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SHIFTS AND PERIODICITY IN ALGEBRAIC ANALYSiS

D. Przeworska-Rolewicz (Warszawa)

Shifts and periodicity for functional-differential equations and their generalizations
have been examined by the author in several papers in various aspects (cf. for instance,
PR[4]-PR[7] and following papers). Here we would like to give a comprehensive survey
(without proofs) of some of these results in order to recall the most important properties
of considered shifts. In particular, there is shown that the so-called true shifts in complete
linear metric spaces are hypercyclic and that a necessary and sufficient condition for true
shifts in commutative algebras to be multiplicative is that the generating operator D
satisfies the Leibniz condition. A consequence of this fact is that in commutative Leibniz
algebras with logarithms the operator D is uniquely determined by an isomorphism acting
on d

dt . There are also studied generalized periodic and exponential-periodic solutions of
linear and some nonlinear equations with shifts and generalizations of the classical Birkhoff
theorem and Floquet theorem. These results are obtained by means of tools given by
Algebraic Analysis (cf. PR[4]). A generalization of binomial formula of Umbral Calculus
is shown in Section 7 (cf. Roman and Rota RR[1]). Section 11 contains a perturbation
theorem for linear differential-difference equations with non-commensurable deviations and
some its consequences.

1. Basic notions of Algebraic Analysis.

We recall here the following notions and theorems (without proofs; cf. PR[4], PR[7],
PR[10]).

Let X be a linear space (in general, without any topology) over a field F of scalars of
the characteristic zero. Write

• L(X) is the set of all linear operators with domains and ranges in X;
• dom A is the domain of an A ∈ L(X);
• kerA = {x ∈ dom A : Ax = 0} is the kernel of an A ∈ L(X);
• L0(X) = {A ∈ L(X) : dom A = X}.

An operator D ∈ L(X) is said to be right invertible if there is an operator R ∈ L0(X)
such that RX ⊂ dom D and DR = I, where I denotes the identity operator. The operator
R is called a right inverse of D. By R(X) we denote the set of all right invertible operators
in L(X). Let D ∈ R(X). Let RD ⊂ L0(X) be the set of all right inverses for D, i.e.
DR = I whenever R ∈ RD. We have

dom D = RX ⊕ kerD, independently of the choice of an R ∈ RD.

Elements of ker D are said to be constants, since by definition, Dz = 0 if and only if
z ∈ kerD. The kernel of D is said to be the space of constants. We should point out that,
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in general, constants are different than scalars, since they are elements of the space X. If
two right inverses commute each with another, then they are equal. Let

FD = {F ∈ L0(X) : F 2 = F ;FX = kerD and ∃R∈RD
FR = 0}.

Any F ∈ FD is said to be an initial operator for D corresponding to R. One can prove
that any projection F ′ onto kerD is an initial operator for D corresponding to a right
inverse R′ = R− F ′R independently of the choice of an R ∈ RD.

If two initial operators commute each with another, then they are equal. Thus this
theory is essentially noncommutative.

An operator F such that FX ⊂ ker D is initial for D if and only if there is an R ∈ RD

such that

(1.1) F = I −RD on dom D.

Even more. Write RD = {Rγ}γ∈Γ. Then, by (1.1), we conclude that RD induces in a
unique way the family FD = {Fγ}γ∈Γ of the corresponding initial operators defined by
means of the equality Fγ = I − RγD on dom D (γ ∈ Γ). Formula (1.1) yields (by a
two-lines induction) the Taylor Formula:

(1.2) I =
n∑

k=0

RkFDk + RnDn on dom Dn (n ∈ N).

It is enough to know one right inverse in order to determine all right inverses and all
initial operators. Note that a superposition (if exists) of a finite number of right invertible
operators is again a right invertible operator.

The equation Dx = y (y ∈ X) has the general solution x = Ry + z, where R ∈ RD

is arbitrarily fixed and z ∈ kerD is arbitrary. However, if we put an initial condition:
Fx = x0, where F ∈ FD and x0 ∈ kerD, then this equation has a unique solution
x = Ry + x0.

If T ∈ L(X) belongs to the set Λ(X) of all left invertible operators, then kerT = {0}.
If D ∈ I(X) = Λ(X) ∩R(X) then FD = {0} and RD = {D−1}.

If P (t) ∈ F[t] (i.e. P (t) is a polynomial with scalar coefficients, where F is the field of
scalars under consideration) then all solutions of the equation

(1.3) P (D)x = y, y ∈ X,

can be obtained by a decomposition of a rational function induced by P (t) into vulgar
fractions. One can distinguish subspaces of X with the property that all solutions of
Equation (1.3) belong to a subspace Y whenever y ∈ Y (cf. von Trotha T[1], PR[6]).
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If X is an algebra over F with a D ∈ L(X) such that x, y ∈ dom D implies xy, yx ∈
dom D, then we shall write D ∈ A(X). If X is commutative then A(X) will be denoted
by A(X). If D ∈ A(X) then we can write

(1.4) fD(x, y) = D(xy)− cD[xDy + (Dx)y] for x, y ∈ dom D,

where cD is a scalar dependent on D only. Clearly, fD is a bilinear (i.e. linear in each
variable) form which is symmetric when X is commutative, i.e. when D ∈ A(X). This
form is called a non-Leibniz component. Non-Leibniz components have been introduced
for right invertible operators D ∈ A(X) (cf. PR[1]). If D ∈ A(X) then the product rule
in X can be written as follows:

D(xy) = cD[xDy + (Dx)y] + fD(x, y) for x, y ∈ dom D.

If D ∈ A(X) and if D satisfies the Leibniz condition:

(1.5) D(xy) = xDy + (Dx)y for x, y ∈ dom D,

then X is said to be a Leibniz algebra. It means that in Leibniz algebras cD = 1 and
fD = 0. The Leibniz condition implies that xy ∈ dom D whenever x, y ∈ dom D. If X is
a Leibniz algebra with unit e then e ∈ kerD, i.e. D is not left invertible.

Non-Leibniz components for powers of D ∈ A(X) are determined by recurrence (equiv-
alent) formulae. Namely, for all k ∈ N, x, y ∈ dom Dk such that fD(x, y) ∈ dom Dk we
have xy ∈ dom Dk and

Dk(xy) = ck
D[xDky + (Dkx)y] + f

(k)
D (x, y), where f

(1)
D = fD and for k = 2, 3, ...

(1.7) f
(k)
D (x, y) = ck

D[(Dx)Dk−1y + (Dk−1x)Dy] +

+ ck−1
D [fD(x,Dk−1y) + fD(Dk−1x, y)] + Df

(k−1)
D (x, y),

i.e.
cDk = ck

D and fDk = f
(k)
D for k ∈ N.

Moreover, f
(k)
D are bilinear mappings of dom Dk×dom Dk into dom Dk (k ∈ N).

Observe that, by definition, f
(k)
D is a bilinear mapping of dom Dk×dom Dk into

dom Dk (k = 2, 3, ...).

Suppose that D ∈ A(X) and p 6= 0 is an arbitrarily fixed scalar. Then pD ∈ A(X)
and

(1.8) cpD = cD, f
(k)
pD = pkf

(k)
D for k ∈ N.

If D1, D2 ∈ A(X), the superposition D = D1D2 exists and D1D2 ∈ A(X), then

(1.9) cD1D2 = cD1cD2 and for x, y ∈ dom D = dom D1 ∩D2
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fD1D2(x, y) = fD1(x, y) + D1fD2(x, y) + +cD1cD2 [(D1x)D2y + (D2x)D1y].

For higher powers of D in Leibniz algebras, by an easy induction from Formulae (1.6)
and the Leibniz condition, we obtain the Leibniz formula:

(1.10) Dn(xy) =
n∑

k=0

(
n

k

)
(Dkx)Dn−ky for x, y ∈ dom Dn (n ∈ N),

i.e.

(1.11) fDn(x, y) = f
(n)
D (x, y) +

n−1∑

k=1

(
n

k

)
(Dkx)Dn−ky, x, y ∈ dom Dn (n ∈ N).

By M(X) we shall denote the set of all multiplicative mappings in X, i.e.

(1.12) M(X) = {A : X → X : A(xy) = (Ax)(Ay) for x, y ∈ X}.

Let X be an algebra with unit e. Then A is an algebra isomorphism if it is a structure
preserving invertible mapping, i.e. A ∈ L0(X) ∩ I(X) ∩M(X). If it is the case then A−1

is also an algebra isomorphism. Moreover, Ae = e. Write

(1.13) vFA = {0 6= λ ∈ F : I − λA is invertible} for A ∈ L(X).

It means that 0 6= λ ∈ vFA if and only if 1
λ is a regular value of A.

By V (X) we denote the set of all Volterra operators belonging to L(X), i.e. the set of
all operators A ∈ L(X) such that I − λA is invertible for all scalars λ. Clearly, A ∈ V (X)
if and only if vFA = F \ {0} (cf. Formula (1.13)).

Note 1.1. Nguyen Van Mau (cf. N[1]) has shown that there is a right invertible
singular integral operator which has no Volterra right inverses. ¤

Let X be a Banach space. Denote by QN(X) the set of all quasinilpotent operators
belonging to L(X), i.e. the set of all bounded operators A ∈ L0(X) such that

lim
n→∞

n
√
‖Anx‖ = 0 for x ∈ X.

It is well-known that QN(X) ⊂ V (X). If F = C then QN(X) = V (X) ∩ B(X), where
B(X) is the set of all bounded operators belonging to L(X).

Definition 1.1. (cf. BPR[1], PR[5], also PR[7]). Let X be a complete linear metric
space over a field F of scalars. Let A ∈ L(X) be continuous. Let E ⊂ dom A ⊂ X be
a subspace. Let ω be a non-empty subset of vFA. The operator A ∈ L(X) is said to be
ω-almost quasinilpotent on E if

(1.14) lim
n→∞

λnAnx = 0 for all λ ∈ ω, x ∈ E.
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The set of all operators ω-almost quasinilpotent on the set E will be denoted by
AQN(E; ω). If ω = vFA then we say that A is almost quasinilpotent on E. The set
of all almost quasinilpotent operators on E will be denoted by AQN(E). ¤

Theorem 1.1. (cf. PR[5], also PR[10]). Let E be a subspace of a complete linear
metric space X over F. If A ∈ L(X), E ⊂ dom A and ∅ 6= ω ⊂ vFA, then the following
conditions are equivalent:

(i) A is ω-almost quasinilpotent on E;

(ii) for every λ ∈ ω, x ∈ E the series
∑∞

n=0 λnAnx is convergent and

(1.15) (I − λA)−1x =
∞∑

n=0

λnAnx (λ ∈ ω, x ∈ E);

(iii) for every λ ∈ ω, x ∈ E, m ∈ N the series
∑∞

n=0

(
n+m−1

m−1

)
λnAnx is convergent

and

(1.16) (I − λA)−mx =
∞∑

n=0

(
n + m− 1

m− 1

)
λnAnx (λ ∈ ω, x ∈ E, m ∈ N).

For given D ∈ R(X), R ∈ RD we shall consider (cf. T[1], PR[6]) the following
subspaces

• the space of smooth elements

D∞ =
⋂

k∈N0

dom Dk, where dom D0 = X;

• the space of D-polynomials

S =
⋃

n∈N
ker Dn; S = P (R) = lin {Rkz : z ∈ ker D, k ∈ N0} ⊂ D∞,

which, by definition, is independent of the choice of an R ∈ RD;

• the space of exponentials

E(R) =
⋃

λ∈vFR

ker (D − λI) =

= lin {(I − λR)−1z : z ∈ ker D, λ ∈ vFR or λ = 0} ⊂ D∞,

which is independent of the choice of the right inverse R, provided that R is a Volterra
operator;
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• the space of D-analytic elements in a complete linear metric space X (F = C or
F = R)

AR(D) = {x ∈ D∞ : x =
∞∑

n=0

RnFDnx} = {x ∈ D∞ : lim
n→∞

RnDnx = 0},

where F is an initial operator for D corresponding to an R ∈ RD .

Clearly, by definitions, we have S, E(R) ⊂ D∞. If X is a complete linear metric space
then S ⊂ AR(D) ⊂ D∞.

2. Shifts in linear spaces.

Let X be a linear space over an algebraically closed field F of scalars. Recall that
an operator T ∈ L0(X) is said to be algebraic on X if there is a polynomial P (t) ∈ F[t]
such that P (T )x = 0 for all x ∈ X, i.e. P (T ) = 0 on X. The operator T is algebraic
of the order N if deg P (t) = N and there is no polynomial P ′(t) ∈ F[t] of deg M < N
such that P ′(T ) = 0 on X (we assume here and in the sequel that any polynomial under
consideration is normalized, i.e. its coefficient of the term of the highest degree is equal
1). If it is the case, then P (t) is said to be a characteristic polynomial of T and its roots
are called characteristic roots of T . An operator T is algebraic on X of the order N with
the characteristic polynomial

P (t) =
n∏

j=1

(t− tj)rj , tj 6= tk if j 6= k, r1 + ... + rn = N

if and only if X is the direct sum of the principal spaces of the operator T corresponding
to the eigenvalues t1, ..., tN :

X = X1 ⊕ ...⊕XN , where (T − tj)rj xj = 0 for xj ∈ Xj ,

Xj = PjX, Pj = Pj(T )

and P1, ..., PN are disjoint projectors giving the partition of unit:

PjPk = δjkPk (j, k = 1, ..., N),
N∑

j=1

Pj = I

which are polynomials in T uniquely determined for a given S (cf. PR[2]). If r1 = ... = rN ,
i.e. if the characteristic roots are single, then these projectors are of the form

Pj = Pj(T ), where Pj(t) =
N∏

k=1,k 6=j

t− tk
tj − tk

(j = 1, ..., N)

and Xj = PjX are eigenspaces of T (cf. PR[2], also PR[4], PR[15]).
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Definition 2.1. (cf. PR[3], PR[4]). Suppose that X is a linear space over C, D ∈
R(X) and S ∈ L0(X) commute with D: SD = DS on dom D. Let N ∈ N be arbitrarily
fixed. If

(2.1) XSN = {x ∈ X : SNx = x} 6= ∅

then any element x ∈ XSN is said to be SN -periodic. ¤
Clearly, S is an involution of order N on the space XSN : SN = I on XSN . Thus there

are N disjoint projectors Pj giving partition of unit, i.e.

(2.2) PkPj = δjkPj (j = 1, ..., N);
N∑

j=0

Pj = I,

such that

(2.3) SPj = PjS = εjPj (j = 1, ..., N), S =
1
N

N−1∑

j=0

εjPj , where ε = e2πi/N .

Formulae (2.2) and (2.3) together imply that

(2.4) XSN = X(1) ⊕ ...⊕X(N), where X(j) = PjXSN (j = 1, ..., N)

(2.5) Sx(j) = εjx(j), where x(j) = Pjx, x ∈ XSN (j = 1, ..., N).

Projectors Pj are of the form

(2.6) Pj =
1
N

N−1∑

k=0

ε−jkSk (j = 1, ..., N).

¤
Definition 2.2. Suppose that X is a linear space over F, D ∈ R(X), kerD 6= {0} and

F is an initial operator for D corresponding to an R ∈ RD.Then a family {Sh}h∈R ⊂ L0(X)
of linear operators is family of R-shifts if

(2.7) S0 = I, ShRkF =
k∑

j=0

hk−j

(k − j)!
RjF for k ∈ N0.

¤
Theorem 2.1. Suppose that X is a linear space over F, D ∈ R(X), kerD 6= {0}, F is

an initial operator for D corresponding to an R ∈ RD and {Sh}h∈R is a family of R-shifts
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defined by (2.7). Then R-shifts are D-invariant, i.e. ShD = DSh on dom D whenever
h ∈ R.

Theorem 2.2. Suppose that all assumptions of Theorem 2.1 are satisfied. Write

(2.8) Fh = FS−h, Dh = D − 1
h

Fh,

R0
h = (I + Fh +

1
h

RFh)R for h ∈ R \ {0}

(2.9) Eh = {x ∈ X : Shx = x} 6= ∅, E(1)
h = Eh ∩ dom D (h ∈ R).

Then Dh ∈ R(X), Fh is an initial operator for Dh corresponding to the right inverse

Rh = R− FhR. Moreover, the operator R0
h maps the space Eh onto the space E(1)

h and

(2.10) DhR0
h = I on Eh, R0

hDh = I on E(1)
h , i.e. D−1

h = R0
h.

Definition 2.3. Suppose that all conditions of Definition 2.1 are satisfied. Let m ∈ N.
An operator A ∈ L0(X) is said to be Sm-periodic if SmA = ASm. ¤

Clearly, if D ∈ A(X), Ax = ax for an a ∈ X and S is multiplicative, then Sm(Ax) =
Sm(ax) = (Sma)Smx. Thus A is Sm-periodic if and only if a ∈ XSm (m ∈ N).

3. True shifts in linear metric spaces.

We begin with

Definition 3.1. (cf. PR[5], also PR[10]). Suppose that X is a complete linear metric
locally convex space (F = C or F = R), D ∈ R(X) is closed, ker D 6= {0} and F is a
continuous initial operator for D corresponding to a right inverse R almost quasinilpotent
on kerD. Let A(R) = R+ or R. If {Sh}h∈A(R) ⊂ L0(X) is a family of continuous linear
operators such that S0 = I and for h ∈ A(R) either

ShRkF =
k∑

j=0

hk−j

(k − j)!
RjF for k ∈ N0

or
Sh(I − λR)−1F = eλh(I − λR)−1F for λ ∈ vFR,

then Sh are said to be true shifts. The family {Sh}h∈A(R) is a semigroup (or group) with
respect to the superposition of operators as a structure operation. ¤

Observe that, by definitions, there are such true shifts which are R-shifts and R-shifts
which are true shifts.

Theorem 3.1. (cf. PR[5], also PR[10]). Suppose that all conditions of Definition
3.1 are satisfied, {Sh}h∈A(R) is a strongly continuous semigroup (group) of true shifts and
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either P (R) = X or E(R) = X. Then D is an infinitesimal generator for {Sh}h∈A(R),

hence dom D = X and ShD = DSh on dom D. Moreover, the canonical mapping κ
defined as

(3.1) κx = {x∧(t)}t∈A(R), where x∧(t) = FStx (x ∈ X)

is an isomorphism (hence separate points) and

κD =
d
dt

κ, κR =
∫ t

0

κ, κFx = κx|t=0,

and (κShx)(t) = x∧(t + h) for x ∈ X, t, h ∈ A(R).

Theorem 3.2. Suppose that all conditions of Definition 3.1 are satisfied, E(R) = X
and {Sh}h∈A(R) is a family of true shifts. Then the canonical mapping defined by (3.1) is
a topological isomorphism.

Theorem 3.3. (cf. PR[5], also PR[10]). Suppose that all conditions of Definition
3.1 are satisfied and {Sh}h∈A(R) is a family of true shifts. Then for all h ∈ A(R) and
x ∈ AR(D) the series

ehDx =
∞∑

n=0

hn

n!
Dnx (where we write eh =

∞∑
n=0

hn

n!
)

is convergent,

(3.2) Shx = ehDx for x ∈ AR(D)

and ehD maps AR(D) into itself (cf. also Formula(9.1)).

This implies the Lagrange-Poisson formula for a right invertible operator D:

(3.3) ∆h = ehD − I on AR(D), where ∆h = Sh − I (h ∈ A(R))

(cf. PR[10]). Note that (under assumptions of Theorem 3.1) vF(RF ShR) = vFR whenever
F is an initial operator for D corresponding to R and Sh are true shifts. This means that
the family {Rh}h∈A(R) = {R − FShR}h∈A(R) of right inverses induced by shifts have the
same regular values as R (cf. BPR[1]).

Definition 3.2. Let X be a linear metric space. Let T ∈ L(X) and x ∈ X. The set
O(T : x) = {Tnx : n ∈ N0 = N ∪ {0}} is said to be the orbit of x with respect to T (cf.
Rolewicz R[1]). A continuous linear operator T acting in X is said to be hypercyclic if
there is an element x ∈ X (called later hypercyclic vector), such that its orbit O(T : x) is
dense in X (cf. Shapiro S[1]). ¤

Recall the classical Birkhoff Theorem (cf. B[2]):
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Theorem 3.4. There exists an entire function Φ with the property: for every entire
function f , every compact subset Ω ⊂ C and every ε > 0 there exists a µ ∈ C such that

max
λ∈Ω

|f(λ)− Φ(λ + µ)| < ε.

Looking over the proof, it is easy to observe that Theorem 3.4 can be formulated in a
little stronger way. Namely, we have

Theorem 3.4′. (generalized Birkhoff theorem). Let either h ∈ R or h ∈ R+. There
exists an entire function Φ with the property: for every entire function f , every compact
subset Ω ⊂ C and every ε > 0 there exists a positive integer n such that

max
λ∈Ω

|f(λ)− Φ(λ + nh)| < ε.

In other words, the generalized Birkhoff theorem says that in the space of all entire
functions equipped with the topology induced by uniform convergence on compact sets the
usual shift operator (Shf)(t) = f(t + h) (t, h ∈ C) is hypercyclic and there is an entire
function Φ which is a hypercyclic vector for Sh.

It will be shown that this property is much more general. Namely, true shifts generated
by a right invertible operator D are hypercyclic and the corresponding hypercyclic vectors
are D-analytic elements. In particular, the operator ehD is hypercyclic, whenever D ∈
L(X) is right invertible. In order to prove it, we need the following

Theorem 3.5. (cf. Rolewicz R[1]). Let Y be a complete linear metric space with the
F -norm

 ·. Let Y = (Y )s be the space of all sequences y = {yn}, yn ∈ Y (n ∈ N) with
the standard norm

‖y‖s =
∞∑

n=1

1
2n

yn


1 +

yn

 .

Define the forward shift S acting in Y as follows: S{yn} = {yn+1}. Then for every a > 0
there is a ya such that O(aS : ya) = Y, i.e. the forward shift S is hypercyclic in Y and the
corresponding hypercyclic vector is ya.

Theorem 3.6. (cf. PR[8]). Suppose that all conditions of Definition 3.2 are satisfied
and {Sh}h∈A(R) is a family of true shifts. Let h ∈ A(R) be arbitrarily fixed. Then Sh is a
hypercyclic operator and there is a χ ∈ AR(D) which is a hypercyclic vector for Sh.

Corollary 3.1. (cf. PR[8]). Suppose that all conditions of Definition 3.2 are satisfied
and {Sh}h∈A(R) is a family of true shifts. Let h ∈ A(R) be arbitrarily fixed. Then the

operator ehD is hypercyclic and there is a χ ∈ AR(D) which is a hypercyclic vector for
ehD.

4. Multiplicative true shifts.

We shall consider now true shifts in the case when X is not only a linear metric space,
but also a commutative algebra. Then we have
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Theorem 4.1. (cf. PR[10]). Let all conditions of Definition 3.1 be satisfied and let
D ∈ A(X). Let {Sh}h∈A(R) be a family of true shifts. Let AR(D) = {x, y ∈ AR(D) : xy ∈
AR(D)}. Then for all x, y ∈ AR(D), h ∈ A(R)

Sh(xy)− (Shx)(Shy) =
∞∑

n=0

hn

n!
[Dn(xy)−

n∑

k=0

(
n

k

)
(Dkx)(Dn−ky)].

Theorem 4.2. (cf. PR[10]). Let all conditions of Definition 3.1 be satisfied and
let D ∈ A(X). Let {Sh}h∈A(R) be a family of true shifts. Then Sh are multiplicative on
AR(D) for all h ∈ A(R): Sh(xy) = (Shx)(Shy) for all x, y ∈ AR(D), if and only if D|AR(D)

satisfies the Leibniz condition, i.e. D(xy) = xDy + yDx.

Note that in Leibniz algebras xy ∈ AR(D) whenever x, y ∈ AR(D). Thus in this case
AR(D) = AR(D) and we have

Corollary 4.1. (cf. PR[6]). Let all conditions of Definition 3.1 be satisfied and let
D ∈ A(X). Let {Sh}h∈A(R) be a family of true shifts. If the restriction D|AR(D) satisfies
the Leibniz condition, then Sh are multiplicative on AR(D) for all h ∈ A(R).

Theorem 4.3. Suppose that X is a complete linear metric locally convex space
(F = C or F = R) and a Leibniz Di- algebra (i = 1, 2), Di ∈ R(X) are closed, kerDi 6= {0}
and Fi are continuous initial operators for Di corresponding to a right inverse Ri almost
quasinilpotent on kerDi, respectively. Let A(R) = R+ or R. Suppose that {Si,h}h∈A(R)

are strongly continuous semigroups (groups) of true shifts for Di (i = 1, 2) respectively,
and either P (Ri) = X or E(Ri) = X for i = 1, 2. Let κ1, κ2 be the canonical mappings
for D1, D2, respectively. Then κi are algebra isomorphisms on ARi(Di) (i = 1, 2) and

(4.1) κ1D1κ
−1
1 =

d
dt

= κ2D2κ
−1
2 on X.

Corollary 4.1. Suppose that all assumptions of Theorem 4.3 are satisfied. Then
the operators satisfying the Leibniz condition are uniquely determined as d

dt up to isomor-
phisms determined by the canonical mappings.

It means that true shifts are, indeed, true.

5. True shifts in commutative algebras with logarithms.

Suppose that D ∈ A(X). Let a multifunction Ω : dom D −→ 2dom D be defined as
follows:

(5.1) Ωu = {x ∈ dom D : Du = uDx} for u ∈ dom D.

The equation

(5.2) Du = uDx for (u, x) ∈ graph Ω.

11



is said to be the basic equation. Clearly,

Ω−1x = {u ∈ dom D : Du = uDx} for x ∈ dom D.

The multifunction Ω is well-defined and dom Ω ⊃ kerD \ {0}.
Suppose that (u, x) ∈ graph Ω, L is a selector of Ω and E is a selector of Ω−1.

By definitions, Lu ∈ dom Ω−1, Ex ∈ dom Ω and the following equations are satisfied:
Du = uDLu, DEx = (Ex)Dx.

Any invertible selector L of Ω is said to be a logarithmic mapping and its inverse
E = L−1 is said to be a antilogarithmic mapping. By G[Ω] we denote the set of all pairs
(L,E), where L is an invertible selector of Ω and E = L−1. For any (u, x) ∈ dom Ω
and (L,E) ∈ G[Ω] elements Lu, Ex are said to be logarithm of u and antilogarithm of x,
respectively. The multifunction Ω is examined in PR[7].

Clearly, by definition, for all (L, E) ∈ G[Ω], (u, x) ∈ graph Ω we have

(5.3) ELu = u, LEx = x; DEx = (Ex)Dx, Du = uDLu.

A logarithm of zero is not defined. If (L,E) ∈ G[Ω] then L(kerD \ {0}) ⊂ kerD,
E(ker D) ⊂ kerD. In particular, E(0) ∈ kerD.

If D ∈ R(X) then logarithms and antilogarithms are uniquely determined up to a
constant.

Let D ∈ A(X) and let (L, E) ∈ G[Ω]. A logarithmic mapping L is said to be of the
exponential type if L(uv) = Lu+Lv for u, v ∈ dom Ω. If L is of the exponential type then
E(x + y) = (Ex)(Ey) for x, y ∈ dom Ω−1. We have proved that a logarithmic mapping L
is of the exponential type if and only if X is a Leibniz commutative algebra (cf. PR[7]).
Moreover, Le = 0, i.e. E(0) = e. In Leibniz commutative algebras with D ∈ R(X) a
necessary and sufficient conditions for u to belong to dom Ω is that u ∈ I(X) (cf. PR[9]).

By Lg(D) we denote the class of these commutative algebras with D ∈ R(X) and with
unit e ∈ dom Ω for which there exist invertible selectors of Ω, i.e. there exist (L,E) ∈ G[Ω].
By L(D) we denote the class of these commutative Leibniz algebras with unit e ∈ dom Ω for
which there exist invertible selectors of Ω. By these definitions, X ∈ Lg(D) is a Leibniz
algebra if and only if X ∈ L(D) and D ∈ R(X). This class we shall denote by L(D).
It means that L(D) is the class of these commutative Leibniz algebras with D ∈ R(X)
and with unit e ∈ dom Ω for which there exist invertible selectors of Ω, i.e. there exist
(L,E) ∈ G[Ω].

If kerD = {0} then either X is not a Leibniz algebra or X has no unit. Thus, by our
definition, if X ∈ L(D) then kerD 6= {0}, i.e. the operator D is right invertible but not
invertible.

Theorem 5.1. Suppose that X ∈ L(D), F is an initial operator for D corresponding
to an R ∈ RD, (L,E) ∈ G[Ω] and A is an algebra isomorphism of X. Let D′ = A−1DA
and let Ω′ : dom D′ −→ 2dom D′

be defined as follows:

(5.4) Ω′u = {x ∈ dom D′ : D′u = uD′x} for u ∈ dom D′.
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Then there are (L′, E′) ∈ G[Ω′] and L′ = A−1LA, E′ = A−1EA.

Theorem 5.2. Suppose that X is a complete linear metric locally convex space
(F = C or F = R), D ∈ R(X) is closed, kerD 6= {0} and F is a continuous initial operator
for D corresponding to a right inverse R almost quasinilpotent on kerD. Let A(R) = R+

or R, {Sh}h∈A(R) is a strongly continuous semigroup (group) of true shifts and either

P (R) = X or E(R) = X. Suppose, moreover, that X ∈ L(D), (L,E) ∈ G[Ω].Write:
D′ = κ′ d

dtκ
′−1. Let Ω′ be defined by (5.4), where κ is the canonical mapping defined by

(3.5). Then there are (L′, E′) ∈ G[Ω′] such that L′ = ln, E′(·) = exp(·).
Note that for X ∈ L(D), (L,E) ∈ G[Ω] we have

(5.5) FE = EF, FL = LF whenever F ∈ FD

(cf. PR[15]).

6. Periodic problems.

By Theorem 2.1, true shifts are D-invariant, i.e. ShD = DSh on dom D for all
h ∈ A(R).

Theorem 6.1. Suppose that X ∈ Lg(D) has the unit e and is a complete linear
metric space over F (F = R or F = C), (L,E) ∈ G[Ω], D ∈ R(X) is closed, {Sh}h∈A(R) is
a family of true shifts induced by an R ∈ RD ∩ AQN(kerD), g = Re, λg ∈ dom Ω−1 for
λ ∈ vFR. Then ShE(λg) = eλhE(λg) whenever λ ∈ vFR, h ∈ A(R).

Theorem 6.2. Suppose that X ∈ Lg(D) has the unit e and is a complete linear
metric space over C, (L,E) ∈ G[Ω], D ∈ R(X) is closed, {Sh}h∈R is a family of true
shifts induced by an R ∈ RD ∩ AQN(kerD), S−r is multiplicative for an r ∈ R, ω = Nr
(N ∈ N), g = Re and 2πi

ω g ∈ dom Ω−1 whenever 2πi
ω ∈ vCR. Let

(6.1) Enr = XSn
−r

= {x ∈ X : Sn
−rx = x} = {x ∈ X : S−nrx = x} 6= ∅ (n ∈ N)

and let E(j) = PjEω = PjENr, where Pj are determined by Formulae (2.6). If u =
E(− 2πi

ω jg)v, where v ∈ Er, i.e. S−rv = v (j = 1, ..., N), then u ∈ E(j), i.e. if S−ru = εju.

In order to prove the necessity of the condition given in Theorem 6.1 we need the
assumption that X is a Leibniz algebra. Namely, we have

Theorem 6.3. Suppose that X ∈ L(D) has the unit e and is a complete linear metric
space over C, (L,E) ∈ G[Ω], D ∈ R(X) is closed, {Sh}h∈R is a family of true shifts induced
by an R ∈ RD∩AQN(kerD), S−r is multiplicative for an r ∈ R, ω = Nr (N ∈ N), g = Re
and 2πi

ω g ∈ dom Ω−1 whenever 2πi
ω ∈ vCR. Let E(j) = PjEω = PjENr, where Pj and ENr

are determined by Formulae (2.4) and (6.1), respectively. Then u = E(− 2πi
ω jg)v, where

v ∈ Er, i.e. S−rv = v (j = 1, ..., N), only if u ∈ E(j), i.e. S−ru = εju.

An immediate consequence of Theorems 6.2, 6.3 and the decomposition (2.4) onto the
direct sum is
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Corollary 6.1. Suppose that all assumptions of Theorem 6.3 are satisfied. Then
x ∈ Eω if and only if

x =
N∑

j=1

E(−2πij

ω
g)vj , where S−rvj = vj (j = 1, ..., N)

(cf. PR[2], also PR[7]).

Note 6.1. In the classical case of the space X = C(R) over C, when D = d
dt ,

(Shx)(t) = x(t + h) for x ∈ X, t, h ∈ R, we find that Eω, ω = Nr, is the space of of
ω-periodic functions. The operator S−r is an involution of order N on Eω for (SN

−rx)(t) =
x(t−Nr) = x(t− ω) = x(t). Thus any ω-periodic function x ∈ X is of the form

x =
N∑

j=1

e2πijt/ωvj , where v1, ..., vN are r-periodic functions.

Functions of the form eλtv, where λ ∈ C, v is a periodic function, and their linear combi-
nations are said to be exponential-periodic functions. Elements of the form E(λg)v, where
λ ∈ C, v is a periodic element, and their linear combinations are said to be exponential-
periodic elements. Recall that in Corollary 6.2 X is a Leibniz algebra, hence antiloga-
rithms are exponentials. For an arbitrary M ∈ N and a true shift Sh we denote the space
of exponential-periodic elements by

XEP (h;λ1, ..., λM ) =

= lin
{
E(λjg)vj : vj ∈ XSh

; λj ∈ C; λm 6= λj +
2πik

h
,m 6= j; k ∈ Z (m, j = 1, ...,M)

}
.

By Corollary 6.1, x ∈ Eω if and only if x ∈ XEP (h;− 2πi
ω , ...,− 2πiN

ω ) (Sh = S−r). More
details about spaces of exponential-periodic functions and their applications can be found
in PR[2], PR[7]. ¤

In order to generalize the Floquet theorem, we use Theorem 6.1 and Corollary 6.1.
The classical Floquet theorem says that every linear ordinary differential equation with
periodic coefficients has at least one non-zero exponential-periodic solution, i.e. a solution
of the form eλtu(t), where u 6= 0 is a periodic function and λ ∈ C is properly chosen (cf.
Arscott Ar[1], Ince In[1]).

Proposition 6.1. Suppose that all assumptions of Theorem 6.3 are satisfied. Write

(6.3) Q(D) =
K∑

k=0

QkDk, Qk ∈ L0(X), S−rQk = QkS−r (k = 0, 1, .., K),

i.e. Qk are S−r-periodic. Suppose, moreover, that v ∈ dom DK is an S−r-periodic element
and u = E(λg)v ∈ kerQ(D). Then

λ =
2πi

ω
j where j ∈ Z is arbitrary.
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Proposition 6.2. Suppose that all assumptions of Proposition 6.1 are satisfied. Let
λ = 2πi

ω j, where j ∈ Z is arbitrary. Then Q(D + λI)v = 0. Conversely, if Q(D + λI)v = 0,
then u = E(λg)v ∈ kerQ(D).

Theorem 6.4. (Generalized Floquet Theorem). Suppose that all assumptions of
Theorem 6.3 are satisfied. Let Dr, Fr, R0

r and Q(D) be defined by Formulae (2.8). Write

(6.4) Q̃k =
K∑

k=m

(
m

k

)
λm−kQm (k = 0, 1, ..., K),

(6.5) Q̃(t, s) =
K∑

k=0

Q̃ktksK−k, Q̃(t) = Q̃(t, 1).

If the operator Q̃(I, R0
−r) is invertible in the space Er then the equation

(6.6) Q(D)x = 0

has exponential-periodic solutions which are of the form

(6.7)) x = E(λg)v, where S−rv = v, λ =
2πi

ω
j (j ∈ Z),

(6.8) v = (R0
−r)

K [Q̃(I,R0
−r)]

−1
K∑

k=0

Q̃k

k−1∑

j=0

r−k+jzj ,

z0, ..., zK−1 ∈ kerD are arbitrary.

In order to reduce an equation with an involution of order N , in particular, an equation
with a true shift in the space of periodic elements, we need

Proposition 6.3. (cf. PR[7]). Suppose that X is a linear space over C, D ∈ R(X),
S ∈ L0(X) commutes with D: SD = DS on dom D, the operators Qkm ∈ L0(X) are
S-periodic, i.e. SQkm = QkmS (k = 0, 1, ..., N − 1; N ≥ 2; m = 0, 1, ..., M). Write

(6.9) Qm(S) =
N−1∑

k=0

QkmSk, Q(D, S) =
M∑

m=0

Dm+M1 (M1 ∈ N0)).

If XSN 6= ∅ then

(6.10) Q(D, S) =
N∑

j=1

Q(D, εj)Pj on XSN , where ε = e
2πi
N ,
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and projectors P1, ...., PN defined by (2.4) commute each with another.

Proposition 6.4. (cf. PR[7]). Suppose that all assumptions of Proposition 6.3 are
satisfied. Then the equation

(6.11) Q(D, S)x = y, y ∈ XSN ,

is equivalent in the space XSN to N independent equations

(6.12) Q(D, εj)xj = yj , where xj = Pjx, yj = Pjy ∈ X(j), (j = 1, ..., N),

and X(j) are defined by the decomposition (2.5), xj , yj are defined by Formulae (2.6).

Theorem 6.4. (cf. PR[7]) Suppose that all assumptions of Proposition 6.3 are
satisfied. If each of Equations (6.12) has a solution xj ∈ Xj (j = 1, ..., N) then Equation
(6.11) has a solution x = x1 + .... + xN ∈ XSN . Conversely, if Equation (6.11) has an
SN -periodic solution x then the j-th Equation (6.12) has a solution xj = Pjx ∈ Xj .

Theorem 6.4 has several applications. We may use this theorem when S = Sh is
a true shift (under appropriate additional assumptions). Some of these applications are
quite far from classical differential-difference equations (cf. PR[2], PR[7]). For instance,
this method can be used for a reduction of a stochastic differential-difference equation to
a stochastic differential equation in order to find its periodic solutions (cf. Wilkowski
Wi[1]). In a similar manner one can consider the operator

Q(D, S) = DM1

M∑
m=0

Qm(S)Dm.

Another possibility is given by

Theorem 6.5. Suppose that all assumptions of Theorem 6.3 are satisfied. Consider
a nonlinear equation

(6.13) Dx = G(x, S−ω1x, ..., S−ωmx),

where the mapping
G : X × ...×X︸ ︷︷ ︸

m−times

−→ X

is continuous in each variable and all numbers ω1, ..., ωm are commensurable, i.e. there
exist an r ∈ R \ {0} and η1, ..., ηm ∈ Z such that ωj = ηjr (j = 1, ...,m). We admit
ω0 = η0 = 0. Let N be a common multiple of positive integers |η1|, ..., |ηm| and let
ω = Nr. Then Equation (6.13) has a solution x ∈ Eω if and only if the following system
of N equations without shifts

(6.14) Dx̃j =
2πij

ω
x̃j + G̃j(x̃1, ..., x̃N ) (j = 1, ..., N),
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has an r-periodic solution, where

(6.15) G̃(x̃1, ...x̃N ) = G
( N∑

k=1

e2πkη0E(
2πik

ω
g)x̃k, ...,

N∑

k=0

e2πkηmE(
2πik

ω
g)x̃k

)
,

G̃j(x̃1, ..., x̃N ) = E(
2πij

ω
g)PjG̃(x̃1, ..., x̃N ) (j = 1, ..., N).

If it is the case, then

(6.16) x =
N∑

j=1

E(
2πij

ω
g)x̃j ,

where (x̃1, ..., x̃N ) is an r-periodic solution of the system (6.14).

Theorem 6.5 can be used also in order to study linear equations with shifts, in par-
ticular, differential-difference equations with periodic coefficients. In a similar manner one
can consider other periodic problems (cf. PR[2], also PR[7], Section 15). Note that in
Theorem 6.5 we obtain a system of equations which, in general, are not independent.

Consider the space of exponential-periodic elements (defined in Note 6.1 in the classical
case) for an arbitrary M ∈ N and a true shift Sh

(6.17) XEP (h;λ1, ..., λM ) =

= lin
{
E(λjg)vj : vj ∈ XSh

;λj ∈ C; λm 6= λj +
2πik

h
, m 6= j; k ∈ Z (m, j = 1, ..., M)

}

We have

Theorem 6.6. Suppose that all assumptions of Theorem 6.3 are satisfied. Let
λj = 2πi

ω j (j = 1, ..., N), and let h = −r. Then Sh is an algebraic operator on the
space XEP (h; λ1, ..., λN ) with the characteristic polynomial

P (t) =
N∏

j=1

(t− tj), where tj = eλjh (j = 1, ..., N)

(with single characteristic roots).

An immediate consequence of Theorem 6.6 is

Corollary 6.2. Suppose that all assumptions of Theorem 6.6 are satisfied. Then
X = XEP (h;λ1, ..., λN ) is a direct sum of the eigenspaces of the operator Sh corresponding
to the eigenvalues t1, ..., tN :

(6.18) XEP (h; λ1, ..., λN ) = X1 ⊕ ...⊕XN , where Shxj = tjxj for xj ∈ Xj ,
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Xj = PjX, Pj = Pj(Sh), Pj(t) =
N∏

k=1,k 6=j

t− tk
tj − tk

Consider now combinations of exponential-periodic elements and D-polynomials.
However, in that case Sh is an algebraic operator with multiple characteristic roots.
Note that polynomial-periodic solutions of differential-difference equations firstly have
been studied by WÃlodarska-Dymitruk (cf. WD[1]). A generalization for polynomial-
exponential-periodic elements and shifts induced by right invertible operators was given in
PR[7]).

Proposition 6.4. Let D ∈ R(X), kerD 6= {0} and let F be an initial operator for
D corresponding to an R ∈ RD. Let {Sh}h∈R ⊂ L0(X) be a family of R-shifts, i.e. such
operators that S0 = I and for h ∈ R

(6.19) ShRkF =
k∑

j=0

hk−j

(k − j)!
RjF for k ∈ N0

(cf. Proposition 6.1). Then for all h ∈ R, z ∈ kerD, k, n ∈ N, we have

(6.20) Sn
hRkz =

k∑
m=0

h
(n)
k,mRmz, where

(6.21) h
(1)
k,j =

1
(k − j)!

hk−j (j = 0, 1, ..., k), n ≥ 1,

(6.22) h
(n+1)
k,j =

k∑
m=1

h
(n)
k,mh

(1)
m,j , h

(n+1)
k,k = 1.

By induction, we get

Proposition 6.5. Suppose that all assumptions of Proposition 6.4 are satisfied. Write

(6.23) P (n+1)(t) =
M∑

m=0

pM,mtm, P (0)(t) = P (t) =
M∑

m=0

pmtm,

(6.24) p
(0)
M,m = pm, p

(n+1)
M,j =

M∑

m=j

p
(n)
M,mh

(n)
m,j , p

(n+1)
M,M = 1,

pm ∈ C, pM = 1 (j,m = 0, 1, ..., M ; n ∈ N0),
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where h
(n)
m,j are defined by Formulae (6.21), (6.22). Then p

(n)
M,M = 1 for M ∈ N, n ∈ N0

and

(6.25) Sn
hP (n)(R) = P (n+1)(R) for all h ∈ R, z ∈ kerD (n ∈ N0).

Proposition 6.6. Suppose that all assumptions of Proposition 6.1 are satisfied. Then
for every h ∈ R and k ∈ N0 the operator Sh is algebraic on the space kerDk+1 with the
characteristic polynomial P (t) = (t− 1)k+1, i.e.

(Sh − I)k+1Rkz = 0 for every h ∈ R, z ∈ kerD, k ∈ N0.

Writing

h̃j+1
k,ν =

k−j∑
µ=ν

h
(1)
k,µ+jh

(1)
µ+j,ν for j = 1, ..., k; ν = 0, 1, ..., k − j,

we get

(6.26) (Sh − I)2Rkz =
k−2∑
ν=0

h̃
(1)
k,νRνz,

Corollary 6.3. Let D ∈ R(X), kerD 6= {0} and let F be an initial operator for
D corresponding to an R ∈ RD. Let D ∈ A(X). Let {Sh}h∈R ⊂ L0(X) be a family of
multiplicative R-shifts (cf. Proposition 6.5). Then

(SN
h − I)k+1(vRkz) = 0 for all z ∈ kerD, v ∈ XSN

h
, k, N ∈ N,

i.e. Sh is an algebraic operator on the space

lin {vRkz : z ∈ kerD, SN
h v = v (k ∈ N0)}

with the characteristic polynomial P (t) = (tN − 1)k+1 and with the characteristic roots
εj = e2πij/N (j = 0, 1, ..., N), each of multiplicity k + 1.

Corollary 6.4. Suppose that all assumptions of Corollary 6.3 are satisfied. Write for
M, n0, ..., nM , nj 6= nk if j 6= k, h ∈ R

(6.27) XPP (h; n0, ..., nM ) =

= {u =
M∑

m=0

vmRmzm : zm ∈ kerD, Snm

h vm = vm (m = 0, 1, ..., M)}.

Then

(6.28) P (Sh) = 0 on XPP (h; n0, ..., nM ), where P (t) =
M∏

m=0

(tnm − I)M+1,
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i.e. Sh is an algebraic operator on the space XPP (h; n0, ..., nM ) with the characteristic

polynomial P (t). The characteristic roots are εj
m = e

2πij
nm (m = 0, 1, ...,M ; j = 0, 1, ..., nm−

1), each of the multiplicity M + 1. Thus XPP (h; n0, ..., nM ) is a direct sum of principal
spaces Xjm such that (Sh − εj

mI)M+1 = 0 on Xjm (j = 0, 1, ..., nm − 1; m = 0, 1, ...,M).

Elements of spaces XPP (h;n0, ..., nM ) are said to be D-polynomial-periodic elements.

Theorem 6.7. Suppose that X ∈ L(D) has the unit e and is a complete linear metric
space over C, (L,E) ∈ G[Ω], D ∈ R(X) is closed, {Sh}h∈R is a family of multiplicative true
shifts induced by an R ∈ RD ∩AQN(kerD), g = Re, M, Kj , Nj ∈ N and λjg ∈ dom Ω−1

whenever λj ∈ vCR (λj 6= λk + 2πil/h if j 6= k; l ∈ Z; j, k = 0, 1, ..., M). Then Sh is an
algebraic operator on the space of D-polynomial-exponential-periodic elements:

(6.29) XPEP (h; λj ; Kj ;Nj ; M)

= {x =
M∑

j=0

( Kj∑

k=0

vjkRkzjk

)
E(λjg) : zjk ∈ kerD, vjk ∈ X

S
Nj
h

, k = 0, 1, ..., Kj}

with the characteristic polynomial

(6.30) P (t) =
M∏

j=0

(tNj − t
Nj

j )Kj+1, where tj = eλjh (j = 0, 1, ..., M).

The characteristic roots of the polynomial P (t) are

(6.31) tjm = tjε
m
j , where εj = e

2πi
Nj (m + 0, 1, ..., Nj − 1; , j = 0, 1, ..., M)

of the multiplicity Kj + 1, respectively.

Corollary 6.5. Suppose that all assumptions of Theorem 6.7 are satisfied. Then
a principal space corresponding to the root 1 of the multiplicity k + 1 is lin {Rjz : z ∈
kerD, j = 0, 1, ..., k}.

We can solve now equations with shifts in the spaces

XPP (h; n0, ..., nM ) and XPEP (h; λj ,Kj;Nj ; M)

in the same manner as we did it in the space of periodic elements and in XEP (h; λj , ..., λM )
(cf. for instance, Proposition 6.2, Theorem 6.4).

Note 6.2. Theorems 6,6, 6.7 and Corollary 6.2 are proved for Leibniz algebras. A
modified proof could be used for quasi Leibniz algebras, i.e. commutative algebras with
the product rule D(xy) = xDy + yDx + d(Dx)(Dy) for x, y ∈ dom D, where d 6= 0 is a
scalar.We have only remember that in this case logarithms (provided that they exist) are
not of of the exponential type, but they satisfy the following equation

DL(uv) = D(Lu + Lv) + d(DLu)(DLv) for u, v ∈ dom Ω, (L,E) ∈ G[Ω].
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Hence for antilogarithms we have the equation

(Ex)(Ey) = E{x + y + dR[(Dx)(Dy)] + z} where z ∈ kerD, x = Lu, y = Lv.

We cannot use similar arguments for simple Duhamel algebras, i.e. algebras with the
product rule D(xy) = xDy, what can be written D(xy) = 1

2 (xDy+yDx) for x, y ∈ dom D.
Logarithmic (hence also antilogarithmic) mappings in that case do not exist. ¤

It should be mentioned that R-shifts Sh defined by Formula (2.7) correspond to R-
shifts S−h studied in PR[5], PR[7]. This change of sign is not essential, however, it is
convenient in order to have a unified approach to different questions considered here.
Some results of this chapter are true also in the case when h ∈ A(R) = R+.

7. Harmonic logarithms.

We shall use the so-called Roman factorial defined as

(7.1) [n]! =

{
n! if n ≥ 0, (0! = 0);
(−1)n+1

(−n−1)! if n < 0 (n ∈ N)

and Roman coefficients

(7.2)
[
n

k

]
=

[n]!
[k]![n− k]!

(n, k ∈ Z)

(cf. Roman and Rota RR[10]). In particular, we have
[
0
k

]
=

[
0
−k

]
= (−1)k+1

k! for k ∈ N0 =
N ∪ {0}.

Definition 7.1. (cf. PR[9]). Suppose that X ∈ Lg(D) (F = R or F = C), F is an
initial operator for D corresponding to an R ∈ RD and there is (L, E) ∈ GR,1[Ω] ∗. We
admit the following convention: R−nL = DnL (n ∈ N) for FL = 0. Harmonic logarithms
of order p ∈ N0 are elements

(7.3) λ(p)
n (u) = [n]!Rn(Lu)p for u ∈ I(X) ∩ dom Ω, n ∈ Z, p ∈ N0.

¤
For instance, if g = Re ∈ I(X) ∩ dom Ω, then

λ
(p)
0 (g) = (Lg)p (p ∈ N0) ; λ(1)

n (g) =
{

gn[Lg − (1 + 1
2 + ... + 1

n )e] if n ∈ N0;
g−n if −n ∈ N.

Note that harmonic logarithms are not logarithms defined in Section 5, although they
are constructed with the use of these logarithms.

∗ Let (L, E) ∈ G[Ω]. If FDjL = 0 for j = 0, ..., m − 1 then (L, E) is said to be m-
normalized by R and we write (L,E) ∈ GR,m[Ω].
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Theorem 7.1. (cf. PR[4]) Suppose that X is a complete linear metric locally convex
space (F = C or F = R), D ∈ R(X) is closed, kerD 6= {0} and F is a continuous
initial operator for D coresponding to a right inverse R almost quasinilpotent on kerD.
Suppose, moreover, that X ∈ Lg(D), there are (L,E) ∈ GR,1[Ω], g = Re ∈ I(X)∩dom D,
g−1 ∈ AR(D) and {Sh}h∈A(R) is a family of multiplicative true shifts. Then

(7.4) λ(p)
n (g + he) =

∞∑

k=0

[
n

k

]
hkλ

(p)
n−k(g) for n ∈ Z, p ∈ N0.

Theorem 7.1 is a generalization of the well-known binomial theorem with harmonic
logarithms appearing in Umbral Calculus (cf. Roman and Rota RR[1], Loeb and Rota
LR[1]) for harmonic logarithms induced by a right invertible operator D ∈ L(X) and
(L,E) ∈ G[Ω].

Let X ∈ Lg(D), (L,E) ∈ GR,1[Ω] (R ∈ RD) and let g = Re ∈ I(X) ∩ dom Ω.
Consider the algebra

X (L; g) = lin {gn(Lg)p : n ∈ Z, p ∈ N0}.

Clearly, X (L; g) is a Leibniz algebra whenever X is a Leibniz algebra.

Theorem 7.2. (cf. PR[9]) Suppose that X ∈ Lg(D) is a Leibniz algebra, (L,E) ∈
GR,1[Ω] for an R ∈ RD and g = Re ∈ I(X) ∩ dom Ω. Then

(7.5) X (L; g) = lin {λ(p)
n (g) : n ∈ Z, p ∈ N0}.

Now one can extend results obtained for algebras considered in Umbral Calculus to
algebras X (L; g) induced by a right invertible operator D ∈ L(X) and (L, E) ∈ G[Ω].

Concerning linear equations with scalar coefficients and with the right-hand side be-
longing to X (L; g), we have the following

Theorem 7.3. (cf. PR[9]). Suppose that X is a complete linear metric space (F = R
or F = C) and a commutative Leibniz algebra with unit e, D ∈ R(X), kerD 6= {0}, F
is a multiplicative initial operator for D corresponding to an R ∈ RD ∩ AQN(kerD),
X ∈ Lg(D), (L,E) ∈ G[Ω] and g ∈ I(X) ∩ dom Ω. Then every equation

(7.6) P (D)x = y, y ∈ X (L; g)
(
P (t) ∈ F[t])

has all solutions belonging again to X (L; g). If, in addition, g−1 ∈ AR(D) then X (L; g) ⊂
AR(D).

Note that in the proof of Theorem 7.3 we have applied in an essential way properties
of the so-called D-R hulls (cf. von Trotha T[1], also PR[2]).

An analogue of Theorem 7.1 for u 6= g = Re is

Theorem 7.4. (cf. PR[9] Suppose that X is a complete linear metric locally convex
space (F = C or F = R), D ∈ R(X) is closed, kerD 6= {0} and F is a continuous initial
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operator for D corresponding to a right inverse R almost quasinilpotent on kerD. Suppose,
moreover, that X ∈ Lg(D), there are (L, E) ∈ GR,m[Ω] (m ∈ N), u ∈ I(X) ∩ dom Dm,
u−1 ∈ AR(D) and {Sh}h∈A(R) is a family of multiplicative true shifts. Then

(7.7) λ(p)
n (Shu) =

∞∑

k=0

[
n

k

]
hkλ

(p)
n−k(u) for n ∈ Z, p ∈ N0.

Corollary 7.1. (cf. PR[9]). Suppose that all assumptions of Theorem 7.4 are satis-
fied. Then

(7.8) λ(p)
n (u) =

∞∑

k=0

[
n

k

]
hkλ

(p)
n−k(S−hu) for n ∈ Z, p ∈ N0,

(7.9) (LShu)p =
1
n!

Dn
∞∑

k=0

[
n

k

]
hkλ

(p)
n−k(u) for n ∈ Z, p ∈ N0.

Denote by In(Y ) the set of all elements from Y ⊂ X having n-th roots:

(7.10) In(Y ) = {x ∈ Y : ∃
y∈I(Y )

yn = x} (n ∈ N).

If x ∈ In(Y ) and yn = x then we write y = x1/n, (n ∈ N).

Theorem 7.5. (cf. PR[9]. Suppose that X is a complete linear metric locally convex
space (F = C or F = R), D ∈ R(X) is closed, kerD 6= {0} and F is a continuous initial
operator for D corresponding to a right inverse R almost quasinilpotent on kerD. Suppose,
moreover, that X ∈ Lg(D), there are (L,E) ∈ GR,m[Ω] (m ∈ N), u ∈ Ip(X) ∩ dom Dm,
u−1 ∈ AR(D) and {Sh}h∈A(R) is a family of multiplicative true shifts. Then

(7.11) Shu =
( ∞∑

k=0

[k]!hkDkup
)1/p

for n ∈ Z, p ∈ N0.

Theorem 7.6. (cf. PR[9]). Suppose that all assumptions of Theorem 7.4 are satisfied.
Then

(7.12) λ(p)
n (Shu) = Shλ(p)

n (u) for n ∈ Z, p ∈ N0.

8. Characteristic quasipolynomials.

Suppose that X ∈ Lg(D)) is a complete linear metric space over C, (L,E) ∈ G[Ω],
D ∈ R(X), there is an R ∈ RD∩AQN(kerD), F is an initial operator for D corresponding
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to R, g = Re, λg ∈ dom Ω for λ ∈ vCR and {Sh}h∈R is a family of true shifts (induced by
R). Write

(8.1) W (tD) =
n∑

k=0

m∑

j=0

akjt
kS−hj

, W∧(t) =
n∑

k=0

m∑

j=0

akjt
ke−hjt

0 = h0 < h1 < ... < hm, akj ∈ C (k = 0, ..., n; j = 0, ...,m),

Then E(λg) ∈ kerW (D) if and only if W∧(λ) = 0. It means that in order to determine
solutions of the equation W (D)x = 0, which are of the form E(λg), it is enough to find
characteristic roots, i.e. zeros of the characteristic quasipolynomial W∧(t).

In particular, the characteristic quasipolynomials for homogeneous linear differential-
difference equations with scalar coefficients and their roots are often studied in order to
determine the corresponding solutions.

9. Oscillations.

We begin with

Definition 9.1. Let D ∈ R(X) and let d(D) = {1, 2, ..., dim kerD ≤ +∞},
(0 < d(D) ≤ +∞). Then ker D = lin {zn}n∈d(D), where z1, ..., zd(D) ∈ kerD are
linearly independent. By Theorem 3.1, to every x ∈ X there corresponds a function
x∧ : A(R) −→ kerD defined as x∧(t) = Ftx, where Ft = FSt. Thus there exist scalar
functions Sx;1, ..., Sx;d(D) : A(R) −→ F such that

(9.1) x∧(t) = {Sx;nzn}n∈d(D) for all t ∈ A(R) (x ∈ X).

The sequence Sx = {Sx;n}n∈d(D) is said to be the symbol of the element x. Its nth
component is said to be nth symbol function *. ¤

From Definition 9.1 it follows that the symbol is linear in its index, i.e.

(9.2) Scx = cSx, Sx+y = Sx + Sy for all x, y ∈ X, c ∈ F.

Theorem 9.1. Suppose that all assumptions of Theorem 3.1 are satisfied and x ∈ X,
t, h ∈ A(R). Then

(i) SDkx = dk

dtk Sx for x ∈ dom Dk (k ∈ N);

(ii) all nth symbol functions are infinitely differentiable (with respect to t for x ∈ D∞
(n ∈ d(D));

* The symbol functions for D-polynomials and exponentials has been introduced in
PR[2], p. 357. The case dim ker D = n has been examined in PR[11].
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(iii) x ∈ AR(D) if and only if all nth symbol functions Sx;n (n ∈ d(D)) are analytic
at t = 0 and

Sx;n(t) =
∞∑

k=0

tk

k!
S(k)

x;n(0) for t ∈ A(R)
(
x ∈ AR(D), n ∈ d(D)

)
.

Corollary 9.1. Suppose that all assumptions of Theorem 3.1 are satisfied. Let
P (t) ∈ F[t]. Then the equation

(9.3) P (D)x = y, y ∈ X

has a solution x if and only if each nth symbol function Sx;n (n ∈ d(D)) satisfies an
ordinary differential equation:

(9.4) P
( d
dt

)
Sx;n = Sy;n

(
n ∈ d(D)

)
.

Definition 9.2. Suppose that all assumptions of Theorem 3.1 are satisfied. Then
true shifts have the the intermediate value property (shortly: IVP) if for every x ∈ dom D
if for every t, h ∈ A(R) there exists a θ = {θn}, 0 < θn < 1 (n ∈ d(D)) such that

(9.5) Sx;n(t + h)− Sx(t) = hSDx;n(t + θnh)
(
n ∈ d(D)

)
.

¤
Since the family {Sh}h∈A(R) of true shifts is at least a semigroup, in order to show

that they have IVP it is enough to prove that for every x ∈ domD, h ∈ A(R) there is a
θ = {θn}n∈d(D), θn ∈ (0, 1), such that

(9.6) Sx;n(h)− Sx(0) = hSDx;n(θnh)
(
n ∈ d(D)

)
.

Theorem 9.2. Suppose that all assumptions of Theorem 3.1 are satisfied. Then true
shifts Sh have IVP on dom D.

Corollary 9.2. Suppose that all assumptions of Theorem 3.1 are satisfied. Then the
initial operators Fh = FSh (h ∈ A(R)) have IVP.

This Corollary has deep consequences. Namely, we have
Theorem 9.3. Suppose that all assumptions of Theorem 3.1 are satisfied. Then the

following theorems on intermediate value hold:

(i) If a 6= b, x ∈ dom D and Fax = 0, Fbx = 0 then there exists a θ = {θn}n∈d(D)

such that
SFbx−Fax;n = (b− a)SFa+θ(b−a)Dx

(
n ∈ d(D)

)

(ii) If a 6= b, x ∈ dom D and Fbx = Fax, then there exists a θ = {θn}n∈d(D) such that

SFa+θn(b−a)Dx;n = 0
(
n ∈ d(D)

)
;
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(iii) If a 6= b and x ∈ X then there exists a θ = {θn}n∈d(D) such that

1
b− a

SIa
b

x;n = SFa+θ(b−a)x;n, where Ib
a = (Fb − Fa)R, (n ∈ d(D)

)
;

(iv) If a 6= b and x ∈ dom D then

SFbx−Fax;n = (b− a)S
[
∫ 1

0
Fa+θn(b−a)dθn]Dx;n

(
n ∈ d(D)

)
.

(v) If dim ker D = 1 (i.e. d(D) = 1), then to (i)-(iv) there correspond the classical
Lagrange and Rolle theorems, theorem on intermediate value of a definite integral and
Hadamard Lemma (where 0 < θ < 1):

Fbx− Fax = (b− a)Fa+θ(b−a)Dx whenever Fa = Fb = 0;

Fa+θ(b−a)Dx = 0 whenever Fbx = Fax;

1
b− a

Ib
ax = Fa+θ(b−a))x, where Ib

a = (Fb − Fa)R;

Fbx− Fax = (b− a)
[ ∫ 1

0

Fa+θ(b−a)dθ
]
Dx.

In order to examine solutions of linear equations in a right invertible operator we need

Definition 9.3. Let X be a linear space over the field F and let D ∈ R(X). Suppose
that {Fa}a∈A(R) ⊂ FD is a family of initial operators for D. A point a ∈ A(R) is said to
be a zero of an element x ∈ X if Fax = 0. An element x ∈ X is said to be oscillatory if
there is a sequence {an} ⊂ R such that Fanx = 0 for n ∈ N, i.e. if x has infinitely many
zeros. ¤

Proposition 9.1. Let F be an initial operator for D ∈ R(X) corresponding to a
right inverse R and let be given a semigroup {Sh}h∈R ⊂ L0(X). If x ∈ X is Sh-periodic
and Fx = 0 then x has infinitely many zeros jh for j ∈ Z, i.e. x is oscillatory.

Suppose that D ∈ R(X) and R ∈ RD. An operator A ∈ L0(X) is said to be stationary
if DA = AD and RA = AR. Clearly, scalar multiples of the identity are stationary. In
general, a converse statement is not true.

Theorem 9.4. (Sturm Separation Theorem) Suppose that all assumptions of Theo-
rem 3.1. are satisfied. Let u and Rv be two linearly independent solutions of the equation

(9.7) Q(D)x = 0, where Q(D) =
N∑

k=0

QkDk, QN = I, Q0, ..., QN−1 ∈ L0(X),

Q0, ..., QN−1 are stationary, the operator

(9.8) Q(I, R) =
N∑

k=0

QkRN−k
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is invertible and

(9.9) Fav = 0, Fbv = 0 (b 6= a).

Then there exists a θ = {θn}n∈d(D), 0 < θn < 1 for n ∈ d(D), such that

(9.10) SFa+θ(b−a)u;n = 0 for all n ∈ d(D).

In particular, if dim kerD = 1, then there is a θ ∈ (0, 1) such that

(9.11) Fa+θ(b−a)u = 0.

Corollary 9.3. Suppose that all assumptions of Theorem 3.1 are satisfied and A(R) =
R. If v is Sh-periodic then there exists a θ = {θn}n∈d(D) (θn ∈ (0, 1)) such that h′jn =
(j + θn)h are zeros of u for j ∈ Z.

Theorem 9.5. Suppose that all assumptions of Theorem 3.1 are satisfied and A(R) =
R. If v is oscillatory then u is oscillatory and for every n ∈ N there exists a θn ∈ (0, 1)
such that

(9.12) SF ′
hn

u;n = 0, where h′n = hn + θn(hn+1 − hn).

Moreover,

(i) if |hn+1 − hn| → 0 then |h′n+1 − h′n| → 0 as n →∞;

(ii) if |hn+1 − hn| → ∞ then |h′n+1 − h′n| → ∞ as n →∞;

i.e. two linearly independent solutions u and v = Ru of Equation (9.7) have similar kind
of oscillations.

10. Periodicity in locally pseudoconvex algebras.

We start with

Definition 10.1. X is said to be a complete m-pseudoconvex algebra if it is an
algebra and a complete locally pseudoconvex space with the topology induced by a sequence
{‖·‖n} of submultiplicative pn-homogeneous F -norms, i.e. such pseudonorms that ‖xy‖n ≤
‖x‖n‖y‖n for all x, y ∈ X, n ∈ N. (cf. Rolewicz R[1]). ¤

Theorem 10.1. (PR[7]). Suppose that either F = R or F = C, X ∈ L(D) with unit
e ∈ dom Ω−1 is a complete m-pseudoconvex algebra and (L, E) ∈ G[Ω]. Let D be closed.
Let g = Re and let λg ∈ dom Ω−1 for an R ∈ RD and a λ ∈ F. Let the initial operator F
corresponding to R be multiplicative. Write

(10.1) ex =
∞∑

n=0

xn

n!
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whenever this series is convergent. Then λ ∈ vFR and

(10.2) eλg = (I − λR)−1e = E(λg), Leλg = λg.

In the sequel we assume Condition [C]1:

(10.3) −x ∈ dom Ω−1 whenever x ∈ dom Ω−1.

Definition 10.2. (cf. PR[7]) Suppose that Condition [C]1 holds and (L,E) ∈ G[Ω1].
For ix ∈ dom Ω1 we write

(10.4) Cx =
1
2
[E(ix) + E(−ix)], Sx =

1
2i

[E(ix)− E(−ix)].

The mappings C and S are said to be cosine and sine mappings, respectively, or trigonomet-
ric mappings. Elements Cx and Sx are said to be cosine and sine elements or trigonometric
elements. ¤
These mappings and elements have all properties of the classical cosine and sine functions.
Indeed, trigonometric mappings C and S are well-defined for all ix ∈ dom Ω1 and they are
even and odd functions of their argument respectively, i.e. C(−x) = Cx, S(−x) = −Sx
for ix ∈ dom Ω1. Moreover, C(0) = z ∈ kerD \ {0}, S(0) = 0. If X ∈ L(D) then the
Trigonometric Identity holds, i.e.

(10.5) (Cx)2 + (Sx)2 = e whenever ix ∈ dom Ω1.

Moreover, since [E(ix)]n = E(inx) in X ∈ L(D), the De Moivre formula hold: (Cx +
iSx)n = C(nx) + iS(nx) for ix ∈ dom Ω−1

1 .

Note that the mappings C ′, S′ defined as follows: C ′x = C(x + z), S′x = S(x + z)
for ix ∈ dom Ω−1, z ∈ kerD are again trigonometric mappings.

Recall that a necessary and sufficient condition for the trigonometric identity to be
satisfied is that X is a Leibniz algebra.

Here and in the sequel we shall assume that the trigonometric identity holds. Let
w = u + iv ∈ dom Ω, w∗ = u− iv and let

(10.6) C(X) = {w = u + iv ∈ dom Ω : ww∗ ∈ I2(dom Ω)}.

By definition, w ∈ I(X).

Suppose that, in addition, D is closed and (L,E) ∈ GR,1[Ω]. Then for all w ∈ C(X)
and x = arg w ∈ ED(X) the mapping Ei is 2πe-periodic, i.e. E[i(x + 2πe)] = E(ix).

Suppose then that all the listed conditions are satisfied, a λ satisfies the equation
W∧(λ) = 0 and λg ∈ ED(X). Then E(λg) = E[i(−λig)] is 2πe-periodic, i.e. E(λg) =
E(λg + 2πike), whenever k ∈ Z.
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11. Perturbations of shifts.

In Section 6 we have considered shifts as algebraic operators (in particular, involutions
of order N) on properly chosen subspaces of elements. Namely, in the classical case of a
differential-difference equation with commensurable deviations due the decomposition of
the space under consideration onto direct sum of principal spaces for the given shift one can
obtain a system of differential equations without deviations (i.e. without shifts). Here we
will show how to use these results in the case of non-commensurable deviations. Tn other
words, we shall try to answer for the following questions: 1o when do linear differential-
difference equations have periodic solutions and how they are determined? 2o Is it possible
to approximate ω-periodic solutions of such equations with deviations, ”near” in a sense, to
the previous ones but commensurable? The answers to both questions are positive under
some additional restrictions regarding the form of equations under consideration.

Denote by Cn
ω the space of all n-times continuously differentiable complex valued

ω-periodic functions x of the real argument t with the norm

(11.1) ‖x‖n =
n∑

k=0

sup
0≤t≤ω

|x(k)(t)| (n = 0, 1, ...).

Clearly, the spaces Cω = C0
ω ⊃ ... ⊃ Cn

ω ... (n ∈ N0)) are Banach spaces.

Let h = (h1, ..., hm) be a system of real numbers. Consider a linear differential-
difference operator

(11.2)
dx(t)

dt
+

m∑

j=0

aj(t)x(t− hj) = y (h0 = 0),

where the functions a1, ..., aω, y are ω periodic complex valued functions defined for all
t ∈ R. We are looking for solutions x of differential-difference Equation (11.2) belonging
to C1

ω. Without loss of generality we can assume ω 6= 0.

When all h1, ..., hm are commensurable with ω then there is a positive integer N and
a real r 6= 0 such that hj = jr, ω = Nr. Namely, ω is the greatest common multiple of the
numbers h1, ..., hm. We therefore can apply here results of Section 6. On the other hand,
one can prove the following

Theorem 11.1. (cf. Rolewicz R[2], also PR[2]). If the homogeneous equation (11.2)
(i.e. this equation with y = 0) has only the ω-periodic solution zero, then Equation (11.2)
has a unique solution xh ∈ C1

ω for every y ∈ Cω.

Theorem 11.2. (cf. Rolewicz R[2], also PR[2]). If Equation (11.2) has a unique
solution xh ∈ C1

ω, then for arbitrary reals h′1, ..., h
′
m such that the values |h′j − hj | (j =

1, ..., m) are sufficiently small the equation

(11.2)′
dx(t)

dt
+

m∑

j=0

aj(t)x(t− h′j) = y (h′0 = 0)
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has a unique solution xh′ ∈ C1
ω (where h′ = (h′1, ..., h

′m). Moreover, if h′j → hj for
j = 1, ..., m then xh′ tends uniformly to xh.

Note 11.1. Theorems 11.1 and 11.2 remain valid if instead of scalar functions we
consider vector-valued functions of an arbitrary dimension k. If it is the case, then co-
efficients aj (j = 1, ..., m) are taken to be k × k matrices. However, one can show that
proofs of these theorems do not work in the case of functions taking values in an infinite
dimensional space (cf. Rolewicz R[2]). ¤

Theorems 11.1 and 11.2 are also true for the equation

(11.3)
dnx(t)

dtn
+

n−1∑

k=0

m∑

j=0

akj(t)x(k)(t− hj) = y (h0 = 0), (n ∈ N, n 6= 1)

where we are looking for solutions belonging to Cn
ω .

Suppose now that the numbers h1, ..., hm in Equation (11.3) are not commensurable
with ω nor, possibly, commensurable with one another. Since we are looking for ω-periodic
solutions, we can assume without loss of generality, that

(11.4) 0 < hj ≤ ω for j = 1, ..., m.

For a given number δ > 0 we can find numbers ω1,...,ωm commensurable with ω and with
one another, such that

(11.5) 0 ≤ ωj ≤ ω and |ωj − hj | < δ (j = 1, ..., m).

Indeed, without loss of generality we can assume that δ < 1. Let N = [ 1δ ] ∗. For a fixed j
there is an integer ηj ≤ N such that

ηj

N
ω − hj ≤ δ ≤ 1

N
.

Write
r =

ω

N
, ηm+j = N, η0 = 0, ωj = η (j = 1, ..., m).

So that we have m+1 commensurable numbers ω1,...,ωm+1 satisfying the required condition
(11.5) and such that 0 ≤ ωj ≤ ωm+1 ≤ ω. Consider now the perturbed equation (11.3),
where instead of deviations hj we put the numbers ωj :

(11.3′)
dnx(t)

dtn
+

n−1∑

k=0

m∑

j=0

akj(t)x(k)
ω (t− ωj) = y (n ∈ N, n 6= 1)

Using the method described in Section 2, we conclude that this equation is equivalent in
the space Cn

ω to a system of N independent differential equations without deviation of

∗ The symbol [x] read ”integer part of x, denotes the greatest integer M ≤ x.
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argument. If each of the corresponding homogeneous equations has only zero as an ω-
periodic solution, then all non-homogeneous equations has the unique ω-periodic solution
X. We therefore conclude that Equation (11.3′) has a unique ω-periodic xω for every
y ∈ Cn

ω tending uniformly to X as ωj − hj tends to zero for j = 1, ..., m.

Note 11.2. We should point out that the operator Rω = R−FωR, where Fω = FSω

(which appears in Section 2) is of the form

(Rωx)(t) =
∫ t

0

x(s)ds− ( t

ω
+ 1

) ∫ ω

0

x(s)ds for x ∈ Cω.

It is clear that Rω maps continuous functions into differentiable functions and ω-periodic
functions into ω-periodic functions for (Rωx)(t + ω)− (Rωx)(t) = 0 for arbitrary x ∈ Cω.
Similar properties have the operators Rn

ω (n > 1). ¤
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Shifts and periodicity for functional-differential equations and their generalizations
have been studied by the author in in various aspects. Here we would like to give a
comprehensive survey of some of these results (without proofs) in order to recall the most
important properties of considered shifts In particular, there is shown that the so-called
true shifts in complete linear metric spaces are hypercyclic and that a necessary and
sufficient condition for true shifts in commutative algebras to be multiplicative is that the
generating operator D satisfies the Leibniz condition. A consequence of this fact is that in
commutative Leibniz algebras with logarithms the operator D is uniquely determined by
an isomorphism acting on d

dt . There are also studied generalized periodic and exponential-
periodic solutions of linear and some nonlinear equations with shifts and generalizations of
the classical Birkhoff theorem and Floquet theorem. These results are obtained by means
of tools given by Algebraic Analysis (cf. the author PR[4]). A generalization of binomial
formula of Umbral Calculus is shown in Section 7. Section 11 contains a perturbation
theorem for linear differential-difference equations with non-commensurable deviations and
some its consequences.


