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GENERIC SINGULARITIES OF SYMPLECTIC
AND QUASI-SYMPLECTIC IMMERSIONS

W. DOMITRZ, S. JANECZKO, AND M. ZHITOMIRSKII

Abstract. For any k < 2n we construct a complete system of
invariants in the problem of classifying singularities of immersed k-
dimensional submanifolds of a symplectic 2n-manifold at a generic
double point.

1. Introduction

The local classification of k-dimensional immersed submanifolds of a
symplectic manifold (M2n, ω) is the same problem as the classification
of tuples

(1.1)
(
M2n, ω, N

)
p
, N = Sk

1 ∪ · · · ∪ Sk
r ,

where Sk
i are k-dimensional submanifolds of M2n (strata), p ∈ N and

the notation ( )p means that all objects in the parenthesis are germs
at p.

Definition 1.1. A tuple
(
M2n, ω, N

)
p

is equivalent, or diffeomorphic,

to a tuple
(
M̃2n, ω̃, Ñ

)
p̃

if there exists a local diffeomorphism Φ :

(M2n, p) → (M̃2n, p̃) which brings ω̃ to ω and N to Ñ .

All objects are assumed to be smooth or real-analytic. In what
follows we will assume that the immersed submanifold N is symplectic
if k is even or quasi-symplectic if k is odd, i.e. the following condition
holds:

(G1) the restriction of ω to the tangent bundle to each of the strata
Sk

i has the maximal possible rank 2[k/2].

The Darboux-Givental theorem (see [AG]) states that in the prob-
lem of classifying germs at 0 ∈ R2n of pairs consisting of a symplectic
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form on R2n and a smooth submanifold of R2n the pullback of the sym-
plectic form to the submanifold is a complete invariant. This theorem
implies that if r = 1 then under the assumption (G1) all tuples (1.1)
are equivalent.

The present work is devoted to double points of immersed submani-
folds of a symplectic manifold, i.e. we work with the tuples

(1.2)
(
M2n, ω, Sk

1 ∪ Sk
2

)
p
.

The cases k = 1 and k = 2n − 1 are much simpler than the case
2 ≤ k ≤ 2n − 2. In these cases assumption (G1) always holds. They
are the only cases such that all generic germs are equivalent. Here
“generic” requires the following assumptions:

(G2) The couple (Sk
1 , Sk

2 )p is regular. This means that TpS
k
1 ∩TpS

k
2 =

{0} if k ≤ n and TpS
k
1 + TpS

k
2 = TpM

2n if k > n.

Condition (G2) implies that in the case k ≤ n one has dim TpS
k
1 +

dim TpS
k
2 = 2k and in the case k > n one has dim(TpS

k
1 ∩ TpS

k
2 ) =

2(k − n).

(G3) If k ≤ n then the restriction of ω to the space TpS
k
1 + TpS

k
2 has

maximal possible rank 2k. If k > n then the restriction of ω to the
space TpS

k
1 ∩ TpS

k
2 has maximal possible rank 2(k − n).

Theorem A1. All germs of immersed 1-dimensional submanifolds of
a symplectic 2n-manifold at a double point satisfying (G2) and (G3)
are equivalent.

Remark 1.2. Theorem A1 is a particular (and the simplest) case of
the symplectic classification of curves diffeomorphic to Ak = {x ∈ R2n :
xk+1

1 − x2
2 = x≥3 = 0} obtained in [A], see also [DJZ2].

Theorem A2. All germs of immersed (2n− 1)-dimensional submani-
folds of a symplectic 2n-manifold at a double point satisfying (G2) and
(G3) are equivalent.

For any other dimensions (k, 2n) the classification problem involves
real or functional invariants which are constructed in sections 2 and 3.

In section 2 we associate to a generic tuple (1.2) a tuple of s complex
numbers, closed with respect to the complex conjugacy, where

(1.3) s = min
(
[k/2], [(2n− k)/2]

)
.

We call them characteristic numbers. Theorem B states that if 2 ≤ k ≤
n then under certain genericity assumptions (including (G1) - (G3)) the
tuple of characteristic numbers is a complete invariant, i.e. two tuples
(1.2) are equivalent if and only if their characteristic numbers coincide.
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In section 3 we extend Theorem B to the case n < k ≤ 2n − 2. In
this case under the assumptions (G2) and (G3) the intersection of the
strata Q = Sk

1 ∩Sk
2 is a smooth manifold of dimension 2(k−n) endowed

with the symplectic form ωQ = ω|TQ. By Theorem C, under certain
genericity assumptions (including (G1) - (G3)) a complete invariant is
a tuple of s = [(2n−k)/2] germs of Hamiltonians on Q defined up to the
same local symplectomorphism of (Q,ωQ). We call these Hamiltonians
the characteristic Hamiltonians.

In the problem of classifying generic tuples of s germs of Hamilto-
nians there are functional moduli if s ≥ 2. If s = 1 (i.e. n < k = 2n−2
or n < k = 2n − 3) then there is only one real modulus, the value of
the Hamiltonian at the source point of the germ. Therefore Theorems
B and C imply:

Theorem 1.3. Let 2 ≤ k ≤ 2n − 2. The number m(k, 2n) of moduli
in the classification of generic germs of immersed k-dimensional sub-
manifolds of a 2n-dimensional symplectic manifold at a double point is
as follows:

m(k, 2n) = [k/2] if 2 ≤ k ≤ n; m(2n− 3, 2n) = m(2n− 2, 2n) = 1;

m(k, 2n) = ∞ if n < k ≤ 2n− 4;

Note that the case n < k ≤ 2n− 4, the case of functional moduli, is
possible only if 2n ≥ 10.

In section 4 we prove the algebraic statements used in the construc-
tion of the characteristic numbers. In the same section we prove the
algebraic part of Theorem B. The proof uses certain result from [GZ]
on the classification of couples of symplectic forms on the same vector
space.

The normal forms following from Theorems A1,A2,B,C are given in
section 5.

The proof of Theorem B is completed in section 6 by the linearization
theorem reducing the classification of tuples (1.2) to the classification of
their linearizations. The linearization theorem is proved by the method
of algebraic restrictions developed in [Z] and [DJZ2]. In section 6 we
also prove Theorem A1.

The proofs of Theorems C and A2 are given in sections 7 and 8.
Conceptually the proofs are the same as those of Theorems B and A1,
but technically they are substantially more difficult since the reduction
steps in the proofs involve the linearization and the reduced lineariza-
tion along the intersection of the strata Sk

1 ∩Sk
2 which is a single point

if k ≤ n and a 2(k − n)dimensional manifold if k > n.
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In the Appendix we show that our results can be extended to pairs
of submanifolds of a symplectic manifold of different dimensions, i.e.
tuples (M2n, ω, Sk1

1 ∪ Sk2
2 )p where k1 6= k2.

2. Characteristic numbers. Theorem B

In this section we construct invariants of tuples (1.2) which we call
the characteristic numbers. We present certain genericity assumptions
under which in the case 2 ≤ k ≤ n the tuple of characteristic numbers
is a complete invariant.

Definition 2.1. The linearization of the tuple (1.2) is the tuple
(TpM

2n, ω(p), TpS
k
1 ∪ TpS

k
2 ).

Introduce the following (linear) equivalence of tuples (V, µ, U) con-
sisting of a vector space V , a 2-form µ on this space, and the union U
of some subspaces of V .

Definition 2.2. A tuple (V, µ, U) is equivalent to a tuple (Ṽ , µ̃, Ũ)
if there exists a liner bijection L : V → Ṽ such that L∗µ̃ = µ and
L(U) = Ũ .

Proposition 2.3. If two tuples (M2n, ω, Sk
1 ∪ Sk

2 )p and (M̃2n, ω̃, S̃k
1 ∪

S̃k
2 )p̃ are equivalent then their linearizations are equivalent.

Proof. If the two tuples are equivalent via a local diffeomorphism Φ
then their linearizations are equivalent via the linear transformation
L = dΦ(p). ¤

Now we construct the reduced linearization. If k is odd, introduce
the lines

k odd : `1 = kerω|TpSk
1
, `2 = kerω|TpSk

2

(they are lines under the assumption (G1)) and introduce the vector
space

k even : W =

{
TpS

k
1 + TpS

k
2 if k ≤ n(

TpS
k
1 ∩ TpS

k
2

)ω
if k > n;

k odd : W =

{(
TpS

k
1 + TpS

k
2

) ∩ (`1 + `2)
ω if k ≤ n(

TpS
k
1 ∩ TpS

k
2

)ω ∩ (`1 + `2)
ω if k > n.

Here the sign ω denotes the skew-orthogonal complement in the sym-
plectic vector space (TpM

2n, ω(p)). Set, for any parity of k

σ = ω|W , U1 = TpS
k
1 ∩W, U2 = TpS

k
2 ∩W.
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Definition 2.4. The tuple (W,σ, U1 ∪ U2) will be called the reduced
linearization of the tuple (1.2).

Proposition 2.5. The equivalence of the linearizations of two tuples
(1.2) implies the equivalence of their reduced linearizations.

Proof. If the two linearizations are equivalent via a linear transforma-
tion L then the reduced linearizations are equivalent via the restriction
of L to the space W . ¤

Note that the reduced linearization coincides with the linearization
in the only case that k = n is an even number. For all other dimensions
the reduced linearization is simpler than linearization provided certain
genericity assumptions. We will assume (G1) - (G3) from section 1 and
two more conditions:

(G4) if k is odd then ω does not annihilate the 2-plane `1 + `2.

(G5) the space (TpS
k
1 )ω is transversal to TpS

k
2 in TpM

2n.

Remark 2.6. The fact that `1 6= `2 follows from (G2) if k ≤ n and
from (G3) if k > n. If k = 1 or k = 2n− 1 then (G4) and (G5) follow
from (G1) - (G3).

Proposition 2.7. Under the assumptions (G1) - (G5) the reduced li-
nearization has the following properties where s = s(k, 2n) is the integer
defined by (1.3):

(a) W 4s is a 4s-dimensional vector space;

(b) σ is a symplectic form on W ;

(c) U1 and U2 are transversal symplectic 2s-dimensional subspaces of
(W,σ).

(d) The space Uσ
1 is transversal to U2 in W .

Here the sign σ denotes the skew-orthogonal complement in the sym-
plectic space (W,σ). Proposition 2.7 is proved in section 4.

Remark 2.8. If k = 1 or k = 2n − 1 then s(k, 2n) = 0 and un-
der assumptions (G1) - (G3) (implying (G4) and (G5)) the reduced
linearization of (1.2) is the “zero tuple”: W = U1 = U2 = {0}, σ = 0.

The next step is the construction of two linear operators associated
with the reduced linearization (W,σ, U1 ∪ U2) satisfying (a) - (d) in
Proposition 2.7. Consider the following direct sums and the corre-
sponding projections:

W = U1 ⊕ Uσ
1 , π1 : W → U1,



6 W. DOMITRZ, S. JANECZKO, AND M. ZHITOMIRSKII

W = U2 ⊕ Uσ
2 , π2 : W → U2.

Define linear operators T1 : U1 → U1 and T2 : U2 → U2 by the diagram

T1

U1 −→ U1 T1 = π1 ◦ (π2|U1)
↘π2 π1 ↗ ↘ π2 :

U2 −→ U2 T2 = π2 ◦ (π1|U2)
T2

Lemma 2.9. Under conditions (G1)- (G5) the linear operators T1 and
T2 are conjugate and consequently have the same eigenvalues.

Proof. The diagram above implies that the diagram

T1

U1 −→ U1

π2 ↓ ↓ π2

U2 −→ U2
T2

is commutative. Items (c) and (d) in Proposition 2.7 imply that the
three spaces U1, U2, U

σ
1 are transversal one to the other. It follows that

π2 restricted to U1 is a bijection between U1 and U2. ¤
Definition 2.10. The eigenvalues of the operator T1 will be called the
characteristic numbers (of the tuple (1.2) or of its linearization or of
its reduced linearization).

Proposition 2.11. If two reduced linearizations (W,σ, U1 ∪ U2) and
(W̃ , σ̃, Ũ1 ∪ Ũ2) satisfy (a) - (d) in Proposition 2.7 and are equivalent
then they have the same characteristic numbers.

Proof. Let T1, T2 and T̃1, T̃2 be the linear operators associated with
the reduced linearizations. Since their construction is canonical, the
equivalence of the reduced linearizations implies that T1 is conjugate
with one of the operators T̃1, T̃2. Now the proposition follows from
Lemma 2.9. ¤

The following statement is a logical corollary of Propositions 2.3, 2.5,
and 2.11:

Proposition 2.12. If two tuples (M2n, ω, Sk
1 ∪Sk

2 )p and (M̃2n, ω̃, S̃k
1 ∪

S̃k
2 )p̃ satisfy (G1) - (G5) and are equivalent then they have the same

characteristic numbers.

Since the operator T1 is defined on the 2s-space, s = s(k, 2n), one
may think that for a generic tuple (1.2) there are 2s characteristic
numbers. This is not so.
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Proposition 2.13. Consider a tuple (W,σ, U1∪U2) satisfying (a) - (d)
in Proposition 2.7. Each of the eigenvalues of the associated operator T1

has multiplicity ≥ 2. If the tuple is generic then each of the eigenvalues
has multiplicity 2. Consequently there are not more than s = s(k, 2n)
characteristic numbers where s(k, 2n) is defined by (1.3), and for a
generic tuple (W,σ, U1 ∪ U2) there are exactly s(k, 2n) characteristic
numbers.

The proof of this proposition is contained in section 4 and its ex-
planation is as follows: the matrix of the operator T1 in some (and
then any) basis of the space U1 is the product of two skew-symmetric
matrices.

In view of Proposition 2.13 we introduce the last genericity assump-
tion:

(G6) If 4 ≤ k ≤ 2n − 4 so that s(k, 2n) ≥ 2 then the number of
characteristic numbers is maximal possible, i.e. s(k, 2n).

Theorem B. Let 2 ≤ k ≤ n. In the problem of classifying germs of
immersed k-dimensional submanifolds of a symplectic 2n-manifold at
a double point satisfying (G1)-(G6) the tuple of characteristic numbers
is a complete invariant.

Remark 2.14. In the case k = 2 Theorem B is covered by our classifi-
cation in [DJZ2] section 7.4, requiring only the assumptions (G1)-(G3).
This classification involves an invariant which we called the index of
non-orthogonality between the strata S2

1 and S2
2 . Under assumption

(G5) the index of non-orthogonality and the characteristic number are
the same invariant.

3. Characteristic Hamiltonians. Theorem C

To extend theorem B to the case n < k ≤ 2n− 2 consider (for such
dimensions and under assumptions (G1)-(G3)) the symplectic manifold

(3.1) (Q,ωQ) =
(
Sk

1 ∩ Sk
2 , ω|T (Sk

1∩Sk
2 )

)

and consider, along with the tuple (1.2) the family of tuples

(3.2) (M2n, ω, Sk
1 ∪ Sk

2 )q, q ∈ Q

which are the germs of the same tuple (1.2), but at points q ∈ Q, close
to p. It is clear that if (1.2) satisfies (G1)-(G6) then so does (3.2), for
any point q ∈ Q close to p. Therefore under (G1)-(G6) we have for any
point q ∈ Q a tuple

λq,1, ...λq,s, s = s(k, 2n)
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of characteristic numbers of the tuple (3.2). We obtain s = s(k, 2n)
function germs:

Hi : (Q, p) → (R, λi), Hi(q) = λq,i, i = 1, ..., s = s(k, 2n),

where λi are the characteristic numbers of (1.2).

Definition 3.1. The constructed function germs Hi will be called the
characteristic Hamiltonians associated with the tuple (1.2).

Note that the characteristic Hamiltonians are constructed only for
the case n < k ≤ 2n− 2 and under assumptions (G1)- (G6). Consider
now two tuples

(3.3) (M2n, ω, Sk
1 ∪ Sk

2 )p, (M̃2n, ω̃, S̃k
1 ∪ S̃k

2 )p̃

satisfying (G1)-(G6). Let Hi : (Q, p) → (R, λi) and H̃i : (Q̃, p̃) →
(R, λ̃i) be the characteristic Hamiltonians associated with (3.3).

Proposition 3.2. Let n ≤ k ≤ 2n − 2. If the tuples (3.3) satisfy
(G1)-(G6) and are equivalent then there exists a local diffeomorphism
φ : (Q, p) → (Q̃, p̃) which brings ω̃Q̃ to ωQ and such that (H̃1, ..., H̃s) ◦
φ = (H1, ..., Hs).

Proof. Assume that the tuples (3.3) are equivalent via a local diffeo-
morphism Φ. Let φ be the restriction of Φ to Q. It is clear that φ
sends Q to Q̃ and ω̃Q̃ to ωQ. The tuple (M2n, ω, Sk

1 ∪Sk
2 )q is equivalent

to the tuple (M̃2n, ω̃, S̃k
1 ∪ S̃k

2 )φ(q). Now Proposition 3.2 follows from
Proposition 2.12. ¤

Proposition 3.2 means that in the problem of classifying tuples (1.2)
satisfying (G1)-(G6), the tuple of characteristic Hamiltonians defined
up to a symplectomorphism of (Q,ωQ) is an invariant. We claim that
this invariant is complete.

Theorem C. Let n < k ≤ 2n− 2. In the problem of classifying germs
of immersed k-dimensional submanifolds of a symplectic 2n-manifold
at a double point satisfying (G1)-(G6), a complete invariant is the tuple
of characteristic Hamiltonians on the symplectic manifold (3.1) defined
up to a symplectomorphism of this manifold.

If k = 2n − 2 or k = 2n − 3 then s(k, 2n) = 1 and there is only
one characteristic Hamiltonian H = H1 : (Q, p) → (R, λ1) associated
with the tuple (1.2). Here λ1 is the only characteristic number. In
this case the assumption (G6) always holds. Introduce the genericity
assumption

(G7) If n < k = 2n − 2 or n < k = 2n − 3 then the characteristic
Hamiltonian H : (Q, p) → (R, λ1) is non-singular, i.e. dH(p) 6= 0.
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It is well known that if f and g are non-singular function germs at
the same point p of a symplectic manifold and f(p) = g(p) then f can
be brought to g by a local symplectomorphism. Therefore Theorem C
implies:

Theorem 3.3 (Corollary of Theorem C). Let n < k = 2n − 2 or
n < k = 2n − 3. In the problem of classifying germs of immersed
k-dimensional submanifolds of a symplectic 2n-manifold at a double
point satisfying the assumptions (G1)-(G5) and (G7) the characteristic
number λ = λ1 is a complete invariant.

If n < k < 2n−3 then s = s(k, 2n) ≥ 2 and Theorem C implies that
in the classification of singularities of symplectic or quasi-symplectic
immersions there are functional moduli: the functional moduli in the
classification of s-tuples of Hamiltonians on a fixed symplectic space.

4. Algebraic part

In this section we prove Propositions 2.7 and 2.13 and also we prove:

Proposition 4.1. If the reduced linearizations of two tuples (1.2) sa-
tisfying the assumptions (G1) - (G4) are equivalent then their lineariza-
tions are equivalent.

Proposition 4.2. If the reduced linearizations of two tuples (1.2) satis-
fying the assumptions (G1) - (G6) have the same characteristic numbers
then these reduced linearizations are equivalent.

Note that in these statement “if” can be replaced by “only if”. The
“only if” part is already proved: see Propositions 2.5 and 2.11.

The proofs require the following normal form for the linearization
of a tuple (1.2). Assumptions (G1) - (G3) allow us to choose local
coordinates

x, y ∈ R2s, z ∈ R2n−4s, s = s(k, 2n)

centered at the point p ∈ M2n such that the following holds:

1. the strata Sk
1 , Sk

2 are given by the equations in Table 1;

2. the vector spaces TpS
k
1 + TpS

k
2 , TpS

k
1 ∩ TpS

k
2 , their skew-orthogonal

complements and the lines `1, `2 are spanned by the vectors given in
Table 1;

3. ω restricted to the space span(∂/∂zi) has Darboux normal form∑
dz2i−1 ∧ dz2i.
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Table 1. Normal form for the linearization of (1.2)
s = s(k, 2n) = min([k/2], [(2n− k)/2]), x, y ∈ R2s,
z ∈ R2n−4s.

k ≤ n,

k even

k ≤ n,

k odd

k > n,

k even

k > n,

k odd

Sk
1 y = z = 0 y = z2 = z≥3 = 0 y = 0 y = z2 = 0

Sk
2 x = z = 0 x = z1 = z≥3 = 0 x = 0 x = z1 = 0

TpS
k
1 + TpS

k
2

∂
∂xi

, ∂
∂yi

∂
∂xi

, ∂
∂yi

, ∂
∂z1

, ∂
∂z2

TpM
2n TpM

2n

(TpS
k
1 + TpS

k
2 )ω ∂

∂zi

∂
∂z≥3

0 0

TpS
k
1 ∩ TpS

k
2 0 0 ∂

∂zi

∂
∂z≥3

(TpS
k
1 ∩ TpS

k
2 )ω TpM

2n TpM
2n ∂

∂xi
, ∂

∂yi

∂
∂xi

, ∂
∂yi

∂
∂z1

, ∂
∂z2

`1 0 ∂
∂z1

0 ∂
∂z1

`2 0 ∂
∂z2

0 ∂
∂z2

(`1 + `2)ω TpM
2n ∂

∂xi
, ∂

∂yi
, ∂

∂z≥3
TpM

2n ∂
∂xi

, ∂
∂yi

, ∂
∂z≥3

In these coordinates one has, for each of the cases in Table 1:

ω(p) = −
2s∑

i,j=1

Aijdxi ∧ dxj +
2s∑

i,j=1

B−1
ij dyi ∧ dyj+

+
2s∑

i,j=1

Cijdxi ∧ dyj +
n−2s∑
i=1

dz2i−1 ∧ dz2i,

(4.1)

where A,B, and C are 2s × 2s matrices, the matrices A and B are
skew-symmetric and non-singular. (The sign − at the first sum and
using B−1 instead of B are convenient for further calculations). The
reduced linearization is the tuple (W,σ, U1 ∪ U2) with

W = span(∂/∂xi, ∂/∂yi),

U1 ∪ U2 = span(∂/∂xi) ∪ span(∂/∂yi),

σ = −
2s∑

i,j=1

Aijdxi ∧ dxj +
2s∑

i,j=1

B−1
ij dyi ∧ dyj +

2s∑
i,j=1

Cijdxi ∧ dyj.

(4.2)

Proof of Propositions 2.7 and 4.1. These proposition are direct
corollaries of the given normal form for the linearization of tuple (1.2).
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To prove Propositions 2.13 and 4.2 we need the following simple
lemmas.

Lemma 4.3. For the tuple (4.2) the condition that (U1)
σ is transversal

to U2 is equivalent to the condition detC 6= 0.

Proof. The space Uσ
1 is given by the equations Cdy − 2Adx = 0 (here

dx and dy are the columns with components dxi and dyi). The space
U2 is given by equations dx = 0, and the lemma follows. ¤

Lemma 4.4. If detC 6= 0 then the tuple (4.2) is equivalent to a tuple
of the same form with C = I.

Proof. Take a matrix Q such that CQ = I. The linear transformation
x → Qx, y → y brings (4.2) to a tuple of the same form with C = I. ¤

Lemma 4.5. Assume C = I. Then the representative matrix of the
linear operator T1 associated with the tuple (4.2) in the basis (∂/∂xi)
is the matrix 1

4
A−1B.

Proof. The spaces (U1)
σ and (U2)

σ are given by the equations

(U1)
σ : dy − 2Adx = 0, (U2)

σ : dx− 2B−1dy = 0.

It follows that in the basis {∂/∂xi} and {∂/∂yi} the matrices of the ope-
rators π1|U2 and π2|U1 are −1

2
A−1 and −1

2
B respectively, which implies

the lemma. ¤

Proof of Propositions 2.13. By Proposition 2.11 and Lemma 4.4
we may restrict ourselves to the tuple (4.2) with C = I. By Lemma
4.5 the eigenvalues of the operator T1 are the eigenvalues of the matrix
1
4
A−1B which is the product of two non-singular skew-symmetric 2s×2s

matrices. Now Proposition 2.13 follows from the first statement of the
following theorem proved in [GZ]:

Theorem 4.6 ([GZ], section 1). Let A and B be non-singular skew-
symmetric 2s× 2s matrices.

1. The multiplicity of each of the eigenvalues of the matrix A−1B is ≥ 2
and consequently this matrix has not more than s distinct eigenvalues.
If A and B are generic then the matrix A−1B has exactly s distinct
eigenvalues.

2. The tuple of eigenvalues of the matrix A−1B is an invariant of the
couple (A,B) with respect to the group of transformations (A,B) →
(RtTR, RtBR), detR 6= 0. If the matrix A−1B has s distinct eigen-
values then this invariant is complete.
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Proof of Proposition 4.2. By Lemma 4.4 the tuple (4.2) is equi-
valent to a tuple of the same form with C = I. Therefore Lemma 4.5
reduces Proposition 4.2 to the following statement: if A,B, Ã, B̃ are
non-singular skew-symmetric 2s× 2s matrices and the matrices A−1B
and Ã−1B̃ have the same s distinct eigenvalues then the tuple (4.2) with
C = I is equivalent to a tuple of the same form (also with C = I) with
A and B replaced by Ã and B̃. Note that the linear transformation
x → Rx, y → (Rt)−1y brings the tuple (4.2) with C = I to the tuple of
the same form with C = I and A and B replaced by T tAT and T tBT .
The existence of a non-singular matrix T such that T tAT = Ã and
T tBT = B̃ is exactly the second statement of Theorem 4.6.

5. Normal forms

Theorem 5.1. A tuple (M2n, ω, Sk
1 ∪Sk

2 )p describing a generic germ of
an immersed k-dimensional submanifold of a symplectic (2n)-manifold

at a double point p is equivalent to the tuple (R2n, ω∗, Sk,∗
1 ∪Sk,∗

2 )0 where

ω∗, Sk,∗
1 , Sk,∗

2 are given in Table 2. The genericity assumptions are given
in the first column of the table. The parameters λi are the characteristic
numbers and consequently (by Theorem B and by Theorem 3.3) their
non-ordered tuple is an invariant. The functional parameters Hi(u, v)
are the characteristic Hamiltonians with respect to the form

∑
dui ∧

dvi and consequently (by Theorem C) the non-ordered tuple of these
Hamiltonians is an invariant up to a symplectomorphism with respect
to this form.

Proof. If k = 1 or k = 2n− 1 then Theorem 5.1 follows from Theorems
A1 and A2.

If 2 ≤ k ≤ n− 2 then the reduced linearization of the tuple
(R2n, ω∗, (Sk

1 )∗, (Sk
2 )∗)0 has the form (4.2) with C = I and certain skew-

symmetric matrices A and B. Lemma 4.5 implies that the parameters
λi in the normal forms are exactly the characteristic numbers.

If n < k ≤ 2n − 2 then the intersection of (Sk
1 )∗ and (Sk

2 )∗ is a
manifold Q given by equations x = y = 0, and the restriction of ω∗ to
this manifold is the symplectic form

∑
dui ∧ dvi. Let q = (u, v) ∈ Q

be a point close to 0 ∈ R2n. The reduced linearization of the tuple
(R2n, ω∗, (Sk

1 )∗, (Sk
2 )∗)q has the form (4.2) with C = I and certain skew-

symmetric matrices A and B; the matrix B depends on the point q =
(u, v). Lemma 4.5 implies that the parameters λi(u, v) in the normal
forms are exactly the characteristic Hamiltonians on Q. ¤
Remark 5.2. None of the characteristic numbers λi is equal to zero
and consequently the characteristic Hamiltonians take non-zero values.
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This fact is equivalent to the fact that the linear operator T1 is non-
singular which follows from (a)-(d) in Proposition 2.7.

Remark 5.3. The tuple of characteristic numbers is closed with re-
spect to complex conjugacy. If λj = λ̄i are non-real characteristic num-
bers then the coordinates x2j−1, x2j, y2j−1, y2j and x2i−1, x2i, y2i−1, y2i

are complex valued and conjugate: x2j−1 = x̄2i−1, x2j = x̄2i, y2j−1 =
ȳ2i−1, y2j = ȳ2i. The Hamiltonians Hi(u, v) and Hj(u, v) are also com-
plex valued and conjugate: Hj(u, v) = H̄i(u, v).

6. Linearization theorem. Proof of Theorems B and A1

Propositions 4.1 and 4.2 and the fact that under the assumption
(G2) any two couples (Sk

1 , Sk
2 )p and (S̃k

1 , S̃k
2 )p̃ are diffeomorphic reduce

Theorem B to the following statement involving two tuples with the
same strata Sk

1 and Sk
2 :

(6.1) (R2n, ω, Sk
1 ∪ Sk

2 )0, (R2n, ω̃, Sk
1 ∪ Sk

2 )0

Theorem 6.1 (Linearization theorem). Let 1 ≤ k ≤ n. If the li-
nearizations of tuples (6.1) satisfying the assumptions (G1) and (G2)
are the same, i.e. ω(0) = ω̃(0), then these tuples are diffeomorphic.

Theorem 6.1 also implies Theorem A1. In fact, if k = 1 then the
assumption (G1) trivially holds, and the assumptions (G2) and (G3) in
Theorem A1 imply (G4). and (G5). Therefore one can use Proposition
4.1 stating that the equivalence of the reduced linearizations implies
the equivalence of the linearizations. But under the assumptions (G1)-
(G5) the reduced linearizations are the zero tuples, see Remark 2.8.
Therefore if k = 1 then under the assumptions (G2) and (G3) the
linearizations are equivalent, and Theorem A1 follows from Theorem
6.1.

The proof of Theorem 6.1 requires the notion of the algebraic re-
striction introduced in [Z] and two theorems from [DJZ2], involving
the algebraic restrictions, on the classification of varieties in a sym-
plectic space.

Within this work we need only the definition of the zero algebraic
restriction. Let θ be a germ at 0 ∈ R2k of a 2-form on Rk and let
N ⊂ Rk be any subset. Recall from [DJZ2] that θ has zero algebraic
restriction to N if there exist a 1-form α vanishing at any point of N
and a 2-form β, also vanishing at any point of N , such that θ = dα+β.
We will use the following statements from [DJZ2]:
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Table 2. Normal forms

Coord. Sk,∗
1 Sk,∗

2 ω∗

k = 1

(G2), (G3)

x, y ∈ R
u, v ∈ Rn−1

y = 0

u = 0

v = 0

x = 0

u = 0

v = 0

dx ∧ dy +
∑n−1

i=1 dui ∧ dvi

k = 2 ≤ n

k = 3 ≤ n

(G1)− (G5)

x, y ∈ Rk

u, v ∈ Rn−k

y = 0

u = 0

v = 0

x = 0

u = 0

v = 0

∑k
i=1 dxi ∧ dyi+

∑n−k
i=1 dui ∧ dvi+

dx1 ∧ dx2 + dy1∧dy2

λ1

2 ≤ k ≤ n

(G1)− (G6)

x, y ∈ Rk

u, v ∈ Rn−k

y = 0

u = 0

v = 0

x = 0

u = 0

v = 0

∑k
i=1 dxi ∧ dyi+

∑n−k
i=1 dui ∧ dvi+

∑s
i=1 dx2i−1 ∧ dx2i+
∑s

i=1
dy2i−1∧dy2i

λi

s = [k/2]

n < k ≤ 2n− 4

(G1)− (G6)

x, y ∈ R2n−k

u, v ∈ Rk−n
y = 0 x = 0

∑2n−k
i=1 dxi ∧ dyi+

∑k−n
i=1 dui ∧ dvi+

∑s
i=1 dx2i−1 ∧ dx2i+
∑s

i=1
dy2i−1∧dy2i

Hi(u,v)

s = [(2n− k)/2]

n < k = 2n− 3

n < k = 2n− 2

(G1)− (G5)

(G7)

x, y ∈ R2n−k

u, v ∈ Rk−n
y = 0 x = 0

∑2n−k
i=1 dxi ∧ dyi+

∑k−n
i=1 dui ∧ dvi+

dx1 ∧ dx2 + dy1∧dy2

λ1

k = 2n− 1

(G1), (G3)

x, y ∈ R
u, v ∈ Rn−1

y = 0 x = 0 dx ∧ dy +
∑n−1

i=1 dui ∧ dvi

Theorem 6.2 ([DJZ2], section 2.7). Let ω and ω̃ be germs at 0 ∈ R2n

of symplectic forms on R2n such that the 2-form ω−ω̃ has zero algebraic
restriction to a quasi-homogeneous variety N ⊂ R2n. Then there exists
a local diffeomorphism of R2n which preserves N pointwise and sends
ω̃ to ω.
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One of examples of a quasi-homogeneous variety is the germ at 0 ∈
Rs of the union S1 ∪ · · · ∪ Sr of smooth submanifolds of Rs satisfying
the following condition:

(6.2) dim T0S1 + · · ·+ dim T0Sr = dim (T0S1 + · · ·+ T0Sr).

Proposition 6.3 ([DJZ2], section 7.1). Let S1, .., Sr be germs at 0 ∈ Rk

of smooth submanifolds of Rk satisfying (6.2). Let θ be a germ at 0 ∈ Rk

of a 2-form on R2k. If θ(0) = 0 and θ|TSi
= 0, i = 1, .., r, then θ has

zero algebraic restriction to the set S1 ∪ · · · ∪ Sr.

Finally, the proof of Theorem 6.1 requires the following simple ex-
tension of the classical Darboux theorem.

Theorem 6.4 (simple extension of the classical Darboux theorem).
Let ω and ω̃ be germs at 0 ∈ Rk of 2-forms on Rk of the maximal
possible rank 2[k/2] and such that ω(0) = ω̃(0). Then there exists a
local diffeomorphism Ψ of Rk such that Ψ∗ω̃ = ω and Ψ′(0) = id.

Proof of Theorem 6.1. By the assumption (G1) the 2-forms ω|TSk
i

and ω̃|TSk
i

have the maximal possible rank, i = 1, 2. By Theorem

6.4 there exist local diffeomorphisms Ψi : (Sk
i , 0) → (Sk

i , 0) such that
Ψ∗

i (ω̃|TSk
i
) = ω|TSk

i
and such that Ψ′

i(0) = id. Take a local diffeomor-

phism Φ : (R2n, 0) → (R2n, 0) preserving Sk
i such that Φ′(0) = id and

Φ|Sk
i

= Ψi. This diffeomorphism brings the second tuple in (6.1) to

a tuple (R2n, ω̂, Sk
1 ∪ Sk

2 ) where ω̂(0) = ω(0) and ω̂|TSk
i

= ω|TSk
i
. We

have showed that to prove Theorem 6.1 it suffices to prove it under the
additional assumption that ω and ω̃ have the same restrictions to the
tangent bundle to the strata. Since 1 ≤ k ≤ n then the assumption
(G2) implies (6.2) with r = 2 and by Proposition 6.3 the 2-form ω− ω̃
has zero restriction to the variety Sk

1 ∪ Sk
2 . Now Theorem 6.1 follows

from Theorem 6.2.

7. Proof of Theorems C and A2

In this section n < k ≤ 2n − 1. Like in section 6 we work with two
tuples

(7.1) T = (R2n, ω, Sk
1 ∪ Sk

2 )0, T̃ = (R2n, ω̃, Sk
1 ∪ Sk

2 )0.

Recall the notation Q = Sk
1 ∩ Sk

2 . At first we generalize Propositions
4.1 and 4.2.

Proposition 7.1 (cf. Proposition 4.1). Assume that the tuples (7.1)
satisfy (G1)-(G4) and have the same reduced linearization at any point



16 W. DOMITRZ, S. JANECZKO, AND M. ZHITOMIRSKII

z ∈ Q. Then there exists a local diffeomorphism Φ sending the tuple

T̃ to a tuple T̂ = (R2n, ω̂, Sk
1 ∪ Sk

2 )0 such that T and T̂ have the same
linear approximation at any point z ∈ Q.

Proof. The proof is almost the same as that of Proposition 4.1. As-
sumptions (G1)-(G4) allow us to chose local coordinates in which Table
1 holds for the germ of the tuple T at any point z ∈ Q, and ω(z) has
the form (4.1) where the matrices A,B, C depend smoothly on z ∈ Q.
This normal form implies Proposition 7.1. ¤

Proposition 7.2 (cf. Proposition 4.2). Assume that the tuples (7.1)
satisfy (G1)-(G6). If their reduced linearizations at any point z ∈ Q
have the same characteristic numbers then there exists a local diffeo-

morphism sending the tuple T̃ to a tuple T̂ = (R2n, ω̂, Sk
1 ∪ Sk

2 )0 such

that T and T̂ have the same reduced linear approximation at any point
z ∈ Q.

Proof. The proof repeats that of Proposition 4.2, the only difference is
that now all matrices depend on the parameter z ∈ Q and that at the
end of the proof one should use Theorem 4.6 with families (A(z), B(z))
instead of individual couples (A,B). Since the number of distinct eigen-
values is maximal possible (by condition (G6), all transformations de-
pend smoothly on z ∈ Q. ¤

Theorems C and A2 follow from Propositions 4.1 and 4.2 and the
following theorem generalizing the linearization Theorem 6.1.

Theorem 7.3 (cf. Theorem 6.1). If the tuples (7.1) satisfy (G1)-(G3)
and have the same linearization at any point z ∈ Q then they are
equivalent.

Theorem 7.3 is proved in the next section.

Proof of Theorem C. Take two tuples (7.1) satisfying (G1)-(G6). Take
a coordinate system (x, y, z) on R2n such that S1 = {y = 0} and
S2 = {x = 0}. By (G3) the restrictions of ω and ω̃ to Q are symplectic.
Assume that there exists a local diffeomorphism φ of Q that maps

ω̃|TQ to ω|TQ and the characteristic Hamiltonians of the tuple T̃ to the
characteristic Hamiltonians of the tuple T . Take a prolongation of φ to
R2n of the form Φ(x, y, z) = (x, y, φ(z)). Such Φ preserves the strata S1

and S2 and sends the tuple T̃ to a tuple T1 = (R2n, ω1, S
k
1 ∪Sk

2 )0 where
ω|TQ = ω1|TQ. The reduced linearizations of the tuples T and T1 have
the same characteristic numbers at any point z ∈ Q. Now Theorem C
is a logical corollary of Theorem 7.3 and Propositions 7.1, 7.2. ¤
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Proof of Theorem A2. Let k = 2n−1. Take two tuples (7.1) satisfying
(G2)and (G3). Note that for k = 2n − 1 condition (G1) is always
satisfied since the form ω is non-degenerate and conditions (G4) and
(G5) follow from (G2) and (G3). In fact, for any point z ∈ Q one has

(TzS
2n−1
i )ω = li,z, li,z = kerω|TzS2n−1

i
, i = 1, 2.

This equation also implies that the reduced linearizations of the tuples

T and T̃ at any point z ∈ Q are the same zero tuple. Now Theorem
A2 is a logical corollary of Theorem 7.3 and Proposition 7.1. ¤

8. Proof of Theorem 7.3

The assumption in Theorem 7.3 that the tuples (7.1) have the same
linearization at any point z ∈ Q means

(8.1) ω(z) = ω̃(z), z ∈ Q.

Proposition 8.1. Assume that the tuples (7.1) satisfy conditions (G1)-
(G3) and condition (8.1). Then there exists of a local diffeomorphism
Φ : (R2n, 0) → (R2n, 0) satisfying the following requirements:

(a) Φ preserves the strata Sk
i , i = 1, 2;

(b) Φ(z) = z and Φ′(z) = id for any z ∈ Q;

(c) Φ|∗
Sk

i

(
ω̃|TSk

i

)
= ω|TSk

i
, i = 1, 2.

This proposition allows us to prove Theorem 7.3 under the following
additional assumption:

(8.2) ω̃|TSk
i

= ω|TSk
i
, i = 1, 2.

Under this additional assumption Theorem 7.3 is a direct corollary
of Theorem 6.2 and the following statement.

Proposition 8.2. Let k > n and let Sk
1 and Sk

2 be germs at the origin
of k-dimensional smooth submanifolds of R2n such that T0S

k
1 + T0S

k
2 =

T0R2n. Let Q = Sk
1 ∩ Sk

2 . If ω and ω̃ are germs of symplectic forms
satisfying (8.1) and (8.2) then the form θ = ω̃ − ω has zero algebraic
restriction to Sk

1 ∪ Sk
2 .

We have reduced Theorem 7.3 to Propositions 8.1 and 8.2. The rest
of this section is devoted to the proof of these propositions.

To prove Proposition 8.1 we need the following slight modification
of the Darboux-Givental theorem.
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Proposition 8.3. Let d = 2s or d = 2s + 1. Let µ and µ̃ be germs
at the origin of closed 2-forms on Rd or of maximal rank 2s and let
Q ⊂ Rd be a smooth submanifold. Assume that µ(z) = µ̃(z) for any
z ∈ Q. In the odd-dimensional case also assume that ker µ and ker µ̃
are not tangent to Q. Then there exists a local diffeomorphism Φ of Rd

which preserves Q pointwise, has identity linear approximation at any
point z ∈ Q, and which brings µ̃ to µ.

Proof. In the even-dimensional case the required diffeomorphism can
be constructed by the homotopy method exactly in the same way as in
the proof of the Darboux-Givental’ theorem. The odd-dimensional case
reduces to the even-dimensional case as follows. Take a hypersurface
H which contains Q and which is transversal to the kernels od ω and
ω̃. The restrictions of ω and ω̃ to this hypersurface are symplectic.

Take a local diffeomorphism Φ̂ of H which preserves Q pointwise, has
identity linear approximation at any point z ∈ Q, and which brings
µ̃|TH to µ|TH . Take vector fields X and X̃ which generate the kernels
of µ and µ̃ respectively and agree at any point of Q. The required local

diffeomorphism Φ of Rd has the following form Φ(p) = (Ψ−s◦Φ̂◦Ψ̃s)(p)
for p ∈ Rd, where Ψt and Ψ̃t are the flows of X and X̃ respectively and
s is a real number such that Ψ̃s(p) ∈ H. ¤
Proof of Proposition 8.1. The assumptions (G1)-(G3) imply the assum-
ptions of Proposition 8.3 for the 2-forms µ = ω|TSk

1
and µ̃ = ω̃|TSk

1
as

well as for the 2-forms µ = ω|TSk
2

and µ̃ = ω̃|TSk
2
. Applying Proposi-

tion 8.3 to the first two restrictions we obtain a local diffeomorphism
Ψ1 of Sk

1 which preserves Q pointwise, has identity linear approxima-
tion at any point z ∈ Q, and which brings ω̃|TSk

1
to ω|TSk

1
. Applying

Proposition 8.3 to the restrictions ω|TSk
2

and ω̃|TSk
2

we obtain a local dif-

feomorphism Ψ2 of Sk
2 which preserves Q pointwise, has identity linear

approximation at any point z ∈ Q, and which brings ω̃|TSk
2

to ω|TSk
2
.

Take a local coordinate system (x, z, y) on R2n such that Sk
1 = {y = 0}

and Sk
2 = {x = 0} and construct the following prolongations of Ψ1 and

Ψ2 to local diffeomorphisms of R2n:

Φ1(x, z, y) = (Ψ1(x, z), y), Φ2(x, z, y) = (x, Ψ2(z, y)).

Then Φ = Φ1 ◦ Φ2 has the required properties. ¤
Now we prove Proposition 8.2. We need the following lemma.

Lemma 8.4. Under the notations and assumptions of Proposition 8.2
one has θ = dα where α is a 1-form such that

(8.3) j1
zα = 0, α|TzSi

= 0, z ∈ Q, i = 1, 2.
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Proof. Choose a coordinate system (x, y, z) on R2n such that S1 = {y =
0} and S2 = {x = 0}. Consider the family of mappings

Ft(x, y, z) = (tx, ty, z), t ∈ [0; 1].

Let Vt is a vector field along Ft such that Vt ◦ Ft = F ′
t (see [DJZ1] for

details) and let

α =

∫ 1

0

F ∗
t (Vtcθ)dt.

Then by (8.1) we have F ∗
0 θ = 0 and it follows

θ = F ∗
1 θ − F ∗

0 θ =

∫ 1

0

(F ∗
t θ)′dt = dα.

Since Ft preserves the strata S1 and S2, it is easy to see that (8.1) and
(8.2) imply (8.3). ¤
Proof of Proposition 8.2. We use the following statement which was
proved in [DJZ2]: if S1, S2 and Q are as Proposition 8.2 and a 1-form
α satisfies (8.3) then α has zero algebraic restriction to S1 ∪ S2, i.e.
α = α̃ + df where α̃ is a 1-form vanishing at any point of S1 ∪ S2 and
f is a function vanishing at any point of S1 ∪ S2. Proposition 8.2 is a
direct corollary of this statement and Lemma 8.4. ¤

9. Appendix. Symplectic invariants of pairs of
submanifolds of different dimensions

The results of this work can be generalized to tuples

(9.1) (R2n, ω, Sk1
1 ∪ Sk2

2 )0

where ω is a symplectic form on R2n and Sk1
1 and Sk2

2 are smooth
submanifolds of R2n of different dimensions k1 < k2 such that k1 +k2 is
an even number. Here, as above, ( )0 means that all objects are germs
at the origin. Define the reduced linearization of (9.1) to be the tuple
(W,σ, U1 ∪ U2), where

for k1, k2 even :

W =

{
(TpS

k1
1 + TpS

k2
2 ) ∩ (TpS

k1
1 + (TpS

k2
2 )ω) if k1 + k2 ≤ 2n(

TpS
k1
1 ∩ TpS

k2
2

)ω ∩ (
TpS

k1
1 + (TpS

k2
2 )ω

)
if k1 + k2 > 2n;
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for k1, k2 odd :

W =





(TpS
k1
1 + TpS

k2
2 ) ∩ (TpS

k1
1 + (TpS

k2
2 )ω) ∩ (`1 + `2)

ω

if k1 + k2 ≤ 2n;(
TpS

k1
1 ∩ TpS

k2
2

)ω ∩ (
TpS

k1
1 + (TpS

k2
2 )ω

) ∩ (`1 + `2)
ω

if k1 + k2 > 2n.

σ = ω|W , U1 = TpS
k1
1 ∩W, U2 = TpS

k2
2 ∩W.

Theorem 9.1. Under the genericity assumptions (G1’) - (G5’) and
(G8) listed below the following holds:

(a) (W,σ) is a symplectic space of dimension 4s and U1 and U2 are
transversal 2s-dimensional symplectic subspaces where

s = s(k1, k2, 2n) = min{[k1/2], [(2n− k2)/2]}.
(b) Two tuples of the form (9.1) are equivalent if and only if their
reduced linearizations are equivalent.

The genericity assumptions (G1’)-(G5’) are obvious generalizations
of the assumptions (G1)-(G5) for the case k1 < k2.

(G1’) the restriction of ω to the tangent bundle to the strata Sk1
1 and

Sk2
2 has the maximal possible rank 2[k1/2] and 2[k2/2].

(G2’) The couple (Sk1
1 , Sk2

2 )0 is regular. This means that T0S
k1
1 ∩

T0S
k2
2 = {0} if k1+k2 ≤ 2n and T0S

k1
1 +T0S

k2
2 = T0M

2n if k1+k2 > 2n.

(G3’)) If k1 + k2 ≤ 2n then the restriction of ω to the space T0S
k1
1 +

TpS
k2
2 has maximal possible rank k1 + k2. If k1 + k2 > 2n then the

restriction of ω to the space T0S
k1
1 ∩ T0S

k2
2 has maximal possible rank

(k1 + k2 − 2n).

(G4’) if k1, k2 are odd then ω does not annihilate the 2-plane (`1 +`2),
where `1 = kerω|

T0S
k1
1

, `2 = kerω|
T0S

k2
2

(G5’) the space (T0S
k1
1 )ω is transversal to T0S

k2
2 in T0M

2n.

The genericity assumption (G8) is “new”; it always holds in the case
k1 = k2.

(G8) the restriction of ω to the space (T0S
k1
1 )ω∩T0S

k2
2 has the maximal

possible rank k2 − k1.

Note that if k1 = 1 or k2 = 2n− 1 then s(k1, k2, 2n) = 0. Therefore
Theorem 9.1 implies the following statements generalizing Theorems
A1 and A2.
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Theorem A’.k1 = 1 or k2 = 2n − 1 then all tuples (9.1) satisfying
(G1’)-(G5’) and (G8) are equivalent.

Theorem 9.1 allows us to define the characteristic numbers and cha-
racteristic Hamiltonians of tuples (9.1) exactly in the same way as we
defined these invariants in Sections 2 and 3, for the case k1 = k2. Under
the genericity assumptions

(G6’) If s(k1, k2, 2n) ≥ 2 then the number of characteristic numbers is
maximal possible, i.e. s(k1, k2, 2n)

one has the following theorems generalizing Theorems B and C:

Theorem B’. Let k1 and k2 be integers of the same parity such that
2 ≤ k1 ≤ k2 ≤ 2n − 2 and k1 + k2 ≤ 2n. In the problem of classifying
tuples (9.1) satisfying (G1’)-(G6’) and (G8) the tuple of characteristic
numbers is a complete invariant.

Theorem C’. Let k1 and k2 be integers of the same parity such that 3 ≤
k1 ≤ k2 ≤ 2n−2 and k1 +k2 > 2n. In the problem of classifying tuples
(9.1) satisfying (G1’)-(G6’) and (G8), a complete invariant is the tuple
of characteristic Hamiltonians on the symplectic manifold Sk1

1 ∩ Sk2
2

defined up to a symplectomorphism of this manifold.

For the case k1 = k2 Theorems 9.1, B’, and C’ are proved in sections
4 - 8. The proofs for the case k1 < k2 are almost the same.

References

[A] V. I. Arnold, First step of local symplectic algebra, Differential topo-
logy, infinite-dimensional Lie algebras, and applications. D. B. Fuchs’ 60th
anniversary collection. Providence, RI: American Mathematical Society.
Transl., Ser. 2, Am. Math. Soc. 194(44), 1999,1-8.

[AG] V. I. Arnold, A. B. Givental Symplectic geometry, in Dynamical systems,
IV, 1-138, Encyclopedia of Matematical Sciences, vol. 4, Springer, Berlin,
2001.

[DJZ1] W. Domitrz, S. Janeczko, M. Zhitomirskii, Relative Poincare lemma, con-
tractibility, quasi-homogeneity and vector fields tangent to a singular vari-
ety, Ill. J. Math. 48, No.3 (2004), 803-835.

[DJZ2] W. Domitrz, S. Janeczko, M. Zhitomirskii, Symplectic singularities of va-
rietes: the method of algebraic restrictions, Journal für die reine und ange-
wandte Mathematik 618(2008), 197–235.

[GZ] I. M. Gelfand, I. S. Zakharevich, Spectral theory of a pencil of third-order
skew-symmetric differential operators on s1, (Russian) Funktsional. Anal. i
Prilozhen 23 (1989), no. 2, 85–93.

[Z] M. Zhitomirskii, Relative Darboux theorem for singular manifolds and local
contact algebra, Can. J. Math. 57, No.6 (2005), 1314-1340.



22 W. DOMITRZ, S. JANECZKO, AND M. ZHITOMIRSKII

Warsaw University of Technology, Faculty of Mathematics and In-
formation Science, Plac Politechniki 1, 00-661 Warsaw, Poland

E-mail address: domitrz@mini.pw.edu.pl

Institute of Mathematics, Polish Academy of Sciences, Sniadeckich
8, P.O. Box 137, 00-950 Warsaw, Poland, Warsaw University of Tech-
nology, Faculty of Mathematics and Information Science, Plac Po-
litechniki 1, 00-661 Warsaw, Poland

E-mail address: janeczko@alpha.mini.pw.edu.pl

Department of Mathematics, Technion, 32000 Haifa, Israel
E-mail address: mzhi@techunix.technion.ac.il


