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Abstract

The Cauchy problem on [0,∞[× Rn is considered for systems of
PDE with constant coefficients. The spectral condition of I. G. Petro-
vskĭı is proved to be necessary and sufficient for existence of a fun-
damental solution having the form of a convolution semigroup of
distributions on Rn rapidly decreasing in the sense of L. Schwartz.

1 Introduction and main results

Denote by S(Rn) the space of infinitely differentiable rapidly decreasing

functions on Rn, and by S ′(Rn) the space of tempered distributions. If

ϕ ∈ S(Rn) and T ∈ S ′(Rn) then the convolution T ∗ ϕ makes sense (and is

an infinitely differentiable slowly increasing function). Therefore the set

O′C(Rn) = {T ∈ S ′(Rn) : T ∗ ϕ ∈ S(Rn) for every ϕ ∈ S(Rn)}

is well defined. The elements of O′C(Rn) will be called the rapidly decreasing

distributions on Rn 1. For every T ∈ O′C(Rn) the convolution operator T ∗ is

a continuous linear operator from S(Rn) into S(Rn), and a continuous linear

operator from S ′(Rn) into S ′(Rn). Furthermore, O′C(Rn) is a convolution

2010 Mathematics Subject Classification: Primary 35E15, 46E10, 47D06; Secondary
42B99.

Key words and phrases: systems of PDE with constant coefficients, Petrovskĭı con-
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1Our definition of O′
C(Rn) is equivalent to one given in Sec. VI.5 of [S], p. 244. See

Theorem 2.2.
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2 J. Kisyński

algebra 2. The topology in O′C(Rn) is induced by the mapping O′C 3 T 7→
T ∗ ∈ Lβ(S(Rn),S(Rn)) 3.

Letm ∈ N, and letMm be the set ofm×mmatrices with complex entries.

The above facts referring to classes of scalar functions and distributions

remain valid for analogous classes of Mm-valued functions and distributions

like S(Rn;Mm), S ′(Rn;Mm), O′C(Rn;Mm).

By a one-parameter infinitely differentiable convolution semigroup in

O′C(Rn;Mm), briefly i.d.c.s., we mean a mapping

(1.1) [0,∞[ 3 t 7→ St ∈ O′C(Rn;Mm)

such that

(1.2) St+s = St ∗ Ss for every s, t ∈ [0,∞[,

(1.3) S0 = 1 ⊗ δ where 1 is the unit m × m matrix and δ is the Dirac

distribution,

(1.4) the map (1.1) is infinitely differentiable.

In (1.4) it is understood that the derivatives at zero are right-side deriva-

tives, and that the topology in O′C(Rn;Mm) is that defined above.

The infinitesimal generator of the i.d.c.s. (St)t≥0 ⊂ O′C(Rn;Mm) is de-

fined as the distribution

G :=
d

dt
St

∣∣∣∣
t=0

∈ O′C(Rn;Mm).

It follows that

d

dt
St = G ∗ St = St ∗G for every t ∈ [0,∞[.

Furthermore, any i.d.c.s. in O′C(Rn;Mm) is uniquely determined by its in-

finitesimal generator. Indeed, suppose that a distribution G∈O′C(Rn;Mm)

is the infinitesimal generator of two i.d.c.s. (St)t≥0, (Tt)t≥0 ⊂ O′C(Rn;Mm).

Fix any t ∈ ]0,∞[. Using the Banach–Steinhaus theorem, one concludes

that the function

[0, t] 3 τ 7→ Sτ ∗ Tt−τ ∈ O′C(Rn;Mm)

is infinitely differentiable and d
dτ

(Sτ ∗ Tt−τ ) = ( d
dτ
Sτ ) ∗ Tt−τ + Sτ ∗ ( d

dτ
Tt−τ ).

Consequently, d
dτ

(Sτ ∗ Tt−τ ) = (Sτ ∗ G) ∗ Tt−τ − Sτ ∗ (G ∗ Tt−τ ) = 0 for

2Due to our definition of O′
C(Rn) it is convenient to define convolution in O′

C(Rn)
imitating Sec. VI.3 of [Y], pp. 158–159.

3The subscript β means that L(S(Rn),S(Rn)) is equipped with the topology of uni-
form convergence on bounded subsets of S(Rn). By Theorem 2.2 below, the above topol-
ogy in O′

C(Rn) coincides on bounded subsets of O′
C(Rn) with the topology defined in

Sec. VII.5 of [S], p. 244.
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every τ ∈ [0, t], so that Sτ ∗ Tt−τ is independent of τ for τ ∈ [0, t], and

St = Sτ ∗ Tt−τ |τ=t = Sτ ∗ Tt−τ |τ=0 = Tt.

Let now d ∈ N, and suppose that for every multiindex α = (α1, . . . , αn) ∈
Nn

0 of length |α| = α1 + · · · + αn ≤ d we are given a matrix Aα ∈ Mm.

Consider the matricial differential operator with constant coefficients

(1.5) P

(
∂

∂x

)
:=
∑
|α|≤d

Aα

(
∂

∂x

)α
where (∂/∂x)α = (∂/∂x1)

α1 · · · (∂/∂xn)αn , and its symbol

(1.6) P (iξ) :=
∑
|α|≤d

i|α|ξαAα ∈Mm

where ξ = (ξ1, . . . , ξn) ∈ Rn and ξα = ξα1
1 · · · ξαn

n . Thus the symbol is an

m×m matrix whose entries are polynomials on Rn with complex coefficients.

The Petrovskĭı index ω0(P ) of the differential operator P (∂/∂x) is defined

to be

ω0(P ) = sup{Reλ : λ ∈ σ(P (iξ)), ξ ∈ Rn}(1.7)

= sup{Reλ : λ ∈ C, ξ ∈ Rn, det(λ1− P (iξ)) = 0}

where σ(B) denotes the spectrum of the matrix B ∈Mm.

Our aim is to prove

Theorem 1.1. For every matricial differential operator with constant coef-

ficients of the form (1.5) the following two conditions are equivalent:

(1.8) ω0(P ) <∞,

(1.9) the Mm-valued distribution P (∂/∂x)δ :=
∑
|α|≤dAα ⊗ (∂/∂x)αδ is

the infinitesimal generator of an i.d.c.s. (St)t≥0 ⊂ O′C(Rn;Mm).

Furthermore, if these equivalent conditions are satisfied, then

(1.10) ω0(P ) = inf{ω ∈ R : (e−ωtSt ∗)t≥0 is an equicontinuous semigroup

of operators on S(Rn;Mm)}.

In Theorem 1.1 the Petrovskĭı condition (1.8) plays an independent role.

But most frequently (1.8) occurs as part of the G̊arding assumptions of

hyperbolicity for the non-characteristic Cauchy problem. The relation be-

tween Theorem 1.1 and the hyperbolic situation may by elucidated by the

following result whose proof is omitted in the present paper 4.

4The proof of Theorem 1.2 is based on Lemma 2.8 from [G], the Paley–Wiener–
Schwartz theorem about Fourier transforms of compactly supported distributions, and
the non-uniqueness theorem for the characteristic Cauchy problem.
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Theorem 1.2. Suppose that the condition (1.8) is satisfied, let (St)t≥0 ⊂
O′C(Rn;Mm) be the i.d.c.s. generated by the Mm-valued distribution

P (∂/∂x)δ, and let

det(λ1− P (ξ1, . . . , ξn)) = λm + qm−1(ξ1, . . . , ξm)λm−1

+ · · ·+ q1(ξ1, . . . , ξn)λ+ q0(ξ1, . . . , ξn).

Then

(1.11) there is r ∈ ]0,∞[ such that max{|x| : x ∈ suppSt} ≤ rt for every

t ∈ [0,∞[

if and only if

(1.12) for every k = 0, . . . ,m−1 the degree of the polynomial qk(ζ1, . . . , ζn)

is no greater than m− k.

The condition (1.12) may be equivalently expressed by saying that

(1.12)′ the vector (1, 0, . . . , 0) ∈ Rn+1 is not characteristic for the polyno-

mial q(λ, ζ1, . . . , ζn),

i.e. p(1, 0, . . . , 0) 6= 0 where p(λ, ζ1, . . . , ζn) is the main homogeneous part

of q(λ, ζ1, . . . , ζn). In the terminology of [G], conditions (1.8) and (1.12)′

together mean that the polynomial q(λ, ζ1, . . . , ζn) is hyperbolic with respect

to the vector (1, 0, . . . , 0) ∈ Rn+1. The hyperbolicity of q(λ, ζ1, . . . , ζn) with

respect to (1, 0, . . . , 0) implies its hyperbolicity with respect to (−1, 0, . . . , 0).

Therefore if the Mm-valued distribution P (∂/∂x)δ is the generator of an

i.d.c.s. satisfying (1.12), then so also is −P (∂/∂x)δ, and hence the i.d.c.s.

generated by P (∂/∂x)δ extends to an infinitely differentiable one-parameter

convolution group of distributions with compact support.

2 Rapidly decreasing distributions on Rn

Sections 2 and 3 are devoted to a self-contained presentation of some results

identical or similar to those stated, in part without proofs, in the book of

L. Schwartz [S]. These results constitute a basis for our subsequent argu-

ments, and for this reason we give complete proofs.

Let DL1(Rn) be the space of infinitely differentiable complex functions

ϕ on Rn such that (∂/∂x)αϕ ∈ L1(Rn) for every α=(α1, . . . , αn)∈Nn
0 . The

topology in DL1(Rn) is determined by the system of seminorms pα(ϕ) =∫
Rn |(∂/∂x)αϕ(x)| dx, α ∈ Nn

0 , ϕ ∈ DL1(Rn). DL1(Rn) is a Fréchet space,

and D(Rn) is densely and continuously imbedded in DL1(Rn). We say that a
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distribution T ∈ D′(Rn) is bounded on Rn if it extends to a linear functional

continuous on DL1(Rn). The set of bounded distributions on Rn is denoted

by B′(Rn).

Let Cb(Rn) be the Banach space of complex continuous bounded func-

tions on Rn. In the present section we will base on the following result

contained in [S].

Theorem 2.1. For any family B′ ⊂ D′(Rn) the following three conditions

are equivalent:

(2.1) there are m ∈ N0 and a bounded subset {fT,α : T ∈ B′, α ∈ Nn
0 ,

|α| ≤ m} of Cb(Rn) such that

T =
∑
|α|≤m

(
∂

∂x

)α
fT,α for every T ∈ B′,

(2.2) B′ ⊂ B′(Rn) and the distributions belonging to B′ are equicontinuous

with respect to the topology of DL1(Rn),

(2.3) whenever ϕ ∈ D(Rn), then {T ∗ ϕ : T ∈ B′} is a bounded subset of

Cb(Rn).

Proof. The implications (2.1)⇒(2.2)⇒(2.3) follow at once from two facts:

(i) whenever (2.1) holds, then

T (ϕ) =
∑
|α|≤m

(−1)|α|
∫

Rn

fT,α(x)

(
∂

∂x

)α
ϕ(x) dx

for every T ∈ B′ and ϕ ∈ D(Rn),

(ii) (T ∗ ϕ)(x) = 〈T, ϕ(x− ·)〉 for every T ∈ B′, ϕ ∈ D(Rn) and x ∈ Rn.

The implication (2.3)⇒(2.1) is proved by a more refined argument similar

to one on p. 196 of [S]. Let the subscript x denote translation by x, and

superscript ∨ the reflection. Suppose that (2.3) holds. Since (T ∗ ϕ)(x) =

〈(Tx)∨, ϕ〉, (2.3) implies that {(Tx)∨ : T ∈ B′, x ∈ Rn} is a pointwise

bounded family of continuous linear functionals on D(Rn). Since D(Rn) is

a barrelled space, the Banach–Steinhaus theorem implies that this family

is equicontinuous. Let K = {y ∈ Rn : |y| ≤ 1}. Equicontinuity of {(Tx)∨ :

T ∈ B′, x ∈ Rn} implies that there are k ∈ N0 and C ∈ ]0,∞[ such that

whenever ϕ ∈ C∞K (Rn), T ∈ B′ and x ∈ Rn, then

|(T ∗ ϕ)(x)| = |〈(Tx)∨, ϕ〉| ≤ C sup

{∣∣∣∣( ∂

∂y

)α
ϕ(y)

∣∣∣∣ : |α| ≤ k, y ∈ K
}
.
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This estimate implies that whenever φ ∈ Ck
K(Rn) ⊂ E ′(Rn), then for every

T ∈ B′ the distribution φ ∗ T is a function belonging to Cb(Rn), and

(2.4) {φ ∗ T : T ∈ B′} is a bounded subset of Cb(Rn).

If l ∈ N is sufficiently large and E is the fundamental solution for ∆l

depending only on |x|, then E ∈ Ck(Rn) and E|Rn\{0} ∈ C∞(Rn\{0}) 5. Let

γ ∈ C∞K (Rn) be such that γ(x) = 1 whenever |x| ≤ 1/2. Then γE ∈ Ck
K(Rn),

(1− γ)E ∈ C∞(Rn), and ∆l[(1− γ)E] ∈ C∞K (Rn). For every T ∈ B′ one has

T = ∆lδ ∗ E ∗ T = ∆l[(γE) ∗ T ] + [∆l((1− γ)E)] ∗ T = ∆lfT + gT

where

fT = (γE) ∗ T and gT = ∆l((1− γ)E) ∗ T.

Furthermore, {fT : T ∈ B′} and {gT : T ∈ B′} are bounded subsets of

Cb(Rn), by (2.4) and (2.3) respectively. Hence (2.3) implies (2.1).

Theorem 2.2. For every family of distributions F ′ ⊂ D′(Rn) the following

three conditions are equivalent:

(2.5) for every polynomial P (x1, . . . , xn) the family of distributions {P ·T :

T ∈ F ′} is a subset of B′(Rn) equicontinuous with respect to the

topology of DL1(Rn),

(2.6) there is a sequence (mk)k∈N0 ⊂ N0 and a mapping

N0 ×F ′ 3 (k, T ) 7→ {fT,k,α : α ∈ Nn
0 , |α| ≤ mk} ⊂ Cb(Rn)

such that

T =
∑
|α|≤mk

(
∂

∂x

)α
fT,k,α whenever (k, T ) ∈ N0 ×F ′

and

sup{(1 + |x|)k|fT,k,α| : T ∈ F ′, |α| ≤ mk, x ∈ Rn} <∞
for every k ∈ N0,

(2.7) F ′ ⊂ OC(Rn) and the set {T ∗ : T ∈ F ′} ⊂ L(S(Rn);S(Rn)) is

equicontinuous.

5See Sec. VII.10 of [S], Example 2, p. 288.
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If F ′ contains only one distribution T , then, in accordance with the

definifion of O′C(Rn) given in Section 1, each of the conditions (2.5)–(2.7)

means that T rapidly decreases at infinity. Such a definition is equivalent to

one in [S], Sec. VII.5, p. 244 6. The equivalence (2.6)⇔(2.7) is fundamental

for the proof of Theorem 1.1.

Proof of (2.5)⇒(2.6). Let r2 ∈ C∞(Rn) be the function such that r2(x) =

|x|2 = x2
1 + · · ·+ x2

n for every x = (x1, . . . , xn) ∈ Rn. Then

(2.8) (1 + r2)
1
2
|α|+a

(
∂

∂x

)α
((1 + r2)−a) ∈ Cb(Rn)

for all a ∈ ]0,∞[ and α ∈ Nn
0 ,

because (∂/∂x)α((1+r2)−a) = (1+r2)−a−|α|Pα where Pα is a polynomial on

Rn of degree no greater than |α|. Suppose that (2.5) is satisfied. Fix k ∈ N0.

By the implication (2.2)⇒(2.1) from Theorem 2.1, there is mk ∈ N0 and for

every T ∈ F ′ and β ∈ Nn
0 such that |β| ≤ mk there is gT,k,β ∈ Cb(Rn) such

that

T = (1 + r2)−k
∑
|β|≤mk

(
∂

∂x

)β
gT,k,β

and

(2.9) sup{|gT,k,β(x)| : T ∈ F ′, |β| ≤ mk, x ∈ Rn} <∞.

It follows that

T =
∑
|α|≤mk

(
∂

∂x

)α
fT,k,α

where

fT,k,α =
∑

α≤β, |β|≤mk

(−1)|β−α|
(
β

α

)
gT,k,β

(
∂

∂x

)β−α
(1 + r2)−k.

By (2.8) and (2.9), one has

sup{(1 + |x|)2k|fT,k,α(x)| : T ∈ F ′, |α| ≤ mk, x ∈ Rn} <∞.

6For m = 1 and F ′ consisting of a single T the equivalence (2.5)⇔(2.6) follows from
Theorem IX in Sec. VII.5 of [S], p. 244, stated there with just an indication of the method
of proof.
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Proof of (2.6)⇒(2.7). Suppose that (2.6) holds. By the Banach–Steinhaus

theorem, (2.7) will follow once it is proved that whenever ϕ ∈ S(Rn), then

{T ∗ ϕ : T ∈ F ′} is a bounded subset of S(Rn). Since (∂/∂x)α(T ∗ ϕ) =

T ∗ ((∂/∂x)αϕ), it is sufficient to show that

sup

{(
1 +

1

2
|x|
)k
|(T ∗ ϕ)(x)| : T ∈ F ′, x ∈ Rn

}
<∞

for every ϕ ∈ S(Rn) and k = n + 1, n + 2, . . . . So, fix any ϕ ∈ S(Rn) and

k = n+ 1, n+ 2, . . . . Then, by (2.6), for every T ∈ F ′ and x ∈ Rn one has

|(T ∗ ϕ)(x)|

≤
∑
|α|≤mk

(∫
|y|≥ 1

2
|x|

+

∫
|x−y|≥ 1

2
|x|

)
|fT,k,α(y)| ·

∣∣∣∣( ∂

∂x

)α
ϕ(x− y)

∣∣∣∣ dy
≤
(

1 +
1

2
|x|
)−k ∑

|α|≤mk

(
Ck

∫
Rn

∣∣∣∣( ∂

∂y

)α
ϕ(y)

∣∣∣∣ dy +Dk

∫
Rn

|fT,k,α(y)| dy
)

≤
(

1 +
1

2
|x|
)−k

(#{α ∈ Nn
0 : |α| ≤ mk})2CkDk

∫
Rn

(1 + |y|)−k dy,

where

Ck = sup{(1 + |y|)k|fT,k,α(y)| : T ∈ F ′, |α| ≤ mk, y ∈ Rn} <∞,

Dk = sup

{
(1 + |y|)k

∣∣∣∣( ∂

∂y

)α
ϕ(y)

∣∣∣∣ : |α| ≤ mk, y ∈ Rn

}
<∞.

Proof of (2.7)⇒(2.5). Suppose that (2.7) holds. It is sufficient to prove (2.5)

for the monomials xα = xα1
1 · · · xαn

n , α = (α1, . . . , αn) ∈ Nn
0 . We will prove

that whenever α ∈ Nn
0 and ϕ ∈ D(R), then

(2.10) {(xαT ) ∗ ϕ : T ∈ F ′} is a bounded subset of S(Rn).

From (2.10) it follows that whenever α ∈ Nn
0 and ϕ ∈ D(R), then {(xαT ) ∗

ϕ : T ∈ F ′} is a bounded subset of Cb(Rn), whence, by the implication

(2.3)⇒(2.2) of Theorem 2.1, condition (2.5) holds for the monomials xα.

We will prove (2.10) by induction on |α|. If |α| = 0, then xα ≡ 1 and

(2.10) is a direct consequence of (2.7). Furthermore, the condition

(2.10)m the statement (2.10) holds for every ϕ ∈ D(Rn) and α ∈ Nn
0 such

that |α| = m
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implies (2.10)m+1. Indeed, if α = (α1, . . . , αn) and |α| = m+ 1, then αi ≥ 1

for some i = 1, . . . , n, so that α = β + γ where β ∈ Nn
0 , |β| = m and

γ = (δi,1, . . . , δi,n). Consequently, xα = xix
β and

(2.11) (xαT ) ∗ ϕ = (xix
βT ) ∗ ϕ = xi((x

βT ) ∗ ϕ)− (xβT ) ∗ (xiϕ)

for every T ∈ F ′ and ϕ ∈ D(Rn). If ϕ ∈ D(Rn) is fixed then, by (2.10)m,

{(xβT ) ∗ ϕ : T ∈ F ′} and {(xβT ) ∗ (xiϕ) : T ∈ F ′} are bounded subsets of

S(Rn), whence, by (2.11), so is {(xαT ) ∗ ϕ : T ∈ F ′}.

3 Infinitely differentiable slowly increasing

functions on Rn

A function φ ∈ C(Rn) is called continuous slowly increasing if

sup{(1 + |ξ|)−m|φ(ξ)| : ξ ∈ Rn} <∞

for some m ∈ N0. A function φ ∈ C∞(Rn) is called infinitely differentiable

slowly increasing 7 if for every k ∈ N0 there is mk ∈ N0 such that

sup

{
(1 + |ξ|)−mk

∣∣∣∣( ∂

∂ξ

)α
φ(ξ)

∣∣∣∣ : α ∈ Nn
0 , |α| ≤ k, ξ ∈ Rn

}
<∞.

The set of infinitely differentiable slowly increasing functions on R is denoted

by OM(Rn). One has OM(Rn) ⊂ S ′(Rn). We will say that the functions

belonging to a subset Φ of OM(Rn) are uniformly slowly increasing if for

every k ∈ N0 there is mk ∈ N0 such that

sup

{
(1 + |ξ|)−mk

∣∣∣∣( ∂

∂ξ

)α
φ(ξ)

∣∣∣∣ : φ ∈ Φ, α ∈ Nn
0 , |α| ≤ k, ξ ∈ Rn

}
<∞.

Let F denote the Fourier transformation defined by

ϕ̂(ξ) = (Fϕ)(ξ) =

∫
Rn

e−ixξϕ(x) dx

for ϕ ∈ S(Rn) and ξ ∈ Rn. Then F is a continuous automorphism of S(Rn),

and it extends uniquely to a continuous automorphism of S ′b(Rn).

Theorem 3.1. 8 FO′C(Rn) = OM(Rn).

7Infinitely differentiable slowly increasing functions play a fundamental role in Petro-
vskĭı’s paper [P] devoted to the Cauchy problem for systems of PDE whose coefficients
are either constant or depend only on time. See [P], Bedingung A, p. 3, and Lemmas 1
and 2, pp. 7–8.

8Theorem 3.1 is contained in Theorem XV of Sec. VII.8 of [S], p. 268. We present
a proof based directly on Theorem 2.2. The second part of our proof differs from that
in [S].
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Proof of FO′C(Rn) ⊂ OM(Rn). Suppose that T ∈ O′C(Rn). Fix k ∈ N such

that k > n. Then, by (2.6), one has

FT =
∑
|α|≤mk

(iξ)αFfT,k,α

where fT,k,α ∈ L1(Rn) and so FfT,k,α ∈ C0(Rn). Consequently FT is a

continuous slowly increasing function on Rn. Furthermore,

(3.1)

(
∂

∂ξ

)α
FT = F((−ix)αT ) for every α ∈ Nn

0 .

By (2.5) one has (ix)αT ∈ O′C(Rn), so that, by what we have already proved,

F((ix)αT ) is a continuous slowly increasing function. Since α ∈ Nn
0 in (3.1)

is arbitrary, it follows that FT ∈ OM(Rn).

Proof of OM(Rn) ⊂ FO′C(Rn). Pick φ ∈ OM(Rn) and set T = F−1φ. Then

T ∈ S ′(Rn). Furthermore, whenever ϕ ∈ S(Rn), then F(T ∗ϕ) = (FT ) · ϕ̂ =

φ · ϕ̂ ∈ S(Rn), and hence T ∗ ϕ ∈ S(Rn). It follows that T ∈ O′C(Rn), and

so φ = FT ∈ FO′C(Rn).

Theorem 3.2. For any subset Φ of OM(Rn) the following three conditions

are equivalent:

(3.2) the functions belonging to Φ increase uniformly slowly,

(3.3) the set {φ · : φ ∈ Φ} ⊂ L(S(Rn);S(Rn)) is equicontinuous,

(3.4) the set {(F−1φ) ∗ : φ ∈ Φ} ⊂ L(S(Rn);S(Rn)) is equicontinuous.

Proof. The implication (3.2)⇒(3.3) is straightforward. If φ ∈ OM(Rn), then

φ · ∈ L(S(Rn);S(Rn)), (F−1φ) ∗ ∈ L(S(Rn);S(Rn)) and (F−1φ) ∗ = F−1 ◦
(φ ·), so that (3.3)⇔(3.4). The implication (3.4)⇒(3.2) may be proved by

an argument based on (2.7)⇒(2.6), similar to one used in the proof of the

inclusion FO′C(Rn) ⊂ OM(Rn).

Remark 3.1. It is stressed by L. Schwartz that the condition (2.6) is strictly

weaker than the statement that

(3.5) T =
∑
|α|≤m

(
∂

∂x

)α
fα

for some m ∈ N where all fα are continuous rapidly decreasing functions

on Rn. Indeed, it is easy to see that

(3.6) if T satisfies (3.5) and φ ∈ OM(Rn), then T ∗ φ ∈ OM(Rn).
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However, the example in Sec. VII.5 of [S], p. 245, shows that if n = 1 and

φ0(x) = eix
2/2 for x ∈ R, then φ0 ∈ OM(R), and if T0 is a distribution

equal to the function φ0, then T0 satisfies (2.6) with F ′ = {T0}, so that

T0 ∈ O′C(R). If T0 were to satisfy (3.5), then, by (3.6), one would have

T0 ∗ φ0 ∈ OM(R). But this does not hold because FT0 = Fφ0 = cT 0 = cφ0

where c ∈ C \ {0} is a constant, so that Fφ0 = Fφ0
∨

= cφ0, F(T0 ∗ φ0) =

FT0 ·Fφ0 = |c|2, and T0 ∗ φ0 = |c|2δ. Hence T0 cannot be represented in the

form (3.5).

Note that T0 = φ0 ∈ OM(R) ∩ O′C(R) differs only by a multiplicative

constant from a member of the infinitely differentiable convolution group in

O′C(R) whose infinitesimal generator is equal to iδ′′. This group is related

to the Schrödinger equation. See [R], Sec. 3.2–3.4 and 4.4.

Remark 3.2. Whenever φ ∈ C∞(Rn), then

φ ∈ OM(Rn) ⇒ φ · ∈ L(S(Rn);S(Rn))

⇒ φ is a multiplier for S ′(Rn) ⇒ φ ∈ OM(Rn).

Here the only non-trivial implication is the last one, resulting from The-

orem VI of Sec. VII.4 of [S], p. 239, and stated in Sec. VII.5 of [S], after

Theorem X, p. 246. However, an element of OM(Rn) may not be a multi-

plier for O′C(Rn). Indeed, if n = 1 and, as in Remark 3.1, φ0(x) = eix
2/2

for x ∈ R, and T0 is the same function treated as a distribution on R, then

φ0 ∈ OM(R), T0 ∈ O′C(R), and φ0 ·T0 ∈ S ′(R) is a function identically equal

to one. Therefore φ0 · T0 6∈ O′C(R) and φ0 is not a multiplier for O′C(R).

In the following we will consider functions and distributions on Rn with

values in the space Mm of complex m × m matrices. In this setting the

theorems proved earlier for the scalar case remain valid.

Consider the matricial differential operator P (∂/∂x) defined by (1.5),

and its symbol P (iξ) defined by (1.6). As d
dt

exp(tP (iξ))=P (iξ) exp(tP (iξ)),

the theorem about differentiation of solutions of ODE with respect to pa-

rameters implies that the mapping R1+n 3 (t, ξ) 7→ exp(tP (iξ)) ∈ Mm is

infinitely differentiable. Therefore, for any t ∈ R, the formula

(3.7) φt(ξ) := exp(tP (iξ)), ξ ∈ Rn,

defines a function φt ∈ C∞(Rn;Mm).

Theorem 3.3. The condition (1.9) from Theorem 1.1 is satisfied if and

only if
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(3.8) φt ∈ OM(Rn;Mm) for every t ∈ [0,∞[, and the functions in {φt :

t ∈ [0, T ]} increase uniformly slowly for each T ∈ ]0,∞[.

Furthermore, if the equivalent conditions (1.9) and (3.8) are satisfied, then

FSt = φt for all t ∈ [0,∞[, and, for each fixed ω ∈ R,

(3.9) the semigroup of convolution operators (e−ωtSt ∗)t≥0⊂L(S(Rn; Cm);

S(Rn; Cm)) is equicontinuous

if and only if

(3.10) the functions in {e−ωtφt : t ∈ [0,∞[} increase uniformly slowly.

Proof of (1.9)⇒(3.8). If (1.9) is satisfied, then ((FSt) ·)t≥0 ⊂ L(S(Rn; Cm);

S(Rn; Cm)) is a one-parameter semigroup of multiplication operators such

that for every φ ∈ S(Rn; Cm) the trajectory [0,∞[ 3 t 7→ (FSt) · ϕ ∈
S(Rn; Cm) is infinitely differentiable. The infinitesimal generator of this

semigroup is multiplication by the function

(3.11) G : Rn 3 ξ 7→ P (iξ) ∈Mm

which belongs to OM(Rn;Mm). Consequently, whenever ϕ ∈ S(Rn; Cm)

and t ∈ [0,∞[, then d
dt

(FSt) · ϕ = G · (FSt) · ϕ, with differentiation in the

topology of S(Rn;Mm). It follows that d
dt

(FSt)(ξ) = P (iξ)(FSt)(ξ) for every

(t, ξ) ∈ [0,∞[×Rn. Furthermore, (FS0)(ξ) = (Fδ)(ξ) = 1 for every ξ ∈ Rn.

The last two properties imply that

(3.12) (FSt)(ξ) = exp(tP (iξ)) for every (t, ξ) ∈ [0,∞[× Rn.

Now the implication (1.9)⇒(3.8) is an easy consequence of (3.7), (3.12),

Theorem 3.1, the Banach–Steinhaus theorem, and Theorem 3.2.

Proof of (3.8)⇒(1.9). If (3.8) is satisfied, then the multiplication operators

φt · constitute a one-parameter semigroup

(3.13) (φt ·)t≥0 ⊂ L(S(Rn; Cm);S(Rn; Cm)).

Since the mapping R1+n 3 (t, ξ) 7→ φt(ξ) = exp(tP (iξ)) ∈ Mm is infinitely

differentiable, from (3.8) it follows that for every ϕ ∈ S(Rn; Cm) the trajec-

tory [0,∞[ 3 t 7→ φt · ϕ ∈ S(Rn; Cm) of the semigroup (3.13) is infinitely

differentiable. The infinitesimal generator of the semigroup (3.13) is the

multiplication operator d
dt

(φt ·)|t=0 = G · where G ∈ OM(Rn;Mm) is defined

by (3.11). Consequently, by Theorem 3.1,

((F−1φt) ∗)t≥0 = (F−1 ◦ (φt ·) ◦ F)t≥0 ⊂ L(S(Rn; Cm);S(Rn; Cm))
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is a semigroup with infinitely differentiable trajectories and infinitesimal

generator (F−1G) ∗ = (P (∂/∂x)δ) ∗. By the Banach–Steinhaus theorem, the

mapping [0,∞[ 3 t 7→ F−1φt ∈ O′C(Rn;Mm) is infinitely differentiable in

the topology of O′C(Rn;Mm), i.e. the topology induced from Lβ(S(Rn; Cm);

S(Rn; Cm)).

Proof of (3.9)⇔(3.10). We have already proved that (1.9) implies (3.12).

Therefore the relation (1.9)⇒[(3.9)⇔(3.10)] is a consequence of Theorem 3.2.

4 Proof of Theorem 1.1

A. Necessity of the Petrovskĭı condition

Proof of (1.9)⇒(1.8). By Theorem 3.3, instead of showing that (1.9) implies

the Petrovskĭı condition (1.8), it is sufficient to prove that (3.8) implies

(1.8). Thus assume that (3.8) holds. Then the mapping Rn 3 ξ 7→ φ1(ξ) =

exp(P (iξ)) ∈Mm belongs to OM(Rn;Mm). For any ξ ∈ Rn,

ρ(ξ) := exp(max{Reλ : λ ∈ σ(P (iξ))})

is equal to the spectral radius of the matrix φ1(ξ). Hence ρ(ξ) is no greater

than ‖φ1(ξ)‖Mm = max{‖φ1(ξ)z‖Cm : z ∈ Cm, ‖z‖Cm ≤ 1}. Since φ1 ∈
OM(Rn;Mm), it follows that there are C ∈ ]0,∞[ and k ∈ R such that

ρ(ξ) ≤ C(1 + |ξ|)k for every ξ ∈ Rn,

or, what is the same,

(4.1) max{Reλ : λ ∈ σ(P (iξ))} ≤ logC+k log(1+|ξ|) for every ξ ∈ Rn.

By the Lemma of L. G̊arding from [G], p. 11, the inequality (4.1) implies

that

(4.2) the function Rn 3 ξ 7→ max{Reλ : λ ∈ σ(P (iξ))} ∈ R is bounded,

which means that (1.8) is satisfied 9.

9The implication (4.1)⇒(4.2) was conjectured by I. G. Petrovskĭı in [P], footnote
on p. 24. L. Hörmander observed that, replacing part of G̊arding’s proof by a direct
argument based on the projection theorem for semi-algebraic subsets of Rn, one can
obtain still another result having important applications to PDE. See the Appendix
to [H].
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B. Sufficiency of the Petrovskĭı condition

We will base on the inequality

(4.3) if A ∈ Mm, ωA = max{Reλ : λ ∈ σ(A)} and t ∈ [0,∞[, then

‖exp(tA)‖L(Cm) ≤ eωAt

(
1 +

m−1∑
k=1

(2t)k

k!
‖A‖kL(Cm)

)
.

This is proved in Sec. II.6.1 of [G-S] by means of the Genocchi–Hermite

formula10 for the divided differences, related to interpolation polynomials

of Newton. The same proof of (4.3) is given in Sec. 7.2 of [F].

In the notation of Section 1, let d be the degree of P (iξ) treated as a

polynomial on Rn with coefficients in Mm.

Theorem 4.1. For every ω ∈ R the following three conditions are equiva-

lent:

(4.4) ω0(P ) ≤ ω,

(4.5) sup{e−(ω+ε)t(1+ |ξ|)−(m−1)d‖ exp(tP (iξ))‖L(Cm) : t ∈ [0, ∞[, ξ ∈ Rn}
<∞ for every ε > 0,

(4.6) sup

{
e−(ω+ε)t(1 + |ξ|)−(md−1)(|α|+1)

∥∥∥∥( ∂

∂x

)α
exp(tP (iξ))

∥∥∥∥
L(Cm)

: t ∈

[0,∞[, ξ ∈ Rn

}
< 0 for every α ∈ Nn

0 and every ε > 0.

Proof of (4.4)⇒(4.5). There is C ∈ [1,∞[ such that ‖P (iξ)‖L(Cm) ≤ C(1+

|ξ|)d for every ξ ∈ Rn. If (4.4) holds, then by (4.3) for every t ∈ [0,∞[ and

ξ ∈ Rn one has

‖ exp(tP (iξ))‖L(Cm) ≤ eω0(P )t

(
1 +

m−1∑
k=1

(2t)k

k!
Ck(1 + |ξ|)kd

)
≤ eω0(P )tm[(1 + 2t)C(1 + |ξ|)d]m−1,

whence (4.5) follows.

Proof of (4.5)⇒(4.6). Suppose that (4.5) holds. Then (4.6) is satisfied for

|α| = 0. By induction on |α| we will prove that (4.6) is satisfied for every

|α| ∈ Nn
0 . So suppose that (4.6) is satisfied whenever |α| ≤ l, and take any

10The formula is attributed to Genocchi and Hermite in Sec. 16 of the Appendix B to
[Hig], p. 333.



Convolution semigroups of rapidly decreasing distributions 15

α0 ∈ Nn
0 such that |α0| = l + 1. Let

Uα(t, ξ) =

(
∂

∂ξ

)α
etP (iξ),

V (t, ξ) =
∑

α≤α0, |α|≤l

(
α0

α

)[(
∂

∂ξ

)α0−α

P (iξ)

]
Uα(t, ξ).

Then

(4.7) sup{e−(ω+ε)t(1 + |ξ|)−(m−1)d|U0(t, ξ)| : t ∈ [0,∞[, ξ ∈ Rn} <∞

and

(4.8) sup{e−(ω+ε)t(1 + |ξ|)−(md−1)(l+2)+(m−1)d|V (t, ξ)| :
t ∈ [0,∞[, ξ ∈ Rn} <∞

for every ε > 0, because whenever |α| ≤ l, then

(d− l − 1 + |α|) + (md− 1)(|α|+ 1) ≤ (d− 1) + (md− 1)(l + 1)

= (md− 1)(l + 2)− (m− 1)d.

Since

∂

∂t
Uα0(t, ξ) =

(
∂

∂ξ

)α0 ∂

∂t
U0(t, ξ) =

(
∂

∂ξ

)α0

[P (iξ)U0(t)]

= P (iξ)Uα0(t, ξ) + V (t, ξ)

and Uα0(0, ξ) = 0, it follows that

(4.9) Uα0(t, ξ) =

∫ t

0

U0(t− τ, ξ)V (τ, ξ) dτ.

From (4.7)–(4.9) it follows that

sup{e−(ω+ε)t(1 + |ξ|)−(md−1)(l+2)|Uα0(t, ξ)| : t ∈ [0,∞[, ξ ∈ Rn} <∞

for every ε > 0, so that (4.6) holds whenever |α| ≤ l + 1.

Proof of (4.6)⇒(4.4). If (4.6) holds, then, taking α = 0, one concludes that

max{Reλ : λ ∈ σ(P (iξ))} = lim
t→∞

1

t
log ‖exp(tP (iξ))‖L(Cm) ≤ ω

for every ξ ∈ Rn, whence ω0(P ) ≤ ω. See [E-N], Sec. IV.2, Corollary 2.4,

p. 252.
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Now we are in a position to complete the proof of Theorem 1.1, i.e. to

prove the implication (1.8)⇒(1.9) and the equality (1.10). Indeed, if (1.8)

holds, then, by Theorem 4.1, ω0(P ) is equal to the infimum of the numbers

ω such that the functions

φt : Rn 3 ξ 7→ e−ωt exp(tP (iξ)) ∈Mm

increase uniformly slowly for t ranging over [0,∞[. By Theorem 3.3, this

in turn implies that the distributions St := F−1φt constitute an i.d.c.s.

(St)t≥0 ⊂ O′C(Rn; Mm) satisfying (1.10) and having the infinitesimal gener-

ator P (∂/∂x)δ.

5 Remarks

Remark 5.1. We have

Lemma 5.1. Suppose that the equivalent conditions (1.8) and (1.9) are

satisfied, and d is the degree of P (iξ) treated as a polynomial on Rn with

coefficients in Mm. Suppose moreover that k0 ∈ N and k0 ≥ d+ 1
2
(md−1)(n+

2) + 1
2
(n+ 1). Then there is a mapping (t 7→ ft) ∈ C1([0,∞[; L1(Rn; Mm))

such that

(5.1) sup

{
e−ωt

∥∥∥∥( d

dt

)l
ft

∥∥∥∥
L1(Rn;Mm)

: t ∈ [0,∞[, l = 0, 1

}
< ∞ for every

ω > ω0(P )

and

(5.2) St = (1−∆)k0ft for every t ∈ [0,∞[,

the action of the differential operator (1−∆)k0 being understood in the sense

of distributions 11.

Proof. Whenever |α| ≤ n + 1, l = 0, 1, 2, t ∈ [0,∞[ and ω > ω0(P ), then,

by (2.8) and (4.6),

∫
Rn

∣∣∣∣( ∂

∂ξ

)α[
(1 + |ξ|2)−k0

(
d

dt

)l
φt(ξ)

]∣∣∣∣ dξ
=

∫
Rn

∣∣∣∣( ∂

∂ξ

)α
[(1 + |ξ|2)−k0(P (iξ))lφt(ξ)]

∣∣∣∣ dξ
≤ const · eωt

∫
Rn

(1 + |ξ|2)−k0+ 1
2
ld+ 1

2
(md−1)(n+2) dξ = const · eωt.

11The equality (5.2) should be compared with (2.6).
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This implies that whenever |α| ≤ n+ 1, then

[0,∞[ 3 t 7→ xαft = xα(1−∆)−k0St ∈ Cb(Rn; Mm)

is a C1-mapping such that

sup

{
e−ωt

∥∥∥∥xα( d

dt

)l
ft

∥∥∥∥
Cb(Rn;Mm)

: t ∈ [0,∞[, l = 0, 1

}
<∞

and hence the mapping [0,∞[ 3 t 7→ ft ∈ L1(Rn;Mm) satisfies (5.1) and

(5.2).

Following L. Schwartz [S], Sec. VI.8, for every p ∈ [1,∞] denote by

DLp(Rn; Cm) the Fréchet space of all functions ϕ ∈ C∞(Rn; Cm) such that

(∂/∂x)αϕ ∈ Lp(Rn; Cm) for every α ∈ Nn
0 . Whenever 1 ≤ p < q ≤ ∞, then

S(Rn; Cm) ⊂ DLp(Rn; Cm) ⊂ DLq(Rn; Cm) ⊂ S ′(Rn; Cm).

If the equivalent conditions (1.8) and (1.9) are satisfied andϕ ∈ DLp(Rn; Cm)

for some p ∈ [1,∞], then, by Lemma 5.1,

(5.3) St ∗ ϕ = ft ∗ (1−∆)k0ϕ for every t ∈ [0,∞[

where, for fixed t, St ∗ ϕ is understood as the convolution of the distri-

bution St ∈ O′C(Rn; Mm) with the distribution ϕ ∈ S ′(Rn; Cm), while,

again for fixed t, the right side of (5.3) is the convolution of the function

ft ∈ L1(Rn; Mm) and the function (1 −∆)k0ϕ ∈ DLp(Rn; Cm). From (5.3)

one infers easily that for any fixed p ∈ [1,∞],

(5.4) ((St ∗)|DLp (Rn; Cm))t≥0 ⊂ L(DLp(Rn; Cm); DLp(Rn; Cm)) is a one-pa-

rameter semigroup of operators with all trajectories in C∞([0,∞[;

DLp(Rn; Cm)) and with infinitesimal generator P (∂/∂x)|DLp (Rn; Cm).

Furthermore, if ω0(P ) ≤ ω <∞, then

(5.5) for every ε>0 the semigroup of operators (e−(ω+ε)t(St ∗)|DLp (Rn; Cm))t≥0

⊂ L(DLp(Rn; Cm); DLp(Rn; Cm)) is equicontinuous.

Notice that (5.4) for p =∞ is equivalent to the original result of I. G. Pe-

trovskĭı [P] proved in 1938 by an elementary method (discussed in Sec. 12

of [K]). From Theorem 1 of [K] it follows that if p = 2 or p = ∞, then

(5.5) holds if and only if ω0(P ) ≤ ω < ∞. In connection with (5.5) let us

recall that the theory of equicontinuous one-parameter semigroups in locally

convex spaces is presented in Chapter IX of [Y].

Directly from Theorem 1.1 it follows that if E = S(Rn; Cm) or E =

S ′(Rn; Cm), then ((St ∗)|E)t≥0 ⊂ L(E; E) is a one-parameter semigroup
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of operators with all trajectories in C∞([0,∞[; E) and with infinitesimal

generator P (∂/∂x)|E.

A prototype of the above results is Theorem 10.1 of T. Ushijima [U],

p. 118, in which E = {u ∈ L2(Rn; Cm) : P (∂/∂x)ku ∈ L2(Rn; Cm) for k =

1, 2, . . .} and the topology of E is determined by the system of seminorms

‖P (∂/∂x)ku‖L2(Rn;Cm), k = 0, 1, . . . . In the proof of Ushijima’s theorem

an application of inequality (4.3) is replaced by estimations based on the

interpolation polynomials of E. A. Gorin.

Remark 5.2. A distribution G ∈ O′C(Rn; Mm) is the infinitesimal genera-

tor of an i.d.c.s. (St)t≥0 ⊂ O′C(Rn; Mm) if and only if there are a ∈ [0,∞[

and b ∈ R such that

(5.6) max{Reλ : λ ∈ σ((FG)(ξ)} ≤ a log(1 + |ξ|) + b for every ξ ∈ Rn.

Furthermore,

(5.7) max{Reλ : λ ∈ σ((FG)(ξ)), ξ ∈ Rn} ≤ ω <∞

if and only if

(5.8) for every ε > 0 the semigroup of operators (e−(ω+ε)tSt ∗)t≥0 ⊂
L(S(Rn; Cm); S(Rn; Cm)) is equicontinuous.

The above follows by arguments similar to those used in the proof of

Theorem 1.1. This time it is not asserted that (5.6)⇔(5.7). In the pioneering

paper [P] of I. G. Petrovskĭı the case of G = (∂/∂x)δ was investigated, but

instead of (1.8) the condition

(5.9) max{Reλ : λ ∈ σ(P (iξ))} ≤ a log(1 + |ξ|) + b for every ξ ∈ Rn

was used. The equivalence (1.8)⇔(5.9) was only a hypothesis at that time.

Remark 5.3. Similarly to operator semigroups (5.4) one can consider the

operator semigroups related to the Cauchy problem for systems of PDE of

the form

A

(
∂

∂x

)
∂

∂t
~u(t, x) = B

(
∂

∂x

)
~u(t, x) for (t, x) ∈ [0,∞[× Rn

with given ~u(0, x). The corresponding i.d.c.s. is defined as follows. A(ζ1, . . . ,

ζn) and B(ζ1, . . . , ζn) are m ×m matrices whose entries are complex poly-

nomials of n variables ζ1, . . . , ζn. It is assumed that

A(iξ1, . . . , iξn) is invertible for every (ξ1, . . . , ξn) ∈ Rn
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and

sup{Reλ : λ ∈ C, ξ = (ξ1, . . . , ξn) ∈ Rn, det(λA(iξ)−B(iξ)) = 0} <∞.

Then there is a unique i.d.c.s. (St)t≥0 ⊂ O′C(Rn; Mm) whose infinitesimal

generator is the distribution in O′C(Rn; Mm) whose Fourier transform is the

function ξ 7→ A(iξ)−1B(iξ). This last function belongs to OM(Rn; Mm) by

the same argument as in Example A.2.7 in the Appendix to [H]. From the

result obtained in this way for systems of PDE one can deduce the theorem

of J. Rauch [R], p. 128, concerning a single PDE of higher order.
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