1. The ACP perspective. D(A∞)-well posed operators A of T. Ushijima

Let X be a complex Banach space, A a closed linear operator from X
into X, D(An) the domain of the n-th power of A and

D(A∞) :=
∞⋂
n=1

D(An).

If n = 1, 2, . . . , then D(An) equipped with the norm
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‖x‖n = ‖x‖X + ‖Ax‖X + · · ·+ ‖Anx‖X , x ∈ D(An),

is a Banach space continuously imbedded in X. D(A∞) equipped with the
topology determined by the system of norms ‖ ‖n, n = 1, 2, . . . , is a Fréchet
space continuously imbedded in X.

Let R+ = [0,∞[. Consider the abstract Cauchy problem (ACP)

du(t)

dt
= Au(t) for t ∈ R+,

u(0) = u0.
(C)

For every n ∈ N ∪ {∞} put

Cn(A) = {u0 ∈ D(A) : Cn(R+;X) ∩ Cn−1(R+;D(A))

contains exactly one solution of (C)},

and for every u0 ∈ Cn(A) let R 3 t 7→ un(t;u0) ∈ D(A) be the unique
solution of (C) belonging to Cn(R+;X) ∩ Cn−1(R+;D(A)). Closedness of A
implies that

Cn(A) ⊂ D(An) for every n ∈ N ∪ {∞}.
Cn(A) carries the natural topology determined by the countable system of
seminorms pk,l,m,n, 0 ≤ k < n, 0 ≤ l < n − 1, m = 1, 2, . . . , defined by the
formula

pk,l,m,n(u0) = sup

{∥∥∥∥ dkdtkun(t;u0)

∥∥∥∥
X

,

∥∥∥∥ dldtlAun(t;u0)

∥∥∥∥
X

: t ∈ [0,m]

}
.

If %(A) 6= ∅ and the resolvent of A satisfies the growth condition from
Yu. I. Lyubich’s uniqueness theorem ([Lyu], Theorems 9.2–9.4; [P], p. 101,
Theorem 1.2), then Cn(A) with the above topology is complete, and hence
it is a Fréchet space. The uniqueness condition in the definition of Cn(A)
implies that

un(t;un(s;u0)) = un(t+ s;u0) for every s, t ∈ R+ and u0 ∈ Cn(A).

Consequently, the formula

Sn(t)u0 = un(t;u0), t ∈ R+, u0 ∈ Cn(A),

defines a semigroup (Sn(t))t≥0 of continuous linear operators from Cn(A) into
Cn(A).
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If n ∈ N ∪ {∞} and Cn(A) = D(An), then (Sn(t))t≥0 ⊂ L(D(An)) is a
(C0)-semigroup with infinitesimal generator equal to A|D(An+1). In the case
of n = ∞ the generator A|D(A∞) is a closed operator defined on the whole
Fréchet space D(A∞), so that it is a continuous operator from D(A∞) into
D(A∞), by the closed graph theorem.

T. Ushijima [U], p. 74, defines a closed operator A from X into X to be
D(A∞)-well posed if D(A∞) is dense in X and A|D(A∞) is the infinitesimal
generator of a (C0)-semigroup (S(t))t≥0 ⊂ L(D(A∞)). Thus a closed operator
A from X into X is D(A∞)-well posed if and only if D(A∞) is dense in X
and D(A∞) = C∞(A).

The paper [U] of T. Ushijima is devoted to D(A∞)-well posed operators A
from a complex Banach space into itself, and to corresponding semigroups of
operators acting in the Fréchet space D(A∞). Except in Section 4 of Chap-
ter I, it is not assumed in [U] that %(A) 6= ∅, where %(A) denotes the resolvent
set of A treated as an operator from X into X. In Section 10 of Chapter II
of [U] T. Ushijima proves D(A∞)-well posedness of an operator A related to
a Petrovskĭı correct system of PDE with constant coefficients. The proof in-
volves the spectral theory of matrices and depends on E. A. Gorin’s Lemma 3
from [G1] asserting that the coefficients of an interpolation polynomial for a
given holomorphic function are linear combinations of some complex contour
integrals involving that function.

1.2. The subject of the present paper

We simplify the proof of Ushijima’s theorem by avoiding the theory of
interpolation polynomials, but still using contour integrals of Gorin’s type.
A refined formulation of Ushijima’s theorem is given in Section 1.4. Earlier,
in Section 1.3, in order to elucidate the position of D(A∞)-well posedness in
the theory of one-parameter semigroups and distribution semigroups of linear
operators, we quote some theorems of E. Hille, D. Fujiwara and T. Ushijima.
Chapter 4 is devoted to some other results in the theory of Petrovskĭı correct
systems. Section 4.2 emphasises the role played in [P] by the space OM
of slowly increasing C∞-functions. In Section 4.3 the bounded subsets of
OM are characterized as equicontinuous sets of multipliers on the space S of
rapidly decreasing C∞-functions. In Section 4.4 the Petrovskĭı correctness
is expressed in terms of one-parameter (C0)-semigroups of operators in the
spaces S and S ′.
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1.3. The case of non-empty resolvent set

Lemma ([W], Corollary 3.3). If the resolvent set %(A) of A is non-empty and
D(A) is dense in X, then D(A∞) is dense in X, and for every n = 1, 2, . . . ,
D(A∞) is dense in the Banach space D(An).

The role of the equality Cn(A) = D(An) in semigroup theory is elucidated
by the following two theorems.

Theorem 1. Let A be a closed densely defined linear operator from a complex
Banach space X into X such that %(A) 6= ∅. Fix n ∈ N. Then Cn(A) =
D(An) if and only if A is the infinitesimal generator of a (C0)-semigroup
(S(t))t≥0 ⊂ L(X).

Theorem 2. Let A be a closed densely defined linear operator from a com-
plex Banach space X into X such that %(A) 6= ∅. Then A is D(A∞)-well
posed if and only if A is the generator of an L(X)-valued L. Schwartz distri-
bution semigroup. Furthermore, if (S(t))t≥0 ⊂ L(D(A∞)) is the semigroup
with infinitesimal generator A|D(A∞) and S is the distribution semigroup with
generator A, then for every κ ∈ R the following conditions are equivalent:

(aκ) the semigroup (e−κtS(t))t≥0 ⊂ L(D(A∞)) is equicontinuous,
(bκ) e−κS is an L(X)-valued tempered distribution.

In (bκ), e−κ(t) = e−κt for t ∈ R, and “tempered distribution” means a
member of the L. Schwartz space S ′(L(X)). Theorem 1 (for n = 1) goes
back to E. Hille [H]. See also [H-P], p. 622, Theorem 28.8.3. A proof of
this theorem is also presented in [Pa], pp. 102–104. Theorem 2 follows from
Theorem 4.1, p. 92, of T. Ushijima [U] and Theorems 2 and 3 of D. Fujiwara
[Fu] (see also [U], p. 94, Theorem 4.2). The distribution semigroups for which
(bκ) is satisfied for some κ ∈ R are called exponential, after J.-L. Lions [L].
It follows from results of [L] and J. Chazarain [C] that not all distribution
semigroups of L. Schwartz are exponential. Hence, in Theorem 2, there may
be no κ for which (bκ) holds, and then there is no κ for which (aκ) holds.

There are closed densely defined operators A from X into X with non-empty
resolvent set for which C∞(A) is a Fréchet space densely and continuously
imbedded in X and

C∞(A)  D(A∞).

An example of such an operator may be constructed as follows. Take a non-
negative continuous function ω on R such that ω(0) = 0, ω(−x) ≡ ω(x),
ω|R+ is concave,

∫∞
1
x−2ω(x) dx < ∞ and limx→∞ ω(x)/lnx = ∞. Let Ω =

{z ∈ C : Re z < ω(Im z)}, and let X = L2(Ω). Define
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D(A) = {f ∈ L2(Ω) : the function Ω 3 z 7→ zf(z) ∈ C belongs to L2(Ω)},
Af(z) = zf(z) for every f ∈ D(A) and almost every z ∈ Ω.

Then A is closed, D(A) is dense in X, %(A) = C \Ω and

sup
λ∈(C\Ω)+1

‖(λ− A)−1‖L(X) <∞, (∗)

so that A is the generator of a Dω-distribution semigroup S. See [K2], Sec-
tions 1.4 and 2.7. Furthermore, C∞(A) coincides with the space of infinitely
differentiable vectors of S (the latter being defined similarly to [K1]), and
hence (by an argument similar to one in the proof of Proposition 4.6 in [C-Z],
pp. 157–158) the estimate (∗) implies that C∞(A) is dense in X. Finally, one
has C∞(A)  D(A∞) because, by Theorem 2, the equality would imply that
S is a distribution semigroup of L. Schwartz. But then, by Theorem 5.1,
p. 403, of J. Chazarain [C] (and by inequalities in Sec. 9 of [K1]) one would
have

C \Ω = %(A) ⊃ {z : Re z ≥ a ln(1 + |Im z|) + b}

for some constants a ≥ 0 and b ∈ R. However, such an inclusion is impossible
because limx→∞ ω(x)/lnx =∞.

1.4. Theorem of T. Ushijima concerning Petrovskĭı correct systems of linear
partial differential equations with constant coefficients

Let N = {1, 2, . . .}, N0 = {0, 1, . . .}, and let m,n ∈ N be fixed. Let
x1, . . . , xn be coordinates in Rn and for every multiindex α = (α1, . . . , αn)
∈ Nn0 let

Dα =

(
1

i

∂

∂x1

)α1

· · ·
(

1

i

∂

∂xn

)αn
.

Suppose that p ∈ N and that for every multiindex α = (α1, . . . , αn) of
length |α| = α1 + · · · + αn ≤ p there is given an m × m matrix Aα with
complex entries. Consider the differential operator

P (D) =
∑
|α|≤p

AαD
α

and the corresponding polynomial matrix

A(ξ) =
∑
|α|≤p

ξαAα
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where ξ = (ξ1, . . . , ξn) ∈ Rn, ξα = ξα1
1 · · · ξαnn . Denote by σ(A(ξ)) the spec-

trum of A(ξ). Define

X = L2(Rn;Cm), D(A) = {u ∈ X : P (D)u ∈ X},
Au = P (D)u for u ∈ D(A),

where P (D)u is meant in the sense of distributions. It is easy to see that
A is a closed operator from X into X, and that D(A∞) is dense in X.
Endowed with the topology determined by the sequence of norms ‖u‖j =
(‖u‖2X + ‖Au‖2X + · · · + ‖Aju‖2X)1/2, j = 0, 1, . . . , D(A∞) is a Fréchet space
continuously imbedded in X.

Theorem 3. The following conditions are equivalent:

(a) A|D(A∞) is the infinitesimal generator of a (C0)-semigroup (St)t≥0 ⊂
L(D(A∞)),

(b) ω0 := sup{Reλ : λ ∈ σ(A(ξ)), ξ ∈ Rn} is finite.

Furthermore, if these equivalent conditions are satisfied, then

ω0 = ω1

where

ω1 =inf{ω ∈ R : the semigroup (e−ωtSt)t≥0⊂L(D(A∞)) is equicontinuous}.

The theory of semigroups of operators in locally convex spaces is pre-
sented in Chapter IX of the monograph of K. Yosida [Y]. The equiva-
lence (a)⇔(b) was proved by T. Ushijima [U], Theorem 10.1, p. 118. If
p = 1, then condition (b) is equivalent to hyperbolicity of the polynomial
det(ζ01−P (ζ1, . . . , ζn)) of the variables ζ0, ζ1, . . . , ζn ∈ C with respect to the
real vector N = (1, 0, . . . , 0) ∈ R1+n. See [H3], Definition 12.3.3. In the ter-
minology of [C-P], p. 346, condition (b) means that the matricial differential
operator 1 ∂

∂t
− P (D) is Petrovskĭı correct in the direction (1, 0, . . . , 0). An

inspection of the operators P (D) =
∑
|α|≤pAαD

α with subdiagonal matrices

Aα shows that (b) does not imply that A treated as an operator from X into
X has non-empty resolvent set.

2. Functions of matrices as polynomials with coefficients expressed
by complex contour integrals

Fix m ∈ N and let

τ1(x1, . . . , xm) = x1 + · · ·+ xm,
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τk(x1, . . . , xm) =
∑

1≤i1<···<ik≤m

xi1 · · ·xik for k = 2, . . . ,m

be elementary symmetric polynomials of m variables x1, . . . , xm. Let A be a
complex m×m matrix, and let λ1, . . . , λm be a sequence of eigenvalues of A
in which the number of occurrences of any eigenvalue is equal to its spectral
multiplicity. Let P (z) = det(z1− A) be the characteristic polynomial of A.
The spectrum of A, equal to the set {λ1, . . . , λm}, is denoted by σ(A).

Lemma 1. For every z ∈ C \ σ(A) one has

(z1− A)−1 =
m−1∑
k=0

rk(A, z)A
k

where

rk(A, z) =
m−1−k∑
l=0

(
k + l

k

)
(−z)lτk+l+1

(
1

z − λ1

, . . . ,
1

z − λm

)
.

Furthermore,

τµ

(
1

z − λ1

, . . . ,
1

z − λm

)
=

1

µ!

P (µ)(z)

P (z)
for µ = 1, . . . ,m,

so that
τµ

(
1

z − λ1

, . . . ,
1

z − λm

)
, µ = 1, . . . ,m,

are rational functions of z and of the coefficients of the characteristic poly-
nomial P (z).

Proof. Lemma 1 is related to the solution of Problem 124 in [G-L]. We
present an independent proof. By Taylor’s formula and the Cayley–Hamilton
theorem,

P (z)1+
m∑
µ=1

1

µ!
P (µ)(z)(A− z1)µ = P (A) = 0,

whence

(z1− A)−1 =
m∑
µ=1

1

µ!

P (µ)(z)

P (z)
(A− z1)µ−1 for z ∈ C \ σ(A).

Since d
dz
τµ(z − λ1, . . . , z − λm) = (m − µ + 1)τµ−1(z − λ1, . . . , z − λm) for

µ = 2, . . . ,m, it follows that
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P (µ)(z) =

(
d

dz

)µ
τm(z − λ1, . . . , z − λm)

=

(
d

dz

)µ−1

τm−1(z − λ1, . . . , z − λm)

= 2

(
d

dz

)µ−2

τm−2(z − λ1, . . . , z − λm) = · · ·

= µ!τm−µ(z − λ1, . . . , z − λm)

for µ = 1, . . . ,m− 1. Consequently,

1

µ!

P (µ)(z)

P (z)
=
τm−µ(z − λ1, . . . , z − λm)

(z − λ1) · · · (z − λm)
= τµ

(
1

z − λ1

, . . . ,
1

z − λm

)
for µ = 1, . . . ,m− 1. Furthermore,

1

m!

P (m)(z)

P (z)
=

1

(z − λ1) · · · (z − λm)
= τm

(
1

z − λ1

, . . . ,
1

z − λm

)
.

Therefore

(z1− A)−1 =
m∑
µ=1

τµ

(
1

z − λ1

, . . . ,
1

z − λm

)
(A− z1)µ−1 for z ∈ C \ σ(A),

whence the expressions for the coefficients rk(A, z) follow by Newton’s bino-
mial formula.

Corollary 1. Suppose that f is a function holomorphic in an open neigh-
bourhood U of the spectrum σ(A) = {λ1, . . . , λm} of A. Let C be a system of
closed rectifiable curves contained in U \ σ(A) such that the whole C winds
once about σ(A). Then

1

2πi

∫
C

f(z)(z1− A)−1 dz =
m−1∑
k=0

akA
k (2.1)

where

ak =
m−1−k∑
l=0

(
k + l

k

)
I lk+l+1(f ;λ1, . . . , λm)

for k = 0, . . . ,m− 1 and

I lµ(f ;λ1, . . . , λm) =
1

2πi

∫
C

f(z)

[
(−z)lτµ

(
1

z − λ1

, · · · , 1

z − λm

)]
dz

for µ = 1, . . . ,m and l = 0, . . . , µ− 1.
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The integral 1
2πi

∫
C
f(z)(z1−A−1) dz can be used as definition of the m×m

matrix f(A) when f is a function holomorphic in a neighbourhood of σ(A).
In another definition f(A) is expressed as a polynomial of A of order no
greater than m− 1. The coefficients a0, a1, . . . , am−1 of that polynomial (i.e.
the coefficients for which (2.1) holds if f is holomorphic in a neighbourhood
of σ(A)) are uniquely determined by the values of f (k)(λ) for λ ∈ σ(A)
and k = 0, 1, . . . , µ(λ) − 1 where µ(λ) is the spectral multiplicity of λ as a
root of the characteristic equation det(λ1 − A) = 0. See [D-S], Chap. VII,
Sec. 1; [Hig], Sec. 1. The fact that if f is holomorphic in a neighbourhood
of σ(A), then the coefficients a0, a1, . . . , am−1 are linear combinations of the
integrals

I li1,...,ik =
1

2πi

∫
C

f(z)
(−z)l

(z − λi1) · · · (z − λik)
dz, 1 ≤ i1 < · · · < ik ≤ m,

was discovered and exploited by E. A. Gorin in [G1]. This fact was also used
by T. Ushijima in Sec. 10 of [U].

Remark. It should be noted that in [G1] the proof that ak ∈ lin{I li1,...,ik} is
presented only for simple characteristic roots λ1, . . . , λm, and without com-
puting the coefficients of linear combinations. Passage to multiple roots then
causes difficulties because the integrals I li1,...,ik depend on the numbering of
roots.

Lemma 2. Let A be a complex m×m matrix, and let z0 ∈ C \ σ(A). Then

(A− z01)−m−1 exp(tA) =
1

2πi

∫
C

(z − z0)
−m−1etz(z1− A)−1 dz

for every t ∈ R and every rectifiable closed path C contained in C \ {z0},
winding once about σ(A) and not winding about z0.

Proof. For any R > ‖A‖,

1

2πi

∫
C

etz(z1− A)−1 dz =
∞∑
n=0

tn

2πin!

∫
|z|=R

zn(z1− A)−1 dz

=
∞∑
n=0

tn

2πin!

∫
|z|=R

zn(z−1
1+ z−2A+ · · · ) dz
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=
∞∑
n=0

tn

2πin!

∫
|z|=R

z−1An dz

=
∞∑
n=0

tnAn

n!
= exp(tA).

Furthermore,

1

2πi

∫
C

(z − z0)
−1(z1− A)−1 dz

=

[
1

2πi

∫
C

(z − z0)
−1 dz − 1

2πi

∫
C

(z1− A)−1 dz

]
(z01− A)−1

= [0− 1](z01− A)−1 = (A− z01)−1,

by the resolvent equation. These equalities imply the lemma, by Theorem 10
in Sec. 3 of Chap. VII of [D-S] or the Theorem in Chap. VIII, Sec. 7 of [Y],
or Fact 3 in [Hig].

Lemma 3. Let A be a C∞-map of R into the set of complex m×m matrices.
Suppose that

sup{Reλ : λ ∈ σ(A(ξ)), ξ ∈ Rn} = ω0 <∞.

Then there are functions ak ∈ C∞(R1+n;C), k = 0, . . . , 2m, such that

exp(tA(ξ)) =
2m∑
k=0

ak(t, ξ)A(ξ)k for every (t, ξ) ∈ R1+n

and

sup{e−(ω0+ε)t|ak(t, ξ)| : k = 0, . . . , 2m, t ∈ [0,∞[, ξ ∈ Rn} <∞

for every ε > 0.

Proof. Fix z0 ∈ C such that Re z0 > ω0. It is sufficient to show that there are
complex-valued functions bk, k = 0, . . . ,m− 1, defined on R1+n and having
the following three properties:

(A(ξ)− z01)−m−1 exp(tA(ξ)) =
m−1∑
k=0

bk(t, ξ)A(ξ)k, (t, ξ) ∈ R1+n, (2.2)

bk ∈ C∞(R1+n;C), k = 0, . . . ,m− 1, (2.3)

sup{e−(ω0+ε)t|bk(t, ξ)| : k = 0, . . . ,m− 1, t ∈ [0,∞[, ξ ∈ Rn} <∞ (2.4)
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for every ε > 0. By Corollary 1 and Lemma 2, the functions bk, k = 0, . . . ,
m− 1, satisfying (2.2) are uniquely determined on R1+n and may be repre-
sented in the form

bk(t, ξ) =
m−1−k∑
l=0

(
k + l

k

)
I lk+l+1(t, ξ)

where

I lµ(t, ξ) =
1

2πi

∫
Cξ

(z − z0)
−m−1etz(−z)lτµ

(
1

z − λ1(ξ)
, . . . ,

1

z − λm(ξ)

)
dz

for µ = 1, . . . ,m and l = 0, . . . , µ − 1. In the last formula λ1(ξ), . . . , λm(ξ)
is any sequence of eigenvalues of A(ξ) in which the number of occurrences
of any eigenvalue is equal to its spectral multiplicity, and Cξ is a rectifiable
closed path contained in {z ∈ C : Re z < Re z0} \ σ(A(ξ)) and winding once
about σ(A(ξ)).

Every ξ0 ∈ Rn has an open neighbourhood U such that Cξ0 ⊂ C \ σ(A(ξ))
and Cξ0 winds once about σ(A(ξ)) for every ξ ∈ U . This follows from Theo-
rem 9.17.4 in [D]. Consequently, for every ξ ∈ U one can replace Cξ by Cξ0
without changing the values of the integrals I lµ(t, ξ). Since, by Lemma 1, each

τµ
(

1
z−λ1(ξ)

, . . . , 1
z−λm(ξ)

)
is a C∞ function on {(z, ξ) ∈ C×Rn : z /∈ σ(A(ξ))},

it follows that I lµ ∈ C∞(R1+n;C), so that (2.3) holds.
It remains to prove (2.4). To this end, fix ε > 0 and take δ ∈ ]0, ε] such

that ω0 + δ < Re z0. Let ξ ∈ Rn. Since σ(A(ξ)) ⊂ {z ∈ C : Re z ≤ ω0},
without changing the values of the integrals I lµ(t, ξ) one can choose a closed
rectifiable path Cξ winding once about σ(A(ξ)) such that

Cξ ⊂ Dξ := {z ∈ C : Re z − ω0 ≤ δ ≤ dist(z, σ(A(ξ)))}.

For every ξ ∈ Rn the straight line

L = {z ∈ C : Re z = ω0 + δ}

is contained in Dξ. Furthermore, for every t ∈ [0,∞[, ξ ∈ Rn, z ∈ Dξ,
µ = 1, . . . ,m and l = 0, . . . , µ− 1, one has∣∣∣∣(z − z0)

−m−1etz(−z)lτµ

(
1

z − λ1(ξ)
, . . . ,

1

z − λm(ξ)

)∣∣∣∣
≤ C|z − z0|−2e(ω0+δ)t (2.5)
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with some finite constant C depending only on δ. Therefore, by Cauchy’s
integral theorem, in the definition of I lµ(t, ξ) one can replace integration along
the closed path Cξ by integration along L. From (2.5) it follows that

|I lµ(t, ξ)| ≤ C

2π

∫
L

|z − z0|−2 dz · e(ω0+δ)t

for every µ = 1, . . . ,m, l = 0, . . . , µ− 1, t ∈ [0,∞[, and ξ ∈ Rn, whence (2.4)
follows because δ ∈ ]0, ε].

3. Proof of Theorem 3

Theorem 3 is a conjunction of three implications: (a)⇒(b), (b) ⇒ (a) ∧
(ω1 ≤ ω0) and (a) ∧ (ω1 <∞)⇒ (ω0 ≤ ω1).

Proof of (a)⇒(b). Suppose that (a) holds. Then S1 ∈ L(D(A∞)) and hence
there are C ∈ ]0,∞[ and j ∈ N such that ‖S1u‖X ≤ C(

∑
0≤i≤j ‖Aiu‖2X)1/2

for every u ∈ D(A∞). Consequently, by Plancherel’s theorem, there are
K ∈ ]0,∞[ and k ∈ N such that(∫

Rn
‖(expA(η))ϕ(η)‖2 dη

)1/2

≤ C
∑

0≤i≤j

(∫
Rn
‖A(η)‖2i‖ϕ(η)‖2 dη

)1/2

≤ K

(∫
Rn

(1 + |η|)2k‖ϕ(η)‖2 dη
)1/2

(3.1)

for every ϕ ∈ C∞0 (Rn;Cm). For any ξ ∈ Rn take z(ξ) ∈ Cm such that
‖z(ξ)‖Cm = 1 and ‖(expA(ξ))z(ξ)‖Cm = ‖expA(ξ)‖L(Cm). Let (φν)ν=1,2,... ⊂
C∞c (Rn) be a sequence of non-negative functions such that the support of φν
is contained in the ball with center at ξ and radius 1/ν, and

∫
Rn φν(η)2 dη = 1.

Applying (3.1) to ϕ(η) = φν(η)z(ξ), one concludes that

‖expA(ξ)‖ = ‖(expA(ξ))z(ξ)‖

= lim
ν→∞

(∫
Rn
‖(expA(η))z(ξ)‖2Cmφν(η)2 dη

)1/2

≤ K lim
ν→∞

(∫
Rn

(1 + |η|)2kφν(η)2 dη

)1/2

= K(1 + |ξ|)k. (3.2)
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Let ρ stand for the spectral radius. By Corollary 2.4 on p. 252 of [E-N] and
by (3.2), for every ξ ∈ Rn one has

max{Reλ : λ ∈ σ(A(ξ))} = log ρ(expA(ξ))

≤ log ‖expA(ξ)‖ ≤ logK + k log(1 + |ξ|). (3.3)

By a theorem of Hurwitz ([S-Z], Sec. III.11), or by Theorem 9.17.4 in [D],
for every r ∈ [0,∞[ the set {Reλ : λ ∈ σ(A(ξ)), ξ ∈ Rn, |ξ| ≤ r} is compact
and

Λ(r) = max{Reλ : λ ∈ σ(A(ξ)), ξ ∈ Rn, |ξ| ≤ r} (3.4)

is a continuous function of r. From (3.3) it follows that

Λ(r) ≤ logK + k log(1 + r) for every r ∈ [0,∞[. (3.5)

In order to prove (b) it remains to recall that (3.5) implies a seemingly
stronger condition

sup
r∈[0,∞[

Λ(r) <∞. (3.6)

Proof of the implication (3.5)⇒(3.6). Validity of the implication (3.5)⇒
(3.6) was conjectured by I. G. Petrovskĭı [P], footnote on p. 24. L. G̊arding
[G], pp. 11–14, proposed a method of proving this conjecture by an argument
that consists in

(A) constructing a polynomial P (z, w) of two variables such that P (r, Λ(r))
= 0 for every r ∈ [0,∞[, and

(B) applying Puiseux series of algebraic functions R of one complex variable
z satisfying the equation P (z,R(z)) = 0.

L. Hörmander [H1], proof of Lemma 3.9, noticed that stage (A) may be re-
alized by an application of A. Seidenberg’s theorem (also called the Tarski–
Seidenberg theorem) asserting that the projection onto Rd of a semi-algebraic
subset of Rd+k is a semi-algebraic subset of Rd. This projection theorem is
a particular case of Seidenberg’s decision theorem [Se] (belonging to mathe-
matical logic). Detailed presentations of Seidenberg’s proof in the case of the
projection theorem are given in [G2] and [F]. An argument from P. Cohen’s
proof of a decision theorem [Co1,2] is used in the proof of the projection
theorem in the Appendix to [H3].

Let us present a proof of the implication (3.5)⇒(3.6) consisting of the stages
(A) and (B). At stage (A) we describe a standard application of the Tarski–
Seidenberg theorem. At stage (B) we give detailed references to algebraic
functions of one complex variable.
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(A) Let R and S be a real polynomials on R2+n such that

(R + iS)(σ, τ, ξ) = det((σ + iτ)1− A(ξ)),

and let
E = {(r, σ) ∈ R2 : ∃(τ,ξ)∈R1+n (r, σ, τ, ξ) ∈ F}

where

F ={(r, σ, τ, ξ)∈R3+n : r≥0, ξ2
1 + · · ·+ ξ2

n≤r2, R(σ, τ, ξ)=0, S(σ, τ, ξ)=0}.

Then F is equal to a finite union of finite intersections of subsets of Rd,
d = 3 + n, each defined by a real polynomial equality or strict inequality. In
other words, in the terminology of the Appendices in [Tr] and [H3], F is a
semi-algebraic subset of Rd. The set E is the projection of F onto R2, and
hence, by the Tarski–Seidenberg theorem, E is a semi-algebraic subset of R2.
Consequently,

E =
k⋃
i=1

Fi ∩Gi

where Fi = {(r, σ) ∈ R2 : Pi(r, σ) = 0} and Gi = {(r, σ) ∈ R2 : Qij(r, σ) > 0
for j = 1, . . . , j(i)}, Pi and Qij being real polynomials on R2. Some Pi
may vanish identically on R2, and some Qij may be strictly positive on R2.
However, since the sets Gi are open and the sets

Er :={σ∈R : (r, σ)∈E}={Reλ : λ ∈ σ(A(ξ)), ξ∈Rn, |ξ|≤r}, r ∈ [0,∞[,

are compact, it follows that

J = {i = 1, . . . , k : Pi is not identically zero} 6= ∅.

Pick any r ∈ [0,∞[. Since Λ(r) = maxEr ∈ Er and all the sets Gi are open,
it follows that

Λ(r) = max{σ ∈ R : (r, σ) ∈ Fi}
= max{σ ∈ R : Pi(r, σ) = 0} for some i = i(r) ∈ J. (3.7)

Consequently, Pi(r, Λ(r)) = 0 for i = i(r), and if P (r, σ) =
∏

i∈J Pi(r, σ),
then P is not identically zero and

P (r, Λ(r)) = 0 for every r ∈ [0,∞[. (3.8)
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(B) Since the function Λ(·) is continuous on [0,∞[, its boundedness on
[0,∞[ follows at once from (3.5) and (3.8) by virtue of the Proposition
below. Let Q[w] be the ring of polynomials of one variable w with coef-
ficients in the field Q of rational functions of one complex variable. Any
polynomial P ∈ Q[w] of the form P (w) =

∑n
k=0Akw

k where A0, . . . , An ∈
Q and An 6= 0 may be treated as a complex-valued function P (z, w) =∑n

k=0Ak(z)wk of two complex variables z and w defined for (z, w) ∈ (C \ S)
× C where S = {z ∈ C : either An(z) = 0 or z is a pole of Ak for some
k = 0, . . . , n}.
Proposition. Let P ∈ Q[w] and let Λ be a real function defined on [0,∞[
such that

lim sup
x→∞

x−αΛ(x) ≤ 0 for every α > 0. (3.9)

Suppose that the set

Z = {x ∈ [0,∞[ : x 6∈ S, P (x, Λ(x)) = 0}

is unbounded. Then
lim sup
Z3x→∞

Λ(x) <∞. (3.10)

Proof of the Proposition. P may be represented as a product P =
P1 . . . Ps of irreducible elements of Q[w]. Let Zj = {x ∈ [0,∞[ : x 6∈ Sj,
Pj(x, Λ(x)) = 0} for j = 1, . . . , s, and let J={j=1, . . . , s : Zj is unbounded}.
Then [a,∞[∩Z ⊂

⋃
j∈J Zj for sufficiently large a ∈ [0,∞[, so that (3.10) will

follow once it is shown that lim supZj3x→∞ Λ(x) <∞ for every j ∈ J . Hence
it is sufficient to prove the Proposition under the additional assumption that
P ∈ Q[w] is irreducible. So, suppose that P =

∑n
k=0Akw

k ∈ Q[w] is irre-
ducible and An 6= 0. Then, by Theorem VI.13.7 of [S-Z] there is a finite set
F ⊂ C\S such that for every z0 ∈ C\(S∪F ) the polynomial P (z0, w) ∈ C[w]
of degree n has n distinct simple roots belonging to C. By Theorems VI.14.2
and VI.14.3 of [S-Z] there is a multivalued analytic function R defined on
C \ (S ∪ F ) such that for every z0 ∈ C \ (S ∪ F ) the set of values of R at z0

coincides with the set of roots of P (z0, w). (Notice that in [S-Z] an analytic
function is, by definition, holomorphic on a connected analytic space.) If
R ∈ [0,∞[ is so large that S ∪ F ⊂ {z ∈ C : |z| ≤ R}, then, by Theorem
VI.9.3 of [S-Z] there is a function Φ holomorphic in 0 < |z| < R−1/n such
that

R(z) = {Φ(ζ) : ζ ∈ C, ζn = z−1} whenever R < |z| <∞. (3.11)
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Furthermore, an argument presented at the end of the proof of Theorem
VI.14.2 of [S-Z], based on the Casorati–Weierstrass theorem, shows that Φ
has at z = 0 either a removable singularity or a pole. It follows that Φ has in
0 < |z| < R−1/n the Laurent expansion Φ(z) =

∑∞
k=m akz

k, m ∈ Z, am 6= 0,
where the series is absolutely convergent, uniformly on 0 < |z| ≤ R−1/n − ε
for every ε ∈ ]0, R−1/n[. Consequently, if x ∈ ]R,∞[ ∩ Z, then by (3.10) and
(3.11) one has

Λ(x) ∈ R(x) =
{ ∞∑
k=m

ak(x
−1/nz)k : z ∈ U

}
(3.12)

where x−1/n is real and strictly positive, and U is the set of n-th roots of
unity. If m ≥ 0, then (3.10) holds because Λ(·) is bounded on [R+1,∞[∩Z,
by (3.12). If m < 0, then (3.12) implies that

lim
Z3x→∞

dist(xm/nΛ(x), amU) = 0. (3.13)

From (3.9) and (3.13) it follows that −|am| ∈ amU and

lim
Z3x→∞

xm/nΛ(x) = −|am|.

Since −|am| < 0, one concludes that limZ3x→∞ Λ(x) = −∞, so that (3.10)
holds.

Proof of (b)⇒ (a)∨ (ω1 ≤ ω0). Suppose that (b) is satisfied. By Lemma 3
for every ε > 0 there is Cε ∈ ]0,∞[ such that if u ∈ D(A∞), j ∈ N, t ∈ R+

and û = Fu, then(∫
Rn
‖A(ξ)j(exp(tA(ξ)))û(ξ)‖2Cm dξ

)1/2

=

(∫
Rn

∥∥∥ 2m∑
k=0

ak(t, ξ)A(ξ)k+jû(ξ)‖2Cm dξ
)1/2

≤ Cεe
(ω0+ε)t

2m∑
k=0

(∫
Rn
‖A(ξ)k+jû(ξ)‖2Cm dξ

)1/2

.

By Plancherel’s theorem, the last estimate implies that the operators St =
F−1 exp(tA(·))F , t ∈ [0,∞[, constitute a one-parameter semigroup (St)t≥0 ⊂
L(D(A∞)) such that
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‖Stu‖j ≤ Cεe
(ω0+ε)t‖u‖j+2m

for every j ∈ N, t ∈ R+ and u ∈ D(A∞). Consequently, for every ε > 0 the
semigroup (e−(ω0+ε)tSt)t≥0 ⊂ L(D(A∞)) is equicontinuous, whence ω1 ≤ ω0.
It remains to prove that (St)t≥0 ⊂ L(D(A∞)) is a (C0)-semigroup whose
infinitesimal generator is equal to the operator A|D(A∞) = P (D)|D(A∞) ∈
L(D(A∞)). To this end, it is sufficient to observe that if u ∈ D(A∞), then

‖Stu− Sτu‖ = ‖F−1(exp(tA(·))− exp(τA(·)))Fu‖j
≤ |t− τ | sup

(σ−τ)(σ−t)≤0

‖F−1A(·) exp(σA(·))Fu‖j

= |t− τ | sup
(σ−τ)(σ−t)≤0

‖SσAu‖j

≤ |t− τ |Cε sup
(σ−τ)(σ−t)≤0

e(ω0+ε)σ‖u‖j+2m+1

for t, τ ∈ [0,∞[, and∥∥∥∥1

t
(Stu− u)− Au

∥∥∥∥
j

=

∥∥∥∥F−1 1

t
[exp(tA(·))− 1− tA(·)]Fu

∥∥∥∥
j

=

∥∥∥∥F−1 1

t

∫ t

0

(t− τ)A(·)2 exp(τA(·)) dτ Fu
∥∥∥∥
j

=

∥∥∥∥1

t

∫ t

0

(t− τ)SτA
2u dτ

∥∥∥∥
j

≤ 1

2
t max

0≤τ≤t
‖Sτu‖j+2

≤ 1

2
tCε max

0≤τ≤t
e(ω0+ε)τ‖u‖j+2m+2

for every t ∈ ]0,∞[.

Proof of (a) ∧ (ω1 < ∞) ⇒ (ω0 ≤ ω1). The proof of this implication
is similar to that of (a)⇒(b), but does not employ anything similar to the
implication (3.5)⇒(3.6). Suppose that (a) holds and ω1 < ∞. Pick an
arbitrary ω ∈ ]ω1,∞[. Then the semigroup (e−ωtSt)t≥0 ⊂ L(D(A∞)) is
equicontinuous, and hence there are C ∈ ]0,∞[ and j ∈ N such that

‖Stu‖X ≤ eωtC‖u‖j for every t ∈ R+ and D(A∞).

Consequently, by Plancherel’s theorem, there are K ∈ ]0,∞[ and k ∈ N such
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that whenever ϕ ∈ C∞c (Rn;Cm), then(∫
Rn
‖exp(tA(η))ϕ(η)‖2 dη

)1/2

≤eωtC
∑

0≤i≤j

(∫
Rn
‖A(η)iϕ(η)‖2 dη

)1/2

≤eωtK
(∫

Rn
(1 + |η|)2k‖ϕ(η)‖2 dη

)1/2

. (3.14)

For any (t, ξ) ∈ Rn+1 choose z(t, ξ) ∈ Cm such that ‖z(t, ξ)‖Cm = 1 and
‖exp(tA(ξ))z(t, ξ)‖Cm = ‖exp(tA(ξ))‖L(Cm). Let (φν)ν=1,2,... ⊂ Cc(Rn) be
a sequence of non-negative functions such that

∫
Rn φν(η)2 dη = 1 and φν

vanishes outside the ball with center at ξ and radius 1/ν. Applying (3.14)
to ϕ(η) = φν(η)z(t, ξ), one concludes that

‖exp(tA(ξ))‖L(Cm) = ‖exp(tA(ξ))z(t, ξ)‖Cm

= lim
ν→∞

(∫
Rn
‖exp(tA(η))φν(η)z(t, ξ)‖2 dη

)1/2

≤ lim
ν→∞

eωtK

(∫
Rn

(1 + |η|)2kφν(η)2 dη

)1/2

=eωtK(1 + |ξ|)k

for every (t, ξ) ∈ Rn+1. Hence, by Proposition 2.2, p. 251, and Corollary 2.4,
p. 252, in [E-N], for every ξ ∈ Rn one has

max{Reλ : λ ∈ σ(A(ξ))} = lim
t→∞

1

t
log ‖exp(tA(ξ))‖L(Cm) ≤ ω.

Since ω is an arbitrary number in ]ω1,∞[, it follows that ω0 ≤ ω1. 2

4. Remarks on Petrovskĭı correct systems of partial differential
equations with constant coefficients

4.1. The one-parameter group of operators Gt = exp(tP (D)), −∞ < t <∞,
in the space Z ′ dual to F−1D(Rn;Cm)

Let D(Rn;Cm) be the space of C∞ maps of Rn into Cm with compact
support. D(Rn;Cm) is endowed with the topology of the inductive limit of
the Fréchet spaces DK(Rn;Cm) = {ϕ ∈ C∞(Rn;Cm) : suppϕ ⊂ K} for
K running through the family of compact subsets of Rn. Let D′(Rn;Cm)
be the space of Cm-valued distributions of L. Schwartz on Rn. D′(Rn;Cm)
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is endowed with the topology of uniform convergence on bounded subsets of
D(Rn;Cm). The above topologies on D(Rn;Cm) and D′(Rn;Cm) are compat-
ible with the duality determined by the bilinear form (ϕ, T )→

∑m
k=1 Tk(ϕk),

ϕ = (ϕ1, . . . , ϕm) ∈ D(Rn;Cm), T = (T1, . . . , Tm) ∈ D′(Rn;Cm). The spaces
D(Rn;Cm) and D′(Rn;Cm) are barrelled, reflexive with respect to the above
duality form, and complete. Furthermore, the space D(Rn;Cm) is bornolog-
ical. See [E], Sec. 5.3; [Y], Sec. I.7-8 and Appendix to Chapter V; [S],
Sec. III.2, Theorem VIII. The space S(Rn;Cm) of Cm-valued infinitely differ-
entiable rapidly decreasing functions on Rn and the space S ′(Rn;Cm) of Cm-
valued tempered distributions on Rn constitute another dual pair with analo-
gous properties. Reflexivity of S(Rn;Cm) and S ′(Rn;Cm), and bornologicity
of S(Rn;Cm) are essential for the proof of the Corollary in Section 4.4.

The inverse Fourier transformation

F−1ϕ(x) =
1

(2π)n

∫
Rn
ei〈x,ξ〉ϕ(ξ) dξ, ϕ ∈ D(Rn;Cm),

is an isomorphism of D(Rn;Cm) onto the space Z(Cn;Cm) of Cm-valued
functions holomorphic on Cn, satisfying suitable growth-decay conditions.
The topology of Z(Cn;Cm) is transported by F−1 from D(Rn;Cm). See
[G-S2], Chap. III. Let Z ′ be the space dual to Z(Cn;Cm) endowed with
topology of uniform convergence on bounded subsets of Z(Cn;Cm). Similarly
to D′(Rn;Cm), also Z ′ is a complete l.c.v.s. The above definifions imply that
for every S ∈ Z ′ there is a unique T ∈ D′(Rn;Cm) such that

S(Fφ) = (2π)nS(F−1φ∨) = T (φ) for every φ ∈ D(Rn;Cm).

In view of the Parseval equality ([Y], p. 148, formula (11)) one can say that
S is equal to the Fourier transform of T .

As in Section 1.3, define

P (D) =
∑
|α|≤p

AαD
α, Dα =

(
1

i

∂

∂x1

)α1

· · ·
(

1

i

∂

∂xn

)αn
,

and
A(ξ) =

∑
|α|≤p

ξαAα, ξα = ξα1
1 · · · ξαnn .

The map Rn 3 ξ 7→ A(ξ) ∈ L(Cm) is infinitely differentiable, and the map

R1+n 3 (t, ξ) 7→ φ(t, ξ) = exp(tA(ξ)) ∈ L(Cm) (4.1)
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satisfies the differential equation d
dt
φ(t, ξ) = A(ξ)φ(t, ξ). Therefore the theo-

rem on differentiation of a solution of an ordinary differential equation with
respect to a parameter ([Ha], Chap. V, Sec. 4, Theorem 4.1) implies that the
map (4.1) is infinitely differentiable. Consequently, the formula

ĜtT = (exp tA(·))T, t ∈ R, T ∈ D′(Rn;Cm),

defines a one-parameter (C0)-group (Ĝt)t∈R ⊂ L(D′(Rn;Cm)) with infinitely
differentiable trajectories. See [S], Chap. III, Theorem XI. Since D′(Rn;Cm)

is a barrelled space, by the Banach–Steinhaus theorem, the group (Ĝt)t∈R ⊂
L(D′(Rn;Cm)) is locally equicontinuous. It follows that the operators

Gt = F−1ĜtF , t ∈ R, (4.2)

constitute a one-parameter locally equicontinuous (C0)-group (Gt)t∈R⊂L(Z ′)
with infinitely differentiable trajectories. Local equicontinuity implies that
the map

R× Z ′ 3 (t, U) 7→ GtU ∈ Z ′ (4.3)

is continuous. The infinitesimal generator of the one-parameter group (4.2)
is the operator P (D) =

∑
|α|≤pAαD

α defined on the whole Z ′ and belonging

to L(Z ′).
Let t0 ∈ ]0,∞] and u0 ∈ Z ′. For I equal to either [0, t0[ or ]−t0, 0] the

Cauchy problem

d

dt
u(t) = P (D)u(t) for t ∈ I, (4.4)

u(0) = u0,

has in the class C1(I;Z ′) a unique solution u(·), and this unique solution is
given by

u(t) = Gtu0 for t ∈ I.
We will prove the above for I = [0, t0[, the proof for I = ]−t0, 0] being similar.
Fix any t ∈ ]0, t0[ and let τ ∈ [0, t]. Then

lim
h→0

Gt−τ
1

h
[G−hu(τ)− u(τ)] = −Gt−τP (D)u(τ)

and, by continuity of the map (4.3),

lim
[−τ,t−τ ]3h→0

Gt−τ−h
1

h
[u(τ + h)− u(τ)] = −Gt−τP (D)u(τ),
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so that

lim
[−τ,t−τ ]3h→0

1

h
[Gt−τ−hu(τ + h)−Gt−τu(τ)] = 0.

This shows that for every t ∈ ]0, t0[ the function [0, t] 3 τ 7→ G(t−τ)u(τ) ∈ Z ′
has derivative vanishing everywhere on [0, t] (the derivative at the ends of
[0, t] being one-sided). Consequently, d

dτ
[Gt−τu(τ)](ϕ) = 0 for every τ ∈ [0, t]

and ϕ ∈ Z(Rn;Cm), whence

[u(t)−Gtu0](ϕ) = [Gt−τu(τ)](ϕ)|τ=tτ=0 = 0,

and so Gtu0 = u(t). Notice that the above argument resembles one used in
the proof of E. R. van Kampen’s uniqueness theorem for solutions of ordinary
differential equations. See [K] and [Ha], Chap. III, Sec. 7.

An important consequence of the uniqueness of solutions of (4.4) is the
following. Suppose that E is a function space continuously imbedded in Z ′

and that the operator P (D) restricted to the domain {u ∈ E : P (D)u ∈ E}
is the infinitesimal generator of a (C0)-semigroup (St)t≥0 ⊂ L(E). Then

GtE ⊂ E and St = Gt|E for every t ∈ [0,∞[.

We will show that if the Petrovskĭı correctness condition

sup{Reλ : λ ∈ σ(A(ξ)), ξ ∈ Rn} <∞

is satisfied, then there are various function spaces E with the above proper-
ties. One of them is E = D(A∞) from Theorem 3 in Section 1.4.

4.2. Conditions on σ(A(ξ)) and exp(tA(ξ)) equivalent to the Petrovskĭı cor-
rectness

For any ξ = (ξ1, . . . , ξn) ∈ Rn let |ξ| = (ξ2
1 + · · · + ξ2

n)1/2. For any ω ∈ R
consider the conditions:

sup{Reλ : λ ∈ σ(A(ξ)), ξ ∈ Rn} ≤ ω (the Petrovskĭı correctness); (4.5)

there is k ∈ N such that sup{e−(ω+ε)t(1 + |ξ|)−k‖exp(tA(ξ))‖L(Cm) :
0 ≤ t <∞, ξ ∈ Rn} <∞ for every ε > 0; (4.6)

for every multiindex α ∈ Nn0 there is kα ∈ N such that for every
ε > 0, sup{e−(ω+ε)t(1 + |ξ|)−kα‖(∂/∂ξ)α exp(tA(ξ))‖L(Cm) :
0 ≤ t <∞, ξ ∈ Rn} <∞. (4.7)
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Then (4.6) implies (4.5) because

sup{Reλ : λ ∈ σ(A(ξ))} = t−1 log ρ(exp(tA(ξ))) ≤ t−1 log ‖exp(tA(ξ))‖L(Cm)

where ρ denotes the spectral radius. See [E-N], p. 252. The converse impli-
cation is a consequence of the estimate

‖exp(tA(ξ))‖ ≤ eωt(1 + 2t‖A(ξ)‖+ · · ·+ (2t‖A(ξ)‖)m−1)

≤ eωt(1 + (2t)2 + · · ·+ (2t)2(m−1))1/2

× (1 + ‖A(ξ)‖2 + · · ·+ ‖A(ξ)‖2(m−1))1/2 (4.8)

for every t ∈ [0,∞[ and ξ ∈ Rn, where ω is defined by (4.5). Inequality
(4.8) is stated in [G-S2] in Section 6 of Chapter II, and is also an immedi-
ate consequence of Theorem 2 in Section 2 of Chapter 7 of [F]. Obviously
(4.7) implies (4.6), and the proof of the converse implication will be given
shortly. Therefore for any fixed ω ∈ R the conditions (4.5), (4.6) and (4.7)
are equivalent.

I. G. Petrovskĭı considered in [P] the following conditions which are similar
to (4.5)–(4.7), but are not uniform with respect to t on the whole [0,∞[:

sup{(1 + log(1 + |ξ|))−1 Reλ : λ ∈ σ(A(ξ)), ξ ∈ Rn} <∞, (4.9)

for every T ∈ ]0,∞[ there is k ∈ N such that
sup{(1 + |ξ|)−k‖exp(tA(ξ))‖L(Cn) : 0 ≤ t ≤ T, ξ ∈ R} <∞, (4.10)

for every multiindex α ∈ Nn0 and every T ∈ ]0,∞[ there is
kα,T ∈ N such that sup{(1 + |ξ|)−kα,T ‖(∂/∂ξ)α exp(tA(ξ))‖L(Cm) :
0 ≤ t ≤ T, ξ∈Rn} <∞. (4.11)

Each of the three conditions (4.9)–(4.11) is equivalent to every of the other
two, and each is equivalent to the existence of an ω ∈ R for which the condi-
tions (4.5)–(4.7) are satisfied . This follows from the implication (3.5)⇒(3.6)
and arguments similar to those proving the mutual equivalence of (4.5), (4.6)
and (4.7).

Proof of the implication (4.6)⇒(4.7). For every α = (α1, . . . , αn) ∈ Nn0 ,
ξ ∈ Rn and t ∈ [0,∞[ put

Aα =

(
∂

∂ξ1

)α1

· · ·
(

∂

∂ξn

)αn
A(ξ),

Uα(t, ξ) =

(
∂

∂ξ1

)α1

· · ·
(

∂

∂ξn

)αn
exp(tA(ξ)).
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If α, β ∈ Nn0 , then let β ≤ α mean that βν ≤ αν for every ν = 1, . . . , n. If
β ≤ α, then

(
α
β

)
=
(
α1

β1

)
· · ·
(
αn
βn

)
where

(
αν
βν

)
= αν !

βν !(αν−βν)! . Condition (4.7)
means that whenever α ∈ Nn0 , then

there is k ∈ N such that sup{e−(ω+ε)t(1 + |ξ|)−k‖Uα(t, ξ)‖ :
0 ≤ t ≤ ∞, ξ ∈ Rn} <∞ for every ε > 0. (4.12)α

Condition (4.6) is identical with (4.12)0. Hence the implication (4.6)⇒(4.7)
will follow once we prove that if l ∈ N0 and (4.12)β holds for every β ∈ Nn0
such that |β| = β1 + · · · + βn ≤ l, then (4.12)α holds for every α ∈ Nn0 such
that |α| = l + 1. So, pick any α such that |α| = l + 1. Then

d

dt
Uα(t, ξ) =

∑
β≤α

(
α

β

)
Aα−β(ξ)Uβ(t, ξ) = A(ξ)Uα(t, ξ) + Vα(t, ξ) (4.13)

where
Vα(t, ξ) =

∑
β≤α, |β|≤l

(
α

β

)
Aα−β(ξ)Uβ(t, ξ).

Since (4.12)β holds whenever |β| ≤ l, it follows that

there is k ∈ N such that sup{e−(ω+ε)t(1 + |ξ|)−k‖Vα(t, ξ)‖ :
0 ≤ t ≤ ∞, ξ ∈ Rn} <∞ for every ε > 0. (4.14)

By (4.13) one has

Uα(t, ξ) =

∫ t

0

U0(t− τ, ξ)Vα(τ, ξ) dτ, t ∈ [0,∞[, ξ ∈ Rn. (4.15)

Conditions (4.12)0 and (4.14) imply (4.12)α, by (4.15).

Remark. Notice that the above proof is similar to the proof of Lemma 2
in Sec. 2 of Chap. 1 of [P]. Furthermore, (4.5) implies condition (4.6) with
k = p(m−1), and this last implies condition (4.7) with kα = p(m−1)(|α|+1).

4.3. The space OM

A continuous function φ defined on Rn is called slowly increasing if there
is k ∈ N0 such that sup{(1 + |ξ|)−k|φ(ξ)| : ξ ∈ Rn} < ∞. The space OM =
OM(Rn;C) of C-valued slowly increasing infinitely differentiable functions
on Rn consists of C-valued C∞-functions φ on Rn such that φ and all its
partial derivatives are slowly increasing. We will say that a subset B of
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OM is bounded if for every multiindex α ∈ Nn0 there is kα ∈ N0 such that
sup{(1 + |ξ|)−kα|(∂/∂ξ)αφ(ξ)| : φ ∈ B, ξ ∈ Rn} < ∞. Lemma 4 will give
a topological justification of this terminology. See [S], Chap. VII, Sec. 5,
pp. 243–244. Things are similar for L(Cm)-valued functions φ. Condition
(4.7) may be formulated in the equivalent form

for every ε ∈ ]0,∞[ the set {e−(ω+ε)t exp(tA(·)) : 0 ≤ t <∞}
is a bounded subset of OM(Rn;L(Cm)). (4.7)OM

The condition (4.11) may also be formulated in terms of OM(Rn;L(Cm)).
Let S(Rn;Cm) be the space of Cm-valued infinitely differentiable rapidly

decreasing functions on Rn.

Lemma 4. For every L(Cm)-valued function φ defined on Rn the following
two conditions are equivalent:

φ ∈ OM(Rn;L(Cm)), (4.16)

φ is a multiplier for S(Rn;Cm), i.e. φ · ϕ ∈ S(Rn;Cm) whenever
ϕ ∈ S(Rn;Cm). (4.17)

Furthermore,

a subset B of OM(Rn;L(Cm)) is bounded if and only if the fam-
ily of multiplication operators {φ · : φ ∈ B} ⊂ L(S(Rn;Cm)) is
equicontinuous. (4.18)

Remark. From (4.18) and bornologicity of S(Rn;Cm), by an argument
similar to that in the proof of Theorem 3 in Sec. I.7 of [Y], it follows
that

a subset B of OM(Rn;L(Cm)) is bounded if and only if the subset B · C
of S(Rn;Cm) is bounded for every bounded subset C of S(Rn;Cm).

Proof of Lemma 4. It is obvious that (4.16) implies (4.17) and if B ⊂
OM(Rn;L(Cm)) is bounded, then B · ⊂ L(S(Rn;Cm)) is equicontinuous.
Equivalence of (4.16) to an analogue of (4.17) for the space of tempered
distributions is stated without proof on p. 246 of Chapter VII of [S].

Suppose that φ is a multiplier for S(Rn;Cm). Then φ ∈ C∞(Rn;L(Cm))
and the operator S(Rn;Cm) 3 ϕ 7→ φ · ϕ ∈ S(Rn;Cm) is closed. Hence, by
the closed graph theorem, φ · ∈ L(S(Rn;Cm)) From properties of the Fourier
transformation it follows that F−1(φ ·)F ∈ L(S(Rn;Cm)) and F−1(φ ·)F
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commutes with translations. Therefore, by a theorem of L. Schwartz, there
is a unique distribution T ∈ S ′(Rn;L(Cm)) such that F−1(φ · Fϕ) = T ∗ ϕ
for every ϕ ∈ S(Rn;Cm), so that, if the L(Cm)-valued function φ is treated
as a distribution, then φ = FT ∈ S ′(Rn;L(Cm)). Let J be a set of indices
such that

all φι ∈ C∞(R;L(Cm)), ι ∈ J , are multipliers for S(Rn;Cm) and
the family of operators {φι · : ι ∈ J} ⊂ L(S(Rn;Cm)) is equicon-
tinuous. (4.19)

If φ
(α)
ι · = (Dαφι)· are considered as operators defined on S(Rn;Cm), then

φ(α)
ι · = Dα(φι ·)−

∑
β≤α, |β|<|α|

(
α

β

)
(φ(β)

ι ·)Dα−β for every α ∈ Nn0

where Dα, Dα−β ∈ L(S(Rn;Cm)). Consequently, induction on |α| shows

that if (4.19) holds, then for every α ∈ Nn0 all φ
(α)
ι , ι ∈ J , are multi-

pliers for S(Rn;Cm) and the family of operators {φ(α)
ι · : ι ∈ J} is con-

tained in L(S(Rn;Cm)) and is equicontinuous. This reduces the proofs of
the implication (4.17)⇒(4.16) and of (4.18) to showing that if (4.19) holds,
then

there is k ∈ N0 such that
sup{(1 + |ξ|)−k‖φι(ξ)‖L(Cm) : ι ∈ J, ξ ∈ Rn} <∞. (4.20)

So, suppose that (4.19) holds. Let Tι ∈ S ′(Rn;L(Cm)) be the inverse Fourier
image of φι. Then (4.20) will follow once we prove that there are fι, gι ∈
L1(Rn;L(Cm)) and a polynomial P such that

sup{‖fι‖L1(Rn;L(Cm)), ‖gι‖L1(Rn;L(Cm)) : ι ∈ J} <∞ (4.21)

and
Tι = P (D)fι + gι for every ι ∈ J (4.22)

where P (D) acts on fι in the sense of distributions. Indeed, if (4.21) and

(4.22) hold, then φι(ξ) = P (ξ)f̂ι(ϕ) + ĝι(ξ) where f̂ι, ĝι are continuous and

bounded on Rn, and sup{‖f̂ι(ξ)‖L(Cm), ‖ĝι(ξ)‖L(Cm) : ι ∈ J, ξ ∈ Rn} <∞, so
that (4.20) is satisfied. In this way we are reduced to proving an analogue of
Theorem 3.10 of [Ch], p. 82, and Theorem XXV of Sec. VI.8 of [S], p. 201.
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We will construct P (D), fι and gι in the form P (D) = ∆k, fι = Tι ∗ u,
gι = Tι ∗ ν where u ∈ C l

K(Rn;C), ν ∈ C∞K (Rn;C) are independent of ι,
K = {x ∈ Rn : |x| = (x2

1 + · · · + x2
n)1/2 ≤ 1}, k, l ∈ N, 2k ≥ l + n + 2,

and l is sufficiently large. Since Tι ∗ ϕ = (2n)−nF−1(φι · Fϕ) for every ι ∈ J
and ϕ ∈ S(Rn;Cm), from (4.19) it follows that the family of convolution
operators {Tι ∗ : ι ∈ J} ⊂ L(S(Rn;Cm)) is equicontinuous. Consequently, if
the convolution is understood as a bilinear map of S ′(Rn;L(Cm))×C∞K (Rn;C)
into C∞(Rn;L(Cm)), then the range of every operator Tι ∗|C∞K (Rn;C), ι ∈ J , is
contained in S(Rn;L(Cm)) ⊂ L1(Rn;L(Cm)), and the family of operators

{Tι ∗|C∞K (Rn;C) : ι ∈ J} ⊂ L(C∞K (Rn;C);L1(Rn;L(Cm)))

is equicontinuous. Therefore there are l ∈ N0 and C ∈ ]0,∞[ such that
‖Tι ∗ ϕ‖L1(Rn;L(Cm)) ≤ C‖ϕ‖ClK(Rn;C) for every ι ∈ J and ϕ ∈ C∞K (Rn;C).

Since C∞K (Rn;C) is dense in C l
K(Rn;C), it follows that whenever ι ∈ J and

ϕ ∈ C l
K(Rn;C), then the convolution Tι ∗ϕ of the vector-valued distribution

Tι ∈ S ′(Rn;L(Cm)) with the scalar distribution ϕ ∈ C l
K(Rn;C) is represented

by a function belonging to L1(Rn;L(Cm)) such that

‖Tι ∗ ϕ‖L1(Rn;L(Cm)) ≤ C‖ϕ‖ClK(Rn;C) (4.23)

for every ι ∈ J and ϕ ∈ C l
K(Rn;C).

Now we are ready to write down and explain the formulas for P (D) = ∆k,
fι = Tι ∗ u and gι = Tι ∗ ν. To this end we will use the radial (i.e. depending
only on |x|) functions E which are fundamental solutions for ∆k (i.e. satisfy
∆kE = δ, in the sense of distributions). For every n = 1, 3, 5, . . . and every
k ∈ N such that 2k ≥ n there is An,k ∈ ]0,∞[ such that E(x) = An,k|x|2k−n,
x ∈ Rn, is a fundamental solution for ∆k. For every n = 2, 4, . . . and k ∈
N such that 2k ≥ n + 1 there are Bn,k, Cn,k ∈ ]0,∞[ such that E(x) =
(Bn,k log |x| + Cn,k)|x|2k−n, x ∈ Rn, is a fundamental solution for ∆k. If
2k ≥ l + n + 1, then E ∈ C l(Rn). See [Ch], Theorem 5.1, p. 99; [G-S1],
Chap. III, Example at the end of Sec. 2.1. Fix a function γ ∈ C∞K (Rn;C)
equal to one in some neighbourhood of 0, and fix k ∈ N such that 2k ≥ l+n+1
where l ∈ N0 is the number occurring in (4.23). For every ι ∈ J define

fι = Tι ∗ γE, gι = Tι ∗∆k((1− γ)E.

Then γE ∈ C l
K(Rn;C) and ∆k((1 − γ)E) ∈ C∞K (Rn;C), so that, by (4.23),

the condition (4.21) is satisfied. Furthermore, Tι = Tι ∗ δ = Tι ∗ ∆kE =
∆k(Tι ∗ γE) + Tι ∗∆k((1− γ)E) = ∆kfι + gι, so that the condition (4.22) is
satisfied for P (D) = ∆k.

26



4.4. Operator semigroups generated by P (D) in the L. Schwartz spaces S
and S ′

Let Aα, α ∈ Nn0 , |α| ≤ p, be complex m × m matrices. Consider the
matricial differential operator P (D) =

∑
|α|≤pAαD

α and the corresponding

m×m matrices A(ξ) =
∑
|α|≤p ξ

αAα, ξ ∈ Rn.

Theorem 4. The following two conditions are equivalent:

(i) P (D)|S(Rn;Cm) is the infinitesimal generator of a (C0)-semigroup (Ut)t≥0

⊂ L(S(Rn;Cm)),
(ii) ω0 := sup{Reλ : λ ∈ σ(A(ξ)), ξ ∈ Rn} is finite.

Furthermore, if these equivalent conditions are satisfied, then

ω0 = ω2

where

ω2 := inf{ω ∈ R : the semigroup (e−ωtUt)t≥0 ⊂ L(S(Rn;Cm))

is equicontinuous}.

For a single PDE of higher order a result analogous to Theorem 4 may
be found in Sec. 3.10 of the book of J. Rauch [R]. Theorem 4 resembles
Theorem 3 from Section 1.4. Since S(Rn;Cm) ⊂ D(A∞), from remarks at
the end of Section 4.1 it follows that Ut = St|S(Rn;Cm) for every t ∈ [0,∞[
where (St)t≥0 ⊂ L(D(A∞)) is the semigroup from Theorem 3.

Theorem 4 is a conjunction of three implications: (i)⇒(ii), (ii)⇒ (i)∧(ω2 ≤
ω0) and (i) ∧ (ω2 <∞)⇒ (ω0 ≤ ω2).

Proof of (i)⇒(ii). Suppose that (i) holds. Since S(Rn;Cm) is invariant with
respect to the Fourier transformation, it follows that for every t ∈ [0,∞[ the
multiplication operator exp(tA(·)) · = FUtF−1 maps S(Rn;Cm) into itself.
Hence, by Lemma 4, the function ξ 7→ expA(ξ) belongs to OM(Rn;L(Cm)),
so that

sup{(1 + |ξ|)−k‖expA(ξ)‖L(Cm) : ξ ∈ Rn} <∞ for some k ∈ N0.

The last condition implies (ii), by an argument identical with that used in
the proof of (a)⇒(b) in Chapter 3.

Proof of (ii) ⇒ (i) ∧ (ω2 ≤ ω0). Suppose that (ii) holds. Then, by the
equivalence (4.5)⇔(4.7)OM and Lemma 4, for every ε > 0 the family of mul-
tiplication operators {e−(ω0+ε)t exp(tA(·)) · : 0 ≤ t < ∞} ⊂ L(S(Rn;Cm)) is
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equicontinuous. By invariance of S(Rn;Cm) with respect to the Fourier trans-
formation, it follows that the operators Ut = F−1[exp(tA(·))·]F|S(Rn;Cm),
0 ≤ t < ∞, constitute a semigroup (Ut)t≥0 ⊂ L(S(Rn;Cm)) such that the
semigroup (e−(ω0+ε)tUt)t≥0 ⊂ L(S(Rn;Cm)) is equicontinuous. Consequently,
ω2 ≤ ω0. Finally, estimations similar to those in the proof (b)⇒ (a)∧ (ω1 ≤
ω0) in Chapter 3 show that (Ut)t≥0 ⊂ L(S(Rn;Cm)) is a (C0)-semigroup with
the infinitesimal generator equal to P (D)|S(Rn;Cm).

Remark. In contrast to the proof of (b) ⇒ (a) ∧ (ω1 ≤ ω0) in Chapter 3,
the above proof of (ii) ⇒ (i) ∧ (ω2 ≤ ω0) is independent of Chapter 2. The
role analogous to that of Lemma 3 from Chapter 2 is now played by the
estimate (4.8).

Proof of (i) ∧ (ω2 < ∞) ⇒ (ω0 ≤ ω2). Suppose that (i) holds and ω2 is
finite. Then for every ε > 0 the family of multiplication operators

{e−(ω2+ε)t exp(tA(·)) ·|S(Rn;Cm) : 0 ≤ t <∞}
= {Fe−(ω2+ε)tUtF−1|S(Rn;Cm) : 0 ≤ t <∞} ⊂ L(S(Rn;Cm))

is equicontinuous. Hence, by Lemma 4, the condition (4.7)OM is satisfied for
ω = ω2. It follows that also for ω = ω2 the equivalent condition (4.5) is
satisfied. This last means that ω0 ≤ ω2.

Corollary. Let S ′(Rn;Cm) be endowed with the topology of uniform con-
vergence on bounded subsets of S(Rn;Cm). The matricial differential opera-
tor P (D) is Petrovskĭı correct if and only if P (D)|S′(Rn;Cm) is the infinites-
imal generator of a (C0)-semigroup (Vt)t≥0 ⊂ L(S ′(Rn;Cm)). Furthermore,
ω0 = ω3 where ω0 = sup{Reλ : λ ∈ σ(A(ξ)), ξ ∈ Rn} and ω3 = inf{ω ∈ R :
the semigroup (e−ωtVt)t≥0 ⊂ L(S ′(Rn;Cm)) is equicontinuous}.
Sketch of the proof. Let Q(D) =

∑
|α|≤pBαD

α where Bα = (−1)|α|A†α, the

superscript † denoting transposition. Then B(ξ) =
∑
|α|≤p ξ

αBα = A(−ξ)†
for every ξ ∈ Rn. Consequently, the operator P (D) is Petrovskĭı correct if
and only if the same is true for Q(D), and hence if and only if the operator
Q(D)|S(Rn;Cm) is the infinitesimal generator of a (C0)-semigroup (Wt)t≥0 ⊂
L(S(Rn;Cm)) with properties as in Theorem 4. The spaces S(Rn;Cm) and
S ′(Rn;Cm) are reflexive with respect to the duality form

〈ϕ, T 〉 =
m∑
µ=1

Tµ(ϕµ), ϕ = (ϕ1, . . . , ϕm) ∈ S(Rn;Cm),

T = (T1, . . . , Tm) ∈ S ′(Rn;Cm).
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Moreover, S(Rn;Cm) is bornological. Therefore the proof of the Corollary
may be based on the equality 〈VtT, ϕ〉 = 〈T,Wtϕ〉.

4.5. Examples of function spaces E invariant with respect to the semigroup
(Vt)t≥0

In the whole present subsection we assume that the m ×m matricial dif-
ferential operator P (D) =

∑
|α|≤pAαD

α described in Section 1.4 satisfies the
Petrovskĭı correctness condition

sup{Reλ : λ ∈ σ(A(ξ)), ξ ∈ Rn} = ω0 <∞

where A(ξ) =
∑
|α|≤p ξ

αAα. Under this assumption there are remarkable

function spaces E densely continuously imbedded in S ′(Rn;Cm) such that

VtE ⊂ E for every t ∈ [0,∞[ and the operators St = Vt|E constitute
a (C0)-semigroup (St)t≥0 ⊂ L(E) with the infinitesimal generator
G defined by the conditions D(G) = {u ∈ E : P (D)u ∈ E},
Gu = P (D)u for u ∈ D(G). (4.24)

We already know two examples of such function spaces E:

Example 1. E = D(A∞) from Theorem 3 of Section 1.4, where

D(A) = {u ∈ L2(Rn;Cm) : P (D)u ∈ L2(Rn;Cm)}

and
Au = P (D)u for u ∈ D(A).

Example 2. E = S(Rn;Cm) considered in Theorem 4 of Section 4.4.

In the first example the definition of E = D(A∞) involves a possibly lim-
ited number of derivatives. In the second example E = S(Rn;Cm) is a
standard function space independent of P (D). Let us mention further ex-
amples.

Example 3. E = C∞0 (Rn;Cm).The spaces C∞0 (Rn;Cm) and C∞b (Rn;Cm)
are both endowed with the topology determined by the sequence of norms

‖u‖j = sup{‖Dαu(x)‖Cm : α ∈ Nn0 , |α| ≤ j, x ∈ Rn}, j ∈ N0.

Properties (4.24) of E = C∞0 (Rn;Cm) follow from some variants of estimates
going back to I. G. Petrovskĭı [P]. In contrast to original estimates, these
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variants are uniform with respect to t on the whole [0,∞[. Let us present
the modified estimates. One has

min(1, a−k) ≤ 2k(1 + a)−k for every a ∈ ]0,∞[ and k ∈ N. (4.25)

Let (Ut)t≥0 ⊂ L(S(Rn;Cm)) be the (C0)-semigroup from Theorem 4. If
u ∈ C∞c (Rn;Cm), x ∈ Rn and xν 6= 0 for ν = 1, . . . , n, then

(Utu)(x) =
1

(2π)n

∫
Rn
ei〈x,ξ〉 exp(tA(ξ))û(ξ) dξ

= (−2π)−n(x1 · · ·xn)−2

∫
Rn
ei〈x,ξ〉

(
∂n

∂ξ1 · · · ∂ξn

)2

(exp(tA(ξ))û(ξ)) dξ,

so that, from (4.25) and (4.7) with kα = p(m− 1)(|α|+ 1), it follows that for
every ε > 0 there is Kε ∈ ]0,∞[ such that

‖Utu(x)‖Cm ≤ Kεe
(ω0+ε)t

n∏
ν=1

(1 + |xν |)−2

×
∫

Rn

n∏
ν=1

(1 + |ξν |)p(m−1)(2n+1) sup
|α|≤2n

∥∥∥∥( ∂

∂ξ

)α
û(ξ)

∥∥∥∥
Cm

dξ

(4.26)

for every z ∈ Rn and t ∈ [0,∞[.
If u ∈ C∞[−1/2,1/2]n(Rn;Cm), then(

∂

∂ξ

)α
û(ξ) = (−i)|α|

∫
e−i〈x,ξ〉xαu(x) dx

= (−i)|α|(ξβ)−1

∫
e−i〈x,ξ〉Dβ(xαu(x)) dx

for every α, β ∈ Nn0 and ξ ∈ Rn such that ξν 6= 0 for ν = 1, . . . , n. Conse-
quently, from (4.25) it follows that for every l ∈ N there is Cl ∈ ]0,∞[ such
that∥∥∥∥( ∂

∂ξ

)α
û(ξ)

∥∥∥∥
Cm

≤ Cl

n∏
ν=1

(1 + |ξν |)−l sup{‖Dβu(x)‖Cm : |β| ≤ ln, x ∈ [−1/2, 1/2]n} (4.27)
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for every u ∈ C∞[−1/2,1/2]n(Rn;Cm), ξ ∈ Rn, and α ∈ Nn0 . The estimates (4.26)

and (4.27) imply that

for every ε > 0 there is Mε ∈ [0,∞[ such that whenever
u ∈ C∞[−1/2,1/2]n(Rn;Cm), x ∈ Rn and t ∈ [0,∞[, then

‖(Utu)(x)‖Cm ≤Mε‖u‖ke(ω0+ε)t

n∏
ν=1

(1 + |xν |)−2

where k = n(p(m− 1)(2n+ 1) + 2). (4.28)

Let Z be the set of integers and for any z = (z1, . . . , zn) ∈ Zn denote
by τz the operator of translation by 1

2
z: (τzf)(x) = f(x1 + 1

2
z1, . . . , xn +

1
2
zn) for every function f defined on Rn and every x = (x1, . . . , xn) ∈ Rn.

Following [P], fix a function ν ∈ C[−1/2,1/2]n(Rn) with values in [0, 1] such
that

∑
z∈Zn τzν ≡ 1 on Rn. Since the operators Ut, τz and Dα commute, one

has DαUt(uτzν) = τzUt(D
α(ντ−zu)). Therefore from (4.28) it follows that

whenever u ∈ C∞b (Rn;Cm), α ∈ Nn0 , z ∈ Zn, t ∈ [0,∞[, x ∈ Rn and ε > 0,
then

‖(DαUt(uτzν))(x)‖Cm ≤M|α|,ε‖u‖k+|α|e(ω0+ε)t

n∏
ν=1

(1 + |xν + 1
2
zν |)−2 (4.29)

where k = n(p(m− 1)(2n+ 1) + 2) and M|α|,ε depends only on |α| and ε.
Again following [P], consider the series

∑
z∈Zn

n∏
ν=1

(1 + |xν + 1
2
zν |)−2. (4.30)

The terms of this series are functions of x continuous on Rn, the series is
uniformly convergent on every bounded subset of Rn, and its sum s(x) is
periodic (s(x + 1

2
z) = s(x) for every x ∈ Rn and z ∈ Zn). Therefore s ∈

Cb(Rn). In particular, K = supx∈Rn s(x) is finite. From (4.29), the theorem
on term by term differentiation and properties of the series (4.30) it follows
that whenever u ∈ C∞b (Rn;Cm), then

∑
z∈Zn Ut(uτzν) ∈ C∞b (Rn;Cm), and

for every ε > 0 and j ∈ N0 one has∥∥∥∑
z∈Zn

Ut(uτzν)
∥∥∥
j
≤ KMj,εe

(ω0+ε)t‖u‖j+k (4.31)
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where again k = n(p(m− 1)(2n+ 1) + 2). Furthermore, if u ∈ C∞b (Rn;Cm),
then u =

∑
z∈Zn uτzν in the sense of the topology of S ′(Rn;Cm), so that∑
z∈Zn

Ut(uτzν) =
∑
z∈Zn

Vt(uτzν) = Vt
∑
z∈Zn

uτzν = Vtu (4.32)

for every t ∈ [0,∞[. From (4.31) and (4.32) it follows that the formula

Stu :=
∑
z∈Zn

Ut(uτzν) = Vt(u), t ∈ [0,∞[ , u ∈ C∞b (Rn;Cm), (4.33)

defines a semigroup (St)t≥0 ⊂ L(C∞b (Rn;Cm)) such that for every ε > 0
the semigroup (e(ω0+ε)tSt)t≥0 ⊂ L(C∞b (Rn;Cm)) is equicontinuous. Moreover,
C∞0 (Rn;Cm) is a closed subspace of C∞b (Rn;Cm) invariant with respect to the
semigroup (4.33). This last follows from the observation that C∞c (Rn;Cm)
is dense in C∞0 (Rn;Cm), and if u ∈ C∞c (Rn;Cm) then only finitely many
functions uτzν, z ∈ Zn, are different from zero, so that

Stu =
∑
z∈Zn

Ut(uτzν) = Ut

(∑
z∈Zn

uτzν
)

= Utu ∈ S(Rn;Cm) ⊂ C∞0 (Rn;Cm).

It remains to prove that (St|C∞0 (Rn;Cm))t≤0 ⊂ L(C∞0 (Rn;Cm)) is a (C0)-
semigroup and that its infinitesimal generator is equal to P (D)|C∞0 (Rn;Cm). To
this end, pick any u0 ∈ C∞0 (Rn;Cm). Then there is a sequence (uk)k=1,2,... ⊂
C∞c (Rn;Cm) such that limk→∞ uk = u0 and hence also limk→∞ P (D)uk =
P (D)u0, both in the sense of the topology of C∞0 (Rn;Cm). Since the semi-
group (e−(ω0+1)tSt)t≥0 ⊂ L(C∞b (Rn;Cm)) is equicontinuous, it follows that

1o limk→∞ Stuk = Stu0 and limk→∞ StP (D)uk = StP (D)u0 in the sense of
the topology of C∞0 (Rn;Cm), uniformly with respect to t on every bounded
interval [0, T ].

Furthermore,

2o d
dt
Stuk = d

dt
Utuk = UtP (D)uk = StP (D)uk for every t ∈ [0,∞[ and

k = 1, 2, . . . , the derivative being computed in the sense of the topology
of C∞0 (Rn;Cm).

By the theorem on term by term differentiation, from 1o and 2o it fol-
lows that the maps [0,∞[ 3 t 7→ Stu0 ∈ C∞0 (Rn;Cm) and [0,∞[ 3 t 7→
StP (D)u0 ∈ C∞0 (Rn;Cm) are continuous, and d

dt
Stu0 = StP (D)u0 for ev-

ery [0,∞[, the derivative being computed in the sense of the topology of
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C∞0 (Rn;Cm). Consequently, u0 belongs to the domain D(G) of the infinites-
imal generator G of the semigroup (St

∣∣
C∞0 (Rn;Cm)

)t≥0 ⊂ L(C∞0 (Rn;Cm)), and

Gu0 = d
dt
|t=0Stu0 = S0P (D)u0 = P (D)u0.

Example 4. E = BN ,2 where the Hilbert space BN ,2 of G. Birkhoff is equal
to the completion of the prehilbert space (Z(Rn;Cm), ‖ ‖N ). The norm ‖ ‖N
is defined on Z(Rn;Cm) as follows:

‖u‖N =

(∫
supp bu ‖N (ξ)û(ξ)‖2 dξ

)1/2

, u ∈ Z(Rn;Cm),

where Rn 3 ξ 7→ N (ξ) ∈ L(Cm) is a Lebesgue measurable map such that for
every ξ ∈ Rn the matrix N (ξ) has two properties:

(I) N (ξ) is invertible and ‖N (ξ)−1‖L(Cm) ≤ 1,
(II) N (ξ)A(ξ)N (ξ)−1 is a superdiagonal Jordan matrix.

The existence of such a measurable reduction of A(ξ) to the canonical Jordan
form was proved by K. Baker in [Ba]. A matrix-valued function N is not
unique: for instance N may be replaced by fN where f ≥ 1 is any real
Lebesgue measurable function on Rn. Thanks to condition (I) for every
u ∈ Z(Rn;Cm) and ξ ∈ Rn one has

‖û(ξ)‖Cm = ‖N (ξ)−1N (ξ)û(ξ)‖Cm ≤ ‖N (ξ)−1‖L(Cm)‖N (ξ)û(ξ)‖Cm
≤ ‖N (ξ)û(ξ)‖Cm ,

whence F−1BN ,2 ⊂ L2(Rn;Cm), and so BN ,2 ⊂ L2(Rn;Cm) ⊂ S ′(Rn;Cm).
The results of G. Birkhoff’s paper [B] show that E = BN ,2 satisfies (4.24),
and for the semigroup (St)t≥0 = (Vt|BN ,2)t≥0 ⊂ L(BN ,2) one has

inf
t>0

1

t
log ‖St‖L(BN ,2) = lim

t→∞

1

t
log ‖St‖L(BN ,2) = ω0.

Example 5. E = LB where LB is the Hilbert space of Cm-valued functions
on Rn with “differentiable norm” of S. D. Eidelman and S. G. Krein. Con-
struction of the scalar product in LB is presented in Section 8 of Chapter I
of S. G. Krein’s monograph [Kr].

In Examples 1, 2 and 4, ω0 = ωE := inf{ω ∈ R : the semigroup(e−ωtVt|E)t≥0

⊂ L(E) is equicontinuous}. In Example 3, ω0 ≥ ωE. In Example 5 no relation
between ω0 and ωE is proved.
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[C-Z] I. Cioranescu and L. Zsidó, ω-Ultradistributions and their applica-
tion to operator theory, in: Spectral Theory, Banach Center Publ. 8,
PWN, Warszawa, 1982, 77–220.

[Co1] P. J. Cohen, A simple proof of Tarski’s theorem on elementary alge-
bra, mimeographed manuscript, Stanford University, 1967.

[Co2] P. J. Cohen, Decision procedures for real and p-adic fields, Comm.
Pure Appl. Math. 22 (1969) 131–151.
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[H2] L. Hörmander, Linear Partial Differential Operators, Springer, 1963.
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