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ON CONSTRUCTING OPTIMAL FAMILIES OF PAIRING-FRIENDLY
ELLIPTIC CURVES

ROBERT DRY LO

Abstract. Pairing-friendly elliptic curves have the rare property that the Weil or Tate pairing

on points of some large prime order can be efficiently computed. Thanks to this they are useful in

cryptography for implementing protocols based on these pairings. To construct ordinary pairing-
friendly curves one usually obtains parameters of a curve as values of certain polynomials, and

then finds its equation via the complex multiplication method. Such polynomials are called
families. There is essentially one general method for constructing the so-called complete families,

which in the fullest generality is due to Brezing and Weng. No general methods have been

proposed for constructing (i) arbitrary families, and (ii) families of curves of nearly prime group
order. In this paper we propose two methods for the first purpose, which extend the Brezing-

Weng method and the Dupont-Enge-Morain method for constructing individual pairing-friendly

curves. Furthermore, we describe all arbitrary families (r(x), t(x), q(x)) with embedding degree
k satisfying (ii) for which Q[x]/(r(x)) ∼= K, where K is a fixed number field containing kth roots

of unity (in fact, we describe families with parameter ρ ≤ ρ0 for a given bound 1 ≤ ρ0 < 2).

This allows one to represent such families by rational solutions of certain systems of polynomial
equations.

1. Introduction

Elliptic curves containing a subgroup of large prime order with a small embedding degree are

commonly used for implementing cryptographic schemes based on bilinear pairings (see, e.g., [4, 5,

12]). However, such pairing-friendly curves are very rare [1, 14] and thus require special selection.

Natural examples come from supersingular curves, whose embedding degrees are not greater than

6 [16]. All known methods for constructing suitable ordinary curves are based on the complex

multiplication method, and either give individual curves or families of curves (see [10] for a survey).

The former methods, however, usually produce curves for which the order of the desired subgroup

is approximately equal to the square root of the curve order, while usually the most desirable

curves for applications should have prime or nearly prime order. Curves with better parameters

can be obtained by using families, although no general method is known for constructing families

of pairing-friendly curves with nearly prime group order (see [5, Section 4.5], and [9, Problem

6.2]). According to the standard notation, such families are those with parameter ρ = 1, and are

currently known only for embedding degrees 3, 4, 6, 10, 12; see [3, 9, 11, 17, 18].

Another problem is that no general method has been proposed for constructing families of

arbitrary types. Such methods have been developed for constructing so-called complete families,

and all essentially work like the Brezing-Weng method [6]. The use of this method to construct

families with desired properties has been extensively examined. The main goal was to minimize the
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ρ-value, and it seems that this was successfully achieved in many cases (see [10]). Sparse families,

unlike complete families, have been much less studied. It is interesting that among the currently

known families with ρ = 1 those with embedding degrees 3, 4, 6, 10 are all sparse (in fact, it seems

that those are also all currently known sparse families).

In this paper we describe two general methods for constructing arbitrary families (Section 4).

They extend the Brezing-Weng method and the Dupont-Enge-Morain method [8] for constructing

individual pairing-friendly curves. Note that the former method requires finding rational solutions

of certain systems of polynomial equations, while the latter avoids this and allows constructing

families with prescribed so-called CM equation. However, just as other methods, also these methods

generically produce families with ρ ≈ 2. To improve this, we focus on the problem of constructing,

via the generalized Brezing-Weng method, families with ρ ≤ ρ0 for a given bound 1 ≤ ρ0 < 2.

More precisely, we characterize all families (r(x), t(x), q(x)) with embedding degree k and ρ ≤ ρ0 for

which Q[x]/(r(x)) ∼= K, where K is a fixed number field containing kth roots of unity. This allows

one to represent such families by rational solutions of certain systems of polynomial equations.

Unfortunately, those systems rapidly become complicated when the degree n = [K : Q] increases

(in fact, they come from minors of some matrices). For example, determining (up to a linear change

of variables) complete families with ρ = 1 requires finding rational solutions in some open subset

of Pn−2(C) of a certain system of forms of degree n(n− 1)/4. We also give a lower bound on the

dimension of the corresponding algebraic set if it is nonempty. For complete families with ρ = 1

this lower bound equals 0, when it is attained there are only finitely many equivalence classes of

such families. The case of arbitrary families is more complicated and generally requires finding

rational zeros in some open subset of Pn−2(C)×Pn−1(C) of certain forms of degrees similar to the

above. For families with ρ = 1 a lower bound on the dimension of the corresponding algebraic set

equals 1. (See Sections 3 and 5 for the case of complete and arbitrary families, respectively.)

Notice that these results are of interest for families of degree greater than 2, as for quadratic

families more precise methods, due to Miyaji et al. [17] and generalized by Scott and Barreto [18]

and Galbraith et al. [11], allow one to parameterize all elliptic curves with embedding degrees 3, 4, 6

and prescribed cofactors. For quartic families the resulting systems can be solved via standard

methods (in particular, we explain how from this point of view the families of Barreto-Naehrig [3]

and Freeman [9] arise; see Examples 3.2 and 5.2). However, it seems that for families of higher

degrees more sophisticated methods should be used.

2. Framework

This section provides terminology and basic facts that will be used in this paper. For a detailed

discussion of pairing-friendly elliptic curves and their applications we refer to the work of Freeman,

Scott and Teske [10].
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Let E be an elliptic curve over a finite field Fq, and r be a prime number with gcd(r, q) = 1

dividing the order #E(Fq). The embedding degree of E with respect to r is defined to be the

smallest integer k such that r | qk−1 (if r 6 | k, this is equivalent to the condition that r | Φk(t−1),

where t = q + 1−#E(Fq) is the trace of E, and Φk is the kth cyclotomic polynomial).

An elliptic curve is commonly called pairing-friendly if it can be used for secure and efficient

implementation of cryptographic protocols based on the Weil or Tate pairings. This means that

both in an r-order subgroup of E and in the multiplicative group of the field Fqk the discrete

logarithm problem is hard, but the arithmetic is efficient. For the latter purpose, the embedding

degree k should be reasonably small, and r should have a relatively small cofactor with respect to

#E(Fq). By Hasse’s theorem, the ratio of the bit sizes of #E(Fq) and r is closely approximated

by the parameter ρ = log q/ log r.

Usually constructions of ordinary pairing-friendly curves proceed in two steps. First for a fixed

embedding degree k one finds the curve parameters r, t, q, where r and q are prime numbers such

that there exists an ordinary elliptic curve over the field Fq with trace t, that contains a subgroup

of order r with embedding degree k. Then the equation of such a curve is found via the complex

multiplication (CM) method. However, the CM method is efficient provided that the discriminant

D of the curve (defined as the square-free part of the integer 4q − t2 > 0) is sufficiently small.

Therefore, in practice one also fixes a discriminant D, and looks for the above parameters satisfying

the equation 4q − t2 = Dy2 for some y ∈ Z.

This can be done directly by using either the method of Cocks-Pinch [7] or Dupont-Enge-Morain

[8]. However, these methods usually only achieve ρ ≈ 2. Improvements are possible by obtaining

such parameters as values of certain polynomials r(x), t(x), q(x) ∈ Q[x]. This approach leads to

the notion of a family of pairing-friendly elliptic curves, which in its final form was established

by Freeman, Scott and Teske [10]. The definition requires two auxiliary notions. A polynomial

r(x) ∈ Q[x] is said to represent integers (resp. represent primes) if r(x) ∈ Z for all x ∈ Z (resp.

r(x) is a prime number for infinitely many x ∈ Z). The latter property is conjecturally equivalent

to the following conditions: r(x) is irreducible, has positive leading coefficient, r(x) ∈ Z for some

x ∈ Z, and gcd({r(x) : x, r(x) ∈ Z}) = 1.

Definition 2.1. Let k and D be positive integers, and assume D is square-free. A triple of

polynomials (r(x), t(x), q(x)) in Q[x] is said to represent a family of elliptic curves with embedding

degree k and discriminant D if the following conditions are satisfied:

(i) r(x) is irreducible, has positive leading coefficient, and represents integers;

(ii) q(x) represents primes;

(iii) r(x) divides q(x) + 1− t(x) and Φk(t(x)− 1);

(iv) the CM equation

4q(x)− t(x)2 = Dy2

has infinitely many solutions (x, y) ∈ Z2.
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Remark 2.2. Notice that the last and least explicit condition of this definition is actually very

strong. It was observed by Freeman [9] that then the left-hand side of the CM equation is of the

form g(x)h(x)2, where g(x), h(x) ∈ Q[x] and deg g(x) ≤ 2 (this easily follows from Siegel’s theorem

[19, Theorem 4.3]).

To find parameters of an actual elliptic curve that occurs in a family, one starts with an integer

solution (x0, y0) of the CM equation and checks whether the values r(x0), t(x0), q(x0) give such

parameters. Notice that for large x0 the ρ-values of the resulting curves are close to the ρ-value of

a family, defined as

ρ = lim
x→∞

log q(x)
log r(x)

=
deg q(x)
deg r(x)

.

The density of integer solutions of the CM equation and methods for determining them primarily

depend on the degree of the polynomial g(x) in the above remark. The ideal case occurs when the

left-hand side of the CM equation is of the form Dy(x)2 for y(x) ∈ Q[x]. Then the family is called

complete; otherwise the family is called sparse (see [10] for more details).

Methods for constructing families usually do not yield families exactly in the sense of the above

definition, but only so-called potential families satisfying certain necessary conditions. For con-

structive purposes, a natural definition of such families is the following.

Definition 2.3. A triple of polynomials (r(x), t(x), q(x)) in Q[x] represents a potential family of

elliptic curves with embedding degree k if:

(i) r(x) is irreducible, and divides q(x) + 1− t(x) and Φk(t(x)− 1);

(ii) 4q(x)− t(x)2 = g(x)h(x)2, where g(x), h(x) ∈ Q[x] and deg g(x) ≤ 2.

Similarly as above, we define the parameter ρ for potential families, and complete potential

families. By a family we will usually understand a family in the sense of Definition 2.1.

Remark 2.4. Clearly a potential family (r, t, q) may be very far from being a family. For example,

q may not represent primes, or q and t may never take simultaneously integer values for x ∈ Z,

or 4q − t2 may have negative leading coefficient (e.g., if r | Φk(t− 1), then even the triple (r, t, q)

with q = t − 1 is a potential family for which q + 1 − t = 0 and 4q − t2 = −(t − 2)2). However,

in the first two cases it may happen that (ar(x + b), t(x + b), q(x + b) will be a family for some

a, b ∈ Q. Checking this essentially comes down to checking whether for a given f(x) ∈ Q[x] there

exists x0 ∈ Q such that f(x0) ∈ Z. This is a finite calculation. If Nf(x) ∈ Z[x] for N ∈ Z, then it

suffices to check whether Nf(r/s) ∈ NZ for each divisor s of the leading coefficient of Nf(x), and

0 ≤ r < |Ns|. (Indeed, if Nf(a/s) ∈ NZ and gcd(a, s) = 1, then s divides the leading coefficient

of Nf(x), and if a = Nsq + r for q ∈ Z and 0 ≤ r < |Ns|, then Nf(r/s) ∈ NZ.)

Sometimes it is convenient to determine families up to the following equivalence relation.

Definition 2.5. Two potential families (ri(x), ti(x), qi(x)), i = 1, 2, are linearly equivalent if

(r1(x), t1(x), q1(x)) = (cr2(ax+ b), t2(ax+ b), q2(ax+ b)) for some a, b, c ∈ Q with ac 6= 0.
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Finally, we recall the Brezing-Weng method for constructing complete families.

Proposition 2.6. Let K be a number field containing kth roots of unity and
√
−D for a square-free

integer D > 0. Suppose that r(x) ∈ Q[x] is an irreducible polynomial such that Q[x]/(r(x)) ∼= K.

Let t(x), y(x) ∈ Q[x] be the lifts of degree less than deg r(x) of ζ+1 and (ζ−1)/
√
−D, respectively,

where ζ ∈ Q[x]/(r(x)) is a kth primitive root of unity. Let q(x) = 1
4 (t(x)2+Dy(x)2). Then the triple

(r(x), t(x), q(x)) represents a complete (potential) family of elliptic curves with embedding degree

k and discriminant D. The ρ-value of this family is ρ = max{2 deg t(x), 2 deg y(x)}/deg r(x) < 2.

Clearly, in order to construct, via this method, families with small ρ-value, one must carefully

choose the polynomial r(x). In the first constructions of Barreto, Lynn and Scott [2] and Brezing

and Weng [6], r was simply the lth cyclotomic polynomial for l divisible by k. This natural

choice turned out to be very successful in some cases; it also allows one to carry out more general

constructions with variable k for which ρ tends to 1 as k increases (see [10]).

The advantage of using another representation of cyclotomic fields was first demonstrated by

Barreto and Naehrig [3] by constructing a complete family with k = 12 and ρ = 1. They used the

fact that evaluating the 12th cyclotomic polynomial at u(x) = 6x2 yields the reducible polynomial

Φ12(u(x)) = r(x)r(−x) with irreducible r(x) = 36x4 + 36x3 + 18x2 + 6x + 1. Then the desired

family is represented by r(x), t(x) = u(x) + 1, and q(x) = r(x) + t(x)− 1.

A useful way to look for suitable polynomials r(x) is to generate them as minimal polynomials

of primitive elements of K; this method was used by Kachisa, Schaefer and Scott [13]. In the next

section we describe all primitive elements of K that determine complete families with ρ ≤ ρ0 for a

given bound 1 ≤ ρ0 < 2.

3. Complete families with ρ ≤ ρ0

Let K be a number field of degree n = [K : Q] containing kth roots of unity and
√
−D ∈ K

for a positive square-free integer D. For a given bound 1 ≤ ρ0 < 2, we describe all families with

ρ ≤ ρ0 satisfying the following condition

(3.1) (r, t, q) is a complete potential family with embedding degree k, discriminant D, such that

Q[x]/(r) ∼= K.

It will be convenient to represent such families with ρ < 2 by the following pairs from K.

(3.2) (z, ζ) ∈ K2, z is a primitive element of K, and ζ is a kth primitive root of unity.

According to Proposition 2.6, such a pair (z, ζ) determines the family (r, t, q), where r is the

minimal polynomial of z, q = 1
4 (t2 + Dy2), and t, y ∈ Q[x] are the lifts of degree less than n of

ϕ(ζ) + 1 and (ϕ(ζ) − 1)/
√
−D, respectively, where ϕ : K → Q[x]/(r) is the isomorphism z 7→ x̄.

Obviously, every family (3.1) with r monic and ρ < 2 arises in this way, and two pairs (z1, ζ1),

(z2, ζ2) determine the same family iff (z2, ζ2) = (ϕ(z1), ϕ(ζ1)) for an automorphism ϕ of K.
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We also introduce an equivalence relation in the set of all pairs (3.2), which corresponds to

linear equivalence of families (Definition 2.5). We declare (z1, ζ1) and (z2, ζ2) to be equivalent if

z2 = aϕ(z1) + b and ζ2 = ϕ(ζ1) for an automorphism ϕ of K and a, b ∈ Q with a 6= 0. Then there

is the induced bijection

(3.3) {pairs (3.2)}/∼ −→ {families (3.1) with ρ < 2}/∼.

Proof. Let us check that this map is well defined. Let (r, t, q) and (r1, t1, q1) be two families

determined by equivalent pairs (z, ζ) and (l(ϕ(z)), ϕ(ζ)), respectively, where l(x) ∈ Q[x] is of degree

one and ϕ ∈ Aut(K). We may assume ϕ = id, since conjugate pairs determine the same family.

Since r and r1 are minimal polynomials of z nad l(z), respectively, we have r1(x) = cr(l′(x))

for some c ∈ Q, and l′ ∈ Q[x] satisfying l′(l(x)) = x. Hence the following diagram of fields

isomorphisms is commutative

Q[x]/(r)
x̄7→l′(x̄) // Q[x]/(r1)

K

z 7→x̄

ccHHHHHHHHH l(z) 7→x̄

::uuuuuuuuu

From this it follows that t1(x) = t(l′(x)), and q1(x) = q(l′(x)), so these families are equivalent.

Surjectivity of the map (3.3) is obvious. Its injectivity is also easily seen from the above diagram.

�

In order to express the ρ-value of a family in terms of such pairs, denote by degz a, where z is a

primitive element of K and a ∈ K∗, the smallest integer i ≥ 0 such that a belongs to the subspace

generated by 1, z, . . . , zi. Then it is easy to see that a pair (z, ζ) determines the family with

(3.4) ρ = 1
n max{2 degz ζ, 2 degz(ζ − 1)/

√
−D}.

Now for a fixed kth primitive root of unity ζ ∈ K, a basis b1, . . . , bn of K/Q, and a bound

1 ≤ ρ0 < 2, we derive conditions on coordinates in this basis of all primitive elements z ∈ K for

which the pairs (z, ζ) determine families with ρ ≤ ρ0. Notice that we may assume ρ0 = 2B/n for

an integer n/2 ≤ B < n, since ρ-values of the families in question are of such form.

Writing bibj =
∑

l a
(l)
ij bl with rational numbers (a(l)

ij )i,j,l=1,...,n, one can compute homogeneous

polynomials fij ∈ Q[X1, . . . , Xn], i = 1, . . . , n, j = 0, . . . , n− 1, such that( ∑
i

xibi

)j

=
∑

i

fij(x)bi

for all x = (x1, . . . , xn) ∈ Qn. Let ul1, . . . , uln ∈ Q for l = 1, 2 be the coordinates in our basis of ζ

and (ζ − 1)/
√
−D, respectively. Consider the two n× (B + 2) matrices

Ml =

f10 · · · f1B ul1

...
. . .

...
...

fn0 · · · fnB uln

 for l = 1, 2,

and the n × n matrix M = [fij ]. For x ∈ Qn denote by M(x) and Ml(x) the matrices obtained

from M and Ml by evaluating their entries at x. Using (3.4), we now find the following.
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(3.5) Let x = (x1, . . . , xn) ∈ Qn and z =
∑n

i=1 xibi. Then z is a primitive element of K and

the pair (z, ζ) determines the family with parameter ρ ≤ ρ0 if and only if detM(x) 6= 0 and

rankM1(x) = rankM2(x) ≤ B + 1; or equivalently, if x is a solution of the system F1 = · · · =

Fm = 0, F 6= 0, where F1, . . . , Fm are all the maximal minors of M1, M2, and F = detM .

Now an obvious approach would be to solve this system over C, and then try to find some

its rational solutions (note that the condition F 6= 0 can be replaced by the equation Y F = 1,

where Y is a new variable). Unfortunately, this may be difficult even for quite small n, because

these systems rapidly become complicated (e.g., since deg fij = j, we have degFi = B(B + 1)/2,

and degF = n(n − 1)/2). The situation slightly simplifies when we consider families up to linear

equivalence. Suppose that b1 = 1, and put Gi = Fi(0, X1, . . . , Xn−1), G = F (0, X1, . . . , Xn−1).

Theorem 3.1. Let V be the set of all solutions of the system G1 = · · · = Gm = 0, G 6= 0 in the

projective space Pn−2(C).

(i) Then the rational points on V determine all equivalence classes of families characterized by

(3.5), and each class is represented by at most [K : Q(ζ)] such points. Furthermore, if K/Q is

Galois, then all equivalence classes of families (3.1) with ρ ≤ ρ0 are represented in this way.

(ii) If V is nonempty, then all its irreducible components have dimension ≥ 2B − n.

Proof. (i) By (3.3), it suffices to show this for equivalence classes of pairs (3.2). If (x1, . . . , xn) ∈ Qn

is a solution of the system F1 = · · · = Fm = 0, F 6= 0, then the pairs (
∑n

i=1 xibi, ζ) and

(
∑n

i=2 xibi, ζ) are equivalent (since b1 = 1) and their class is determined by the point x = (x2 :

· · · : xn) ∈ V . Furthermore, if for y = (y2 : · · · : yn) ∈ V the pairs (
∑n

i=2 yibi, ζ) and (
∑n

i=2 xibi, ζ)

are equivalent, then
∑n

i=2 yibi = ϕ(
∑n

i=2 λxibi) for λ ∈ Q∗ and ϕ ∈ Aut(K/Q(ζ)). Thus rational

points on V representing the same class are all conjugate by the action of the automorphism group

Aut(K/Q(ζ)) on V , hence there are at most [K : Q(ζ)] such points. Finally, if K is Galois, then

each pair (3.2) is equivalent to (z, ζ) for some z ∈ K.

(ii) We show that V is the intersection of 2(n − (B + 1)) hypersurfaces, which implies that

dimV ≥ n − 2 − 2(n − (B + 1)) = 2B − n, if V 6= ∅ (see, e.g., [15, Corollary 3.14]). Con-

sider the inverse matrix M−1 = 1
F [Mij ]T , where Mij = (−1)i+j times the (i, j)th minor of M .

Then for each x = (x1, . . . , xn) ∈ Qn with F (x) 6= 0, the matrix M−1(x) is the transition ma-

trix from the basis b1, . . . , bn to the basis 1, z, . . . , zn−1 for z =
∑
xibi. Hence, (z, ζ) repre-

sents the family with ρ ≤ ρ0 iff
∑n

j=1 uljMji(x) = 0 for i = B + 2, . . . , n and l = 1, 2. Thus

V = {
∑n

j=1 uljMji(0, X1, . . . , Xn−1) = 0 : i = B + 2, . . . , n, l = 1, 2} ∩ {G 6= 0}, which concludes

the proof. �

Notice that if the forms from the proof of (ii) behave on the open set G 6= 0 like generic forms,

then one might expect that dimV = 2B − n. In particular, if this is the case for ρ0 = 1, then

dimV = 0, and consequently, there are only finitely many classes of complete families. However,

note that the forms G1, . . . , Gm have usually many zeros on the hypersurface G = 0. For example,
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they vanish on all rational points of this hypersurface, since such points determine elements from

proper subfields of K, so satisfy conditions rankMi ≤ B + 1, i = 1, 2.

Example 3.2. For an example of how the above theorem works, let us determine all complete

families (r, t, q) with k = 12, ρ = 1, and such that Q[x]/(r) ∼= K, where K is the 12th cyclotomic

field (a well known example of such a family is the Barreto-Naehrig family). Then [K : Q] = 4 and
√
−3 ∈ K. Let ζ ∈ K be a 12th primitive root of unity. The coordinates of ζ and (ζ − 1)/

√
−3

in the standard basis 1, ζ, ζ2, ζ3 are (0, 1, 0, 0) and (−1/3, 1/3, 2/3,−2/3). Then the matrices M1

and M2 are quadratic, and the corresponding polynomials G1, G2, and G are the following

G1 = −X2
1X3 + 2X1X

2
2 − 2X1X

2
3 +X2

2X3,

G2 = −2/3X3
1 − 4/3X2

1X2 − 5/3X2
1X3 − 4/3X1X2X3 − 2/3X1X

2
3 −X2

2X3 − 4/3X2X
2
3 ,

G = X6
1 + 5X5

1X3 − 2X4
1X

2
2 + 9X4

1X
2
3 + 2X3

1X
2
2X3 + 8X3

1X
3
3 − 3X2

1X
4
2 + 6X2

1X
2
2X

2
3 + 4X2

1X
4
3 −

3X1X
4
2X3 + 8X1X

2
2X

3
3 − 3X4

2X
2
3 + 4X2

2X
4
3 .

The curves G1 = 0, G2 = 0 ⊂ P2(C) have the following common rational points: (−2 : 0 : 1), (−1 :

−1 : 1), (0 : 0 : 1), (1 : −1 : 1), (0 : 1 : 0), but G 6= 0 only for (1 : −1 : 1) and (−1 : −1 : 1). The

first point, determines the class of the family r = x4 + 2x3 + 6x2 − 4x+ 4, t = 1/6x2 + 2/3x+ 5/3,

q = 1/36x4 + 1/18x3 + 1/3x2 + 5/9x + 7/9, which is equivalent to the Barreto-Naehrig family.

The second point determines the class of the family r = x4 + 2x3 + 2x2 + 4x + 4, t = 1/2x2 + 1,

q = 1/12x4 + 1/6x3 + 2/3x2 + 1/3x+ 1/3, but q(x) 6∈ Z for any x ∈ Q (see Remark 2.4).

Remark 3.3. If K is the kth cyclotomic field of degree n = ϕ(k), and ζ ∈ K is a kth primitive

root of unity, then the points x ∈ Qn such that rankM1(x) ≤ n
2 + 1 and detM(x) 6= 0 determine

all primitive elements z ∈ K satisfying degz ζ ≤ n/2, or equivalently, polynomials r(x), t(x) ∈ Q[x]

satisfying deg r(x) = n, r(x) | Φk(t(x)− 1) and deg t(x) ≤ n/2. Such polynomials have been first

examined by Galbraith et al. [11], who represented them by rational points of some elliptic curves

when ϕ(k) = 4, i.e., k = 5, 8, 10, 12 (for example, for k = 12 such a curve is given by the equation

G1 = 0 in the above example). (Note that original constructions of quartic families with k = 10, 12,

and ρ = 1 were based on this result.)

4. Constructing arbitrary families

In this section we describe two methods for constructing arbitrary families. The first extends

the Brezing-Weng method and requires finding rational solutions of certain systems of polynomial

equations. The second is based on the Dupont-Enge-Morain method [8] for constructing individual

pairing-friendly curves, and yields families with prescribed left-hand side of the CM equation.

4.1. Extension of the Brezing-Weng method. We start with the following observation. If

(r, t, q) is a family of elliptic curves with embedding degree k, then one can write 4q − t2 = gh2

with g, h ∈ Q[x] and deg g ≤ 2. Reducing this modulo r and using the fact that r divides both

q + 1 − t and Φk(t − 1) we get ḡh̄2 = 4q̄ − t̄2 = 4(t̄ − 1) − t̄2 = −(t̄ − 2)2 = −(ζ − 1)2, where the

bar denotes taking the residue class, and ζ ∈ K = Q[x]/(r) is a kth primitive root of unity. Thus
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−ḡ = (ζ−1)2/h̄2 is a square in K, and h̄ = ±(ζ−1)/
√
−g. This suggests that to construct another

family we should find an element g′ ∈ K such that −g′ is a square in K, and which has the lift in

Q[x] of degree ≤ 2. Then a new family will be formed from the lifts of g′ and h′ = ±(ζ− 1)/
√
−g′.

Elements g′ with such properties are determined by rational solutions of some system of quadratic

forms. In detail, the method is as follows.

Proposition 4.1. Let r ∈ Q[x] be an irreducible polynomial of degree n such that the residue

field K = Q[x]/(r) contains a kth primitive root of unity ζ. Let g1, . . . , gn ∈ Q[X1, . . . , Xn]

be quadratic forms such that (
∑n

i=1 aix̄
i−1)2 =

∑n
i=1 gi(a)x̄i−1 for all a = (a1, . . . , an) ∈ Qn.

Assume that a = (a1, . . . , an) ∈ Qn is a non-zero solution of the system g4 = · · · = gn = 0. Put

γ =
∑n

i=1 aix̄
i−1, g′ = −γ2, and h′ = (ζ − 1)/

√
−g′ = (ζ − 1)/γ. Let g, h, t ∈ Q[x] be the lifts of

degree less than n of g′, h′ and ζ + 1, respectively, and let q = 1
4 (t2 + gh2). Then the triple (r, t, q)

represents a potential family of elliptic curves with embedding degree k.

The family produced via this method has ρ ≤ max{2 deg t,deg g + 2 deg h}/n (≤ 2), and the

equality holds if 4q − t2 has positive leading coefficient. Furthermore, for n ≥ 4 every potential

family with ρ < 2 such that 4q − t2 has positive leading coefficient arises in this way. Notice that

the trivial solution γ = 1 leads to the pathological family (r, t, t − 1). Furthermore, two non-zero

solutions a, a′ ∈ Qn of the system g4 = · · · = gn = 0 such that a = λa′ for λ ∈ Q determine the same

family. Thus one may consider solutions of this system in the projective space Pn−1(Q). However,

one may expect that random solutions will usually give families with ρ-value close to 2. To improve

this we can add some new equations, but unfortunately of higher degrees. Suppose that r and t are

chosen so that 2 deg t/n ≤ ρ0 for a given bound 1 ≤ ρ0 < 2 (according to the previous section such

r, t are characterized by conditions rankM1 ≤ B + 1, detM 6= 0). Observe that one can compute

homogeneous polynomials h0, h1, . . . , hn ∈ Q[X1, . . . , Xn] with deg h0 = n and deg hi = n − 1,

1 ≤ i ≤ n, such that (
∑n

i=1 aix̄
i−1)−1 = (

∑n
i=1 hi(a)x̄i−1)/h0(a) for all a = (a1, . . . , an) ∈ Qn\{0}

(this easily follows from Cramer’s rule, since inversion in a fixed basis ofK/Q can be done by solving

a system of linear equations). Consequently, one can also compute homogeneous polynomials

h0, h1, . . . , hn ∈ Q[X1, . . . , Xn] such that (ζ − 1)(
∑n

i=1 aix̄
i−1)−1 = (

∑n
i=1 hi(a)x̄i−1)/h0(a) for all

a = (a1, . . . , an) ∈ Qn \ {0}. Then a solution a ∈ Pn−1(Q) of the system g4 = · · · = gn = 0

determines the family with ρ ≤ ρ0 if hi(a) = 0 for sufficiently large i. In detail, this is as follows.

Proposition 4.2. Assume that n ≥ 4. Let r, ζ, t, g1, . . . , gn be as in Proposition 4.1, and sup-

pose 2 deg t/n ≤ ρ0 for 1 ≤ ρ0 < 2. Let h0, h1, , . . . , hn ∈ Q[X1, . . . , Xn] be homogeneous

polynomials with deg h0 = n, deg hi = n − 1, 1 ≤ i ≤ n, such that (ζ − 1)(
∑n

i=1 aix̄
i−1)−1 =

(
∑n

i=1 hi(a)x̄i−1)/h0(a) for all a = (a1, . . . , an) ∈ Qn \ {0}. For c = 0, 1, 2, let dc be the largest

integer such that (c+2dc)/n ≤ ρ0. Then all potential families (r, t, q) with ρ ≤ ρ0 such that 4q− t2

has positive leading coefficient are represented by points from the algebraic set⋃
c=0,1,2

{a ∈ Pn−1(Q) : gc+2 = · · · = gn = hdc+2 = · · · = hn = 0}.
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However, assuming that for varying r, for example, the forms g4, . . . , gn, hn−2, hn−1, hn behave

like generic forms, we should not expect to obtain in general families with ρ-value smaller than

2(n−2)/n. Therefore, to essentially improve ρ, one must carefully choose r, which will be discussed

in the next section.

Remark 4.3. Observe that for ρ0 = 1 one can avoid solving the above systems. Then q must be

of the form q = cr+ t−1 for some nonzero c ∈ Q, and 4q− t2 = gh2 for g, h ∈ Q[x] with deg g ≤ 2.

Thus, if f(x, y) = 4(yr(x) + t(x) − 1) − t(x)2 = fn(y)xn + · · · + f0(y), then either c is a root of

fn(y), or fn(c) 6= 0 and f(x, c) is not square-free, and so c is a root of the discriminant of f(x, y)

with respect to x. For each such c we check by factorizing f(x, c) whether it is suitable.

4.2. Extension of the Dupont-Enge-Morain method. Both methods for constructing indi-

vidual pairing-friendly curves due to Cocks and Pinch [7] and Dupont, Enge and Morain [8] can

be adapted for constructing families. The former is extended by the Brezing-Weng method. To

extend the latter, let us first recall how it works.

If r, t, q ∈ Z are parameters of an elliptic curve with embedding degree k and discriminant D,

then r | gcd(q+ 1− t,Φk(t− 1)) and 4q− t2 = Dy2, y ∈ Z. Hence, t̄ ∈ Fr is a common root of the

reduced (mod r) polynomials N̄(X,Dy2), Φ̄k(X − 1) ∈ Fr[X], where

N(X,Y ) = (X − 2)2 + Y.

In particular, r | Rk(Dy2), where

Rk(Y ) = ResultantX(N(X,Y ),Φk(X − 1)).

To compute the desired parameters, the Dupont-Enge-Morain method follows these lines in the

backward direction, which leads to the following algorithm:

- choose y ∈ Z and try to find the largest prime factor r of Rk(Dy2) (one can show that the

polynomial Rk(Y ) represents primes (see [10, Lemma 4.5]), so one can test whether Rk(Dy2) is a

prime number);

- find a common root t′ ∈ Fr of N̄(x,Dy2), Φ̄k(X − 1) ∈ Fr[X];

- take the lift t ∈ {0, . . . , r−1} of that root, and check whether q = 1
4 (t2 +Dy2) is a prime number.

Clearly, we can repeat these steps working with polynomials, which will allow us to find families

with prescribed left-hand side of the CM equation f(x) = Dy2. Notice that in this setting we

will be able to find irreducible factors of Rk(f(x)), since factorization in Q[x] is efficient. More

specifically, the method is as follows.

Proposition 4.4. Let g(x), h(x) ∈ Q[x] and deg g(x) ≤ 2. Put f(x) = g(x)h(x)2. Let r(x) ∈ Q[x]

be an irreducible factor of Rk(f(x)), and let K = Q[x]/(r(x)). Suppose that the polynomials

N̄(X, f(x)), Φ̄k(X − 1) ∈ K[X] have a common root in K. Let t(x) ∈ Q[x] be the lift of degree

< deg r(x) of that root, and let q(x) = 1
4 (t(x)2 + f(x)). Then the triple (r(x), t(x), q(x)) represents

a potential family with embedding degree k.
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Note that the above family has ρ ≤ 2 if either Rk(f(x)) is irreducible or deg f(x) ≤ 2ϕ(k), where

ϕ(k) = deg Φk(X). The former is obvious; the latter follows from the inequality deg r(x) ≥ ϕ(k),

which holds because K contains kth roots of unity.

5. Arbitrary families with ρ ≤ ρ0

Here we extend the results from Section 3 on arbitrary families. Let K be a number field of

degree n = [K : Q] containing kth roots of unity, and assume n ≥ 4. We will consider the following

families

(5.1) (r, t, q) is a potential family with embedding degree k such that Q[x]/(r) ∼= K.

It will be convenient to represent such families by the following triples from K.

(5.2) (z, ζ, γ) ∈ K3, z is a primitive element of K, ζ is a kth primitive root of unity, and γ 6= 0

with degz γ
2 ≤ 2.

More precisely, such triples determine families satisfying the following additional condition.

(5.3) (r, t, q) satisfies (5.1), and one can write 4q − t2 = gh2, where g, h ∈ Q[x], deg g ≤ 2, and

deg h < n.

According to Proposition 4.1, such a triple (z, ζ, γ) determines the family (r, t, q), where r is the

minimal polynomial of z, q = 1
4 (t2 + gh2), and t, g, h are the lifts of degree less than n of ϕ(ζ + 1),

ϕ(−γ2) and ϕ((ζk − 1)/γ), respectively, where ϕ : K → Q[x]/(r) is the isomorphism z 7→ x̄.

An equivalence relation in the set of all triples (5.2), which corresponds to linear equivalence of

families is defined as follows. We identify (z, ζ, γ) and (z′, ζ ′, γ′), if z′ = aϕ(z) + b, ζ ′ = ϕ(ζ), and

γ′ = cϕ(γ) for ϕ ∈ Aut(K) and a, b, c ∈ Q with ac 6= 0.

(5.4)There is the induced surjection

Φ : {triples (5.2)}/∼ −→ {families (5.3)}/∼,

which is ‘almost bijective’, i.e., if Φ−1([(r, t, q)]) has more than one element, then q = 1
4 (t2 +Dy2)

for some D ∈ Z, and the cardinality of Φ−1([(r, t, q)]) is equal to the number of distinct linear

factors of y in Q[x].

Proof. Similarly to (3.3) we check that Φ is well defined. To find triples representing a fam-

ily (r, t, q), write 4q − t2 = gh2 as in (5.3). Then this family is represented by all triples

(ϕ(z), ϕ(ζ), cϕ(γ)), where c ∈ Q∗, ϕ ∈ Aut(K), z ∈ K is a root of r, and ζ = ψ(t̄−1), γ = ψ(
√
−ḡ),

where ψ : Q[x]/(r) → K is the isomorphism x̄ 7→ z. Other triples representing this family must

come from another factorization 4q − t2 = g1h
2
1 as in (5.2) such that g/g1 /∈ Q. Such factorization

may exist only if 4q− t2 = Dy2 for D ∈ Z and y ∈ Q[x]. Then g and g1 must be squares of distinct

linear factors of y in Q[x]. Now the assertion easily follows. �
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Define the parameter ρ for a triple (5.2) to be

ρ(z, ζ, γ) =
1
n

max{2 degz ζ,degz γ
2 + 2 degz(ζ − 1)/γ}.

Then a triple (z, ζ, γ) determines the family (r, t, q) with ρ ≤ ρ(z, ζ, γ), and the equality holds if

4q − t2 has positive leading coefficient.

Now for a fixed kth primitive root of unity ζ ∈ K, a basis b1, . . . , bn of K/Q, and a bound

1 ≤ ρ0 < 2, we derive conditions on coordinates in this basis of all elements z, γ ∈ K such that the

triple (z, ζ, γ) satisfies (5.2) and has ρ(z, ζ, γ) ≤ ρ0. To parameterize coordinates of such z and γ

we use variables X1, . . . , Xn and Y1, . . . , Yn, respectively. Compute the following polynomials:

- homogeneous polynomials fij ∈ Q[X1, . . . , Xn], i = 1, . . . , n, j = 0, . . . , n − 1, with deg fij = j

such that (
∑

i xibi)j =
∑

i fij(x)bi for all x = (x1, . . . , xn) ∈ Qn;

- quadratic forms g1, . . . , gn ∈ Q[Y1, . . . , Yn] such that (
∑
yibi)2 =

∑
gi(y)bi for all y = (y1, . . . , yn) ∈

Qn;

- homogeneous polynomials h0, h1, . . . , hn ∈ Q[Y1, . . . , Yn] with deg hi = n − 1, 1 ≤ i ≤ n, and

deg h0 = n, such that (ζ − 1)(
∑
yibi)−1 = (

∑
hi(y)bi)/h0(y) for all y = (y1, . . . , yn) ∈ Qn \ {0}

(see the discussion preceding Proposition 4.2).

LetB be the largest integer such that 2B/n ≤ ρ0. For c = 0, 1, 2, let dc be the largest integer such

that (c+2dc)/n ≤ ρ0. Then ρ(z, ζ, γ) ≤ ρ0 iff degz ζ ≤ B, degz γ
2 ≤ c, and degz(ζ−1)/γ ≤ dc for

some c = 0, 1, 2. We express these conditions in terms of the following matrices. Let u1, . . . , un ∈ Q

be the coordinates of ζ in our basis. For c = 0, 1, 2, let

M1 =

f10 · · · f1B u1

...
. . .

...
...

fn0 · · · fnB un

 , M2c =

f10 f11 f1c g1

...
...

...
...

fn0 fn1 fnc gn

 , M3c =

f10 · · · f1dc
h1

...
. . .

...
...

fn0 · · · fndc
hn

 ,
and let M = [fij ] be the n × n matrix. For x, y ∈ Qn, denote by Mic(x, y) the matrix obtained

from Mic by evaluating its entries in the last column at y, and evaluating the remaining entries at

x. We now find the following.

(5.5) Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Qn \ {0}, and let z =
∑
xibi and γ =

∑
yibi. Then

the triple (z, ζ, γ) satisfies (5.2) and has ρ(z, ζ, γ) ≤ ρ0 iff detM(x) 6= 0, rankM1(x) ≤ B + 1,

rankM2c(x, y) ≤ c + 1, and rankM3c ≤ dc + 1 for some c = 0, 1, 2; or equivalently, if (x, y) is a

solution of the system Fc1 = · · · = Fcmc = 0, F 6= 0 for some c = 0, 1, 2, where Fc1, . . . , Fcmc are

all the maximal minors of the matrices M1,M2c,M3c, and F = detM .

In order to describe families up to linear equivalence, suppose that b1 = 1, and put Gci =

Fci(0, X1, . . . , Xn−1, Y1, . . . , Yn), and G = F (0, X1, . . . , Xn−1). (Notice that these polynomials

are homogeneous with respect to X1, . . . , Xn and Y1, . . . , Yn, so determine an algebraic set in

Pn−2(C)× Pn−1(C).)

Theorem 5.1. For c = 0, 1, 2, let Vc be the set of all solutions in Pn−2(C)×Pn−1(C) of the system

Gc1 = · · · = Gcmc
= 0, G 6= 0. Put V = V0 ∪ V1 ∪ V2.

(i) If K/Q is Galois, then all equivalence classes of families (5.1) with ρ ≤ ρ0, such that 4q − t2
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has positive leading coefficient are represented by rational points on V .

(ii) If Vc is non-empty, then dimVc ≥ B + c + dc − n. In particular, if ρ0 = 1 and V2 6= ∅, then

dimV ≥ 1.

Proof. The proof is similar to that of Theorem 3.1. We only note that here Vc can be described

by the following equations∑n
j=1 u1jMji(0, X1, . . . , Xn−1) = 0 for i = B + 2, . . . , n,∑n
j=1Mji(0, X1, . . . , Xn−1)gj(Y1, . . . , Yn) = 0 for i = c+ 2, . . . , n,∑n
j=1 u1jMji(0, X1, . . . , Xn−1)hj(Y1, . . . , Yn) = 0 for i = dc + 2, . . . , n.

Thus, if Vc 6= ∅, then dimVc ≥ 2n− 3− (n−B − 1 + n− c− 1 + n− dc − 1) = B + c+ dc − n. �

Example 5.2. For an example of how the above methods work, we determine all quartic families

(r, t, q) with k = 10, ρ = 1, and such that 4q − t2 is of degree 2. Freeman’s family r(x) =

25x4 + 25x3 + 25x2 + 5x+ 1, t(x) = 10x2 + 5x+ 3, q(x) = 25x4 + 25x3 + 25x2 + 10x+ 3 is a well

known example of this type, and in fact, a unique example, as we will see below.

Let K be the 10th cyclotomic field, and ζ ∈ K be a 10th primitive root of unity. For such

families we can eliminate variables Y1, . . . , Y4, since they are represented by triples (z, ζ, γ) such

that degz ζ ≤ 2, degz γ
2 ≤ 2, and (ζ − 1)/γ ∈ Q. The last two conditions yield degz(ζ − 1)2 ≤ 2.

Thus we first compute all primitive elements z ∈ K such that degz ζ ≤ 2 and degz(ζ − 1)2 ≤ 2,

and then determine the corresponding families according to Remark 4.3. Let M1, M2, and M be

quadratic matrices whose the first three columns are formed from the coordinates of 1, z, z2 in the

standard basis 1, ζ, ζ2, ζ3, and the last column is formed from the coordinates of ζ, (ζ − 1)2 and

z3, respectively. Their determinants evaluated at (0, X1, X2, X3) are the following:

G1 = −X2
1X3 + 2X1X

2
2 + 2X1X2X3 + 2X1X

2
3 +X3

2 +X2
2X3,

G2 = −2X2
1X2 − 5X1X

2
2 − 4X1X2X3 − 2X1X

2
3 − 2X3

2 −X22X3 −X3
3 ,

G = X6
1 +3X5

1X2−2X5
1X3 +5X4

1X
2
2 −5X4

1X2X3 +5X3
1X

3
2 +10X3

1X2X
2
3 +5X3

1X
3
3 −5X2

1X
3
2X3−

5X2
1X2X

3
3 − 5X2

1X
4
3 − 2X1X

5
2 − 5X1X

4
2X3 − 5X1X

3
2X

2
3 − 5X1X

2
2X

3
3 + 3X1X

5
3 − X6

2 − X5
2X3 −

X2X
5
3 −X6

3 .

The curves G1 = 0, G2 = 0 ⊂ P2(C) have the following common rational points: (0 : −1 :

1), (−1/2 : 1 : 0), (1 : 0 : 0), but G 6= 0 only for the last two points. The point (−1/2 : 1 : 0)

determines the class of the family r = x4 +3/2x3 +9/4x2 +7/8x+11/16, t = 8/5x2 +6/5x+13/5,

q = 16/25x4 + 24/25x3 + 76/25x2 + 44/25x+ 51/25, which is equivalent to Freeman’s family. The

last point does not determine any family with ρ = 1.

Note that for k = 5 there are no families of the above type. The corresponding equations for z

are in fact the same as above (since ζ5 = −ζ10), but 4q− t2 has negative leading coefficient for the

resulting family.
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