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Abstract

The Cauchy problem on [0, 00 x R™ is considered for systems of
PDE with constant coefficients. The spectral condition of I. G. Petro-
vskil is proved to be necessary and sufficient for existence of a fun-
damental solution having the form of a convolution semigroup of
distributions on R"™ rapidly decreasing in the sense of L. Schwartz.

1 Introduction and main results

Denote by S(R™) the space of infinitely differentiable rapidly decreasing
functions on R"™, and by S’(R") the space of tempered distributions. If
v € S(R") and T' € §'(R") then the convolution 7" % ¢ makes sense (and is
an infinitely differentiable slowly increasing function). Therefore the set

OL(R™") ={T € S'(R") : T+ ¢ € S(R") for every p € S(R")}

is well defined. The elements of O (R") will be called the rapidly decreasing
distributions on R™ 1. For every T' € O (R"™) the convolution operator T x is
a continuous linear operator from S(R™) into S(R"), and a continuous linear
operator from S&'(R") into §'(R™). Furthermore, O (R™) is a convolution
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1Our definition of O (R™) is equivalent to one given in Sec. VL5 of [S], p. 244. See
Theorem 2.2.
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algebra 2. The topology in O4(R™) is induced by the mapping O > T +—
T * € Lg(S(R™),S(R™)) 3.

Let m € N, and let M,,, be the set of m xm matrices with complex entries.
The above facts referring to classes of scalar functions and distributions
remain valid for analogous classes of M,,-valued functions and distributions
like S(R™; M,,), S'(R™; M,,), Op(R™; M,,).

By a one-parameter infinitely differentiable convolution semigroup in

OL(R™; M,,), briefly i.d.c.s., we mean a mapping
(1.1)  [0,00[ 2t +— S, € OL(R™; M,,)

such that

(1.2)  Sis =Sy * S, for every st € [0, 00,

(1.3)  Sp = 1 ® ¢ where 1 is the unit m x m matrix and 0 is the Dirac
distribution,

(1.4)  the map (1.1) is infinitely differentiable.

In (1.4) it is understood that the derivatives at zero are right-side deriva-
tives, and that the topology in O (R"; M,,) is that defined above.

The infinitesimal generator of the i.d.c.s. (St)>0 C Op(R™; M,,) is de-
fined as the distribution

d
G:=—5, € On(R™; M,,).
dt |,_,

It follows that
d

ESt =Gx*S, =9 *G forevery t € [0,00].

Furthermore, any i.d.c.s. in On(R™; M,,) is uniquely determined by its in-
finitesimal generator. Indeed, suppose that a distribution G € O (R"; M,,)
is the infinitesimal generator of two i.d.c.s. (S)i>0, (T})i>0 C On(R™; M,,).
Fix any t € ]0,00[. Using the Banach—Steinhaus theorem, one concludes
that the function

[0,t] 57— S:x T € On(R™; M,,)

is infinitely differentiable and % (S, *xT,—;) = (%ST) x Ty + S, % (d%Tt_T).

Consequently, < (S, *T,_;) = (S; * G) x T_r — S, % (G * T,_;) = 0 for

dr

2Due to our definition of O (R") it is convenient to define convolution in Of (R")
imitating Sec. V1.3 of [Y], pp. 158-159.

3The subscript 4 means that L(S(R"),S(R")) is equipped with the topology of uni-
form convergence on bounded subsets of S(R™). By Theorem 2.2 below, the above topol-
ogy in Op(R™) coincides on bounded subsets of O (R™) with the topology defined in
Sec. VIL5 of [S], p. 244.
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every 7 € [0,t], so that S, x T;_, is independent of 7 for 7 € [0,¢], and
Sy =8 * Tt rlrmy = Sr Ty 7|70 = T1.

Let now d € N, and suppose that for every multiindex oo = (o, ..., ) €
N§ of length |a| = ag + -+ + a,, < d we are given a matrix A, € M,,.
Consider the matricial differential operator with constant coefficients

(1.5) P(%) = A, (a%)a

laf<d

where (0/0x)* = (0/0x1)* -+ (0/0xy,)*, and its symbol

(1.6) P(ig) = Y i¢*A, € M,

lo|<d
where £ = (&,...,&,) € R" and £* = & --- €3, Thus the symbol is an
mxXm matrix whose entries are polynomials on R” with complex coefficients.
The Petrovskii index wo(P) of the differential operator P(0/0x) is defined
to be

(1.7) wo(P) =sup{Re A : XA € o(P(i)), £ e R"}
=sup{ReA: A € C, £ € R",det(A1l — P(i£)) = 0}

where o(B) denotes the spectrum of the matrix B € M,,.

Our aim is to prove

Theorem 1.1. For every matricial differential operator with constant coef-

ficients of the form (1.5) the following two conditions are equivalent:

(1.8)  wo(P) < o0,

(1.9)  the My-valued distribution P(0/0x)0 = 3, 4 Aa @ (0/0x)%0 is
the infinitesimal generator of an i.d.c.s. (Si)i>0 C On(R™; M,,).

Furthermore, if these equivalent conditions are satisfied, then

(1.10)  wo(P) = inf{w € R : (e7“'S; *);>0 is an equicontinuous semigroup
of operators on S(R™; M,,)}.

In Theorem 1.1 the Petrovskii condition (1.8) plays an independent role.
But most frequently (1.8) occurs as part of the Garding assumptions of
hyperbolicity for the non-characteristic Cauchy problem. The relation be-
tween Theorem 1.1 and the hyperbolic situation may by elucidated by the

following result whose proof is omitted in the present paper *.

4The proof of Theorem 1.2 is based on Lemma 2.8 from [G], the Paley—Wiener—
Schwartz theorem about Fourier transforms of compactly supported distributions, and
the non-uniqueness theorem for the characteristic Cauchy problem.
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Theorem 1.2. Suppose that the condition (1.8) is satisfied, let (Si)i>0 C
On(R™; M,,,) be the i.d.c.s. generated by the M,,-valued distribution
P(0/0x)é, and let

det()\]l — P(§17 . ,fn)) = )\m + qm—l(gla e 7£m))\m—1
+o &L G)AF (& 6.

Then

(1.11)  there is r € ]0, 00[ such that max{|x| : x € supp S;} < rt for every
t €0, 00]

of and only iof

(1.12)  for everyk =0,...,m—1 the degree of the polynomial qi((1, - - ., ()
15 no greater than m — k.

The condition (1.12) may be equivalently expressed by saying that

(1.12)"  the vector (1,0,...,0) € R™™ is not characteristic for the polyno-
mial g(A, (1, ..., (),

ie. p(1,0,...,0) # 0 where p(\, (3, ...,(,) is the main homogeneous part
of ¢(A\,(1,...,G,). In the terminology of [G], conditions (1.8) and (1.12)’
together mean that the polynomial g(\, (i, ..., (,) is hyperbolic with respect
to the vector (1,0,...,0) € R*". The hyperbolicity of ¢(\, (1, ..., (,) with
respect to (1,0, ...,0) implies its hyperbolicity with respect to (—1,0,...,0).
Therefore if the M,,-valued distribution P(0/0x)d is the generator of an
i.d.c.s. satisfying (1.12), then so also is —P(0/0x)d, and hence the i.d.c.s.
generated by P(0/0x)d extends to an infinitely differentiable one-parameter
convolution group of distributions with compact support.

2 Rapidly decreasing distributions on R"

Sections 2 and 3 are devoted to a self-contained presentation of some results
identical or similar to those stated, in part without proofs, in the book of
L. Schwartz [S]. These results constitute a basis for our subsequent argu-
ments, and for this reason we give complete proofs.

Let Dpi(R™) be the space of infinitely differentiable complex functions
¢ on R™ such that (9/0x)%p € LY(R") for every a=(ay,...,a,) NI The
topology in D1 (R") is determined by the system of seminorms p,(p) =
Jen 1(0/02) %@ ()| dz, @ € N§, ¢ € Dpi(R"). Dpi(R™) is a Fréchet space,
and D(R") is densely and continuously imbedded in D1 (R™). We say that a
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distribution 7" € D'(R") is bounded on R™ if it extends to a linear functional
continuous on D1 (R™). The set of bounded distributions on R™ is denoted
by B'(R™).

Let Cp(R™) be the Banach space of complex continuous bounded func-
tions on R™. In the present section we will base on the following result
contained in [S].

Theorem 2.1. For any family B C D'(R™) the following three conditions

are equivalent:

(2.1)  there are m € Ny and a bounded subset {fr, : T € B', a € Nf,
la] < m} of Cp(R™) such that

T = Z (%) fra for everyT € B,

la<m

(2.2) B’ C B'(R") and the distributions belonging to B are equicontinuous
with respect to the topology of Dri(R™),

(2.3)  whenever ¢ € D(R™), then {T'x ¢ : T € B'} is a bounded subset of
Cy(R™).

Proof. The implications (2.1)=-(2.2)=(2.3) follow at once from two facts:

(i) whenever (2.1) holds, then

10 = 3 1 [ frato)(5-) el

la<m
for every T € B’ and ¢ € D(R"),
(i) (T*¢)(x) =(T,p(x — ")) for every T' € B, ¢ € D(R") and = € R™.

The implication (2.3)=-(2.1) is proved by a more refined argument similar
to one on p. 196 of [S]. Let the subscript x denote translation by z, and
superscript V the reflection. Suppose that (2.3) holds. Since (T * ¢)(z) =
(T,)Y, ), (2.3) implies that {(T)Y : T € B, x € R"} is a pointwise
bounded family of continuous linear functionals on D(R™). Since D(R™) is
a barrelled space, the Banach—Steinhaus theorem implies that this family
is equicontinuous. Let K = {y € R" : |y| < 1}. Equicontinuity of {(7)" :
T € B, x € R"} implies that there are k € Ny and C' € |0, oo[ such that
whenever ¢ € C¥(R™), T € B and x € R™, then

(T x)@) = (L) 9] < 0sup{](a%)aso<y>\ ol <hyen)
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This estimate implies that whenever ¢ € Ck(R™) C &'(R"), then for every
T € B the distribution ¢ * T" is a function belonging to C,(R™), and

(2.4) {¢+T :T € B'} is a bounded subset of C,(R™).

If | € N is sufficiently large and E is the fundamental solution for A!
depending only on |z|, then £ € C*(R") and E|gn (o3 € C*(R"\{0}) °. Let
v € C2(R") be such that (z) = 1 whenever |z| < 1/2. Then yE € CF(R"),
(1—7)E € C*(R"), and A[(1 —~)E] € C(R"). For every T € B’ one has

T = ANbx BxT = A(E)« T) + [A((1 ~)E)| +T = Alfi + gr
where
fr=0@E)«T and gr=A((1—-~)E)=T.

Furthermore, {fr : T € B'} and {gr : T € B’} are bounded subsets of
Cy(R™), by (2.4) and (2.3) respectively. Hence (2.3) implies (2.1).

Theorem 2.2. For every family of distributions F' C D'(R™) the following
three conditions are equivalent:

(2.5)  for every polynomial P(x1, ..., x,) the family of distributions {P-T :
T € F'} is a subset of B'(R™) equicontinuous with respect to the
topology of D1 (R™),

(2.6) there is a sequence (my)ren, C No and a mapping
No x F'3 (k,T) — {fT,k,a A Ng, |Q" < mk} C Ob(Rn)

such that

a «
7= 5 (52) frua whencver (5.T) € Nox 7

and

sup{(1 + |2))*| fraal : T € F, |a| < my, v € R"} < 00
for every k € Ny,

(2.7)  F' C Oc(R™) and the set {T* : T € F'} C L(S(R"); S(R")) is

equicontinuous.

®See Sec. VIL.10 of [S], Example 2, p. 288.
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If F' contains only one distribution 7', then, in accordance with the
definifion of O (R™) given in Section 1, each of the conditions (2.5)—(2.7)
means that T rapidly decreases at infinity. Such a definition is equivalent to
one in [S], Sec. VIL5, p. 244 6. The equivalence (2.6)<(2.7) is fundamental
for the proof of Theorem 1.1.

Proof of (2.5)=>(2.6). Let > € C*(R") be the function such that r?(x) =
|z =22 + -+ - + 22 for every z = (21,...,2,) € R". Then

(2.8) (1+ 7’2)%“”&(2

63:) (14737 € Cy(R™)

for all a € |0, 00[ and a € N,

because (0/0x)*((1+71%)~) = (1+r2)~2"1*I P, where P, is a polynomial on
R™ of degree no greater than |a|. Suppose that (2.5) is satisfied. Fix k € Ny.
By the implication (2.2)=-(2.1) from Theorem 2.1, there is m; € Ny and for
every T' € F' and 8 € N such that |3] < my, there is gry s € Cp(R") such

that
2k A
T=(1+r2)" i
1+r)™* > (8x) 91,18
|81 <My
and
(2.9) sup{|grrs(x)|: T € F', |8 < myg, x € R"} < oc.

It follows that

T = Z (%) fT,k,a

where

[B—a
Jrko = Z (—1)lF=e (g) 97,k,3 (%) (1+7r%)7"

By (2.8) and (2.9), one has

sup{(1 + |2|)**| frra(x)| : T € F, |a| < my, v € R"} < oo.

6For m = 1 and F’ consisting of a single T' the equivalence (2.5)<>(2.6) follows from
Theorem IX in Sec. VIL5 of [S], p. 244, stated there with just an indication of the method
of proof.
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Proof of (2.6)=-(2.7). Suppose that (2.6) holds. By the Banach-Steinhaus
theorem, (2.7) will follow once it is proved that whenever ¢ € S(R"), then
{T'x ¢ : T € F'} is a bounded subset of S(R"). Since (0/0z)*(T * ¢) =
T ((0/0x)%p), it is sufficient to show that

1 \*
sup{(l + §|x|) (T xp)(x)|: T eF, xe R"} < 00

for every ¢ € S(R") and k =n+1,n+2,.... So, fix any ¢ € S(R") and
k=n+1,n+2,.... Then, by (2.6), for every T' € F" and = € R" one has

(T * ¢)()| )
- |a|§zmk </|y|>é|x| ' /|x—y>é|x| ) Fraawl ‘ <f%) oo = y>‘ W
(3) " 2 (@ L8 ol [ o)

|oe| <my,

n

1 —k
< (1 + 5|;c|) (#{a e N1 ]a| < mk})QOka/ (1+Jy)) " dy,
where

Cr = sup{(1 + [y)*|fraa() : T € F', la] <my, y € R"} < o0,

Dy, = sup {(1 + 1y ((%)asf)(y)

Proof of (2.7)=-(2.5). Suppose that (2.7) holds. It is sufficient to prove (2.5)

for the monomials z* = " --- 2%, o = (v, ..., ;) € Nj. We will prove

:|a|§mk,yER"}<oo.

n

that whenever a € N} and ¢ € D(R), then
(2.10) {(z*T) * ¢ : T € F'} is a bounded subset of S(R™).

From (2.10) it follows that whenever a € Njj and ¢ € D(R), then {(z*T) *
¢ : T € F'} is a bounded subset of C,(R™), whence, by the implication
(2.3)=(2.2) of Theorem 2.1, condition (2.5) holds for the monomials z.

We will prove (2.10) by induction on |a|. If || = 0, then z* = 1 and
(2.10) is a direct consequence of (2.7). Furthermore, the condition

(2.10),,  the statement (2.10) holds for every ¢ € D(R") and o € Njj such
that |a| =m
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implies (2.10),,41. Indeed, if & = (ay, ..., ) and |af = m+1, then oy > 1
for some i = 1,...,n, so that « =  + v where § € Ny, |5| = m and
v = (0i1,---,0:n). Consequently, 2% = x;2° and

(2.11) (2°T) % ¢ = (2;2°T) % ¢ = 2;((2°T) % ) — (2°T) * (2;90)

for every T' € F' and ¢ € D(R"). If ¢ € D(R") is fixed then, by (2.10),,,
{(#°T) o : T € F'} and {(z°T) * (w;0) : T € F'} are bounded subsets of
S(R™), whence, by (2.11), so is {(z*T) x ¢ : T € F'}.

3 Infinitely differentiable slowly increasing
functions on R”

A function ¢ € C(R") is called continuous slowly increasing if

sup{(1 + [¢])""|¢(§)] : £ € R"} < o0

for some m € Ny. A function ¢ € C°(R") is called infinitely differentiable
slowly increasing 7 if for every k € Ny there is m;, € Ny such that

sup { (1-+ €)™

(%>a¢(§)‘ ca €Ny, o <k € R”} < 0.

The set of infinitely differentiable slowly increasing functions on R is denoted

by Op(R™). One has Oy (R™) € S'(R™). We will say that the functions

belonging to a subset @ of Oy (R™) are uniformly slowly increasing if for
every k € Ny there is m; € Ny such that

sup { (1-+1¢) ™

(%>a¢(§)‘ cped, ae Ny, |a| <k €€ R"} < 00.

Let J denote the Fourier transformation defined by

5(6) = (Fo)(€) = / e~ () da

n

for p € S(R™) and £ € R™. Then JF is a continuous automorphism of S(R"),
and it extends uniquely to a continuous automorphism of S;(R").

Theorem 3.1. ® FOL(R") = Oy (R").

"Infinitely differentiable slowly increasing functions play a fundamental role in Petro-
vskii’s paper [P] devoted to the Cauchy problem for systems of PDE whose coefficients
are either constant or depend only on time. See [P], Bedingung A, p. 3, and Lemmas 1
and 2, pp. 7-8.

8Theorem 3.1 is contained in Theorem XV of Sec. VILS8 of [S], p. 268. We present
a proof based directly on Theorem 2.2. The second part of our proof differs from that
in [S].
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Proof of FOL(R™) C Op(R™). Suppose that T € Op(R"). Fix k € N such
that k£ > n. Then, by (2.6), one has

FT = Y (i)°Ffria
loo| <my
where frr. € L'(R") and so Ffrra € Co(R™). Consequently FT is a
continuous slowly increasing function on R". Furthermore,

a «

(3.1) (6_§> FT = F((—iz)*T) for every a € Nj.

By (2.5) one has (iz)*T € O, (R™), so that, by what we have already proved,
F((iz)*T) is a continuous slowly increasing function. Since a € Nj} in (3.1)

is arbitrary, it follows that FT' € Oy (R™).

Proof of Oy (R") € FOL(R™). Pick ¢ € Op(R") and set T = F'¢. Then
T € S§'(R™). Furthermore, whenever ¢ € S(R"), then F(T'x¢) = (FT) - ¢ =
¢-p € S(R™), and hence T *x p € S(R™). It follows that T' € O4(R"), and
so ¢ = FT € FOL(R™).

Theorem 3.2. For any subset @ of Oy (R™) the following three conditions

are equivalent:

(3.2)  the functions belonging to @ increase uniformly slowly,

(3.3) the set {¢-: ¢ € P} C L(S(R"™); S(R™)) is equicontinuous,

(3.4)  the set {(F ') x: ¢ € &} C L(S(R™); S(R™)) is equicontinuous.
Proof. The implication (3.2)=(3.3) is straightforward. If ¢ € Oy;(R™), then
¢- € L(S(R"); S(R), (F'¢)* € L(S(R"); S(R™)) and (F'¢)x =T ' o
(¢-), so that (3.3)<(3.4). The implication (3.4)=(3.2) may be proved by

an argument based on (2.7)=(2.6), similar to one used in the proof of the
inclusion FO,(R™) C Oy (R™).

Remark 3.1. It is stressed by L. Schwartz that the condition (2.6) is strictly

weaker than the statement that

(35) =% (5) &

laj<m

for some m € N where all f, are continuous rapidly decreasing functions
on R™. Indeed, it is easy to see that

(3.6) if T satisfies (3.5) and ¢ € Oy (R"), then T % ¢ € Oy (R™).
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However, the example in Sec. VIL.5 of [S], p. 245, shows that if n = 1 and
do(z) = /2 for x € R, then ¢y € Op(R), and if Ty is a distribution
equal to the function ¢, then 7 satisfies (2.6) with F' = {T5}, so that
To € Op(R). If Ty were to satisfy (3.5), then, by (3.6), one would have
Ty * ¢y € Oy (R). But this does not hold because FTy = Foo = Ty = ¢,
where ¢ € C\ {0} is a constant, so that F¢, = Fdo = o, F(Ty * ¢p) =
Ty - Fp, = |c|?, and Ty * ¢ = |c|?0. Hence Tjy cannot be represented in the
form (3.5).

Note that Ty = ¢9 € On(R) N Op(R) differs only by a multiplicative
constant from a member of the infinitely differentiable convolution group in
O¢(R) whose infinitesimal generator is equal to i6”. This group is related
to the Schrédinger equation. See [R], Sec. 3.2-3.4 and 4.4.

Remark 3.2. Whenever ¢ € C*°(R"), then

¢ € Ou(R") = ¢-€ L(S(R"); S(R"))
= ¢ is a multiplier for S'(R") = ¢ € Oy (R").

Here the only non-trivial implication is the last one, resulting from The-
orem VI of Sec. VIL.4 of [S], p. 239, and stated in Sec. VIL5 of [S], after
Theorem X, p. 246. However, an element of Oy (R™) may not be a multi-
plier for O)(R™). Indeed, if n = 1 and, as in Remark 3.1, ¢o(z) = /2
for z € R, and Tj is the same function treated as a distribution on R, then
0 € Or(R), Ty € O4(R), and ¢,- Ty € S'(R) is a function identically equal
to one. Therefore @, - Ty & Of(R) and @, is not a multiplier for O (R).

In the following we will consider functions and distributions on R™ with
values in the space M,, of complex m X m matrices. In this setting the
theorems proved earlier for the scalar case remain valid.

Consider the matricial differential operator P(0/0x) defined by (1.5),
and its symbol P(i€) defined by (1.6). As 4 exp(tP(i€))=P(i€) exp(tP(if)),
the theorem about differentiation of solutions of ODE with respect to pa-
rameters implies that the mapping R™™ 3 (¢,&) — exp(tP(if)) € M,, is
infinitely differentiable. Therefore, for any ¢t € R, the formula

(3.7) ¢(§) = exp(tP(if)), & eR",
defines a function ¢, € C®°(R"; M,,).

Theorem 3.3. The condition (1.9) from Theorem 1.1 is satisfied if and
only if
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(3.8) ¢ € O (R™; M,,) for every t € [0,00[, and the functions in {¢; :
t € [0,T)} increase uniformly slowly for each T € ]0, c0].

Furthermore, if the equivalent conditions (1.9) and (3.8) are satisfied, then

FS; = ¢y for all t € [0,00], and, for each fizred w € R,

(3.9)  the semigroup of convolution operators (e “!S; *);>0 C L(S(R™; C™);
S(R™;C™)) is equicontinuous

if and only if

(3.10) the functions in {e “*¢; : t € [0,00[} increase uniformly slowly.

Proof of (1.9)=(3.8). If (1.9) is satisfied, then ((F5;) -)i>0 C L(S(R™;C™);
S(R™;C™)) is a one-parameter semigroup of multiplication operators such
that for every ¢ € S(R";C™) the trajectory [0,00[ > t — (FS;) - ¢ €
S(R™; C™) is infinitely differentiable. The infinitesimal generator of this

semigroup is multiplication by the function
(3.11) G:R">¢ P(i€) € My,

which belongs to Oy (R™; M,,). Consequently, whenever ¢ € S(R";C™)
and t € [0,00[, then 4(FS,) - ¢ = G- (FS;) - ¢, with differentiation in the
topology of S(R™; M,,). It follows that 4 (FS,)(&) = P(i€)(FS;) () for every
(t,€) € [0, 00 x R™. Furthermore, (F5)(§) = (F9)(§) = 1 for every £ € R™.
The last two properties imply that

(3.12) (FS) (&) = exp(tP(i€)) for every (t,&) € [0, 00] x R™.

Now the implication (1.9)=-(3.8) is an easy consequence of (3.7), (3.12),
Theorem 3.1, the Banach—Steinhaus theorem, and Theorem 3.2.

Proof of (3.8)=(1.9). If (3.8) is satisfied, then the multiplication operators
¢, - constitute a one-parameter semigroup

(3.13) (61 -)iz0 C LIS(R™;C™); S(R™C™),

Since the mapping R'"" 5 (¢,€) — ¢(§) = exp(tP(i€)) € M, is infinitely
differentiable, from (3.8) it follows that for every ¢ € S(R"™; C™) the trajec-
tory [0,00[ 2 ¢ — ¢ - o € S(R™;C™) of the semigroup (3.13) is infinitely
differentiable. The infinitesimal generator of the semigroup (3.13) is the
multiplication operator 4 (¢; -)|—o = G - where G € Oy (R"; M,,) is defined
by (3.11). Consequently, by Theorem 3.1,

(T ) %)iz0 = (T 0 (1) © Fhizo C L(S(R™ C™); S(R™C™))
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is a semigroup with infinitely differentiable trajectories and infinitesimal
generator (F'G) * = (P(0/0x)d) *. By the Banach-Steinhaus theorem, the
mapping [0,00[ > t — F ¢, € OL(R"™; M,,) is infinitely differentiable in
the topology of O (R"; M,,), i.e. the topology induced from Lg(S(R"™; C™);
S(R™;, C™)).

Proof of (3.9)<(3.10). We have already proved that (1.9) implies (3.12).
Therefore the relation (1.9)=[(3.9)<(3.10)] is a consequence of Theorem 3.2.

4 Proof of Theorem 1.1

A. Necessity of the Petrovskii condition

Proof of (1.9)=-(1.8). By Theorem 3.3, instead of showing that (1.9) implies
the Petrovskii condition (1.8), it is sufficient to prove that (3.8) implies
(1.8). Thus assume that (3.8) holds. Then the mapping R" 3 £ — ¢(§) =
exp(P(i€)) € M,, belongs to Oy (R™; M,,). For any £ € R",

p(&) :=exp(max{Re X : XA € o(P(i))})

is equal to the spectral radius of the matrix ¢;(£). Hence p(§) is no greater

than [|¢1(&)||ar,, = max{||¢1(§)z]|cm : 2 € C™, ||z]jlcm < 1}. Since ¢ €
O (R™; M,y,), it follows that there are C' € |0, 00[ and k € R such that

p(&) < C(L+|EDF  for every € € R",
or, what is the same,
(4.1) max{ReA: A € o(P(if))} <logC+klog(1+[¢|) for every & € R™.

By the Lemma of L. Garding from [G], p. 11, the inequality (4.1) implies
that

(4.2) the function R" 3 ¢ — max{Re A : XA € o(P(i£))} € R is bounded,

which means that (1.8) is satisfied .

9The implication (4.1)=>(4.2) was conjectured by I. G. Petrovskii in [P], footnote
on p. 24. L. Hormander observed that, replacing part of Garding’s proof by a direct
argument based on the projection theorem for semi-algebraic subsets of R™, one can
obtain still another result having important applications to PDE. See the Appendix
to [H].



14 J. Kisynski

B. Sufficiency of the Petrovskii condition

We will base on the inequality

(4.3) if A € My, wa = max{ReX : A € 0(A)} and ¢t € [0,00[, then
m—1
y (2t)*
fesplt)luen < (14 Y EX Al ey )
k=1
This is proved in Sec. I1.6.1 of [G-S] by means of the Genocchi-Hermite
formula!? for the divided differences, related to interpolation polynomials

of Newton. The same proof of (4.3) is given in Sec. 7.2 of [F].

In the notation of Section 1, let d be the degree of P(if) treated as a
polynomial on R™ with coefficients in M,,.

Theorem 4.1. For every w € R the following three conditions are equiva-
lent:

(4.4)  wo(P) <w,

(4.5)  sup{e” @1+ [g]) =D exp(tP(i€)) || Licm) ¢ € [0, 00f,§ € R"}

< oo for every e > 0,

(4.6) sup{e—(wﬁ)t(l + |¢])~(md=1)(lel+1) Lt e

L(Cm)

(@%)aexp(tp(ié))

[0,00], £ € ]R”} < 0 for every o € Ny and every € > 0.

Proof of (4.4)=(4.5). There is C € [1,00][ such that ||P(i&)||Lcm) < C(1+
|€])¢ for every & € R™. If (4.4) holds, then by (4.3) for every t € [0, 0o[ and
¢ € R” one has

L (20)F
lexp(ePiElzen < e (14 3 Ccra+ 1))

k=1
< e Mrm[(1 4 26)C(1 + €)™,

whence (4.5) follows.

Proof of (4.5)=-(4.6). Suppose that (4.5) holds. Then (4.6) is satisfied for
|a| = 0. By induction on || we will prove that (4.6) is satisfied for every
la| € Nj. So suppose that (4.6) is satisfied whenever |a] < [, and take any

10The formula is attributed to Genocchi and Hermite in Sec. 16 of the Appendix B to
[Hig], p. 333.
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ap € Njj such that |ag| =1+ 1. Let

Un(t,€) = ( i)aeﬂ’“‘f%

veg= 3 (if) Ka%) (25)} A(1,6).

Then
(4.7)  sup{e @4 |¢)) VYU (¢, €)] £ € [0, 00[, £ € R} < 00

and

(4.8)  sup{e”@r(1 4 [¢])~tmamDERHNAY (1 6]
te 0,00, £ € R"} <

for every € > 0, because whenever |a| <[, then

(d—1l—-1+]a])+(md—1)(la|+1) < (d—1)+ (md —1)(I+1)
=(md—1)(14+2)— (m—1)d.

Since

23
= P(i§)Uq (t,€) + V (2, )

2 v = ()" 2. = () pan

and U,,(0,£) = 0, it follows that

(49) Ualt.6) = [t = V(7€) dr
From (4.7)-(4.9) it follows that

sup{e” (L4 [¢))"VED|UL (1, €)] 1t € [0,00], € € R} < 00
for every € > 0, so that (4.6) holds whenever |a| <1+ 1.

Proof of (4.6)=-(4.4). If (4.6) holds, then, taking a = 0, one concludes that
1
max{Re A : X\ € o(P(i&))} = tlim i log [[exp(tP(i&)) || nicm) < w

for every £ € R", whence wy(P) < w. See [E-N], Sec. IV.2, Corollary 2.4,
p. 252,
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Now we are in a position to complete the proof of Theorem 1.1, i.e. to
prove the implication (1.8)=-(1.9) and the equality (1.10). Indeed, if (1.8)
holds, then, by Theorem 4.1, wy(P) is equal to the infimum of the numbers
w such that the functions

¢ R" D & e “exp(tP(i€)) € M,

increase uniformly slowly for ¢ ranging over [0, 00[. By Theorem 3.3, this
in turn implies that the distributions S, := F !¢, constitute an i.d.c.s.
(St)i=0 C On(R™; M,,) satisfying (1.10) and having the infinitesimal gener-
ator P(0/0x)é.

5 Remarks
Remark 5.1. We have

Lemma 5.1. Suppose that the equivalent conditions (1.8) and (1.9) are
satisfied, and d is the degree of P(if) treated as a polynomial on R"™ with
coefficients in M,,. Suppose moreover that kg € N and ko > d+%(md—1)(n+
2) + 3(n+1). Then there is a mapping (t — f;) € C*([0, 00[; L'(R™; M,,))

such that
a\!
(a) i
and

(5.1) sup{e“’t
(5.2)  S;=(1—A)f  for everyt € [0, 0],

ct€[0,00[, [ = 0,1} < oo for every
Ll(Rn§Mm)
w > wy(P)

the action of the differential operator (1— A)*o being understood in the sense

of distributions !,

Proof. Whenever |a] <n+1,1=0,1,2,t € [0,00] and w > wy(P), then,
by (2.8) and (4.6),

/. (a%) {(1 Pyt (%)l@(f)} ‘ ¢
- [ |(5) 10+ 5oy a

< const - ewt/ (1 + |€|2)—ko+%ld+%(md—1)(n+2) d¢ = const - et

HThe equality (5.2) should be compared with (2.6).
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This implies that whenever |a| < n + 1, then
0,00[3 1> 27, = 2°(1 — A)75, € Cy(R™; M,)

is a C''-mapping such that

a\!
—wt al 7
sup{e x (dt) fi

and hence the mapping [0,00[ 3 t — f; € L'(R"; M,,) satisfies (5.1) and
(5.2).

‘te [O,oo[,l:O,l} < 00
Cb(Rn§Mm)

Following L. Schwartz [S], Sec. VI8, for every p € [1,00] denote by
Dr»(R™; C™) the Fréchet space of all functions ¢ € C*°(R™; C™) such that
(0/0z)*p € LP(R™; C™) for every o € Nj. Whenever 1 < p < ¢ < oo, then

S(R™; C™) C Dy (R™; C™) C Dpo(R™; C™) C S'(R™; C™).

If the equivalent conditions (1.8) and (1.9) are satisfied and ¢ € Dp»(R™; C™)
for some p € [1, o0], then, by Lemma 5.1,

(5.3) Sy xo=fix(1— Ay for every t € [0, 00]

where, for fixed t, S; * ¢ is understood as the convolution of the distri-

bution S; € Op(R"; M,,) with the distribution ¢ € S'(R"; C™), while,

again for fixed ¢, the right side of (5.3) is the convolution of the function

fi € LY(R™; M,,) and the function (1 — A)*p € Dp»(R"™; C™). From (5.3)

one infers easily that for any fized p € [1, 00],

(5.4)  ((Se*)|pp@eicm))i=0 € L(Drs(R™; C™); Do (R™; C™)) is a one-pa-
rameter semigroup of operators with all trajectories in C*°([0, ool;
Dr»(R™; C™)) and with infinitesimal generator P(0/0x)|p,, @~ cm).

Furthermore, if wo(P) < w < oo, then

(5.5)  foreverye >0 the semigroup of operators (e~ @+ (S, %)|p, , gn: cm) )i>0
C L(Dp»(R™; C™); Do (R™; C™)) is equicontinuous.

Notice that (5.4) for p = oo is equivalent to the original result of I. G. Pe-
trovskil [P] proved in 1938 by an elementary method (discussed in Sec. 12
of [K]). From Theorem 1 of [K] it follows that if p = 2 or p = oo, then
(5.5) holds if and only if wy(P) < w < oo. In connection with (5.5) let us
recall that the theory of equicontinuous one-parameter semigroups in locally
convex spaces is presented in Chapter IX of [Y].

Directly from Theorem 1.1 it follows that if £ = S(R"; C™) or E =
S'(R™; C™), then ((Si*)|g)i>0 C L(F; E) is a one-parameter semigroup
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of operators with all trajectories in C'*°([0,00[; £) and with infinitesimal
generator P(0/0z)|g.

A prototype of the above results is Theorem 10.1 of T. Ushijima [U],
p. 118, in which E = {u € L*(R"%;C™) : P(0/0z)*u € L*(R™;C™) for k =
1,2,...} and the topology of E is determined by the system of seminorms
| P(0/0z)*u| r2gncmy, & = 0,1,.... In the proof of Ushijima’s theorem
an application of inequality (4.3) is replaced by estimations based on the

interpolation polynomials of E. A. Gorin.

Remark 5.2. A distribution G € On(R"™; M,,) is the infinitesimal genera-
tor of an i.d.c.s. (St)i>0 C On(R™; M,,) if and only if there are a € [0, 00|
and b € R such that

(5.6) max{ReA: A€ a((FG)(&)} <alog(l+1|&])+0b for every & € R™.
Furthermore,
(5.7) max{ReA: A € 0((FG)(€)), { e R"} <w < 0

if and only iof
(5.8)  for every ¢ > 0 the semigroup of operators (e”“+IS, x),50 C
L(S(R™; C™); S(R™; C™)) is equicontinuous.

The above follows by arguments similar to those used in the proof of
Theorem 1.1. This time it is not asserted that (5.6)<(5.7). In the pioneering
paper [P] of I. G. Petrovskii the case of G = (0/0x)d was investigated, but
instead of (1.8) the condition

(5.9)  max{ReA: X € a(P(i£))} < alog(l+[£]) +b for every £ € R"
was used. The equivalence (1.8)<(5.9) was only a hypothesis at that time.

Remark 5.3. Similarly to operator semigroups (5.4) one can consider the
operator semigroups related to the Cauchy problem for systems of PDE of
the form

A((%) %ﬁ(t,@") - B(%)ﬁ(t, ) for (t,z) € 0,00 x R"

with given 4(0, z). The corresponding i.d.c.s. is defined as follows. A((y, .. .,
¢n) and B((y, ..., (,) are m X m matrices whose entries are complex poly-
nomials of n variables (i,...,(,. It is assumed that

A(i&y, ..., i&,) is invertible for every (&i,...,&,) € R”



Convolution semigroups of rapidly decreasing distributions 19

and
sup{ReA: A € C, £ = (&,...,&) € R, det(AA(i&) — B(i€)) = 0} < 0.

Then there is a unique i.d.c.s. (S)>0 C Op(R™; M,,) whose infinitesimal
generator is the distribution in O (R™; M,,) whose Fourier transform is the
function & — A(i€) "' B(i€). This last function belongs to O (R"; M,,) by
the same argument as in Example A.2.7 in the Appendix to [H]. From the
result obtained in this way for systems of PDE one can deduce the theorem
of J. Rauch [R], p. 128, concerning a single PDE of higher order.
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