INSTITUTE OF MATHEMATICS of the Polish Academy of Sciences

http://www.impan.pl

IM PAN Preprint 712 (2010)

Jan Kisyński

Convolution Semigroups of Rapidly Decreasing Distributions

Published as manuscript

Received 4 February 2010

Convolution semigroups of rapidly decreasing distributions

Jan Kisyński Institute of Mathematics, Polish Academy of Sciences Śniadeckich 8, 00-956 Warszawa, Poland E-mail: jan.kisynski@gmail.com

Abstract

The Cauchy problem on $[0, \infty[\times \mathbb{R}^n]$ is considered for systems of PDE with constant coefficients. The spectral condition of I. G. Petrovskiĭ is proved to be necessary and sufficient for existence of a fundamental solution having the form of a convolution semigroup of distributions on \mathbb{R}^n rapidly decreasing in the sense of L. Schwartz.

1 Introduction and main results

Denote by $\mathcal{S}(\mathbb{R}^n)$ the space of infinitely differentiable rapidly decreasing functions on \mathbb{R}^n , and by $\mathcal{S}'(\mathbb{R}^n)$ the space of tempered distributions. If $\varphi \in \mathcal{S}(\mathbb{R}^n)$ and $T \in \mathcal{S}'(\mathbb{R}^n)$ then the convolution $T * \varphi$ makes sense (and is an infinitely differentiable slowly increasing function). Therefore the set

 $\mathcal{O}_C'(\mathbb{R}^n) = \{ T \in \mathcal{S}'(\mathbb{R}^n) : T * \varphi \in \mathcal{S}(\mathbb{R}^n) \text{ for every } \varphi \in \mathcal{S}(\mathbb{R}^n) \}$

is well defined. The elements of $\mathcal{O}'_{C}(\mathbb{R}^{n})$ will be called the *rapidly decreasing* distributions on \mathbb{R}^{n-1} . For every $T \in \mathcal{O}'_{C}(\mathbb{R}^{n})$ the convolution operator T * is a continuous linear operator from $\mathcal{S}(\mathbb{R}^{n})$ into $\mathcal{S}(\mathbb{R}^{n})$, and a continuous linear operator from $\mathcal{S}'(\mathbb{R}^{n})$ into $\mathcal{S}'(\mathbb{R}^{n})$. Furthermore, $\mathcal{O}'_{C}(\mathbb{R}^{n})$ is a convolution

²⁰¹⁰ Mathematics Subject Classification: Primary 35E15, 46E10, 47D06; Secondary 42B99.

Key words and phrases: systems of PDE with constant coefficients, Petrovskiĭ condition, rapidly decreasing distributions, slowly increasing functions.

¹Our definition of $\mathcal{O}'_{C}(\mathbb{R}^{n})$ is equivalent to one given in Sec. VI.5 of [S], p. 244. See Theorem 2.2.

algebra². The topology in $\mathcal{O}'_{C}(\mathbb{R}^{n})$ is induced by the mapping $\mathcal{O}'_{C} \ni T \mapsto T * \in L_{\beta}(\mathcal{S}(\mathbb{R}^{n}), \mathcal{S}(\mathbb{R}^{n}))^{3}$.

Let $m \in \mathbb{N}$, and let M_m be the set of $m \times m$ matrices with complex entries. The above facts referring to classes of scalar functions and distributions remain valid for analogous classes of M_m -valued functions and distributions like $\mathcal{S}(\mathbb{R}^n; M_m), \mathcal{S}'(\mathbb{R}^n; M_m), \mathcal{O}'_C(\mathbb{R}^n; M_m)$.

By a one-parameter infinitely differentiable convolution semigroup in $\mathcal{O}'_C(\mathbb{R}^n; M_m)$, briefly *i.d.c.s.*, we mean a mapping

(1.1)
$$[0,\infty[\ni t \mapsto S_t \in \mathcal{O}'_C(\mathbb{R}^n; M_m)]$$

such that

- (1.2) $S_{t+s} = S_t * S_s$ for every $s, t \in [0, \infty[,$
- (1.3) $S_0 = \mathbb{1} \otimes \delta$ where $\mathbb{1}$ is the unit $m \times m$ matrix and δ is the Dirac distribution,
- (1.4) the map (1.1) is infinitely differentiable.

In (1.4) it is understood that the derivatives at zero are right-side derivatives, and that the topology in $\mathcal{O}'_{C}(\mathbb{R}^{n}; M_{m})$ is that defined above.

The infinitesimal generator of the i.d.c.s. $(S_t)_{t\geq 0} \subset \mathcal{O}'_C(\mathbb{R}^n; M_m)$ is defined as the distribution

$$G := \frac{d}{dt} S_t \bigg|_{t=0} \in \mathcal{O}'_C(\mathbb{R}^n; M_m).$$

It follows that

$$\frac{d}{dt}S_t = G * S_t = S_t * G \quad \text{for every } t \in [0, \infty[.$$

Furthermore, any i.d.c.s. in $\mathcal{O}'_C(\mathbb{R}^n; M_m)$ is uniquely determined by its infinitesimal generator. Indeed, suppose that a distribution $G \in \mathcal{O}'_C(\mathbb{R}^n; M_m)$ is the infinitesimal generator of two i.d.c.s. $(S_t)_{t\geq 0}, (T_t)_{t\geq 0} \subset \mathcal{O}'_C(\mathbb{R}^n; M_m)$. Fix any $t \in]0, \infty[$. Using the Banach–Steinhaus theorem, one concludes that the function

$$[0,t] \ni \tau \mapsto S_{\tau} * T_{t-\tau} \in \mathcal{O}'_C(\mathbb{R}^n; M_m)$$

is infinitely differentiable and $\frac{d}{d\tau} (S_{\tau} * T_{t-\tau}) = (\frac{d}{d\tau} S_{\tau}) * T_{t-\tau} + S_{\tau} * (\frac{d}{d\tau} T_{t-\tau}).$ Consequently, $\frac{d}{d\tau} (S_{\tau} * T_{t-\tau}) = (S_{\tau} * G) * T_{t-\tau} - S_{\tau} * (G * T_{t-\tau}) = 0$ for

²Due to our definition of $\mathcal{O}'_{C}(\mathbb{R}^{n})$ it is convenient to define convolution in $\mathcal{O}'_{C}(\mathbb{R}^{n})$ imitating Sec. VI.3 of [Y], pp. 158–159.

³The subscript β means that $L(\mathcal{S}(\mathbb{R}^n), \mathcal{S}(\mathbb{R}^n))$ is equipped with the topology of uniform convergence on bounded subsets of $\mathcal{S}(\mathbb{R}^n)$. By Theorem 2.2 below, the above topology in $\mathcal{O}'_C(\mathbb{R}^n)$ coincides on bounded subsets of $\mathcal{O}'_C(\mathbb{R}^n)$ with the topology defined in Sec. VII.5 of [S], p. 244.

every $\tau \in [0, t]$, so that $S_{\tau} * T_{t-\tau}$ is independent of τ for $\tau \in [0, t]$, and $S_t = S_{\tau} * T_{t-\tau}|_{\tau=t} = S_{\tau} * T_{t-\tau}|_{\tau=0} = T_t$.

Let now $d \in \mathbb{N}$, and suppose that for every multiindex $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$ of length $|\alpha| = \alpha_1 + \cdots + \alpha_n \leq d$ we are given a matrix $A_\alpha \in M_m$. Consider the matricial differential operator with constant coefficients

(1.5)
$$P\left(\frac{\partial}{\partial x}\right) := \sum_{|\alpha| \le d} A_{\alpha}\left(\frac{\partial}{\partial x}\right)^{c}$$

where $(\partial/\partial x)^{\alpha} = (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_n)^{\alpha_n}$, and its symbol

(1.6)
$$P(i\xi) := \sum_{|\alpha| \le d} i^{|\alpha|} \xi^{\alpha} A_{\alpha} \in M_m$$

where $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$ and $\xi^{\alpha} = \xi_1^{\alpha_1} \cdots \xi_n^{\alpha_n}$. Thus the symbol is an $m \times m$ matrix whose entries are polynomials on \mathbb{R}^n with complex coefficients. The *Petrovskii index* $\omega_0(P)$ of the differential operator $P(\partial/\partial x)$ is defined to be

(1.7)
$$\omega_0(P) = \sup\{\operatorname{Re} \lambda : \lambda \in \sigma(P(i\xi)), \xi \in \mathbb{R}^n\} \\ = \sup\{\operatorname{Re} \lambda : \lambda \in \mathbb{C}, \xi \in \mathbb{R}^n, \det(\lambda \mathbb{1} - P(i\xi)) = 0\}$$

where $\sigma(B)$ denotes the spectrum of the matrix $B \in M_m$.

Our aim is to prove

Theorem 1.1. For every matricial differential operator with constant coefficients of the form (1.5) the following two conditions are equivalent:

- $(1.8) \quad \omega_0(P) < \infty,$
- (1.9) the M_m -valued distribution $P(\partial/\partial x)\delta := \sum_{|\alpha| \le d} A_\alpha \otimes (\partial/\partial x)^\alpha \delta$ is the infinitesimal generator of an i.d.c.s. $(S_t)_{t>0} \subset \mathcal{O}'_C(\mathbb{R}^n; M_m).$

Furthermore, if these equivalent conditions are satisfied, then

(1.10) $\omega_0(P) = \inf \{ \omega \in \mathbb{R} : (e^{-\omega t} S_t *)_{t \ge 0} \text{ is an equicontinuous semigroup} of operators on S(\mathbb{R}^n; M_m) \}.$

In Theorem 1.1 the Petrovskiĭ condition (1.8) plays an independent role. But most frequently (1.8) occurs as part of the Gårding assumptions of hyperbolicity for the non-characteristic Cauchy problem. The relation between Theorem 1.1 and the hyperbolic situation may by elucidated by the following result whose proof is omitted in the present paper ⁴.

⁴The proof of Theorem 1.2 is based on Lemma 2.8 from [G], the Paley–Wiener–Schwartz theorem about Fourier transforms of compactly supported distributions, and the non-uniqueness theorem for the characteristic Cauchy problem.

Theorem 1.2. Suppose that the condition (1.8) is satisfied, let $(S_t)_{t\geq 0} \subset \mathcal{O}'_C(\mathbb{R}^n; M_m)$ be the *i.d.c.s.* generated by the M_m -valued distribution $P(\partial/\partial x)\delta$, and let

$$\det(\lambda \mathbb{1} - P(\xi_1, \dots, \xi_n)) = \lambda^m + q_{m-1}(\xi_1, \dots, \xi_m)\lambda^{m-1}$$
$$+ \dots + q_1(\xi_1, \dots, \xi_n)\lambda + q_0(\xi_1, \dots, \xi_n).$$

Then

(1.11) there is $r \in [0, \infty[$ such that $\max\{|x| : x \in \operatorname{supp} S_t\} \le rt$ for every $t \in [0, \infty[$

if and only if

(1.12) for every k = 0, ..., m-1 the degree of the polynomial $q_k(\zeta_1, ..., \zeta_n)$ is no greater than m - k.

The condition (1.12) may be equivalently expressed by saying that

(1.12)' the vector $(1, 0, ..., 0) \in \mathbb{R}^{n+1}$ is not characteristic for the polynomial $q(\lambda, \zeta_1, ..., \zeta_n)$,

i.e. $p(1, 0, \ldots, 0) \neq 0$ where $p(\lambda, \zeta_1, \ldots, \zeta_n)$ is the main homogeneous part of $q(\lambda, \zeta_1, \ldots, \zeta_n)$. In the terminology of [G], conditions (1.8) and (1.12)' together mean that the polynomial $q(\lambda, \zeta_1, \ldots, \zeta_n)$ is hyperbolic with respect to the vector $(1, 0, \ldots, 0) \in \mathbb{R}^{n+1}$. The hyperbolicity of $q(\lambda, \zeta_1, \ldots, \zeta_n)$ with respect to $(1, 0, \ldots, 0)$ implies its hyperbolicity with respect to $(-1, 0, \ldots, 0)$. Therefore if the M_m -valued distribution $P(\partial/\partial x)\delta$ is the generator of an i.d.c.s. satisfying (1.12), then so also is $-P(\partial/\partial x)\delta$, and hence the i.d.c.s. generated by $P(\partial/\partial x)\delta$ extends to an infinitely differentiable one-parameter convolution group of distributions with compact support.

2 Rapidly decreasing distributions on \mathbb{R}^n

Sections 2 and 3 are devoted to a self-contained presentation of some results identical or similar to those stated, in part without proofs, in the book of L. Schwartz [S]. These results constitute a basis for our subsequent arguments, and for this reason we give complete proofs.

Let $\mathcal{D}_{L^1}(\mathbb{R}^n)$ be the space of infinitely differentiable complex functions φ on \mathbb{R}^n such that $(\partial/\partial x)^{\alpha}\varphi \in L^1(\mathbb{R}^n)$ for every $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$. The topology in $\mathcal{D}_{L^1}(\mathbb{R}^n)$ is determined by the system of seminorms $p_{\alpha}(\varphi) = \int_{\mathbb{R}^n} |(\partial/\partial x)^{\alpha}\varphi(x)| dx$, $\alpha \in \mathbb{N}_0^n$, $\varphi \in \mathcal{D}_{L^1}(\mathbb{R}^n)$. $\mathcal{D}_{L^1}(\mathbb{R}^n)$ is a Fréchet space, and $\mathcal{D}(\mathbb{R}^n)$ is densely and continuously imbedded in $\mathcal{D}_{L^1}(\mathbb{R}^n)$. We say that a

distribution $T \in \mathcal{D}'(\mathbb{R}^n)$ is bounded on \mathbb{R}^n if it extends to a linear functional continuous on $\mathcal{D}_{L^1}(\mathbb{R}^n)$. The set of bounded distributions on \mathbb{R}^n is denoted by $\mathcal{B}'(\mathbb{R}^n)$.

Let $C_b(\mathbb{R}^n)$ be the Banach space of complex continuous bounded functions on \mathbb{R}^n . In the present section we will base on the following result contained in [S].

Theorem 2.1. For any family $\mathcal{B}' \subset \mathcal{D}'(\mathbb{R}^n)$ the following three conditions are equivalent:

(2.1) there are $m \in \mathbb{N}_0$ and a bounded subset $\{f_{T,\alpha} : T \in \mathcal{B}', \alpha \in \mathbb{N}_0^n, |\alpha| \le m\}$ of $C_b(\mathbb{R}^n)$ such that

$$T = \sum_{|\alpha| \le m} \left(\frac{\partial}{\partial x}\right)^{\alpha} f_{T,\alpha} \quad \text{for every } T \in \mathcal{B}',$$

- (2.2) $\mathcal{B}' \subset \mathcal{B}'(\mathbb{R}^n)$ and the distributions belonging to \mathcal{B}' are equicontinuous with respect to the topology of $\mathcal{D}_{L^1}(\mathbb{R}^n)$,
- (2.3) whenever $\varphi \in \mathcal{D}(\mathbb{R}^n)$, then $\{T * \varphi : T \in \mathcal{B}'\}$ is a bounded subset of $C_b(\mathbb{R}^n)$.
- *Proof.* The implications $(2.1) \Rightarrow (2.2) \Rightarrow (2.3)$ follow at once from two facts:
 - (i) whenever (2.1) holds, then

$$T(\varphi) = \sum_{|\alpha| \le m} (-1)^{|\alpha|} \int_{\mathbb{R}^n} f_{T,\alpha}(x) \left(\frac{\partial}{\partial x}\right)^{\alpha} \varphi(x) \, dx$$

for every $T \in \mathcal{B}'$ and $\varphi \in \mathcal{D}(\mathbb{R}^n)$,

(ii)
$$(T * \varphi)(x) = \langle T, \varphi(x - \cdot) \rangle$$
 for every $T \in \mathcal{B}', \varphi \in \mathcal{D}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$.

The implication $(2.3) \Rightarrow (2.1)$ is proved by a more refined argument similar to one on p. 196 of [S]. Let the subscript x denote translation by x, and superscript \lor the reflection. Suppose that (2.3) holds. Since $(T * \varphi)(x) =$ $\langle (T_x)^{\lor}, \varphi \rangle$, (2.3) implies that $\{(T_x)^{\lor} : T \in \mathcal{B}', x \in \mathbb{R}^n\}$ is a pointwise bounded family of continuous linear functionals on $\mathcal{D}(\mathbb{R}^n)$. Since $\mathcal{D}(\mathbb{R}^n)$ is a barrelled space, the Banach–Steinhaus theorem implies that this family is equicontinuous. Let $K = \{y \in \mathbb{R}^n : |y| \leq 1\}$. Equicontinuity of $\{(T_x)^{\lor} :$ $T \in \mathcal{B}', x \in \mathbb{R}^n\}$ implies that there are $k \in \mathbb{N}_0$ and $C \in [0, \infty[$ such that whenever $\varphi \in C_K^{\infty}(\mathbb{R}^n), T \in \mathcal{B}'$ and $x \in \mathbb{R}^n$, then

$$|(T * \varphi)(x)| = |\langle (T_x)^{\vee}, \varphi \rangle| \le C \sup \left\{ \left| \left(\frac{\partial}{\partial y} \right)^{\alpha} \varphi(y) \right| : |\alpha| \le k, \ y \in K \right\}.$$

 \mathbb{N}_0 ,

This estimate implies that whenever $\phi \in C_K^k(\mathbb{R}^n) \subset \mathcal{E}'(\mathbb{R}^n)$, then for every $T \in \mathcal{B}'$ the distribution $\phi * T$ is a function belonging to $C_b(\mathbb{R}^n)$, and

(2.4) $\{\phi * T : T \in \mathcal{B}'\} \text{ is a bounded subset of } C_b(\mathbb{R}^n).$

If $l \in \mathbb{N}$ is sufficiently large and E is the fundamental solution for Δ^l depending only on |x|, then $E \in C^k(\mathbb{R}^n)$ and $E|_{\mathbb{R}^n \setminus \{0\}} \in C^\infty(\mathbb{R}^n \setminus \{0\})^5$. Let $\gamma \in C^\infty_K(\mathbb{R}^n)$ be such that $\gamma(x) = 1$ whenever $|x| \leq 1/2$. Then $\gamma E \in C^k_K(\mathbb{R}^n)$, $(1-\gamma)E \in C^\infty(\mathbb{R}^n)$, and $\Delta^l[(1-\gamma)E] \in C^\infty_K(\mathbb{R}^n)$. For every $T \in \mathcal{B}'$ one has

$$T = \Delta^l \delta * E * T = \Delta^l [(\gamma E) * T] + [\Delta^l ((1 - \gamma) E)] * T = \Delta^l f_T + g_T$$

where

$$f_T = (\gamma E) * T$$
 and $g_T = \Delta^l ((1 - \gamma)E) * T$.

Furthermore, $\{f_T : T \in \mathcal{B}'\}$ and $\{g_T : T \in \mathcal{B}'\}$ are bounded subsets of $C_b(\mathbb{R}^n)$, by (2.4) and (2.3) respectively. Hence (2.3) implies (2.1).

Theorem 2.2. For every family of distributions $\mathcal{F}' \subset \mathcal{D}'(\mathbb{R}^n)$ the following three conditions are equivalent:

- (2.5) for every polynomial $P(x_1, \ldots, x_n)$ the family of distributions $\{P \cdot T : T \in \mathcal{F}'\}$ is a subset of $\mathcal{B}'(\mathbb{R}^n)$ equicontinuous with respect to the topology of $\mathcal{D}_{L^1}(\mathbb{R}^n)$,
- (2.6) there is a sequence $(m_k)_{k \in \mathbb{N}_0} \subset \mathbb{N}_0$ and a mapping

$$\mathbb{N}_0 \times \mathcal{F}' \ni (k, T) \mapsto \{ f_{T,k,\alpha} : \alpha \in \mathbb{N}_0^n, \, |\alpha| \le m_k \} \subset C_b(\mathbb{R}^n)$$

such that

$$T = \sum_{|\alpha| \le m_k} \left(\frac{\partial}{\partial x}\right)^{\alpha} f_{T,k,\alpha} \quad whenever \ (k,T) \in \mathbb{N}_0 \times \mathcal{F}'$$

and

$$\sup\{(1+|x|)^k | f_{T,k,\alpha}| : T \in \mathcal{F}', \ |\alpha| \le m_k, \ x \in \mathbb{R}^n\} < \infty$$

for every $k \in$

(2.7) $\mathcal{F}' \subset \mathcal{O}_C(\mathbb{R}^n)$ and the set $\{T * : T \in \mathcal{F}'\} \subset L(\mathcal{S}(\mathbb{R}^n); \mathcal{S}(\mathbb{R}^n))$ is equicontinuous.

⁵See Sec. VII.10 of [S], Example 2, p. 288.

If \mathcal{F}' contains only one distribution T, then, in accordance with the definition of $\mathcal{O}'_C(\mathbb{R}^n)$ given in Section 1, each of the conditions (2.5)–(2.7) means that T rapidly decreases at infinity. Such a definition is equivalent to one in [S], Sec. VII.5, p. 244⁶. The equivalence (2.6) \Leftrightarrow (2.7) is fundamental for the proof of Theorem 1.1.

Proof of (2.5) \Rightarrow (2.6). Let $r^2 \in C^{\infty}(\mathbb{R}^n)$ be the function such that $r^2(x) = |x|^2 = x_1^2 + \cdots + x_n^2$ for every $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$. Then

(2.8)
$$(1+r^2)^{\frac{1}{2}|\alpha|+a} \left(\frac{\partial}{\partial x}\right)^{\alpha} ((1+r^2)^{-a}) \in C_b(\mathbb{R}^n)$$
for all $a \in]0, \infty[$ and $\alpha \in \mathbb{N}_0^n$

because $(\partial/\partial x)^{\alpha}((1+r^2)^{-a}) = (1+r^2)^{-a-|\alpha|}P_{\alpha}$ where P_{α} is a polynomial on \mathbb{R}^n of degree no greater than $|\alpha|$. Suppose that (2.5) is satisfied. Fix $k \in \mathbb{N}_0$. By the implication (2.2) \Rightarrow (2.1) from Theorem 2.1, there is $m_k \in \mathbb{N}_0$ and for every $T \in \mathcal{F}'$ and $\beta \in \mathbb{N}_0^n$ such that $|\beta| \leq m_k$ there is $g_{T,k,\beta} \in C_b(\mathbb{R}^n)$ such that

$$T = (1+r^2)^{-k} \sum_{|\beta| \le m_k} \left(\frac{\partial}{\partial x}\right)^{\beta} g_{T,k,\beta}$$

and

(2.9)
$$\sup\{|g_{T,k,\beta}(x)|: T \in \mathcal{F}', |\beta| \le m_k, x \in \mathbb{R}^n\} < \infty.$$

It follows that

$$T = \sum_{|\alpha| \le m_k} \left(\frac{\partial}{\partial x}\right)^{\alpha} f_{T,k,\alpha}$$

where

$$f_{T,k,\alpha} = \sum_{\alpha \le \beta, \, |\beta| \le m_k} (-1)^{|\beta-\alpha|} \binom{\beta}{\alpha} g_{T,k,\beta} \left(\frac{\partial}{\partial x}\right)^{\beta-\alpha} (1+r^2)^{-k}$$

By (2.8) and (2.9), one has

$$\sup\{(1+|x|)^{2k}|f_{T,k,\alpha}(x)|: T \in \mathcal{F}', \ |\alpha| \le m_k, \ x \in \mathbb{R}^n\} < \infty.$$

⁶For m = 1 and \mathcal{F}' consisting of a single T the equivalence (2.5) \Leftrightarrow (2.6) follows from Theorem IX in Sec. VII.5 of [S], p. 244, stated there with just an indication of the method of proof.

Proof of (2.6) \Rightarrow (2.7). Suppose that (2.6) holds. By the Banach–Steinhaus theorem, (2.7) will follow once it is proved that whenever $\varphi \in \mathcal{S}(\mathbb{R}^n)$, then $\{T * \varphi : T \in \mathcal{F}'\}$ is a bounded subset of $\mathcal{S}(\mathbb{R}^n)$. Since $(\partial/\partial x)^{\alpha}(T * \varphi) = T * ((\partial/\partial x)^{\alpha}\varphi)$, it is sufficient to show that

$$\sup\left\{\left(1+\frac{1}{2}|x|\right)^{k}|(T\ast\varphi)(x)|:T\in\mathcal{F}',\ x\in\mathbb{R}^{n}\right\}<\infty$$

for every $\varphi \in \mathcal{S}(\mathbb{R}^n)$ and $k = n + 1, n + 2, \dots$ So, fix any $\varphi \in \mathcal{S}(\mathbb{R}^n)$ and $k = n + 1, n + 2, \dots$ Then, by (2.6), for every $T \in \mathcal{F}'$ and $x \in \mathbb{R}^n$ one has

$$\begin{aligned} |(T * \varphi)(x)| &\leq \sum_{|\alpha| \leq m_k} \left(\int_{|y| \geq \frac{1}{2}|x|} + \int_{|x-y| \geq \frac{1}{2}|x|} \right) |f_{T,k,\alpha}(y)| \cdot \left| \left(\frac{\partial}{\partial x} \right)^{\alpha} \varphi(x-y) \right| dy \\ &\leq \left(1 + \frac{1}{2}|x| \right)^{-k} \sum_{|\alpha| \leq m_k} \left(C_k \int_{\mathbb{R}^n} \left| \left(\frac{\partial}{\partial y} \right)^{\alpha} \varphi(y) \right| dy + D_k \int_{\mathbb{R}^n} |f_{T,k,\alpha}(y)| dy \right) \\ &\leq \left(1 + \frac{1}{2}|x| \right)^{-k} (\#\{\alpha \in \mathbb{N}_0^n : |\alpha| \leq m_k\}) 2C_k D_k \int_{\mathbb{R}^n} (1 + |y|)^{-k} dy, \end{aligned}$$

where

$$C_k = \sup\{(1+|y|)^k | f_{T,k,\alpha}(y)| : T \in \mathcal{F}', \ |\alpha| \le m_k, \ y \in \mathbb{R}^n\} < \infty,$$
$$D_k = \sup\left\{(1+|y|)^k \left| \left(\frac{\partial}{\partial y}\right)^{\alpha} \varphi(y) \right| : |\alpha| \le m_k, \ y \in \mathbb{R}^n\right\} < \infty.$$

Proof of $(2.7) \Rightarrow (2.5)$. Suppose that (2.7) holds. It is sufficient to prove (2.5) for the monomials $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$. We will prove that whenever $\alpha \in \mathbb{N}_0^n$ and $\varphi \in \mathcal{D}(\mathbb{R})$, then

(2.10) $\{(x^{\alpha}T) * \varphi : T \in \mathcal{F}'\} \text{ is a bounded subset of } \mathcal{S}(\mathbb{R}^n).$

From (2.10) it follows that whenever $\alpha \in \mathbb{N}_0^n$ and $\varphi \in \mathcal{D}(\mathbb{R})$, then $\{(x^{\alpha}T) * \varphi : T \in \mathcal{F}'\}$ is a bounded subset of $C_b(\mathbb{R}^n)$, whence, by the implication (2.3) \Rightarrow (2.2) of Theorem 2.1, condition (2.5) holds for the monomials x^{α} .

We will prove (2.10) by induction on $|\alpha|$. If $|\alpha| = 0$, then $x^{\alpha} \equiv 1$ and (2.10) is a direct consequence of (2.7). Furthermore, the condition

 $(2.10)_m \quad \text{the statement (2.10) holds for every } \varphi \in \mathcal{D}(\mathbb{R}^n) \text{ and } \alpha \in \mathbb{N}_0^n \text{ such}$ $\text{that } |\alpha| = m$

implies $(2.10)_{m+1}$. Indeed, if $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $|\alpha| = m+1$, then $\alpha_i \ge 1$ for some $i = 1, \ldots, n$, so that $\alpha = \beta + \gamma$ where $\beta \in \mathbb{N}_0^n$, $|\beta| = m$ and $\gamma = (\delta_{i,1}, \ldots, \delta_{i,n})$. Consequently, $x^{\alpha} = x_i x^{\beta}$ and

(2.11)
$$(x^{\alpha}T) * \varphi = (x_i x^{\beta}T) * \varphi = x_i ((x^{\beta}T) * \varphi) - (x^{\beta}T) * (x_i \varphi)$$

for every $T \in \mathcal{F}'$ and $\varphi \in \mathcal{D}(\mathbb{R}^n)$. If $\varphi \in \mathcal{D}(\mathbb{R}^n)$ is fixed then, by $(2.10)_m$, $\{(x^{\beta}T) * \varphi : T \in \mathcal{F}'\}$ and $\{(x^{\beta}T) * (x_i\varphi) : T \in \mathcal{F}'\}$ are bounded subsets of $\mathcal{S}(\mathbb{R}^n)$, whence, by (2.11), so is $\{(x^{\alpha}T) * \varphi : T \in \mathcal{F}'\}$.

3 Infinitely differentiable slowly increasing functions on \mathbb{R}^n

A function $\phi \in C(\mathbb{R}^n)$ is called *continuous slowly increasing* if

$$\sup\{(1+|\xi|)^{-m}|\phi(\xi)|:\xi\in\mathbb{R}^n\}<\infty$$

for some $m \in \mathbb{N}_0$. A function $\phi \in C^{\infty}(\mathbb{R}^n)$ is called *infinitely differentiable* slowly increasing ⁷ if for every $k \in \mathbb{N}_0$ there is $m_k \in \mathbb{N}_0$ such that

$$\sup\left\{(1+|\xi|)^{-m_k}\left|\left(\frac{\partial}{\partial\xi}\right)^{\alpha}\phi(\xi)\right|:\alpha\in\mathbb{N}_0^n,\,|\alpha|\leq k,\,\xi\in\mathbb{R}^n\right\}<\infty.$$

The set of infinitely differentiable slowly increasing functions on \mathbb{R} is denoted by $\mathcal{O}_M(\mathbb{R}^n)$. One has $\mathcal{O}_M(\mathbb{R}^n) \subset \mathcal{S}'(\mathbb{R}^n)$. We will say that the functions belonging to a subset Φ of $\mathcal{O}_M(\mathbb{R}^n)$ are uniformly slowly increasing if for every $k \in \mathbb{N}_0$ there is $m_k \in \mathbb{N}_0$ such that

$$\sup\left\{(1+|\xi|)^{-m_k}\left|\left(\frac{\partial}{\partial\xi}\right)^{\alpha}\phi(\xi)\right|:\phi\in\Phi,\,\alpha\in\mathbb{N}_0^n,\,|\alpha|\leq k,\,\xi\in\mathbb{R}^n\right\}<\infty.$$

Let \mathcal{F} denote the Fourier transformation defined by

$$\hat{\varphi}(\xi) = (\mathcal{F}\varphi)(\xi) = \int_{\mathbb{R}^n} e^{-ix\xi} \varphi(x) \, dx$$

for $\varphi \in \mathcal{S}(\mathbb{R}^n)$ and $\xi \in \mathbb{R}^n$. Then \mathcal{F} is a continuous automorphism of $\mathcal{S}(\mathbb{R}^n)$, and it extends uniquely to a continuous automorphism of $\mathcal{S}'_b(\mathbb{R}^n)$.

Theorem 3.1. ⁸ $\mathcal{FO}'_C(\mathbb{R}^n) = \mathcal{O}_M(\mathbb{R}^n).$

⁷Infinitely differentiable slowly increasing functions play a fundamental role in Petrovskii's paper [P] devoted to the Cauchy problem for systems of PDE whose coefficients are either constant or depend only on time. See [P], Bedingung A, p. 3, and Lemmas 1 and 2, pp. 7–8.

⁸Theorem 3.1 is contained in Theorem XV of Sec. VII.8 of [S], p. 268. We present a proof based directly on Theorem 2.2. The second part of our proof differs from that in [S].

Proof of $\mathcal{FO}'_C(\mathbb{R}^n) \subset \mathcal{O}_M(\mathbb{R}^n)$. Suppose that $T \in \mathcal{O}'_C(\mathbb{R}^n)$. Fix $k \in \mathbb{N}$ such that k > n. Then, by (2.6), one has

$$\mathcal{F}T = \sum_{|\alpha| \le m_k} (i\xi)^{\alpha} \mathcal{F}f_{T,k,\alpha}$$

where $f_{T,k,\alpha} \in L^1(\mathbb{R}^n)$ and so $\mathcal{F}f_{T,k,\alpha} \in C_0(\mathbb{R}^n)$. Consequently $\mathcal{F}T$ is a continuous slowly increasing function on \mathbb{R}^n . Furthermore,

(3.1)
$$\left(\frac{\partial}{\partial\xi}\right)^{\alpha} \mathcal{F}T = \mathcal{F}((-ix)^{\alpha}T) \quad \text{for every } \alpha \in \mathbb{N}_0^n.$$

By (2.5) one has $(ix)^{\alpha}T \in \mathcal{O}'_{C}(\mathbb{R}^{n})$, so that, by what we have already proved, $\mathcal{F}((ix)^{\alpha}T)$ is a continuous slowly increasing function. Since $\alpha \in \mathbb{N}^{n}_{0}$ in (3.1) is arbitrary, it follows that $\mathcal{F}T \in \mathcal{O}_{M}(\mathbb{R}^{n})$.

Proof of $\mathcal{O}_M(\mathbb{R}^n) \subset \mathcal{FO}'_C(\mathbb{R}^n)$. Pick $\phi \in \mathcal{O}_M(\mathbb{R}^n)$ and set $T = \mathcal{F}^{-1}\phi$. Then $T \in \mathcal{S}'(\mathbb{R}^n)$. Furthermore, whenever $\varphi \in \mathcal{S}(\mathbb{R}^n)$, then $\mathcal{F}(T * \varphi) = (\mathcal{F}T) \cdot \hat{\varphi} = \phi \cdot \hat{\varphi} \in \mathcal{S}(\mathbb{R}^n)$, and hence $T * \varphi \in \mathcal{S}(\mathbb{R}^n)$. It follows that $T \in \mathcal{O}'_C(\mathbb{R}^n)$, and so $\phi = \mathcal{F}T \in \mathcal{FO}'_C(\mathbb{R}^n)$.

Theorem 3.2. For any subset Φ of $\mathcal{O}_M(\mathbb{R}^n)$ the following three conditions are equivalent:

- (3.2) the functions belonging to Φ increase uniformly slowly,
- (3.3) the set $\{\phi : \phi \in \Phi\} \subset L(\mathcal{S}(\mathbb{R}^n); \mathcal{S}(\mathbb{R}^n))$ is equicontinuous,
- (3.4) the set $\{(\mathfrak{F}^{-1}\phi) * : \phi \in \Phi\} \subset L(\mathcal{S}(\mathbb{R}^n); \mathcal{S}(\mathbb{R}^n))$ is equicontinuous.

Proof. The implication $(3.2) \Rightarrow (3.3)$ is straightforward. If $\phi \in \mathcal{O}_M(\mathbb{R}^n)$, then $\phi \cdot \in L(\mathcal{S}(\mathbb{R}^n); \mathcal{S}(\mathbb{R}^n)), \ (\mathfrak{F}^{-1}\phi) * \in L(\mathcal{S}(\mathbb{R}^n); \mathcal{S}(\mathbb{R}^n))$ and $(\mathfrak{F}^{-1}\phi) * = \mathfrak{F}^{-1} \circ (\phi \cdot)$, so that $(3.3) \Leftrightarrow (3.4)$. The implication $(3.4) \Rightarrow (3.2)$ may be proved by an argument based on $(2.7) \Rightarrow (2.6)$, similar to one used in the proof of the inclusion $\mathcal{FO}'_C(\mathbb{R}^n) \subset \mathcal{O}_M(\mathbb{R}^n)$.

Remark 3.1. It is stressed by L. Schwartz that the condition (2.6) is strictly weaker than the statement that

(3.5)
$$T = \sum_{|\alpha| \le m} \left(\frac{\partial}{\partial x}\right)^{\alpha} f_{\alpha}$$

for some $m \in \mathbb{N}$ where all f_{α} are continuous rapidly decreasing functions on \mathbb{R}^n . Indeed, it is easy to see that

(3.6) if T satisfies (3.5) and
$$\phi \in \mathcal{O}_M(\mathbb{R}^n)$$
, then $T * \phi \in \mathcal{O}_M(\mathbb{R}^n)$.

However, the example in Sec. VII.5 of [S], p. 245, shows that if n = 1 and $\phi_0(x) = e^{ix^2/2}$ for $x \in \mathbb{R}$, then $\phi_0 \in \mathcal{O}_M(\mathbb{R})$, and if T_0 is a distribution equal to the function ϕ_0 , then T_0 satisfies (2.6) with $\mathcal{F}' = \{T_0\}$, so that $T_0 \in \mathcal{O}'_C(\mathbb{R})$. If T_0 were to satisfy (3.5), then, by (3.6), one would have $T_0 * \overline{\phi}_0 \in \mathcal{O}_M(\mathbb{R})$. But this does not hold because $\mathcal{F}T_0 = \mathcal{F}\phi_0 = c\overline{T}_0 = c\overline{\phi}_0$ where $c \in \mathbb{C} \setminus \{0\}$ is a constant, so that $\mathcal{F}\overline{\phi}_0 = \overline{\mathcal{F}}\phi_0^{\vee} = \overline{c}\phi_0$, $\mathcal{F}(T_0 * \overline{\phi}_0) = \mathcal{F}T_0 \cdot \mathcal{F}\overline{\phi}_0 = |c|^2$, and $T_0 * \overline{\phi}_0 = |c|^2 \delta$. Hence T_0 cannot be represented in the form (3.5).

Note that $T_0 = \phi_0 \in \mathcal{O}_M(\mathbb{R}) \cap \mathcal{O}'_C(\mathbb{R})$ differs only by a multiplicative constant from a member of the infinitely differentiable convolution group in $\mathcal{O}'_C(\mathbb{R})$ whose infinitesimal generator is equal to $i\delta''$. This group is related to the Schrödinger equation. See [R], Sec. 3.2–3.4 and 4.4.

Remark 3.2. Whenever $\phi \in C^{\infty}(\mathbb{R}^n)$, then

$$\phi \in \mathcal{O}_M(\mathbb{R}^n) \Rightarrow \phi \cdot \in L(\mathcal{S}(\mathbb{R}^n); \mathcal{S}(\mathbb{R}^n))$$

$$\Rightarrow \phi \text{ is a multiplier for } \mathcal{S}'(\mathbb{R}^n) \Rightarrow \phi \in \mathcal{O}_M(\mathbb{R}^n).$$

Here the only non-trivial implication is the last one, resulting from Theorem VI of Sec. VII.4 of [S], p. 239, and stated in Sec. VII.5 of [S], after Theorem X, p. 246. However, an element of $\mathcal{O}_M(\mathbb{R}^n)$ may not be a multiplier for $\mathcal{O}'_C(\mathbb{R}^n)$. Indeed, if n = 1 and, as in Remark 3.1, $\phi_0(x) = e^{ix^2/2}$ for $x \in \mathbb{R}$, and T_0 is the same function treated as a distribution on \mathbb{R} , then $\overline{\phi}_0 \in \mathcal{O}_M(\mathbb{R}), T_0 \in \mathcal{O}'_C(\mathbb{R})$, and $\overline{\phi}_0 \cdot T_0 \in \mathcal{S}'(\mathbb{R})$ is a function identically equal to one. Therefore $\overline{\phi}_0 \cdot T_0 \notin \mathcal{O}'_C(\mathbb{R})$ and $\overline{\phi}_0$ is not a multiplier for $\mathcal{O}'_C(\mathbb{R})$.

In the following we will consider functions and distributions on \mathbb{R}^n with values in the space M_m of complex $m \times m$ matrices. In this setting the theorems proved earlier for the scalar case remain valid.

Consider the matricial differential operator $P(\partial/\partial x)$ defined by (1.5), and its symbol $P(i\xi)$ defined by (1.6). As $\frac{d}{dt} \exp(tP(i\xi)) = P(i\xi) \exp(tP(i\xi))$, the theorem about differentiation of solutions of ODE with respect to parameters implies that the mapping $\mathbb{R}^{1+n} \ni (t,\xi) \mapsto \exp(tP(i\xi)) \in M_m$ is infinitely differentiable. Therefore, for any $t \in \mathbb{R}$, the formula

(3.7)
$$\phi_t(\xi) := \exp(tP(i\xi)), \quad \xi \in \mathbb{R}^n,$$

defines a function $\phi_t \in C^{\infty}(\mathbb{R}^n; M_m)$.

Theorem 3.3. The condition (1.9) from Theorem 1.1 is satisfied if and only if

(3.8) $\phi_t \in \mathcal{O}_M(\mathbb{R}^n; M_m)$ for every $t \in [0, \infty[$, and the functions in $\{\phi_t : t \in [0, T]\}$ increase uniformly slowly for each $T \in [0, \infty[$.

Furthermore, if the equivalent conditions (1.9) and (3.8) are satisfied, then $\mathfrak{F}S_t = \phi_t$ for all $t \in [0, \infty[$, and, for each fixed $\omega \in \mathbb{R}$,

(3.9) the semigroup of convolution operators $(e^{-\omega t}S_t *)_{t\geq 0} \subset L(\mathcal{S}(\mathbb{R}^n; \mathbb{C}^m);$ $\mathcal{S}(\mathbb{R}^n; \mathbb{C}^m))$ is equicontinuous

if and only if

(3.10) the functions in $\{e^{-\omega t}\phi_t : t \in [0,\infty[\} \text{ increase uniformly slowly.}$

Proof of $(1.9) \Rightarrow (3.8)$. If (1.9) is satisfied, then $((\mathcal{F}S_t) \cdot)_{t \geq 0} \subset L(\mathcal{S}(\mathbb{R}^n; \mathbb{C}^m);$ $\mathcal{S}(\mathbb{R}^n; \mathbb{C}^m))$ is a one-parameter semigroup of multiplication operators such that for every $\phi \in \mathcal{S}(\mathbb{R}^n; \mathbb{C}^m)$ the trajectory $[0, \infty[\ni t \mapsto (\mathcal{F}S_t) \cdot \varphi \in \mathcal{S}(\mathbb{R}^n; \mathbb{C}^m)]$ is infinitely differentiable. The infinitesimal generator of this semigroup is multiplication by the function

$$(3.11) G: \mathbb{R}^n \ni \xi \mapsto P(i\xi) \in M_m$$

which belongs to $\mathcal{O}_M(\mathbb{R}^n; M_m)$. Consequently, whenever $\varphi \in \mathcal{S}(\mathbb{R}^n; \mathbb{C}^m)$ and $t \in [0, \infty[$, then $\frac{d}{dt}(\mathfrak{F}S_t) \cdot \varphi = G \cdot (\mathfrak{F}S_t) \cdot \varphi$, with differentiation in the topology of $\mathcal{S}(\mathbb{R}^n; M_m)$. It follows that $\frac{d}{dt}(\mathfrak{F}S_t)(\xi) = P(i\xi)(\mathfrak{F}S_t)(\xi)$ for every $(t, \xi) \in [0, \infty[\times \mathbb{R}^n]$. Furthermore, $(\mathfrak{F}S_0)(\xi) = (\mathfrak{F}\delta)(\xi) = 1$ for every $\xi \in \mathbb{R}^n$. The last two properties imply that

(3.12)
$$(\mathfrak{F}S_t)(\xi) = \exp(tP(i\xi)) \quad \text{for every } (t,\xi) \in [0,\infty[\times\mathbb{R}^n.$$

Now the implication $(1.9) \Rightarrow (3.8)$ is an easy consequence of (3.7), (3.12), Theorem 3.1, the Banach–Steinhaus theorem, and Theorem 3.2.

Proof of $(3.8) \Rightarrow (1.9)$. If (3.8) is satisfied, then the multiplication operators $\phi_t \cdot \text{constitute a one-parameter semigroup}$

(3.13)
$$(\phi_t \cdot)_{t \ge 0} \subset L(\mathcal{S}(\mathbb{R}^n; \mathbb{C}^m); \mathcal{S}(\mathbb{R}^n; \mathbb{C}^m)).$$

Since the mapping $\mathbb{R}^{1+n} \ni (t,\xi) \mapsto \phi_t(\xi) = \exp(tP(i\xi)) \in M_m$ is infinitely differentiable, from (3.8) it follows that for every $\varphi \in \mathcal{S}(\mathbb{R}^n; \mathbb{C}^m)$ the trajectory $[0, \infty[\ni t \mapsto \phi_t \cdot \varphi \in \mathcal{S}(\mathbb{R}^n; \mathbb{C}^m)$ of the semigroup (3.13) is infinitely differentiable. The infinitesimal generator of the semigroup (3.13) is the multiplication operator $\frac{d}{dt}(\phi_t \cdot)|_{t=0} = G \cdot$ where $G \in \mathcal{O}_M(\mathbb{R}^n; M_m)$ is defined by (3.11). Consequently, by Theorem 3.1,

$$((\mathcal{F}^{-1}\phi_t)*)_{t\geq 0} = (\mathcal{F}^{-1}\circ(\phi_t\cdot)\circ\mathcal{F})_{t\geq 0} \subset L(\mathcal{S}(\mathbb{R}^n;\mathbb{C}^m);\mathcal{S}(\mathbb{R}^n;\mathbb{C}^m))$$

is a semigroup with infinitely differentiable trajectories and infinitesimal generator $(\mathcal{F}^{-1}G) * = (P(\partial/\partial x)\delta) *$. By the Banach–Steinhaus theorem, the mapping $[0, \infty[\ni t \mapsto \mathcal{F}^{-1}\phi_t \in \mathcal{O}'_C(\mathbb{R}^n; M_m)$ is infinitely differentiable in the topology of $\mathcal{O}'_C(\mathbb{R}^n; M_m)$, i.e. the topology induced from $L_\beta(\mathcal{S}(\mathbb{R}^n; \mathbb{C}^m);$ $\mathcal{S}(\mathbb{R}^n; \mathbb{C}^m))$.

Proof of $(3.9) \Leftrightarrow (3.10)$. We have already proved that (1.9) implies (3.12). Therefore the relation $(1.9) \Rightarrow [(3.9) \Leftrightarrow (3.10)]$ is a consequence of Theorem 3.2.

4 Proof of Theorem 1.1

A. Necessity of the Petrovskiĭ condition

Proof of $(1.9) \Rightarrow (1.8)$. By Theorem 3.3, instead of showing that (1.9) implies the Petrovskiĭ condition (1.8), it is sufficient to prove that (3.8) implies (1.8). Thus assume that (3.8) holds. Then the mapping $\mathbb{R}^n \ni \xi \mapsto \phi_1(\xi) = \exp(P(i\xi)) \in M_m$ belongs to $\mathcal{O}_M(\mathbb{R}^n; M_m)$. For any $\xi \in \mathbb{R}^n$,

$$\rho(\xi) := \exp(\max\{\operatorname{Re} \lambda : \lambda \in \sigma(P(i\xi))\})$$

is equal to the spectral radius of the matrix $\phi_1(\xi)$. Hence $\rho(\xi)$ is no greater than $\|\phi_1(\xi)\|_{M_m} = \max\{\|\phi_1(\xi)z\|_{\mathbb{C}^m} : z \in \mathbb{C}^m, \|z\|_{\mathbb{C}^m} \leq 1\}$. Since $\phi_1 \in \mathcal{O}_M(\mathbb{R}^n; M_m)$, it follows that there are $C \in [0, \infty[$ and $k \in \mathbb{R}$ such that

 $\rho(\xi) \le C(1+|\xi|)^k \quad \text{for every } \xi \in \mathbb{R}^n,$

or, what is the same,

(4.1) $\max\{\operatorname{Re} \lambda : \lambda \in \sigma(P(i\xi))\} \le \log C + k \log(1+|\xi|)$ for every $\xi \in \mathbb{R}^n$.

By the Lemma of L. Gårding from [G], p. 11, the inequality (4.1) implies that

(4.2) the function $\mathbb{R}^n \ni \xi \mapsto \max\{\operatorname{Re} \lambda : \lambda \in \sigma(P(i\xi))\} \in \mathbb{R}$ is bounded,

which means that (1.8) is satisfied ⁹.

⁹The implication $(4.1) \Rightarrow (4.2)$ was conjectured by I. G. Petrovskiĭ in [P], footnote on p. 24. L. Hörmander observed that, replacing part of Gårding's proof by a direct argument based on the projection theorem for semi-algebraic subsets of \mathbb{R}^n , one can obtain still another result having important applications to PDE. See the Appendix to [H].

B. Sufficiency of the Petrovskii condition

We will base on the inequality

(4.3) if
$$A \in M_m$$
, $\omega_A = \max\{\operatorname{Re} \lambda : \lambda \in \sigma(A)\}$ and $t \in [0, \infty[$, then
 $\|\exp(tA)\|_{L(\mathbb{C}^m)} \leq e^{\omega_A t} \left(1 + \sum_{k=1}^{m-1} \frac{(2t)^k}{k!} \|A\|_{L(\mathbb{C}^m)}^k\right).$

This is proved in Sec. II.6.1 of [G-S] by means of the Genocchi–Hermite formula¹⁰ for the divided differences, related to interpolation polynomials of Newton. The same proof of (4.3) is given in Sec. 7.2 of [F].

In the notation of Section 1, let d be the degree of $P(i\xi)$ treated as a polynomial on \mathbb{R}^n with coefficients in M_m .

Theorem 4.1. For every $\omega \in \mathbb{R}$ the following three conditions are equivalent:

 $(4.4) \quad \omega_0(P) \le \omega,$

(4.5)
$$\sup\{e^{-(\omega+\varepsilon)t}(1+|\xi|)^{-(m-1)d}\|\exp(tP(i\xi))\|_{L(\mathbb{C}^m)}: t\in[0,\infty[,\xi\in\mathbb{R}^n\} \\ <\infty \text{ for every }\varepsilon>0,$$

$$(4.6) \quad \sup\left\{e^{-(\omega+\varepsilon)t}(1+|\xi|)^{-(md-1)(|\alpha|+1)} \left\| \left(\frac{\partial}{\partial x}\right)^{\alpha} \exp(tP(i\xi)) \right\|_{L(\mathbb{C}^m)} : t \in [0,\infty[,\,\xi\in\mathbb{R}^n\right\} < 0 \text{ for every } \alpha\in\mathbb{N}^n_0 \text{ and every } \varepsilon > 0.$$

Proof of (4.4) \Rightarrow (4.5). There is $C \in [1, \infty[$ such that $||P(i\xi)||_{L(\mathbb{C}^m)} \leq C(1+|\xi|)^d$ for every $\xi \in \mathbb{R}^n$. If (4.4) holds, then by (4.3) for every $t \in [0, \infty[$ and $\xi \in \mathbb{R}^n$ one has

$$\|\exp(tP(i\xi))\|_{L(\mathbb{C}^m)} \le e^{\omega_0(P)t} \left(1 + \sum_{k=1}^{m-1} \frac{(2t)^k}{k!} C^k (1+|\xi|)^{kd}\right)$$
$$\le e^{\omega_0(P)t} m[(1+2t)C(1+|\xi|)^d]^{m-1},$$

whence (4.5) follows.

Proof of (4.5) \Rightarrow (4.6). Suppose that (4.5) holds. Then (4.6) is satisfied for $|\alpha| = 0$. By induction on $|\alpha|$ we will prove that (4.6) is satisfied for every $|\alpha| \in \mathbb{N}_0^n$. So suppose that (4.6) is satisfied whenever $|\alpha| \leq l$, and take any

 $^{^{10}}$ The formula is attributed to Genocchi and Hermite in Sec. 16 of the Appendix B to [Hig], p. 333.

 $\alpha_0 \in \mathbb{N}_0^n$ such that $|\alpha_0| = l + 1$. Let

$$U_{\alpha}(t,\xi) = \left(\frac{\partial}{\partial\xi}\right)^{\alpha} e^{tP(i\xi)},$$

$$V(t,\xi) = \sum_{\alpha \le \alpha_0, \, |\alpha| \le l} \binom{\alpha_0}{\alpha} \left[\left(\frac{\partial}{\partial\xi}\right)^{\alpha_0 - \alpha} P(i\xi) \right] U_{\alpha}(t,\xi).$$

Then

(4.7)
$$\sup\{e^{-(\omega+\varepsilon)t}(1+|\xi|)^{-(m-1)d}|U_0(t,\xi)|:t\in[0,\infty[,\,\xi\in\mathbb{R}^n\}<\infty$$

and

(4.8)
$$\sup\{e^{-(\omega+\varepsilon)t}(1+|\xi|)^{-(md-1)(l+2)+(m-1)d}|V(t,\xi)|: t \in [0,\infty[,\xi\in\mathbb{R}^n] < \infty$$

for every $\varepsilon > 0$, because whenever $|\alpha| \le l$, then

$$(d-l-1+|\alpha|) + (md-1)(|\alpha|+1) \le (d-1) + (md-1)(l+1)$$

= $(md-1)(l+2) - (m-1)d$.

Since

$$\frac{\partial}{\partial t}U_{\alpha_0}(t,\xi) = \left(\frac{\partial}{\partial \xi}\right)^{\alpha_0} \frac{\partial}{\partial t}U_0(t,\xi) = \left(\frac{\partial}{\partial \xi}\right)^{\alpha_0} [P(i\xi)U_0(t)]$$
$$= P(i\xi)U_{\alpha_0}(t,\xi) + V(t,\xi)$$

and $U_{\alpha_0}(0,\xi) = 0$, it follows that

(4.9)
$$U_{\alpha_0}(t,\xi) = \int_0^t U_0(t-\tau,\xi) V(\tau,\xi) \, d\tau.$$

From (4.7)–(4.9) it follows that

$$\sup\{e^{-(\omega+\varepsilon)t}(1+|\xi|)^{-(md-1)(l+2)}|U_{\alpha_0}(t,\xi)|:t\in[0,\infty[,\,\xi\in\mathbb{R}^n\}<\infty$$

for every $\varepsilon > 0$, so that (4.6) holds whenever $|\alpha| \le l + 1$.

Proof of (4.6) \Rightarrow (4.4). If (4.6) holds, then, taking $\alpha = 0$, one concludes that

$$\max\{\operatorname{Re} \lambda : \lambda \in \sigma(P(i\xi))\} = \lim_{t \to \infty} \frac{1}{t} \log \|\exp(tP(i\xi))\|_{L(\mathbb{C}^m)} \le \omega$$

for every $\xi \in \mathbb{R}^n$, whence $\omega_0(P) \leq \omega$. See [E-N], Sec. IV.2, Corollary 2.4, p. 252.

Now we are in a position to complete the proof of Theorem 1.1, i.e. to prove the implication $(1.8) \Rightarrow (1.9)$ and the equality (1.10). Indeed, if (1.8)holds, then, by Theorem 4.1, $\omega_0(P)$ is equal to the infimum of the numbers ω such that the functions

$$\phi_t : \mathbb{R}^n \ni \xi \mapsto e^{-\omega t} \exp(tP(i\xi)) \in M_m$$

increase uniformly slowly for t ranging over $[0, \infty[$. By Theorem 3.3, this in turn implies that the distributions $S_t := \mathcal{F}^{-1}\phi_t$ constitute an i.d.c.s. $(S_t)_{t\geq 0} \subset \mathcal{O}'_C(\mathbb{R}^n; M_m)$ satisfying (1.10) and having the infinitesimal generator $P(\partial/\partial x)\delta$.

5 Remarks

Remark 5.1. We have

Lemma 5.1. Suppose that the equivalent conditions (1.8) and (1.9) are satisfied, and d is the degree of $P(i\xi)$ treated as a polynomial on \mathbb{R}^n with coefficients in M_m . Suppose moreover that $k_0 \in \mathbb{N}$ and $k_0 \geq d + \frac{1}{2}(md-1)(n+2) + \frac{1}{2}(n+1)$. Then there is a mapping $(t \mapsto f_t) \in C^1([0,\infty[; L^1(\mathbb{R}^n; M_m))$ such that

(5.1)
$$\sup_{\omega} \left\{ e^{-\omega t} \left\| \left(\frac{d}{dt} \right)^l f_t \right\|_{L^1(\mathbb{R}^n; M_m)} : t \in [0, \infty[, l = 0, 1] \right\} < \infty \text{ for every}$$
$$\omega > \omega_0(P)$$

and

(5.2) $S_t = (1 - \Delta)^{k_0} f_t$ for every $t \in [0, \infty[,$

the action of the differential operator $(1-\Delta)^{k_0}$ being understood in the sense of distributions ¹¹.

Proof. Whenever $|\alpha| \leq n+1$, $l = 0, 1, 2, t \in [0, \infty[$ and $\omega > \omega_0(P)$, then, by (2.8) and (4.6),

$$\int_{\mathbb{R}^n} \left| \left(\frac{\partial}{\partial \xi} \right)^{\alpha} \left[(1 + |\xi|^2)^{-k_0} \left(\frac{d}{dt} \right)^l \phi_t(\xi) \right] \right| d\xi$$
$$= \int_{\mathbb{R}^n} \left| \left(\frac{\partial}{\partial \xi} \right)^{\alpha} [(1 + |\xi|^2)^{-k_0} (P(i\xi))^l \phi_t(\xi)] \right| d\xi$$
$$\leq \operatorname{const} \cdot e^{\omega t} \int_{\mathbb{R}^n} (1 + |\xi|^2)^{-k_0 + \frac{1}{2}ld + \frac{1}{2}(md-1)(n+2)} d\xi = \operatorname{const} \cdot e^{\omega t}$$

¹¹The equality (5.2) should be compared with (2.6).

This implies that whenever $|\alpha| \leq n+1$, then

$$[0,\infty[\ni t \mapsto x^{\alpha} f_t = x^{\alpha} (1-\Delta)^{-k_0} S_t \in C_b(\mathbb{R}^n; M_m)$$

is a C^1 -mapping such that

$$\sup\left\{e^{-\omega t}\left\|x^{\alpha}\left(\frac{d}{dt}\right)^{l}f_{t}\right\|_{C_{b}(\mathbb{R}^{n};M_{m})}:t\in[0,\infty[,\,l=0,1\right\}<\infty$$

and hence the mapping $[0, \infty[\ni t \mapsto f_t \in L^1(\mathbb{R}^n; M_m) \text{ satisfies (5.1) and (5.2).}$

Following L. Schwartz [S], Sec. VI.8, for every $p \in [1, \infty]$ denote by $\mathcal{D}_{L^p}(\mathbb{R}^n; \mathbb{C}^m)$ the Fréchet space of all functions $\varphi \in C^{\infty}(\mathbb{R}^n; \mathbb{C}^m)$ such that $(\partial/\partial x)^{\alpha}\varphi \in L^p(\mathbb{R}^n; \mathbb{C}^m)$ for every $\alpha \in \mathbb{N}_0^n$. Whenever $1 \leq p < q \leq \infty$, then

$$\mathcal{S}(\mathbb{R}^n; \mathbb{C}^m) \subset \mathcal{D}_{L^p}(\mathbb{R}^n; \mathbb{C}^m) \subset \mathcal{D}_{L^q}(\mathbb{R}^n; \mathbb{C}^m) \subset \mathcal{S}'(\mathbb{R}^n; \mathbb{C}^m).$$

If the equivalent conditions (1.8) and (1.9) are satisfied and $\varphi \in \mathcal{D}_{L^p}(\mathbb{R}^n; \mathbb{C}^m)$ for some $p \in [1, \infty]$, then, by Lemma 5.1,

(5.3)
$$S_t * \varphi = f_t * (1 - \Delta)^{k_0} \varphi \quad \text{for every } t \in [0, \infty[$$

where, for fixed $t, S_t * \varphi$ is understood as the convolution of the distribution $S_t \in \mathcal{O}'_C(\mathbb{R}^n; M_m)$ with the distribution $\varphi \in \mathcal{S}'(\mathbb{R}^n; \mathbb{C}^m)$, while, again for fixed t, the right side of (5.3) is the convolution of the function $f_t \in L^1(\mathbb{R}^n; M_m)$ and the function $(1 - \Delta)^{k_0} \varphi \in \mathcal{D}_{L^p}(\mathbb{R}^n; \mathbb{C}^m)$. From (5.3) one infers easily that for any fixed $p \in [1, \infty]$,

(5.4) $((S_t *)|_{\mathcal{D}_{L^p}(\mathbb{R}^n;\mathbb{C}^m)})_{t\geq 0} \subset L(\mathcal{D}_{L^p}(\mathbb{R}^n;\mathbb{C}^m);\mathcal{D}_{L^p}(\mathbb{R}^n;\mathbb{C}^m))$ is a one-parameter semigroup of operators with all trajectories in $C^{\infty}([0,\infty[;\mathcal{D}_{L^p}(\mathbb{R}^n;\mathbb{C}^m)))$ and with infinitesimal generator $P(\partial/\partial x)|_{\mathcal{D}_{L^p}(\mathbb{R}^n;\mathbb{C}^m)}$.

Furthermore, if $\omega_0(P) \leq \omega < \infty$, then

(5.5) for every $\varepsilon > 0$ the semigroup of operators $(e^{-(\omega+\varepsilon)t}(S_t*)|_{\mathcal{D}_{L^p}(\mathbb{R}^n;\mathbb{C}^m)})_{t\geq 0}$ $\subset L(\mathcal{D}_{L^p}(\mathbb{R}^n;\mathbb{C}^m);\mathcal{D}_{L^p}(\mathbb{R}^n;\mathbb{C}^m))$ is equicontinuous.

Notice that (5.4) for $p = \infty$ is equivalent to the original result of I. G. Petrovskii [P] proved in 1938 by an elementary method (discussed in Sec. 12 of [K]). From Theorem 1 of [K] it follows that if p = 2 or $p = \infty$, then (5.5) holds if and only if $\omega_0(P) \leq \omega < \infty$. In connection with (5.5) let us recall that the theory of equicontinuous one-parameter semigroups in locally convex spaces is presented in Chapter IX of [Y].

Directly from Theorem 1.1 it follows that if $E = \mathcal{S}(\mathbb{R}^n; \mathbb{C}^m)$ or $E = \mathcal{S}'(\mathbb{R}^n; \mathbb{C}^m)$, then $((S_t *)|_E)_{t \geq 0} \subset L(E; E)$ is a one-parameter semigroup

of operators with all trajectories in $C^{\infty}([0, \infty[; E)$ and with infinitesimal generator $P(\partial/\partial x)|_{E}$.

A prototype of the above results is Theorem 10.1 of T. Ushijima [U], p. 118, in which $E = \{u \in L^2(\mathbb{R}^n; \mathbb{C}^m) : P(\partial/\partial x)^k u \in L^2(\mathbb{R}^n; \mathbb{C}^m) \text{ for } k = 1, 2, ...\}$ and the topology of E is determined by the system of seminorms $\|P(\partial/\partial x)^k u\|_{L^2(\mathbb{R}^n;\mathbb{C}^m)}, k = 0, 1, ...$ In the proof of Ushijima's theorem an application of inequality (4.3) is replaced by estimations based on the interpolation polynomials of E. A. Gorin.

Remark 5.2. A distribution $G \in \mathcal{O}'_C(\mathbb{R}^n; M_m)$ is the infinitesimal generator of an i.d.c.s. $(S_t)_{t\geq 0} \subset \mathcal{O}'_C(\mathbb{R}^n; M_m)$ if and only if there are $a \in [0, \infty[$ and $b \in \mathbb{R}$ such that

(5.6) $\max\{\operatorname{Re} \lambda : \lambda \in \sigma((\mathcal{F}G)(\xi)\} \le a \log(1+|\xi|) + b \quad \text{for every } \xi \in \mathbb{R}^n.$

Furthermore,

(5.7)
$$\max\{\operatorname{Re}\lambda:\lambda\in\sigma((\mathcal{F}G)(\xi)),\,\xi\in\mathbb{R}^n\}\leq\omega<\infty$$

if and only if

(5.8) for every $\varepsilon > 0$ the semigroup of operators $(e^{-(\omega+\varepsilon)t}S_t*)_{t\geq 0} \subset L(\mathcal{S}(\mathbb{R}^n; \mathbb{C}^m); \mathcal{S}(\mathbb{R}^n; \mathbb{C}^m))$ is equicontinuous.

The above follows by arguments similar to those used in the proof of Theorem 1.1. This time it is not asserted that $(5.6) \Leftrightarrow (5.7)$. In the pioneering paper [P] of I. G. Petrovskiĭ the case of $G = (\partial/\partial x)\delta$ was investigated, but instead of (1.8) the condition

(5.9)
$$\max\{\operatorname{Re} \lambda : \lambda \in \sigma(P(i\xi))\} \le a \log(1+|\xi|) + b \quad \text{for every } \xi \in \mathbb{R}^n$$

was used. The equivalence $(1.8) \Leftrightarrow (5.9)$ was only a hypothesis at that time.

Remark 5.3. Similarly to operator semigroups (5.4) one can consider the operator semigroups related to the Cauchy problem for systems of PDE of the form

$$A\left(\frac{\partial}{\partial x}\right)\frac{\partial}{\partial t}\vec{u}(t,x) = B\left(\frac{\partial}{\partial x}\right)\vec{u}(t,x) \quad \text{ for } (t,x) \in [0,\infty[\times\mathbb{R}^n]$$

with given $\vec{u}(0, x)$. The corresponding i.d.c.s. is defined as follows. $A(\zeta_1, \ldots, \zeta_n)$ and $B(\zeta_1, \ldots, \zeta_n)$ are $m \times m$ matrices whose entries are complex polynomials of n variables ζ_1, \ldots, ζ_n . It is assumed that

$$A(i\xi_1,\ldots,i\xi_n)$$
 is invertible for every $(\xi_1,\ldots,\xi_n) \in \mathbb{R}^n$

$$\sup\{\operatorname{Re} \lambda : \lambda \in \mathbb{C}, \, \xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n, \, \det(\lambda A(i\xi) - B(i\xi)) = 0\} < \infty.$$

Then there is a unique i.d.c.s. $(S_t)_{t\geq 0} \subset \mathcal{O}'_C(\mathbb{R}^n; M_m)$ whose infinitesimal generator is the distribution in $\mathcal{O}'_C(\mathbb{R}^n; M_m)$ whose Fourier transform is the function $\xi \mapsto A(i\xi)^{-1}B(i\xi)$. This last function belongs to $\mathcal{O}_M(\mathbb{R}^n; M_m)$ by the same argument as in Example A.2.7 in the Appendix to [H]. From the result obtained in this way for systems of PDE one can deduce the theorem of J. Rauch [R], p. 128, concerning a single PDE of higher order.

References

- [E-N] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, 2000.
- [F] A. Friedman, Generalized Functions and Partial Differential Equations, Prentice-Hall, 1963.
- [G] L. Gårding, Linear hyperbolic partial differential equations with constant coefficients, Acta Math. 85 (1951), 1–62.
- [G-S] I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 3, Theory of Differential Equations, Fizmatgiz, Moscow, 1958 (in Russian); English transl.: Academic Press, 1967.
- [Hig] N. J. Higham, Functions of Matrices, Theory and Computation, SIAM, 2008.
- [H] L. Hörmander, The Analysis of Linear Partial Differential Operators II. Operators with Constant Coefficients, Springer, 1983.
- [K] J. Kisyński, The Petrovskii correctness and semigroups of operators, preprint, arXiv:0910.1120, 2009.
- [P] I. G. Petrovskiĭ, Über das Cauchysche Problem für ein System linearer partieller Differentialgleichungen im Gebiete der nichtanalytischen Funktionen, Bulletin de l'Université d'Etat de Moscou 1 (1938), no. 7, 1–74.
- [R] J. Rauch, Partial Differential Equations, Springer, 1991.
- [S] L. Schwartz, *Théorie des Distributions*, nouvelle éd., Hermann, Paris, 1966.

- [U] T. Ushijima, On the generation and smoothness of semi-groups of linear operators, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 19 (1972), 65–127; Correction, ibid. 20 (1973), 187–189.
- [Y] K. Yosida, Functional Analysis, 6th ed., Springer, 1980.