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Admissible Tracks in Shamir’s Scheme

Andrzej Schinzel∗ StanisÃlaw Spież† Jerzy Urbanowicz‡

Abstract

In the paper we apply techniques of [8] to the classical Shamir se-
cret sharing scheme with threshold k. We call a tuple over a finite
field Fq, determining the scheme, a k-admissible track if the secret
in the scheme can be placed as an arbitrary coefficient of its generic
polynomial. We estimate the number of k-admissible tracks and prove
their existence and extendability for sufficiently large q. We give some
algorithms for constructing and extending such tracks making use of
elementary symmetric polynomials.

Key words. Secret sharing, key mangaement, threshold cryptogra-
phy, elementary symmetric polynomials, equations in many variables
over finite fields.

1 Introduction

1.1 Tracks in Shamir’s scheme

In the paper we indicate how the techniques of [8] may be used to Shamir’s
threshold scheme. Idea of secret sharing is due to Shamir [7] and Blakley
[2]. As to other related papers see [1], [4] and [3]. Secret sharing boils down
to methods for distributing a secret amongst n shareholders equipped with
shares of the secret.

In a threshold scheme an admin does not disclose a secret data D to
participants but only distributes n shadow shares D0, . . . , Dn−1 amongst
them in such a way that any group of k or more players can collectively
efficiently reconstruct the secret but no coalition of less than k players can
get any information on D at all.

We follow the standard terminology and notation of [5] and [8]. Through-
out the paper n denotes the number of participants and k (≥ 2) denotes the
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threshold in the scheme. In the sequel let Fq be a finite field (q is a prime
power). We use the row notation for vectors and (likewise in [8]) adhere
to the convention that the numbering of rows and columns in the matrices
starts with zero.

Throughout the paper, given r ∈ N, we write er = (0, . . . , r − 1). More-
over, given a subsequence ρ = (ρ0, . . . , ρs−1) of er with s ≤ r and an s-th
tuple u = (u0, . . . , ur−1) we denote u(ρ) = (uρ0 , . . . , uρs−1) ∈ Fs

q. Further-
more, given 0 ≤ i ≤ r− 1, we denote by ûi the sequence obtained from u by
deleting the term ui.

Definition 1. Given 1 ≤ s ≤ n we call t = (t0, . . . , ts−1) ∈ Fs
q the track

of length s over Fq, if and only if its coordinates ti are pairwise different
elements of Fq. If s = n we simply call t the track.

Here a different ordering of elements {t0, . . . , tn−1} is regarded as a distinct
track. Two tracks are said to be disjoint, if the sets of their elements are
disjoint. Concatenation of two disjoint tracks of lengths n and r respectively
gives a track of length n + r. Sometimes it is convenient to identify tracks
with the same elements. Then the set of the tracks breaks up into disjoint
classes of tracks.

Let x = (x0, . . . , xs−1) be a sequence of indeterminates. Given s ≥ 2 let
V (x) =

∏
0≤i<j≤s−1(xj − xi) ∈ Fq[x] be the classical Vandermonde determi-

nant (which is a homogeneous polynomial of total degree
(

s
2

)
). If s = 1, by

convention, we have V (x) = 1.

Fact. Let t = (t0, . . . , ts−1) ∈ Fs
q. Then t is a track, if and only if V (t) 6= 0.

In the original Shamir’s scheme an admin of the system chooses a (pseudo)
random sequence of coefficients a1, . . . , ak−1 ∈ Fq which (with a0 = D) can
be identified with the polynomial q(t) = a0 + a1t + . . . + ak−1t

k−1. The
scheme is determined by the polynomial and a track t of length n ≥ k, or
equivalently, by the polynomial and the matrix Apoly(t) = (tji )0≤i≤n−1, 0≤j≤k−1

over Fq defined for t.
The rows of the matrix r0, . . . , rn−1 are of the form ri = (t0i , . . . , t

k−1
i ),

0 ≤ i ≤ n− 1. The matrix Apoly(t) = (r0, . . . , rn−1)
T is uniquely determined

by the standard polynomial basis Bpoly and the track t.
For a subsequence ρ of length k of en write Apoly(t(ρ)) = (tjρ(i))0≤i,j≤k−1.

Then the secret sharing boils down to some computations related to two
matrix equations

Apoly(t)a
T = yT , Apoly(t(ρ))aT = (y(ρ))T

with a = (a0, . . . , ak−1) and y = (y0, . . . , yn−1).
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The admin distributes as the shares n points Di = (ti, yi), 0 ≤ i ≤ n− 1
of the graph of polynomial q(t) with non-zero pairwise different t0, . . . , tn−1 ∈
Fq. The shares in Shamir’s secret sharing scheme can be also identified with
the pairs Di = (ri, yi), where yi = ri · a, 0 ≤ i ≤ n − 1. In the original
Shamir’s scheme we have q = p a prime, n < p, and ti are natural numbers
satisfying 0 < t0 < . . . < tn−1 < p.

Definition 2. Let 1 ≤ k − 1 ≤ n and fix 0 ≤ i ≤ k − 1. The track t ∈ Fn
q

is said to be a (k, i)-admissible track, if and only if the matrix Apoly(t) is a
secret sharing matrix at level i.

Definition 3. Let 1 ≤ k − 1 ≤ n. We call the track t ∈ Fn
q a k-admissible

track, if t is (k, i)-admissible for every 0 ≤ i ≤ k − 1, or equivalently, if the
matrix Apoly(t) is an all-level secret sharing matrix.

Following Theorem 2 [8], the matrix Apoly(t) is a secret sharing matrix
at level i, if and only if all k × k submatrices of the matrix Apoly(t), and
all (k − 1) × (k − 1) submatrices of the matrix obtained from Apoly(t) by
removing its i-th column are non-singular. In Definitions 2 and 3 we extend
the concept of secret sharing matrices to n = k − 1 too. Then the former
condition is empty. If n ≥ k, this condition is satisfied, if and only if all
coordinates ti of t are pairwise different. The latter condition is satisfied, if
condition (2) below holds.

In the sequel, for simplicity, we also consider the tracks t ∈ Fk−1
q (recall

that in Shamir’s scheme k ≤ n) satisfying (2), resp. (3), calling them (k, i)-,
resp. k-admissible tracks.

For a (k, i)-, resp. k-admissible track all tracks consisting of the same
elements are also (k, i)-, resp. k-admissible tracks.

If t ∈ Fn
q is (k, i)-, resp. k-admissible, then the matrix Apoly(t) allows

to place the secret D as the i-th, resp. an arbitrary coefficient of a generic
polynomial q(t) = a0 + a1t + . . . + ak−1t

k−1 in Shamir’s scheme.
Let 0 ≤ r ≤ s and let x = (x0, . . . , xs−1) be an s-th tuple of inde-

terminates. In the sequel, we denote by τr(x) the elementary symmetric
polynomial of degree r; i.e. the sum of all distinct products of r distinct vari-
ables out of x0, . . . , xs−1. By convention we have τ0(x) = 1, and τr(x) = 0 if
r < 0 or r > s. The elementary symmetric polynomials can be also defined
inductively by

τr(x) = τr(x0, . . . , xs−2) + xs−1τr−1(x0, . . . , xs−2) . (1)

Let 0 ≤ j ≤ k − 1 ≤ n. In the sequel, we denote by Rn(k) the set of all
subsequences ρ of length k − 1 of the sequence en. Let Pk,j, Pk ∈ Fq[x] be
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symmetric homogeneous polynomials defined by

Pk,j(x) =
∏

ρ∈Rn(k)

τj(x(ρ)) , Pk(x) =
k−1∏
j=1

∏

ρ∈Rn(k)

τj(x(ρ)) .

In [8] (cf. [3]) it is shown that:

Theorem 1. (See Theorem 2 [8].) Let t = (t0, t1, . . . , tn−1) ∈ Fn
q be a track

and fix 0 ≤ i ≤ k − 1. Then the secret in Shamir’s scheme can be placed as
D = ai (i.e., t is a (k, i)-admissible track), if and only if

Pk,k−1−i(x) 6= 0 .

Corollary. A tuple t ∈ Fn
q is a (k, i)-admissible track, if and only if

V (t) 6= 0 and Pk,k−1−i(t) 6= 0. (2)

Theorem 2. (See [8].) Let t ∈ Fn
q be a track. Then the secret in Shamir’s

scheme can be placed as an arbitrary coefficient of its generic polynomial
(i.e., t is a k-admissible track), if and only if

Pk(x) 6= 0 .

Corollary. A tuple t ∈ Fn
q is a k-admissible track, if and only if

V (t) 6= 0 and Pk(t) 6= 0 . (3)

For k-admissible tracks t ∈ Fn
q Shamir’s scheme is a multi-secret sharing

scheme. Then the matrix Apoly(t) allows the admin to change the secret not
changing the shares of users and construct a secret sharing scheme in which
the shareholders can use the same shares to recover more than one secret.

1.2 Generalizations

Let c = (c0, . . . , ck−1) be an increasing sequence of non-negative integers. In
a natural way we can extend the concept of the (k, i)- and k-admissible tracks
to Lai-Ding’s secret sharing scheme, with threshold k and n shareholders,
determined by a generic polynomial q(t) = a0t

c0 + . . .+ ak−1t
ck−1 and a tuple

t ∈ Fn
q . In this case we consider the matrix Ac(t) = (t

cj

i )0≤i≤n−1, 0≤j≤k−1

defined for the tuple t. For a fuller treatment of this case we refer the reader
to [3] and [8].
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2 Existence and extendability of admissible

tracks

2.1 The number of admissible tracks

In this section we shall be concerned with equations in many variables over
finite fields. For basic definitions, notation and terminology we refer the
reader to [6]. In the sequel we make use of the following theorem:

Theorem 3. (See Lemma 3.3 [6].) Suppose s ≥ 2 and let x = (x0, . . . , xs−1)
be a sequence of indeterminates. Let F1(x) and F2(x) be polynomials over Fq

of total degrees d1 and d2, respectively, without a common factor of pos-
itive degree. Then the number of their common zeros in Fs

q is at most
qs−2d1d2min{d1, d2}.

Theorems 1, resp. 2 characterize (k, i)-, resp. k-admissible tracks. A ques-
tion is whether such tracks exist. This question boils down to the question
on existence of tracks satisfying (2), resp. (3). In the paper we prove that
such tracks exist for sufficiently large q.

By [3] and [8], every track t ∈ Fn
q is (k, k − 1)-admissible for any q >

n, and if its coordinates are 6= 0 it is also (k, 0)-admissible. It is easy to
see that not all tracks are (k, k − 2)-admissible. Indeed, a track t ∈ Fn

q is
(k, k− 2)-admissible, if and only if tρ0 + . . .+ tρk−2

6= 0 for every subsequence
ρ = (ρ0, . . . , ρk−2) of the sequence en.

In Theorem 4, resp. 5 below we estimate the number of (k, i)-, resp. k-
admissible tracks.

Theorem 4. Let n, k ∈ N (n ≥ k − 1 ≥ 1). Fix 0 < i < k − 1. Then the
number of (k, i)-admissible tracks of length n over Fq is

qn −
((

n

2

)
+

(
n

k − 1

))
qn−1 + O(qn−2) ,

where the constant in the O-symbol depends on n, k and i. For i = 0 the
number is

(q − 1) . . . (q − n) = qn −
(

n + 1

2

)
qn−1 + O(qn−2) .

For i = k − 1 the number is

q(q − 1) . . . (q − n + 1) = qn −
(

n

2

)
qn−1 + O(qn−2) .
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Proof. Our proof starts with the following lemma:

Lemma 1. Let x = (x0, . . . , xs−1) be a sequence of indeterminates. For every
0 < j < s the number of solutions of the equation

τj(x) = 0 (4)

in Fs
q is at most qs−1+j(j−1)2qs−2 and at least qs−1−qs−2−(j−1)(j−2)2qs−3.

Proof. By (1) we have

τj(x) = x0τj−1(x1, . . . , xs−1) + τj(x1, . . . , xs−1) .

The set of solutions of equation (4) falls naturally into two disjoint classes:
solutions for which τj−1(x1, . . . , xs−1) 6= 0 and others.

In solutions belonging to the first class, x0 is uniquely determined by
x1, . . . , xs−1 and so the number of solutions of the class is at most qs−1.

For solutions belonging to the second class we have

τj−1(x1, . . . , xs−1) = τj(x1, . . . , xs−1) = 0 . (5)

Since the polynomials τj−1 and τj have no common factor, by Theorem 3,
the number of solutions of (5) is at most qs−3j(j − 1)2. Since in solutions of
the second class, x0 ranges over all elements of Fq, the number of solutions
in the second class is at most qs−2j(j− 1)2, which completes the proof of the
first part of the lemma.

By virtue of (5), the number of solutions of (4) is at least qs−1 minus the
number of solutions of τj−1(x1, . . . , xs−1) = 0. By the already proved part
of the lemma the latter number does not exceed qs−2 + (j − 1)(j − 2)2qs−3,
which gives the desired lower bound.

Proof of Theorem 4: Throughout the proof

• Nj denotes the number of solutions in Fn
q of the equation

V (x)Pk,j(x) = 0 (j < k − 1), (6)

• N stands for the number of solutions in Fn
q of the equation V (x) = 0,

• Nj(ρ) is the number of solutions in Fn
q of the the equation τj(x(ρ)) = 0,

• N∗
j (ρ) denotes the number of solutions in Fn

q of the system V (x) = 0,
τj(x(ρ)) = 0,

• Nj(ρ, σ) is the number of solutions in Fn
q of the system τj(x(ρ)) = 0,

τj(x(σ)) = 0.
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We have

N+
∑

ρ∈Rn(k)

Nj(ρ) ≥ Nj ≥ N+
∑

ρ∈Rn(k)

Nj(ρ)−
∑

ρ∈Rn(k)

N∗
j (ρ)−1

2

∑

ρ,σ∈Rn(k)
ρ6=σ

Nj(ρ, σ) .

(7)
Now N = qn − q(q− 1) . . . (q− n + 1) =

(
n
2

)
qn−1 + O(qn−2) and by Lemma 1

∑

ρ∈Rn(k)

Nj(ρ) = card(Rn(k))qn−1 + O(qn−2) =

(
n

k − 1

)
qn−1 + O(qn−2) .

On the other hand, by Theorem 3, for each ρ and σ 6= ρ

N∗
j (ρ) = O(qn−2), Nj(ρ, σ) = O(qn−2) .

Hence (7) gives the theorem for i = k − 1− j > 0. For i = 0, j = k − 1 the
negation of (6) reduces to

V (x)
n−1∏
ν=0

xν 6= 0 .

Each xν can be taken from the same set of q−1 elements and all are distinct,
hence this number is (q − 1) . . . (q − n).

Remark. The above argument gives also that the number of solutions in Fn
q

of the equation
Pk,j(x) = 0 (0 < j < k − 1)

is (
n

k − 1

)
qn−1 + O(qn−2) .

Theorem 5. Let n, k ∈ N (n ≥ k−1 ≥ 1). Then the number of k-admissible
tracks of length n over Fq is

qn −
((

n

2

)
+ (k − 2)

(
n

k − 1

))
qn−1 + O(qn−2) .

Proof. The polynomials Pk,1(x), . . . , Pk,k−2(x) and V (x)Pk,k−1(x) are coprime,
hence by Theorems 3, 4 and the above remark, the number of solutions of
the inequality

V (x)
k−1∏
i=1

Pk,i(x) 6= 0

is qn − (
n
2

)
qn−1 − (k − 2)

(
n

k−1

)
qn−1 + O(qn−2), as required.
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Remark. By Theorem 4, resp. 5, the probability that a chosen at random
an n-tuple is a (k, i)-, resp. k-admissible track is

1− ν

q
+ O(q−2) ,

where ν =
(

n
2

)
+

(
n

k−1

)
, resp.

(
n
2

)
+ (k − 2)

(
n

k−1

)
, and for sufficiently large q,

it is close to certainty.

2.2 Extendability of admissible tracks

Let n, k, r ∈ N satisfy 1 ≤ k − 1 ≤ n < q and n + r < q. Let t′ ∈ Fn
q and

t′′ ∈ Fr
q be disjoint tracks. Fix 0 ≤ i ≤ k − 1. Denote by t concatenation

of t′ and t′′; i.e., t = t′||t′′ ∈ Fn+r
q . The question is whether for a (k, i)-,

resp. k-admissible track t′ there exists a track t′′ disjoint with t′ such that t
is a (k, i)-, resp. k-admissible track.

Theorem 6, resp. 8 below gives us an information on extendability of
(k, i)-, resp. k-admissible tracks for sufficiently large q. We start with the
case when r = 1. Theorems 7 and 9 deal with the existence of such tracks
for relatively small q.

Theorem 6. Fixed 0 < i < k − 1, let t′ = (t0, . . . , tn−1) ∈ Fn
q be a (k, i)-

admissible track. If q > n +
(

n
k−2

)
, then there exists tn ∈ Fq \ {t0, . . . , tn−1}

such that the track t = (t0, . . . , tn−1, tn) ∈ Fn+1
q is also a (k, i)-admissible

track. The number of such tn is at least

q − n−
(

n

k − 2

)
.

For i = 0, resp. k − 1, such a tn exists if q > n + 1, resp. n and the number
of such tn is q − n− 1, resp. q − n.

Proof. Set t = (t0, . . . , tn−1, x) with an indeterminate x. Write F (x) =
V (t)Pk,k−1−i(t). We have

F (x) = V (t′)Pk,k−1−i(t
′)

n−1∏
j=0

(x− tj) ·
∏

ρ∈Rn+1(k)
ρk−2=n

(
aρ,ix + bρ,i

)
,

where aρ,i, bρ,i ∈ Fq, aρ,i = τk−2−i(tρ0 , . . . , tρk−3
), bρ,i = τk−1−i(tρ0 , . . . , tρk−3

)
and the latter product is taken over all ρ with ρk−2 = n.

Note that for any ρ, by (1), τk−1−i(t(ρ)) = aρ,ix + bρ,i is a non-zero
polynomial of x. Indeed, if aρ,i = bρ,i = 0, then we would have

tρk−2
τk−2−i(tρ0 , . . . , tρk−3

) + τk−1−i(tρ0 , . . . , tρk−3
) = 0 ,
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and so, by (1), τk−1−i(tρ0 , . . . , tρk−2
) = 0 for every tρk−2

∈ Fq. This is impos-
sible since t′ is a (k, i)-admissible track.

Consequently, by (2), we obtain

F (x) = C

n−1∏
j=0

(x− tj) ·
∏

ρ∈Rn+1(k)
ρk−2=n

(
aρ,ix + bρ,i

) ∈ Fq[x]

with C ∈ Fq, C 6= 0 constant.
Since the number of zeros of a univariate polynomial F over a field does

not exceed degF , if q > degF there exists tn ∈ Fq such that F (tn) 6= 0 and so
V (t)Pk,k−1−i(t) 6= 0. Thus the first part of the theorem follows from (2) and
the inequality degF ≤ n +

(
n

k−2

)
if 1 < i < k − 1. Hence, it also follows that

the number of (k, i)-admissible tracks t is at least q− degF ≤ q− n− (
n

k−2

)
,

which completes the proof if 1 < i < k − 1. An easy verification gives the
theorem if i = 0 or k − 1.

Corollary. Let 0 < i < k−1 and let t′ ∈ Fn
q be a (k, i)-admissible track. For

a fixed r ∈ N, if q > n + r − 1 +
(

n+r−1
k−2

)
, then there exists a track t′′ ∈ Fr

q

disjoint with t′ such that the track t = t′||t′′ is also a (k, i)-admissible track.
The number of such tracks is at least

r−1∏
j=0

(
q − (n + j)−

(
n + j

k − 2

))
.

For i = 0, resp. k − 1, such a t′′ exists if q > n + r, resp. n + r − 1 and the
number of t′′ is (q − n− 1) . . . (q − n− r), resp. (q − n) . . . (q − n− r + 1).

Proof. The corollary follows from Theorem 6 by induction on r.

Theorem 7. Fix 0 < i < k − 1. If q > n− 1 +
(

n−1
k−2

)
, then (k, i)-admissible

tracks of length n over Fq exist and the number of such tracks is at least

i−1∏
j=0

(
q − j

) k−2∏
j=i

(
q − j − 1

) n−1∏

j=k−1

(
q − j −

(
j

k − 2

))
.

(Recall that, by Theorem 4, for i = 0, resp. k−1, if q > n, resp. n−1, (k, i)-
admissible tracks of length n over Fq exist and the number of such tracks is
(q − 1) . . . (q − n), resp. q(q − 1) . . . (q − n + 1).)

Proof. We begin the proof with an auxiliary lemma:
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Lemma 2. For 0 ≤ i ≤ k − 1 and q ≥ k the number of solutions in Fk−1
q of

the inequality
V (x0, . . . , xk−2)τi(x0, . . . , xk−2) 6= 0 (8)

is at least
k−i−1∏
j=1

(
q − j + 1)

k−1∏

j=k−i

(
q − j

)
.

Proof. We proceed by induction on i. For i = 0 the bound is obvious. Assume
that the bound is true for i − 1 and 0 < i ≤ k − 1. We shall prove it for i.
Then we have by (1)

τi(x0, . . . , xk−2) = x0τi−1(x1, . . . , xk−2) + τi(x1, . . . , xk−2) .

If V (x1, . . . , xk−2)τi−1(x1, . . . , xk−2) 6= 0, (8) will be satisfied, provided x0 is

different from x1, . . . , xk−2 and from −τi(x1,...,xk−2)

τi−1(x1,...,xk−2)
. By the inductive assump-

tion we obtain at least
∏k−i−1

j=1 (q − j + 1)
∏k−1

j=k−i(q − j) solutions.

Proof of Theorem 7: By Lemma 2, if q ≥ k, then (k, i)-admissible tracks
of length k − 1 exist and the number of such tracks is at least

∏i−1
j=0(q −

j)
∏k−2

j=i (q − j − 1). By the last corollary with n = k − 1, r = n − k + 1,

if q > n − 1 +
(

n−1
k−2

)
, then each of these tracks can be extended to a (k, i)-

admissible track of length n in at least
∏n−1

j=k−1

(
q − j − (

j
k−2

))
ways. This

proves the theorem.

Theorem 8. Let t′ = (t0, . . . , tn−1) ∈ Fn
q be a k-admissible track. If q >

(n + 1) + (k− 2)
(

n
k−2

)
, then there exists tn ∈ Fq \ {t0, . . . , tn−1} such that the

track t = (t0, . . . , tn−1, tn) ∈ Fn+1
q is also a k-admissible track. The number

of such tn is at least

q − (n + 1)− (k − 2)

(
n

k − 2

)
.

Proof. Let t = (t0, . . . , tn−1, x) for an indeterminate x. Set F (x) = V (t)Pk(t).
We have

F (x) = V (t′)Pk(t
′)

n−1∏
j=0

(x− tj) ·
k−2∏
i=0

∏

ρ∈Rn+1(k)
ρk−2=n

τk−1−i(t(ρ)) .

As in the proof of Theorem 6, in view of τk−1(t(ρ)) = tρ0 . . . tρk−2
, by (3) we

deduce that

F (x) = Cx( n
k−2)

n−1∏
j=0

(
x− tj

) ·
k−2∏
i=1

∏

ρ∈Rn+1(k)
ρk−2=n

(
aρ,ix + bρ,i

) ∈ Fq[x]
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with C ∈ Fq, C 6= 0 constant and non-zero linear polynomials τk−1−i(t(ρ)) =
aρ,ix + bρ,i.

Note that the equations F (x) = 0 and x−( n
k−2)+1F (x) = 0 have the same

sets of solutions. Consequently, since the number of zeros of a univariate
polynomial over a field does not exceed its degree, the number of tn ∈ Fq

such that F (tn) 6= 0 is at least q−degF +
(

n
k−2

)− 1, which is, by (3), a lower
bound for the number of k-admissible tracks t = t′||(tn). Hence the second
part of the theorem follows by the inequality degF ≤ n + (k − 1)

(
n

k−2

)
. The

first part of the theorem follows from the second part immediately.

Corollary. Let t′ ∈ Fn
q be a k-admissible track. For a fixed r ∈ N, if q >

n + r + (k− 2)
(

n+r−1
k−2

)
, then there exists a track t′′ ∈ Fr

q disjoint with t′ such
that the track t = t′||t′′ is also a k-admissible track. The number of such
tracks is at least

r−1∏
j=0

(
q − (n + j + 1)− (k − 2)

(
n + j

k − 2

))
.

Proof. The corollary follows from Theorem 8 by simple induction on r.

Remark. By Theorem 6, resp. 8, the probability that a chosen at random
tn ∈ Fq gives a (k, i)-, resp. k-admissible track t = t′||(tn) is at least 1 − ν

q
,

where

ν =





n + 1, if i = 0;

n, if i = k − 1;

(n + 1) +
(

n
k−2

)
, if i 6= 0, k − 1,

resp. ν = (n + 1) + (k − 2)
(

n
k−2

)
, which in typical situation, for large q, is

close to certainty.

Theorem 9. If q > n + (k − 2)
(

n−1
k−2

)
, then k-admissible tracks exist. The

number of such tracks is at least

k−2∏
j=0

(
q − 2j − 1

) n−1∏

j=k−1

(
q − (j + 1)− (k − 2)

(
j

k − 2

))
.

Proof. We start with the lemma:

Lemma 3. For all k ≥ 2 the number of solutions of the inequality

V (x0, . . . , xk−2)
k−1∏
i=1

τi(x0, . . . , xk−2) 6= 0 (9)
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is at least
k−1∏
j=1

(
q − 2j + 1

)
.

Proof. We proceed by induction on k. For k = 2 the bound is obvious.
Assume that the bound is true for k − 1 variables. If

V (x1, . . . , xk−1)
k−1∏
i=1

τi

(
x1, . . . , xk−1

) 6= 0

the inequality (9) will be satisfied provided x0 is different from x1, . . . , xk−1

and from −τi(x1,...,xk)
τi−1(x1,...,xk)

(1 ≤ i ≤ k). By the inductive assumption we obtain at

least
k∏

j=1

(
q − 2j + 1

)

solutions.

Proof of Theorem 9: By Lemma 3, if q ≥ 2k− 2, then k-admissible tracks of
length k − 1 exist and the number of them is at least

∏k−2
j=0(q − 2j − 1). By

the last corollary with n = k− 1, r = n− k + 1, if q > n + (k− 2)
(

n−1
k−2

)
, then

each of these tracks can be extended to a k-admissible track of length n in at
least

∏n−1
j=k−1

(
q− (j + 1)− (k− 2)

(
j

k−2

))
ways. This proves the theorem.

Remark. Asymptotically for q → ∞ the lower bounds given in Lemma 2,
Theorems 7 and 9 are only slightly weaker than these given in Theorems 4
and 5 and are non-trivial for relatively small q.

3 Algorithms for constructing and extending

admissible tracks

In this section we describe algorithms for constructing and extending of (k, i)-
admissible and k-admissible tracks.

3.1 Constructing and extending (k, i)-admissible tracks

Let k ≤ n < q. Fix 0 ≤ i ≤ k − 1. In this subsection, we first describe an
algorithm for constructing (k, i)-admissible tracks t = (t0, . . . , tk−2) of length
k − 1; i.e., such that τk−1−i(t0, . . . , tk−2) 6= 0. Next, we describe another
algorithm which allows to extend a (k, i)-admissible track t = (t0, . . . , tm−1)
of length m with m ≥ k − 1 to a longer (k, i)-admissible track.
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The composition of the auxiliary and extending algorithms gives an al-
gorithm for constructing (k, i)-admissible tracks.

Since any track (t0, . . . , tn−1), n ≥ k − 1 is (k, k − 1)-admissible we need
only consider the cases when 0 ≤ i < k − 1. To shorten the notation we set
j = k − 1− i.

3.1.1 Auxiliary Algorithm

INPUT: positive integers k, j with k ≥ 2, 0 < j ≤ k − 1.

OUTPUT: a track t = (t0, . . . , tk−2) such that τj(t0, . . . , tk−2) 6= 0.

1. (Computing t0, . . . , tk−2) Do the following:

1.1. If j = 0, for t0, . . . , tk−2, choose arbitrary k − 1 pairwise different
elements of Fq.

1.2. If 0 < j ≤ k − 1 do the following:

1.2.1. For t0, . . . , tj−1, choose arbitrary non-zero pairwise different
elements of Fq.

1.2.2. For l = j to k − 2 do the following:

1.2.2.1. Set Sl ← { −τj(t0,...,tl−1)

τj−1(t0,...,tl−1)
} if τj−1(t0, . . . , tl−1) 6= 0 and Sl ←

Ø otherwise.

1.2.2.2. Select as tl an arbitrary element of Fq\({t0, . . . , tl−1}∪Sl).

2. Return(t).

Remark. Note that in step 1.2.2.2 such an element tl exists if l+1 < q. The
number of such elements is at least q − l − 1. The output exists if k < q.

3.1.2 Proof of correctness of Algorithm 3.1.1

By definition, the elements t0, . . . , tk−2 are pairwise different so we need to
prove that τj(t0, . . . , tk−2) 6= 0.

If j = 0, then τj(t0, . . . , tk−2) = 1 6= 0 for arbitrary t0, . . . , tk−2 ∈ Fq.
If 0 < j ≤ k − 1, then τj(t0, . . . , tj−1) = t0 . . . tj−1 6= 0 since t0, . . . , tj−1 ∈
Fq \ {0}. In particular, if j = k − 1, then τj(t0, . . . , tk−2) 6= 0. Now, let
0 < j < k − 1. We show by induction that τj(t0, . . . , tl) 6= 0 for each
j ≤ l ≤ k− 2. Assume that τj(t0, . . . , tl−1) 6= 0 for some j ≤ l ≤ k− 2. Then
by (1)

τj(t0, . . . , tl) = tlτj−1(t0, . . . , tl−1) + τj(t0, . . . , tl−1) 6= 0

since by step 1.2.2 we have tl 6= −τj(t0,...,tl−1)

τj−1(t0,...,tl−1)
if τj−1(t0, . . . , tl−1) 6= 0.
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3.1.3 Extending Algorithm

INPUT: positive integers k, m, r, j with k ≥ 2, m ≥ k−1, 0 < j ≤ k−1
and a (k, i)-admissible track t = (t0, . . . , tm−1) (i = k − 1− j).

OUTPUT: tm, . . . , tm+r−1 such that t′ = t||(tm, . . . , tm+r−1) is a (k, i)-
admissible track.

1. (Computing tm, . . . , tm+r−1) For l = m to m + r − 1, do the following:

1.1. Set Il ← the set of all subsequences ρ = (ρ0, . . . , ρk−3) of length
k − 2 of the sequence el such that τj−1(tρ0 , . . . , tρk−3

) 6= 0.

1.2. Set Sl ← { −τj(tρ0 ,...,tρk−3
)

τj−1(tρ0 ,...,tρk−3
)
: ρ ∈ Il}.

1.3. Select as tl an arbitrary element of Fq \ ({t0, . . . , tl−1} ∪ Sl).

2. Return(t′).

Remark. Note that in step 1.3 such an element tl exists if l +
(

l
k−2

)
< q,

resp. l + 1 if i > 0, resp. i = 0. The number of such elements is at least
q − l − (

l
k−2

)
, resp. q − l − 1.

3.1.4 Proof of correctness of Algorithm 3.1.3

It suffices to show that the algorithm produces a (k, i)-admissible track in the
case when r = 1; i.e., that t′ = (t0, . . . , tm−1, tm) is a (k, i)-admissible track.
Notice that, by construction, the elements t0, . . . , tm−1, tm are pairwise differ-
ent. By assumption, τj(tρ0 , . . . , tρk−2

) 6= 0 for all subsequences (ρ0, . . . , ρk−2)
of length k − 1 of the sequence em. Since by (1)

τj(tρ0 , . . . , tρk−2
) = tρk−2

τj−1(tρ0 , . . . , tρk−3
) + τj(tρ0 , . . . , tρk−3

) ,

it follows that for any subsequence (ρ0, . . . , ρk−3) of length k − 2 of the se-
quence em at least one of the τj−1(tρ0 , . . . , tρk−3

) and τj(tρ0 , . . . , tρk−3
) is 6= 0.

Consequently, for all subsequences (ρ0, . . . , ρk−3) of the sequence em we have

τj(tρ0 , . . . , tρk−3
, tm) = tmτj−1(tρ0 , . . . , tρk−3

) + τj(tρ0 , . . . , tρk−3
) 6= 0

since tm 6= −τj(tρ0 ,...,tρk−3
)

τj−1(tρ0 ,...,tρk−3
)
if τj−1(tρ0 , . . . , tρk−3

) 6= 0. Thus for all subsequences

(ρ0, . . . , ρk−2) of the sequence em+1 we have τj(tρ0 , . . . , tρk−2
) 6= 0, and so

(t0, . . . , tm−1, tm) is a (k, i)-admissible track with i = k − j − 1.

Remark. Note that the estimates given in the remarks following the algo-
rithms 3.1.1 and 3.1.3 confirm Theorems 6 and 7.
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3.2 Constructing and extending k-admissible tracks

In this subsection, as previously, we first describe an algorithm for construct-
ing a k-admissible track t = (t0, . . . , tk−2); i.e., such that τj(t0, . . . , tk−2) 6= 0
for each 0 ≤ j ≤ k − 1. Next, we describe another algorithm which allows
to extend a k-admissible track t = (t0, . . . , tm−1), m ≥ k − 1, to a longer
k-admissible track.

As in the previous subsection, the composition of the auxiliary and ex-
tending algorithms gives an algorithm for constructing k-admissible tracks.

3.2.1 Auxiliary Algorithm

INPUT: a positive integer k, k ≥ 2.

OUTPUT: a track t = (t0, . . . , tk−2) such that τj(t0, . . . , tk−2) 6= 0 for
each j = 0, . . . , k − 1.

1. (Computing t0, . . . , tk−2) Do the following:

1.1. For t0, choose an arbitrary non-zero element of Fq.

1.2. For l = 1 to k − 2 do the following:

1.2.1. Set Sl ← { −τj(t0,...,tl−1)

τj−1(t0,...,tl−1)
: j = 1, . . . , l + 1}.

1.2.2. Select as tl an arbitrary element of Fq \ ({t0, . . . , tl−1} ∪ Sl).

2. Return(t).

Remark. Note that in step 1.2.2 such an element tl exists if 2l + 1 < q.
The number of such elements tl is at least q − 2l − 1. The output exists if
2(k − 1) ≤ q.

3.2.2 Proof of correctness of Algorithm 3.2.1

By definition, the elements t0, . . . , tk−2 are pairwise different so we need to
show that τj(t0, . . . , tk−2) 6= 0 for each 0 ≤ j ≤ k − 1. In fact, we show that
for each 1 ≤ l ≤ k − 1 we have τj(t0, . . . , tl−1) 6= 0 for any 0 ≤ j ≤ l. Note
that the latter inequality holds for l = 1 since t0 6= 0.

Assuming, for some 1 ≤ l ≤ k − 2, that τj(t0, . . . , tl−1) 6= 0 for each for
0 ≤ j ≤ l, we shall prove that τj(t0, . . . , tl) 6= 0 for each for 0 ≤ j ≤ l + 1.
Since τ0(t0, . . . , tl) = 1 6= 0, we need to prove the latter inequality for 1 ≤
j ≤ l + 1. Note that τj−1(t0, . . . , tl−1) 6= 0 by the inductive hypothesis. By
(1), it follows that

τj(t0, . . . , tl) = tlτj−1(t0, . . . , tl−1) + τj(t0, . . . , tl−1) 6= 0

since, by step 1.2, we have that tl 6= −τj(t0,...,tl−1)

τj−1(t0,...,tl−1)
.
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3.2.3 Extending Algorithm

INPUT: positive integers k,m, r with k ≥ 2, m ≥ k − 1 and a k-
admissible track t = (t0, . . . , tm−1).

OUTPUT: tm, . . . , tm+r−1 such that t′ = t||(tm, . . . , tm+r−1) is a k-
admissible track.

1. (Computing tm, . . . , tm+r−1) For l = m to m + r − 1 do the following:

1.1. For each j = 1, 2, . . . , k − 1 set Il,j ← the set of all subsequences
ρ = (ρ0, . . . , ρk−3) of length k − 2 of the sequence el such that
τj−1(tρ0 , . . . , tρk−3

) 6= 0 .

1.2. For j = 1, . . . , k − 1, set Sl,j ← { −τj(tρ0 ,...,tρk−3
)

τj−1(tρ0 ,...,tρk−3
)
: ρ ∈ Il,j}.

1.3. Select as tl an arbitrary element of Fq \ ({t0, . . . , tl−1}∪
⋃k−1

j=1 Sl,j).

2. Return(t′).

Remark. Since Sl,k−1 = {0}, in step 1.3 such an element tl exists if (l+1)+
(k − 2)

(
l

k−2

)
< q. The number of such elements tl is at least q − (l + 1) −

(k − 2)
(

l
k−2

)
.

3.2.4 Proof of correctness of Algorithm 3.2.3

The proof is the same as that in 3.1.4 except that now we have to consider
all 0 < j ≤ k − 1 instead of a fixed j.

Remark. Note that the estimates in the remarks following the algorithms
3.2.1 and 3.2.3 confirm Theorems 8 and 9.

4 Concluding remarks

We proved existence and extendability of (k, i)-, resp. k-admissible tracks in
Shamir’s secret sharing scheme and gave some algorithms for their construct-
ing and extending. We estimated the number of such tracks.

The k-admissible tracks allow to construct Shamir’s multi-secret sharing
schemes with the secret placed as an arbitrary coefficient of its generic poly-
nomial. We can apply the schemes corresponding to k-admissible tracks not
only to a single secret but to up to k many secrets with the same shares, and
with the same threshold.

In forthcoming papers we shall discuss some related questions for Lai-
Ding’s secret sharing schemes.
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