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ON A RANDOM NUMBER OF DISORDERS

KRZYSZTOF SZAJOWSKI

IM PAS, Warszawa

Abstract. We register a random sequence constructed based on

Markov processes by switching between them. At two random moments

θ1, θ2, where 0 ¬ θ1 ¬ θ2, the source of observations is changed. In effect

the number of homogeneous segments is random. The transition probabil-

ities of each process are known and a priori distribution of the disorder

moments is given. The various questions are formulated concerning the dis-

tribution changes in the model in the former research. The random number

of distributional segments creates new problems in solutions with relation

to analysis of the model with deterministic number of segments. Two cases

are presented in details. In the first one the objectives is to stop on or be-

tween the disorder moments while in the second one our objective is to find

the strategy which immediately detects the distribution changes. Both prob-

lems are reformulated to optimal stopping of the observed sequences. The

detailed analysis of the problem is presented to show the form of optimal

decision function.
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60K99; Secondary: 90D60.

Key words and phrases: disorder problem, sequential detection, op-

timal stopping, Markov process, change point, double optimal stopping

1. INTRODUCTION

Suppose that process X = {Xn, n ∈ N}, N = {0, 1, 2, . . .}, is observed sequentially.

The process is obtained from three Markov processes by switching between them at two
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random moments of time, θ1 and θ2. Our objective is to detect these moments based on

observation of X .

Such model of data appears in many practical problem of the quality control (see [5],

[2], [12]), traffic anomalies in networks [6], epidemiology [1]. In management of manu-

facture the plants which produce some details changes their parameters. It makes that the

details change their quality. Production can be divided into three sorts. Assuming that at the

beginning of production process the quality is highest, from some moment θ1 the products

should be classified to lower sort and beginning with θ2 the details should be categorized as

at lowest quality. The aim is to recognize the moments of these changes.

Shiryaev [13] has considered the disorder problem for independent random variables

with one disorder where the mean distance between disorder time and the moment of its

detection was minimized. The probability maximizing approach to the problem was used

by [3] and the stopping time which is in a given neighborhood of the moment of disorder

with maximal probability was found. The problem with two disorders was considered by

Yoshida [17], the author [14, 15] and Sarnowski and the author [11]. In [17] the problem

of optimal stopping the observation of process X so as to maximize the probability that the

distance between θi, i = 1, 2, and the moment of disorder will not exceed a given number

(for each disorder independently). This question has been reformulated in [15] to simultane-

ous detection of both disorders under requirement that performance of procedure is globally

measured for both detection and it has been extended to the case with unknown distribution

between disorders (see [4]) in [11]. The methods of solution is based on reformulation of

the question to the double optimal stopping problem (see [7], [9]) for markovian function

of some statistics. In [14] the strategy which stops the process between the first and the

second disorder with maximal probability has been constructed. The considerations are in-

spired by the problem regarding how can we protect ourselves against a second fault in a

technological system after the occurrence of an initial fault or by the problem of detection

the beginning and the end of an epidemic.

This paper is devoted to a generalization of the double disorder problem considered
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both in [14] and [15] in which immediate switch from the first preliminary distribution to

the third one is possible with the positive probability that the random variables θ1 and θ2

are equal. It is also possible that we observe the homogeneous data without disorder when

both disorder moments are equal to 0. The extension leads to serious difficulties in the

construction of equivalent double optimal stopping models. The formulation of the problem

can be found in section 2. The main results are subject of sections 4 (see Theorem 4.1) and

5.

2. FORMULATION OF DETECTION PROBLEMS

Let (Xn, n ∈ N) be an observable sequence of random variables defined on the space

(Ω,F ,P) with values in (E,B), where E is a subset of R. On (E,B) there are σ-additive

measures {µx}x∈E. Space (Ω,F ,P) supports variables θ1, θ2. They areF-measurable vari-

ables with values in N. We assume the following distributions:

P(θ1 = j) = I{j=0}(j)π + I{j>0}(j)(1− π)pj−1
1 q1,(2.1)

P(θ2 = k | θ1 = j) = I{k=j}(k)ρ+ I{k>j}(k)(1− ρ)pk−j−1
2 q2(2.2)

where j = 0, 1, 2, ..., k = j, j + 1, j + 2, .... Additionally we consider Markov processes

(Xi
n,Gin, µix) on (Ω,F ,P), i = 0, 1, 2, where σ-fields Gin are the smallest σ-fields for

which (Xi), i = 0, 1, 2, are adapted, respectively. Let us define process (Xn, n ∈ N) in the

following way:

Xn = X0
n · I{θ1>n} +X1

n · I{θ1¬n<θ2} +X2
n · I{θ2¬n}.(2.3)

We make inference based on the observable sequence (Xn, n ∈ N) only. It should be em-

phasized that the sequence (Xn, n ∈ N) is not markovian under admitted assumption as it

has been mentioned in [14], [16] and [6]. However, the sequence satisfies the Markov prop-

erty given θ1 and θ2 (see [15] and [8]). Thus for further consideration we define filtration

{Fn}n∈N, where Fn = σ(X0, X1, ..., Xn), related to real observation. Variables θ1, θ2 are

not stopping times with respect to Fn and σ-fields G•n. Moreover, we assume that θ1, θ2 are
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independent of (Xi
n, n ∈ N). Measures µ•x satisfy the relations: µix(dy) = f ix(y)µx(dy),

i = 0, 1, 2, where the functions f ix(.) are different and f ix(y)/f (i+1)mod3
x (y) < ∞ for

i = 0, 1, 2 and all x, y ∈ E. We assume that the measures µix, x ∈ E are known in ad-

vance and we have that P(Xi
1 ∈ A | Xi

0 = x) =
∫
A
f ix(y)µx(dy) = µix(A) for every

A ∈ B and i ∈ {0, 1, 2}.

The model presented has the following heuristic justification: two disorders take place

in the observed sequence (Xn). They affect distributions by changing their parameters.

Disorders occur at two random moments of time θ1 and θ2, θ1 ¬ θ2. They split the sequence

of observations into segments, at most three ones. The first segment is described by (X0
n),

the second one - for θ1 ¬ n < θ2 - by (X1
n). The third is given by (X2

n) and is observed

when n  θ2. When the first disorder takes the place there is a ”switch” from the initial

distribution to distribution with density f ix with respect of measure µx, where i = 1 or i = 2.

It depends on if θ1 < θ2 or θ1 = θ2. Next, if θ1 < θ2, at the random time θ2 the distribution

of observations becomes µ2
x. We assume that the variables θ1, θ2 are unobservable.

Let S denote the set of all stopping times with respect to the filtration (Fn), n =

0, 1, . . . and T = {(τ, σ) : τ ¬ σ, τ, σ ∈ S}. Two problems with three distributional

segments are recalled to investigate them under weaker assumption that there are at most

three homogeneous segments.

2.1. Detection of change. Our aim is to stop the observed sequence between the two

disorders.This can be interpreted as a strategy for protecting against a second failure when

the first has already happened. The mathematical model of this is to control the probability

Px(τ <∞, θ1 ¬ τ < θ2) by choosing the stopping time τ∗ ∈ S for which

(2.4) Px(θ1 ¬ τ∗ < θ2) = sup
τ∈T

Px(τ <∞, θ1 ¬ τ < θ2).

2.2. Disorders detection. Our aim is to indicate the moments of switching with given

precision d1, d2 (Problem Dd1d2). We want to determine a pair of stopping times (τ∗, σ∗) ∈
T such that for every x ∈ E

(2.5) Px(|τ∗ − θ1| ¬ d1, |σ∗ − θ2| ¬ d2) = sup
(τ,σ)∈T

0¬τ¬σ<∞

Px(|τ − θ1| ¬ d1, |σ − θ2| ¬ d2).
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The problem has been considered in [15] under natural simplification that there are three

segments of data (i.e. there is 0 < θ1 < θ2). In the section 5 the problem D00 is analyzed.

3. ON SOME A POSTERIORI PROCESSES

The formulated problems will be translated to the optimal stopping problems for some

Markov processes. The important part of the reformulation process is choice of the statistics

describing knowledge of the decision maker. The a posteriori probabilities of some events

play the crucial role. Let us define following a posteriori processes (cf. [17], [14]).

Πi
n = Px(θi ¬ n|Fn),(3.1)

Π12
n = Px(θ1 = θ2 > n|Fn) = Px(θ1 = θ2 > n|Fmn),(3.2)

Πmn = Px(θ1 = m, θ2 > n|Fmn),(3.3)

for m,n = 1, 2, . . ., m < n, i = 1, 2. For recursive representation of (3.1)–(3.3) we need

following functions:

Π1(x, y, α, β, γ) = 1− p1(1− α)f0
x(y)

H(x, y, α, β, γ)

Π2(x, y, α, β, γ) =
(q2α+ p2β + q1γ)f2

x(y)
H(x, y, α, β, γ)

Π12(x, y, α, β, γ) =
p1γf

0
x(y)

H(x, y, α, β, γ)

Π(x, y, α, β, γ, δ) =
p2δf

1
x(y)

H(x, y, α, β, γ)

where H(x, y, α, β, γ) = (1− α)p1f
0
x(y) + [p2(α − β) + q1(1− α − γ)]f1

x(y) + [q2α +

p2β + q1γ]f2
x(y). In the sequel we adopt the following denotations

~α = (α, β, γ)(3.4)
−→
Πn = (Π1

n,Π
2
n,Π

12
n ).(3.5)

The basic formulae used in the transformation of the disorder problems to the stopping

problems are given in the following
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LEMMA 3.1. For each x ∈ E and each Borel function u : < → < the following

formulae for m,n = 1, 2, . . ., m < n hold:

Πi
n+1 = Πi(Xn, Xn+1,Π1

n,Π
2
n,Π

12
n )(3.6)

Π2
n+1 = Π2(Xn, Xn+1,Π1

n,Π
2
n,Π

12
n )(3.7)

Π12
n+1 = Π12(Xn, Xn+1,Π1

n,Π
2
n,Π

12
n )(3.8)

Πmn+1 = Π(Xn, Xn+1,Π1
n,Π

2
n,Π

12
n ,Πmn)(3.9)

with boundary condition Π1
0 = π, Π2

0(x) = πρ, Πmm = (1− ρ)
q1f1

Xm−1
(Xm)

p1f0
Xm−1

(Xm)
(1−Π1

m).

PROOF. The case of (3.6), (3.7) and (3.9), when 0 < θ1 < θ2, has been proved in

[17] and [14]. Let us assume 0 ¬ θ1 ¬ θ2 and suppose that Ai ∈ Fi, i ¬ n + 1. Denote

D = {ω : X0 = x,Xi(ω) ∈ Ai, 1 ¬ i ¬ n}.

Ad. (3.6) Let us consider the probability

Px(θ1 > n+ 1 | Xi ∈ Ai, i ¬ n+ 1) =
Px(θ1 > n+ 1, Xn+1 ∈ An+1 | D)

Px(Xn+1 ∈ An+1 | D)

This follows from Bayes’ formula. Let us transform the probability appearing in the

numerator:

Px(θ1 > n+ 1, Xn+1 ∈ An+1 | Xi ∈ Ai, i ¬ n)

= Px (θ1 > n | Xi ∈ Ai, i ¬ n) · p1 · µ1
Xn

(An+1)

Now we split the probability in the denominator into the following parts

Px(Xn+1 ∈ An+1 | D) = Px(θ2 > θ1 > n,Xn+1 ∈ An+1 | D)(3.10)

+ Px(θ1 ¬ n < θ2, Xn+1 ∈ An+1 | D)(3.11)

+ Px(n < θ1 = θ2, Xn+1 ∈ An+1 | D)(3.12)

+ Px(θ1 ¬ θ2 ¬ n,Xn+1 ∈ An+1 | D)(3.13)
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In (3.10) we have:

Px(θ1 > n , Xn+1 ∈ An+1 | D)

= Px(θ1 > n, θ1 = n+ 1, Xn+1 ∈ An+1 | D)

+Px(θ1 > n, θ1 6= n+ 1, Xn+1 ∈ An+1 | D)

= Px(θ1 > n | D)[µ0
Xn

(An+1)p1 + q1µ
1
Xn

(An+1)]

In (3.11) we get:

Px(θ1 ¬ n < θ2 , Xn+1 ∈ An+1 | D)

= Px(θ1 ¬ n < θ2, θ2 = n+ 1, Xn+1 ∈ An+1 | D)

+Px(θ1 ¬ n < θ2, θ2 6= n+ 1, Xn+1 ∈ An+1 | D)

= (Px(θ1 ¬ n | D)−Px(θ2 ¬ n | D))

×[q2µ2
Xn

(An+1) + p2µ
1
Xn

(An+1)]

In (3.13) the conditional probability is equal

Px(θ1 = θ2 > n , Xn+1 ∈ An+1 | D)

= Px(θ1 = θ2 > n, θ2 = n+ 1, Xn+1 ∈ An+1 | D)

+Px(θ1 = θ2 > n, θ2 6= n+ 1, Xn+1 ∈ An+1 | D)

= Px(θ1 = θ2 > n | D)[q1µ2
Xn

(An+1) + p1µ
0
Xn

(An+1)]

In (3.12) this part has form:

Px(θ2 ¬ n,Xn+1 ∈ An+1 | D) = Px(θ2 ¬ n | D)µ2
Xn

(An+1)

Thus, taking into account (3.1) we have Π1
n+1 = 1−Px (θ1 > n+ 1 | Fn+1) and by

(3.10)-(3.13) we get

Π1
n+1 = 1−

[
(1−Π1

n)p1

]
H−1(Xn, Xn+1,

−→
Πn)

Using (3.1), it can be seen that (3.6) is satisfied.
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Ad. (3.7) Applying similar reasoning and transformations to the process Π2
n+1 we get:

Π2
n+1 = Px(θ2 ¬ n+ 1 | Fn+1) =

Px(θ2 ¬ n+ 1, Xn+1 ∈ A | Fn)
Px(Xn+1 ∈ A | Fn)

=
[
(Π1

n −Π2
n)q2 + Π2

n

]
f2
Xn

(Xn+1)H−1(Xn, Xn+1,
−→
Πn)

which leads to formula (3.7).

z

REMARK 3.1. Let us assume that the considered Markov processes have the finite state

space and ~xn = (x0, x1, . . . , xn) is given. In this case the formula (3.9) follows from the

Bayes formula:

Px(θ1 = j, θ2 = k|Fn) =



pθjk
∏n
s=1 f

0
xs−1

(xs)S−1
n (~xn) if j > n,

pθjk
∏j−1
s=1 f

0
xs−1

(xs)

×
∏n
t=j f

1
xt−1

(xt)(S−1
n (~xn))−1 if j ¬ n < k,

pθjk
∏n
s=1 f

0
xs−1

(xs)
∏k−1
t=j f

1
xt−1

(xt)

×
∏n
u=k f

2
xu−1

(xu)S−1
n (~xn) if k ¬ n,

where pθjk = P(θ1 = j, θ2 = k), S0(x0) = 1 and for n  1

Sn(~xn) = (1− π)(1− ρ)
n−1∑
j=1

n∑
k=j+1

{pj−1
1 q1p

k−j−1
2 q2

j−1∏
s=1

f0
xs−1

(xs)
k−1∏
t=j

f1
xt−1

(xt)

×
n∏
u=k

f2
xu−1

(xu)}+ (1− π)ρ
n∑
j=1

{pj−1
1 q1

j−1∏
s=1

f0
xs−1

(xs)
n∏
t=j

f2
xt−1

(xt)}

+(1− π)(1− ρ)
n∑
j=1

{pj−1
1 q1p

n−j
2

j−1∏
s=1

f0
xs−1

(xs)
n∏
t=j

f1
xt−1

(xt)}

+(1− π)pn1
n∏
s=1

f0
xs−1

(xs).

Moreover

Πmn+1(x) = p2f
2
Xn

(Xn+1)Πmn(x)Sn(~xn+1)S−1
n+1(~xn)
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and Sn+1(~xn+1) = H(Xn, Xn+1,
−→
Πn)Sn(~xn). Hence

Πmn+1(x) =
p2f

1
Xn

(Xn+1)Πmn(x)

H(Xn, Xn+1,
−→
Πn)

.

LEMMA 3.2. For each x ∈ E and each Borel function u : R −→ R the following

equations are fulfilled

Ex
(
u(Xn+1)(1−Π1

n+1) | Fn
)

= (1−Π1
n −Π12

n )p1

∫
E
u(y)f0

Xn(y)µXn(dy),(3.14)

Ex
(
u(Xn+1)(Π1

n+1 −Π2
n+1) | Fn

)
(3.15)

=
[
q1(1−Π1

n −Π12
n ) + p2(Π1

n −Π2
n)
] ∫

E
u(x)f1

Xn(y)µXn(dy),

Ex
(
u(Xn+1)Π2

n+1) | Fn
)

=
[
q2Π1

n + p2Π2
n + q1Π12

n

]∫
E
u(y)f2

Xn(y)µXn(dy),(3.16)

Ex
(
u(Xn+1)Π12

n+1) | Fn
)

=
[
p1Π12

n

]∫
E
u(y)f0

Xn(y)µXn(dy)(3.17)

(3.18) Ex(u(Xn+1)|Fn) =
∫
E
u(y)H(Xn, y,

−→
Πn(x))µXn(dy).

PROOF. The relations (3.14)-(3.17) are consequence of suitable division of Ω de-

fined by (θ1, θ2) and properties established in Lemma 6.2. Let us prove the equation (3.16).

To do this we need to define first σ-field F̃n = σ(θ1, θ2, X0, ..., Xn). Notice that Fn ⊂ F̃n.

We have:

Ex(u(Xn+1)Π2
n+1 | Fn) = Ex(u(Xn+1)Ex(I{θ2¬n+1} | Fn+1) | Fn)

= Ex(u(Xn+1)I{θ2¬n+1} | Fn) = Ex(Ex(u(Xn+1)I{θ2¬n+1} | F̃n) | Fn)

= Ex

(∫
E
u(y)Px(dy | F̃n, θ2 ¬ n+ 1)Px(θ2 ¬ n+ 1 | F̃n) | Fn

)
=
∫
E
u(y)f2

Xn
(y)µXn(dy)Px(θ2 ¬ n+ 1 | Fn)

=
∫
E
u(y)f2

Xn
(y)µXn(dy)(Px(θ2 = n+ 1, θ1 ¬ n < θ2 | Fn) + Px(θ2 ¬ n |Fn))

L.6.2=
(
q2Π1

n + p2Π2
n + q1Π12

n

) ∫
E
u(y)f2

Xn
(y)µXn(dy)

We used the properties of conditional expectation here. Similar transformations give us

equations (3.14), (3.17) and (3.15). The sum of (3.14)-(3.17) gives (3.18). This proves

Lemma 3.2.
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4. DETECTION OF NEW HOMOGENEOUS SEGMENT

4.1. Equivalent optimal stopping problem. For X0 = x let us define: Zn = Px(θ1 ¬

n < θ2 | Fn) for n = 0, 1, 2, . . .. We have

Zn = Px(θ1 ¬ n < θ2 | Fn) = Π1
n −Π2

n(4.1)

Yn = esssup{τ∈T , τn}Px(θ1 ¬ τ < θ2 | Fn) for n = 0, 1, 2, . . . and

τ0 = inf{n : Zn = Yn}(4.2)

Notice that, if Z∞ = 0, then Zτ = Px(θ1 ¬ τ < θ2 | Fτ ) for τ ∈ T . Since Fn ⊆ Fτ
(when n ¬ τ ) we have

Yn = ess sup
τn

Px(θ1 ¬ τ < θ2 | Fn) = ess sup
τn

Ex(I{θ1¬τ<θ2} | Fn)

= ess sup
τn

Ex(Zτ | Fn)

LEMMA 4.1. The stopping time τ0 defined by formula (4.2) is the solution of problem

(2.4).

PROOF. From the theorems presented in [3] it is enough to show that lim
n→∞

Zn = 0.

For all natural numbers n, k, where n  k for each x ∈ E we have:

Zn = Ex(I{θ1¬n<θ2} | Fn) ¬ Ex(sup
jk

I{θ1¬j<θ2} | Fn)

From Levy’s theorem lim supn→∞ Zn ¬ Ex(supjk I{θ1¬j<θ2} | F∞) where F∞ =

σ (
⋃∞
n=1Fn). It is true that: lim supjk, k→∞ I{θ1¬j<θ2} = 0 a.s. and by the dominated

convergence theorem we get

lim
k→∞

Ex(sup
jk

I{θ1¬j<θ2} | F∞) = 0 a.s.

what ends the proof of the Lemma.
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The reduction of the disorder problem to optimal stopping of Markov sequence is the

consequence of the following lemma.

LEMMA 4.2. System Xx = {Xx
n}, where Xx

n = (Xn−1, Xn,Π1
n,Π

2
n,Π

12
n ) forms a

family of random Markov functions.

PROOF. Define a function:

(4.3) ϕ(x1, x2, ~α ; z) = (x2, z,Π1(x2, z, ~α),Π2(x2, z, ~α),Π12(x2, z, ~α))

Observe that

Xx
n = ϕ(Xn−2, Xn−1,

−→
Πn−1;Xn) = ϕ(Xx

n−1;Xn)

Hence Xx
n can be interpreted as function of previous state Xx

n−1 and random variable Xn.

Moreover, applying (3.18), we get that conditional distribution of Xn given σ-field Fn−1

depends only on Xx
n−1. According to [13] (pp. 102-103) system Xx is a family of random

Markov functions.
z

This fact implies that we can reduce initial problem (2.4) to the problem of optimal stopping

five-dimensional process (Xn−1, Xn,Π1
n,Π

2
n,Π

12
n ) with reward

(4.4) h(x1, x2, ~α) = α− β

The reward function results from equation (4.1). Thanks to Lemma 4.2 we construct the

solution using standard tools of optimal stopping theory (cf [13] ), as we do below.

Let us define two operators for any Borel function v : E2 × [0, 1]3 −→ [0, 1] and the

set D = {ω : Xn−1 = y,Xn = z,Π1
n = α,Π2

n = β,Π12
n = γ}:

Txv(y, z, ~α) = Ex(v(Xn, Xn+1,
−→
Πn+1) | D)

Qxv(y, z, ~α) = max{v(y, z, ~α),Txv(y, z, ~α)}
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From well known theorems of optimal stopping theory ([13]), we infer that the solution of

the problem (2.4) is the Markov time τ0:

τ0 = inf{n  0 : h(Xn, Xn+1,
−→
Πn+1)  h∗(Xn, Xn+1,

−→
Πn+1)}

where:

h∗(y, z, ~α) = lim
k→∞

Qk
xh(y, z, ~α)

Of course

Qk
xv(y, z, ~α) = max{Qk−1

x v,TxQk−1
x v} = max{v,TxQk−1

x v}

To obtain a clearer formula for τ0, we formulate (cf (3.5) and (3.4)):

THEOREM 4.1. (a) The solution of problem (2.4) is given by:

τ∗ = inf{n  0 : (Xn, Xn+1,
−→
Πn+1) ∈ B∗}(4.5)

Set B∗ is of the form:

B∗ = {(y, z, ~α) : (α− β)  (1− α)

×

[
p1

∫
E
R∗(y, u,

−→
Π 1(y, u, ~α))f0

y (u)µy(du)

+ q1
∫
E
S∗(y, u,

−→
Π 1(y, u, ~α))f1

y (u)µy(du)

]

+ (α− β)p2

∫
E
S∗(y, u,

−→
Π 1(y, u, ~α))f1

y (u)µy(du)

}

Where:

R∗(y, z, ~α) = lim
k→∞

Rk(y, z, ~α) , S∗(y, z, ~α) = lim
k→∞

Sk(y, z, ~α)
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Functions Rk and Sk are defined recursively: R1(y, z, ~α) = 0, S1(y, z, ~α) = 1 and

Rk+1(y, z, ~α) = (1− IRk
(y, z, ~α))(4.6)

×

(
p1

∫
E
Rk(y, u,

−→
Π 1(y, u, ~α))f0

y (u)µy(du)

+q1
∫
E
Sk(y, u,

−→
Π 1(y, u, ~α))f1

y (u)µy(du)

)
,

Sk+1(y, z, ~α) = IRk
(y, z, ~α) + (1− IRk

(y, z, ~α))(4.7)

×p2

∫
E
Sk(y, u,

−→
Π 1(y, u, ~α))f1

y (u)µy(du)

Where the setRk is:

Rk =
{

(y, z, ~α) : h(y, z, ~α)  TxQk−1
x h(y, z, ~α)

}
= {(y, z, ~α) : (α− β)  (1− α)

×

[
p1

∫
E
Rk(y, u,

−→
Π 1(y, u, ~α))f0

y (u)µy(du)

+ q1
∫
E
Sk(y, u,

−→
Π 1(y, u, ~α))f1

y (u)µy(du)

]

+ (α− β)p2

∫
E
Sk(y, u,

−→
Π 1(y, u, ~α))f1

y (u)µy(du)

}

(b) The value problem. The optimal value for (2.4) is given by the formula

V (τ∗) = p1

∫
E
R∗(x, u,

−→
Π 1(x, u, π, ρπ, ρ(1− π)))f0

x(u)µx(du)

+q1
∫
E
S∗(x, u,

−→
Π 1(x, u, π, ρπ, ρ(1− π)))f1

x(u)µx(du).

PROOF. Part (a) results from Lemma 3.2 - the problem reduces to the problem

of optimal stopping of the Markov process (Xn−1, Xn,Π1
n,Π

2
n,Π

12
n ) with payoff func-

tion h(y, z, ~α) = α − β. Given (3.15) with the function u equal to unity we get on
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D = {ω : Xn−1 = y,Xn = z,Π1
n = α,Π2

n = β,Π12
n = γ}:

Txh(y, z, ~α) = Ex

(
Π1
n+1 −Π2

n+1 | Fn
)
|D

=

[
(Π1

n −Π2
n)p2

∫
E
f1
Xn

(u)µXn(du) + (1−Π1
n)q1

∫
E
f0
Xn

(u)µXn(du)

]
|D

= (1− α)q1 + (α− β)p2

From the definition of R1 and S1 it is clear that

h(y, z, ~α) = α− β = (1− α)R1(y, z, ~α) + (α− β)S1(y, z, ~α)

AlsoR1 = {(y, z, ~α) : h(y, z, ~α)  Txh(y, z, ~α)}. From the definition of Qx and the facts

above we obtain

Qxh(y, z, ~α) = (1− α)R2(y, z, ~α) + (α− β)S2(y, z, ~α)

where R2(y, z, ~α) = q1(1 − IR1(y, z, ~α)) and S2(y, z, ~α) = p2 + (1 − p2)IR1(y, z, ~α)).

Suppose the following induction hypothesis holds

Qk−1
x h(y, z, ~α) = (1− α)Rk(y, z, ~α) + (α− β)Sk(y, z, ~α)

where Rk and Sk are given by equations (4.6), (4.7), respectively. We will show

Qk
xh(y, z, ~α) = (1− α)Rk+1(y, z, ~α) + (α− β)Sk+1(y, z, ~α)

From the induction assumption and equations (3.14), (3.15) we obtain:

TxbQ
k−1
x h(y, z, ~α) = Tx(1− α)Rk(y, z, ~α) + Tx(α− β)Sk(y, z, ~α)

= (1− α)p1

∫
E
Rk(y, u,

−→
Π 1(y, u, ~α))f0

y (u)µy(du)

+ [(1− α)q1 + (α− β)p2]
∫
E
Sk(y, u,

−→
Π 1(y, u, ~α))f1

y (u)µy(du)

= (1− α)

[
p1

∫
E
Rk(y, u,

−→
Π 1(y, u, ~α))f0

y (u)µy(du) + q1
∫
E
Sk(y, u,

−→
Π 1(y, u, ~α))

× f1
y (u)µy(du)

]
+ (α− β)p2

∫
E
Sk(y, u,

−→
Π 1(y, u, ~α))f1

y (u)µy(du)
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Notice that

(1− α)Rk+1(y, z, ~α) + (α− β)Sk+1(y, z, ~α)

is equal α − β = h(y, z, ~α) = Qk
xh(y, z, ~α) for (y, z, ~α) ∈ Rk and, taking into account

(4.8), it is equal TxQk−1
x h(y, z, ~α) = Qk

xh(y, z, ~α) for (y, z, ~α) /∈ Rk, where Rk is given

by (4.8). Finally we get

Qk
xh(y, z, ~α) = (1− α)Rk+1(y, z, ~α) + (α− β)Sk+1(y, z, ~α)

This proves (4.6) and (4.7). Using the monotone convergence theorem and theorems of

optimal stopping theory ([13]) we conclude that the optimal stopping time τ∗ is given by

(cf 4.5). z

PROOF. Part (b). First, notice that Π1
1, Π2

1 and Π12
1 are given by (3.6)-(3.8) and the

boundary condition formulated in Lemma 3.1. Under the assumption τ∗ <∞ a.s. we get:

Px(τ∗ <∞, θ1 ¬ τ∗< θ2) = sup
τ

EZτ

= E max{h(x,X1,
−→
Π 1),Txh

∗(x,X1,
−→
Π 1)} = E lim

k→∞
Qk
xh(x,X1,

−→
Π 1)

= E
[
(1−Π1

1)R∗(x,X1,
−→
Π 1) + (Π1

1 −Π2
1)S∗(x,X1,

−→
Π 1)

]
= p1

∫
E
R∗(x, u,

−→
Π 1(x, u, π, ρπ, ρ(1− π)))f0

x(u)µx(du)

+q1
∫
E
S∗(x, u,

−→
Π 1(x, u, π, ρπ, ρ(1− π)))f1

x(u)µx(du)

We used Lemma 3.2 here and simple calculations for Π1
1, Π2

1 and Π12
1 . This ends the proof.z

4.2. Remarks. It is notable that the solution of formulated problem depends only on

two-dimensional vector of posterior processes because Π12
n = ρ(1 − Π1

n). The formulas

obtained are very general and for this reason - quite complicated. We simplify the model by

assuming that P (θ1 > 0) = 1 and P (θ2 > θ1) = 1. However, it seems that some further

simplifications can be made in special cases. Further research should be carried out in this

direction. From a practical point of view, computer algorithms are necessary to construct

B∗ – the set in which it is optimally to stop our observable sequence.
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5. IMMEDIATE DETECTION OF THE FIRST AND THE SECOND DISORDER

5.1. Equivalent double optimal stopping problem. Let us consider the problem D00

formulated in (2.5). A compound stopping variable is a pair (τ, σ) of stopping times such

that 0 ¬ τ ¬ σ a.e.. The aim is to find a compund stopping variable (τ?, σ?) such that

(5.1) Px((θ1, θ2) = (τ∗, σ∗)) = sup
(τ,σ)∈T

0¬τ¬σ<∞

Px((θ1, θ2) = (τ, σ)).

Denote Tm = {(τ, σ) ∈ T : τ  m}, Tmn = {(τ, σ) ∈ T : τ = m,σ  n} and

Sm = {τ ∈ S : τ  m}. Let us denote Fmn = Fn, m,n ∈ N, m ¬ n. We define

two-parameter stochastic sequence ξ(x) = {ξmn, m, n ∈ N, m < n, x ∈ E}, where

ξmn = Px(θ1 = m, θ2 = n|Fmn).

We can consider for every x ∈ E, m,n ∈ N, m < n, the optimal stopping problem of ξ(x)

on T +
mn = {(τ, σ) ∈ Tmn : τ < σ}. A compound stopping variable (τ∗, σ∗) is said to be

optimal in T +
m (or T +

mn) if

(5.2) Exξτ∗σ∗ = sup
(τ,σ)∈Tm

Exξτσ

(or Exξτ∗σ∗ = sup(τ,σ)∈T +
mn

Exξτσ). Let us define

(5.3) ηmn = ess sup
(τ,σ)∈T +

mn

Ex(ξτσ|Fmn).

If we put ξm∞ = 0, then

ηmn = ess sup
(τ,σ)∈T +

mn

Px(θ1 = τ, θ2 = σ|Fmn).

From the theory of optimal stopping for double indexed processes (cf. [7],[10]) the sequence

ηmn satisfies

ηmn = max{ξmn,E(ηmn+1|Fmn)}.

Moreover, if σ∗m = inf{n > m : ηmn = ξmn}, then (m,σ∗n) is optimal in T +
mn and

ηmn = Ex(ξmσ∗n |Fmn) a.e.. The case when there are no segment with distribution f1
x(y)
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appears with probability ρ. It will be taken into account. Define

η̂mn = max{ξmn,E(ηm n+1|Fmn)} for n  m.

if σ̂∗m = inf{n  m : η̂mn = ξmn}, then (m, σ̂∗m) is optimal in Tmn and η̂mm =

Ex(ξmσ∗m |Fmm) a.e.. For further consideration denote

(5.4) ηm = Ex(ηmm+1|Fm).

LEMMA 5.1. Stopping time σ∗m is optimal for every stopping problem (5.3).

PROOF. It suffices to prove limn→∞ ξmn = 0 (cf. [3]). We have for m,n, k ∈ N,

n  k > m and every x ∈ E

Ex(I{θ1=m,θ2=n}|Fmn) = ξmn(x) ¬ Ex(sup
jk

I{θ1=m,θ2=j}|Fm),

where IA is the characteristic function of the set A. By Levy’s theorem

lim sup
n→∞

ξmn(x) ¬ Ex(sup
jk

I{θ1=m,θ2=j}|Fn∞),

where F∞ = Fn∞ = σ(
⋃∞
n=1Fn). We have lim

k→∞
sup
jk

I{θ1=m,θ2=j} = 0 a.e. and by domi-

nated convergence theorem

lim
k→∞

Ex(sup
jk

I{θ1=m,θ2=j}|F∞) = 0.

z

What is left is to consider the optimal stopping problem for (ηmn)∞,∞m=0,n=m on

(Tmn)∞,∞m=0,n=m. Let us define

(5.5) Vm = ess sup
τ∈Sm

Ex(ητ |Fm).

Then Vm = max{ηm,Ex(Vm+1|Fm)} a.e. and we define τ∗n = inf{k  n : Vk = ηk}.

LEMMA 5.2. The strategy τ∗0 is the optimal strategy of the first stop.
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PROOF. To show that τ∗0 is the optimal first stop strategy we prove that Px(τ∗0 <

∞) = 1. To this end, we argue in the usual manner i.e. we show limm→∞ ηm = 0.

We have

ηm = Ex(ξmσ∗m |Fm)

= Ex(Ex(I{θ1=m,θ2=σ∗m}|Fmσ∗m)|Fm)

= Ex(I{θ1=m,θ2=σ∗m}|Fm)

¬ Ex(sup
jk

I{θ1=j,θ2=σ∗j }|Fm).

Similarly as in proof of Lemma 5.1 we have got

lim sup
m→∞

ηm(x) ¬ Ex(sup
jk

I{θ1=j,θ2=σ∗j }|F∞).

Since

lim
k→∞

sup
jk

I{θ1=k,θ2=σ∗j } ¬ lim sup
k→∞

I{θ1=k} = 0,

it follows that

lim
m→∞

ηm(x) ¬ lim
k→∞

Ex(sup
jk

I{θ1=j,θ2=σ∗j }|F∞) = 0.

z

Lemmas 5.1 and 5.2 describe the method of solving the “disorder problem” formulated

in Section 2 (see (5.1)).

5.2. Solution of the equivalent double stopping problem. For the sake of simplicity we

shall confine ourselves to the case d1 = d2 = 0. It will be easily seen how to generalize

the solution of the problem to solve Dd1d2 for d1 > 0 or d2 > 0. First of all we construct

multidimensional Markov chains such that ξmn and ηm will be the functions of their states.

By consideration of the section 3 concerning a posteriori processes we get ξ00 = πρ and
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for m < n

ξxmn = Px(θ1 = m, θ2 = n|Fmn)

= (1− π)(1− ρ)
pm−1
1 q1p

n−m−1
2 q2

∏j−1
s=1 f

0
xs−1

(xs)
∏n−1
t=j f

1
xt−1

(xt)f2
Xn−1

(Xn)

Sn(x0, x1, . . . , xn)

=
q2
p2

Πmn(x)
f2
Xn−1

(Xn)

f1
Xn−1

(Xn)

and for n = m, by Lemma 6.2

(5.6) ξxmm = Px(θ1 = m, θ2 = m|Fmm) = ρ
q1
p1

f2
Xm−1

(Xm)

f0
Xm−1

(Xm)
(1−Π1

m).

We can observe that (Xn, Xn+1,
−→
Πn+1,Πmn+1) for n = m + 1,m + 2, . . . is a func-

tion of (Xn−1, Xn,
−→
Πn,Πmn) and Xn+1. Besides the conditional distribution of Xn+1

given Fn (cf. (3.18)) depends on Xn, Π1
n(x) and Π2

n(x) only. These facts imply that

{(Xn, Xn+1,
−→
Πn+1,Πmn+1)}∞n=m+1 form a homogeneous Markov process (see Chap-

ter 2.15 of [13]). This allows us to reduce the problem (5.3) for each m to the optimal stop-

ping problem of the Markov process Zm(x) = {(Xn−1, Xn,
−→
Πn,Πmn), m, n ∈ N, m <

n, x ∈ E} with the reward function h(t, u, ~α, δ) = q2
p2
δ
f2

t (u)

f1
t (u)

.

LEMMA 5.3. A solution of the optimal stopping problem (5.3) for m = 1, 2, . . . has a

form

(5.7) σ∗m = inf{n > m :
f2
Xn−1

(Xn)

f1
Xn−1

(Xn)
 R∗(Xn)}

where R∗(t) = p2

∫
E r
∗(t, s)f1

t (s)µt(ds). The function r∗ = limn→∞ rn, where r0(t, u) =
f2

t (u)

f1
t (u)

,

(5.8) rn+1(t, u) = max{f
2
t (u)
f1
t (u)

, p2

∫
E
rn(u, s)f1

u(s)µu(ds)}.

So r∗(t, u) satisfies the equation

(5.9) r∗(t, u) = max{f
2
t (u)
f1
t (u)

, p2

∫
E
r∗(u, s)f1

u(s)µu(ds)}.
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The value of the problem

(5.10) ηm = Ex(ηmm+1|Fm) =
q1
p1

f1
Xm−1

(Xm)

f0
Xm−1

(Xm)
(1−Π1

m)R?ρ(Xm−1, Xm),

where

(5.11) R?ρ(t, u) = max{ρf
2
t (u)
f1
t (u)

,
q2
p2

(1− ρ)R?(u)}.

PROOF. For any Borel function u : E×E× [0, 1]4 → [0, 1] and D = {ω : Xn−1 =

t,Xn = u,Π1
n(x) = α,Π2

n(x) = β,Π12
n = γ,Πmn(x) = δ} let us define two operators

Txu(t, u, ~α, δ) = Ex(u(Xn, Xn+1,
−→
Πn+1(x),Πmn+1(x))|D)

and

Qxu(t, u, ~α, δ) = max{u(t, u, ~α, δ),Txu(t, u, ~α, δ)}.

On the bases of the well-known theorem from the theory of optimal stopping (see [13], [10])

we conclude that the solution of (5.3) is a Markov time

σ∗m = inf{n > m : h(Xn−1, Xn,
−→
Πn,Πmn) = h∗(Xn−1, Xn,

−→
Πn(x),Πmn)},

where h∗ = limk→∞Qk
xh(t, u, ~α, δ). By (3.9) and (3.18) on D = {ω : Xn−1 = t,Xn =

u,Π1
n = α,Π2

n = β,Π12
n = γ,Πmn = δ} we have

Txh(t, u, ~α, δ) = Ex(
q2
p2

Πmn+1

f2
Xn

(Xn+1)
f1
Xn

(Xn+1)
|D)

=
q2
p2
δp2E(

f1
u(Xn+1)

H(u,Xn+1, ~α)
f2
u(Xn+1)
f1
u(Xn+1)

|Fn)|D

(3.18)
= q2δ

∫
E

f2
u(s)

H(u, s, ~α)
H(u, s, ~α)µu(ds) = q2δ

and

(5.12) Qxh(t, u, ~α, δ) =
q2
p2
δmax{f

2
t (u)
f1
t (u)

, p2}.
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Let us define r0(t, u) = 1 and

rn+1(t, u) = max{f
2
t (u)
f1
t (u)

, p2

∫
E
rn(u, s)f1

u(s)µu(ds)}.

We show that

(5.13) Q`
xh(t, u, ~α, δ) =

q2
p2
δr`(t, u)

for ` = 1, 2, . . .. We have by (5.12) Qxh = q2
p2
γr1 and assume (5.13) for ` ¬ k. By (3.18)

on D = {ω : Xn−1 = t,Xn = u,Π1
n = α,Π2

n = β,Π12
n = γ,Πmn = δ} we have got

TxQk
xh(t, u, ~α, δ) = Ex(

q2
p2

Πmk+1rk(Xn, Xn+1)|D)

=
q2
p2
δp2

∫
E
rk(u, s)f1

u(s)µu(ds).

It is easy to show (see [13]) that

Qk+1
x h = max{h,TxQk

xh}, for k = 1, 2, . . ..

Hence we have got Qk+1
x h = q2

p2
δrk+1 and (5.13) is proved for ` = 1, 2, . . .. This gives

(5.14) h∗(t, u, ~α, δ) =
q2
p2
δ lim
k→∞

rk(t, u) =
q2
p2
δr∗(t, u)

and

ηmn = ess sup
(τ,σ)∈Tm n

Ex(ξτ,σ|Fmn) = h∗(Xn−1, Xn,
−→
Πn,Πmn).

We have by (5.14) and (3.9)

Txh
∗(t, u, ~α, δ) =

q2
p2
δp2

∫
E
r∗(u, s)f1

u(s)µu(ds) =
q2
p2
δR∗(u)

and σ∗m has form (5.7). By (5.4), (5.6) and (3.18) we obtain

ηm = max{ξxmm,E(ηmm+1|Fm)} = f(Xm−1, Xm,
−→
Πm,Πmm)(5.15)

= max{ρ q1
p1

f2
Xm−1

(Xm)

f0
Xm−1

(Xm)
(1−Π1

m),
q2
p2

(1−Πmm)R?(Xm)}

L.3.1=
q1
p1

f1
Xm−1

(Xm)

f0
Xm−1

(Xm)
(1−Π1

m)R?ρ(Xm−1, Xm).
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z

REMARK 5.1. Based on the results of Lemma 5.3 and properties of the a posteriori

process Πnm we have that the expected value of success for the second stop when the ob-

server stops immediately at n = 0 is πρ and when at least one observation has been made

E(η1|F0) = q1
p1

E((1−Π1
1)f

1
x(X1)
f0

x(X1)
R?ρ(x,X1)|F0) = q1

p1
(1−π)p1

∫
E f

1
x(u)R?ρ(x, u)µx(du).

As a consequence we have optimal second moment

σ̂?0 =


0 if πρ  q1(1− π)

∫
E
f1
x(u)R?ρ(x, u)µx(du),

σ?0 otherwise.

By lemmas 5.3 and 3.1 (formula (3.9)) the optimal stopping problem (5.5) has been trans-

formed to the optimal stopping problem for the homogeneous Markov process

W = {(Xm−1, Xm,
−→
Πm,Π12

m ), m ∈ N, x ∈ E}

with the reward function

(5.16) f(t, u, ~α) =
q1
p1

f1
t (u)
f0
t (u)

(1− α)R?ρ(t, u).

THEOREM 5.1. A solution of the optimal stopping problem (5.5) for n = 1, 2, . . . has

a form

(5.17) τ∗n = inf{k  n : (Xk−1, Xk,
−→
Π k, ) ∈ B∗}

where B∗ = {(t, u, ~α) : f2
t (u)

f1
t (u)

R?ρ(t, u)  p1

∫
E v
∗(u, s)f0

u(s)µu(ds)}. The function

v∗(t, u) = limn→∞ vn(t, u), where v0(t, u) = R?ρ(t, u),

(5.18) vn+1(t, u) = max{f
2
t (u)
f1
t (u)

R?ρ(t, u), p1

∫
E
vn(u, s)f1

u(s)µu(ds)}.

So v∗(t, u) satisfies the equation

(5.19) v∗(t, u) = max{f
2
t (u)
f1
t (u)

R?ρ(t, u), p1

∫
E
v∗(u, s)f1

u(s)µu(ds)}.

The value of the problem Vn = v∗(Xn−1, Xn).
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PROOF. For any Borel function u : E×E× [0, 1]3 → [0, 1] and D = {ω : Xn−1 =

t,Xn = u,Π1
n(x) = α,Π2

n(x) = β,Π12
n = γ}let us define two operators

Txu(t, u, ~α) = Ex(u(Xn, Xn+1,
−→
Πn+1)|D)

and Qxu(t, u, ~α) = max{u(t, u, ~α),Txu(t, u, ~α)}. Similarly as in the proof of Lemma 5.3

we conclude that the solution of (5.5) is a Markov time

τ∗m = inf{n > m : f(Xn−1, Xn,
−→
Πn) = f∗(Xn−1, Xn,

−→
Πn)},

where f∗ = limk→∞Qk
xf(t, u, ~α). By (3.18) and (5.16) on D = {ω : Xn−1 = t,Xn =

u,Π1
n = α,Π2

n = β,Π12
n = γ} we have

Txf(t, u, ~α) = Ex(
q1
p1

(1−Π1
n+1)

f1
Xn

(Xn+1)
f0
Xn

(Xn+1)
R?ρ(Xn, Xn+1)|D)

=
q1
p1

(1− α)p1E(
f0
u(Xn+1)

H(u,Xn+1, α, β)
f1
u(Xn+1)
f0
u(Xn+1)

R?ρ(Xn, Xn+1)|Fn)|D

(3.18)
=

q1
p1

(1− α)p1

∫
E

f1
u(s)

H(u, s, α, β)
H(u, s, α, β)R∗ρ(u, s)µu(ds)

=
q1
p1

(1− α)p1

∫
E
R∗ρ(u, s)f

1
Xn

(s)µu(ds)

and

Qxf(t, u, ~α) =
q1
p1

(1− α) max{f
1
t (u)
f0
t (u)

R?ρ(t, u), p1

∫
E
R?ρ(u, s)f

1
u(s)µu(ds)}(5.20)

=
q1
p1
αv1(t, u).

Let us define v1(t, u) = max{f
1
t (u)

f0
t (u)

R?ρ(t, u), p1

∫
ER
∗
ρ(u, s)f

1
u(s)µu(ds) and

vn+1(t, u) = max{f
1
t (u)
f0
t (u)

R?ρ(t, u), p1

∫
E
vn(u, s)f0

u(s)µu(ds)}.

We show that

(5.21) Q`
xf(t, u, ~α) =

q1
p1

(1− α)v`(t, u)
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for ` = 1, 2, . . .. We have by (5.20) Qxf(t, u, ~α) = q1
p1

(1 − α)v1(t, u) and assume (5.21)

for ` ¬ k. By (3.18) on D = {ω : Xn−1 = t,Xn = u,Π1
n = α,Π2

n = β,Π12
n = γ}we have

got

TxQk
xf(t, u, ~α) = Ex(

q1
p1

(1−Π1
k+1)vk(Xn, Xn+1)|D)

=
q1
p1

(1− α)p1

∫
E
vk(u, s)f0

u(s)µu(ds).

Hence we have got Qk+1
x f = q1

p1
(1 − α)vk+1 and (5.21) is proved for ` = 1, 2, . . .. This

gives

f∗(t, u, ~α) =
q1
p1

(1− α) lim
k→∞

vk(t, u) =
q1
p1
αv∗(t, u)

and

Vm =
q1
p1

(1−Π1
m)v∗(Xm−1, Xm).

We have

Txf
∗(t, u, ~α) =

q1
p1

(1− α)p1

∫
E
v∗(u, s)f0

u(s)µu(ds).

Define B∗ = {(t, u, ~α) : f1
t (u)

f0
t (u)

R?ρ(t, u)  p1

∫
E v
∗(u, s)f0

u(s)µu(ds)} then τ∗n for n  1

has a form (5.17). The value of the problem (5.2), (5.5) and (2.5) is equal

v0(x) = max{π,Ex(V1|F0)} = max{π, q1
p1

(1− π)p1

∫
E
v∗(u, s)f0

u(s)µu(ds)}

and

τ̂∗0 =


0 if π  q1(1− π)

∫
E
v∗(u, s)f0

u(s)µu(ds),

τ∗0 otherwise.

z

Based on Lemmas 5.3 and 5.1 the solution of the problem D00 can be formulated as

follows.
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THEOREM 5.2. A compound stopping time (τ∗, σ∗τ∗), where σ∗m is given by (5.7) and

τ∗ = τ̂∗0 is given by (5.17) is a solution of the problem D00. The value of the problem

Px(τ∗ < σ∗ <∞, θ1 = τ∗, θ2 = σ∗τ∗) = max{π, q1(1− π)
∫
E
v∗(u, s)f0

u(s)µu(ds)}.

REMARK 5.2. The problem can be extended to optimal detection of more than two

successive disorders. The distribution of θ1, θ2 may be more general. The general a priori

distributions of disorder moments leads to more complicated formulae, since the corre-

sponding Markov chains are not homogeneous.

6. APPENDICES

APPENDIX 1 — USEFUL RELATIONS

6.1. Conditional probability of various event defined by disorder moments. Accord-

ing to definition of Π1
n, Π2

n, Π12
n we get

LEMMA 6.1. For the model discribed in the section 2 the following formulae are va-

lied.

1. Px(θ2  n > θ1|Fn) = Π1
n −Π2

n;

2. Px(θ2 > θ1 > n|Fn) = 1−Π1
n −Π12

n .

PROOF.

1. Let θ1 ¬ θ2. Since {ω : θ2 ¬ n} ⊂ {ω : θ1 ¬ n} it follows that Px({ω : θ1 ¬ n <

θn}|Fn) = Px({ω : θ1 ¬ n} \ {ω : θ2 ¬ n}|Fn) = Π1
n −Π2

n.

2. We have

Ω = {ω : n < θ1 < θ2} ∪ {ω : θ1 ¬ n < θ2}(6.1)

∪{ω : θ1 ¬ θ2 ¬ n} ∪ {ω : θ1 = θ2 > n}

hence 1 = Px(ω : n < θ1 < θ2|Fn) + (Π1
n −Π2

n) + Π2
n + Π12

n and

Px(ω : n < θ1 < θ2|Fn) = 1−Π1
n −Π12

n .
z
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6.2. Some recursive formulae. In derivation of the formulae in Theorem 3.1 the form

of the distribution of some random vectors is taken into account.

LEMMA 6.2. For the model discribed in the section 2 the following formulae are va-

lied.

1. Px(θ2 = θ1 > n+ 1|Fn) = p1Π12
n = p1ρ(1−Π1

n);

2. Px(θ2 > θ1 > n+ 1|Fn) = p1(1−Π1
n −Π12

n );

3. Px(θ1 ¬ n+ 1|Fn) = Px(θ1 ¬ n+ 1 < θ2|Fn) + Px(θ2 ¬ n+ 1|Fn);

4. Px(θ1 ¬ n+ 1 < θ2|Fn) = q1(1−Π1
n −Π12

n ) + p2(Π1
n −Π2

n);

5. Px(θ2 ¬ n+ 1|Fn) = q2Π1
n + p2Π2

n + q1Π12
n .

PROOF.

1. On the set D = {ω : X0 = x,X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An} we have

Px(θ2 = θ1 > n+ 1|D) =

ρ(1− π)
∞∑

j=n+2
pj−1
1 q1

∫
×n

i=1Ai

∏n
i=1 f

0
xi−1

(xi)dx1 . . . dxn

P(D)

= p1

ρ(1− π)pn1
∫

×n
i=1Ai

∏n
i=1 f

0
xi−1

(xi)dx1 . . . dxn

P(D)
= p1Π12

n ,

Px(θ1 > n|D) =

(1− π)
∞∑

j=n+1
pj−1
1 q1

∫
×n

i=1Ai

∏n
i=1 f

0
xi−1

(xi)dx1 . . . dxn

P(D)

=

(1− π)pn1
∫

×n
i=1Ai

∏n
i=1 f

0
xi−1

(xi)dx1 . . . dxn

P(D)
=

1
ρ

Π12
n .

2. Similarly as above we get

Px(θ2 > θ1 > n+ 1|D) = p1

ρ(1− π)pn1p2

∫
×n

i=1Ai

∏n
i=1 f

0
xi−1

(xi)dx1 . . . dxn

P(D)

= p1Px(θ2 > θ1 > n+ 1|D) L. 6.1= p1(1−Π1
n −Π12

n ).

3. It is obvious by assumption θ1 ¬ θ2.
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4. On the set D we have

Px(θ1 ¬ n+ 1 < θ2|Fn) =

n+1∑
j=0

P(ω : θ1 = j)
∞∑
n+2

(1− ρ)pk−j2 q2

P(D)

×
∫

×n
i=1Ai

j−1∏
s=1

f0
xs−1

(xs)
n∏
r=j

f1
xr−1

(xr)dx1 . . . dxn

=
(1− π)pn1q1(1− ρ)p2 + p2

n∑
0
P(ω : θ1 = j)pn+1−j

2

P(D)

×
∫

×n
i=1Ai

j−1∏
s=1

f0
xs−1

(xs)
n∏
r=j

f1
xr−1

(xr)dx1 . . . dxn

(L.6.1)
= q1Px(θ2 > θ1 > n|Fn) + p2Px(θ1 ¬ n < θ2|Fn)

= q1(1−Π1
n −Π12

n ) + p2(Π1
n −Π2

n).

5. If we substitute n by n+ 1 in (6.1) than we obtain

Px(θ2 ¬ n+ 1|Fn) = 1−Px(n+ 1 < θ1 = θ2|Fn)

−Px(n+ 1 < θ1 < θ2|Fn)−Px(θ1 ¬ n+ 1 < θ2|Fn)

= 1− p1Π12
n − p1(1−Π1

n −Π12
n )− q1(1−Π1

n −Π12
n )

+p2(Π2
n −Π1

n) = q2Π1
n + p2Π2

n + q1Π12
n .

z

Acknowledgements.. I have benefited from discussions with Wojciech Sarnowski and

Anna Karpowicz, for which I am grateful. They provided numerous corrections to the

manuscript.

REFERENCES

[1] M. Baron. Early detection of epidemics as a sequential change-point problem. In V. Antonov, C. Huber,

M. Nikulin, and V. Polischook, editors, Longevity, aging and degradation models in reliability, public

health, medicine and biology, LAD 2004. Selected papers from the first French-Russian conference, St.



28

Petersburg, Russia, June 7–9, 2004, volume 2 of IMS Lecture Notes-Monograph Series, pages 31–43, St.

Petersburg, Russia, 2004. St. Petersburg State Politechnical University.

[2] M. Basseville and A. Benveniste, editors. Detection of abrupt changes in signals and dynamical systems,

volume 77 of Lecture Notes in Control and Information Sciences, page 373. Springer-Verlag, Berlin,

1986.

[3] T. Bojdecki. Probability maximizing approach to optimal stopping and its application to a disorder prob-

lem. Stochastics, 3:61–71, 1979.

[4] T. Bojdecki and J. Hosza. On a generalized disorder problem. Stochastic Processes Appl., 18:349–359,

1984.

[5] B.E. Brodsky and B.S. Darkhovsky. Nonparametric Methods in Change-Point Problems. Mathematics

and its Applications (Dordrecht). 243. Dordrecht: Kluwer Academic Publishers. 224 p., Dordrecht, 1993.

[6] P. Dube and R. Mazumdar. A framework for quickest detection of traffic anomalies in networks.

Technical report, Electrical and Computer Engineering, Purdue University, November 2001. cite-

seer.ist.psu.edu/506551.html.

[7] G.W. Haggstrom. Optimal sequential procedures when more then one stop is required. Ann. Math. Statist.,

38:1618–1626, 1967.

[8] G.V. Moustakides. Quickest detection of abrupt changes for a class of random processes. IEEE Trans.

Inf. Theory, 44(5):1965–1968, 1998.

[9] M.L. Nikolaev. Obobshchennye posledovatel′nye procedury. Litovskiĭ Matematicheskiĭ Sbornik, 19:35–
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