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ON THE RUSSELL PROBLEM

ZBIGNIEW JELONEK

Abstract. We give a partial answer to the Russell Conjecture about characterization
of the affine space. We also characterize testing sets for properness and non-properness
sets of polynomial mappings of k−uniruled varieties, where k is an algebraically closed
field.

1. Introduction.

Let k be an uncountable algebraically closed field. Let Kn := {x ∈ kn : x1 · . . . · xn = 0}
(i.e., Kn is the union of coordinate hyperplanes in kn). Peter Russell stated the following:

Conjecture. Let k = C. Let X be an affine, smooth variety of dimension n, which is
contractible. Then X is isomorphic to kn if and only if there is a closed embedding of Kn

into X.

In the paper [7] we have showed that the Russell Conjecture is true if X is additionally
dominated by Cn. The Russell Conjecture suggests a certain characterization of the affine
space X over any field. Here we generalize our result from [7] and we prove:

Theorem 1.1. Let X be a k−uniruled smooth affine variety of dimension n. Assume that
Pic(X) = 0 and H0(X,O∗) = k. If there is a closed embedding ι : Kn → X, then X ∼= kn.

Corollary 1.2. The Russell Conjecture holds for every C−uniruled contractible (smooth)
affine variety.

Let us recall that an affine variety X is k−uniruled if for a sufficiently general point x
in X there is an affine parametric curve φx : k → X such that φx(0) = x.

In the paper we also study generically-finite polynomial mappings of affine k−uniruled
varieties. We generalize some results from [7] and moreover we prove some of this result
in more general setting. In particular we give a wide description of hypersurfaces which
are testing sets in the case X is a k−uniruled affine variety. In particular we prove:

Theorem 1.3. Let X be a affine k-uniruled variety. Let S1, . . . , Sm be hypersurfaces in
km, which have no common points at infinity. Then S =

⋃m
i=1 Si is a testing set for

polynomial mappings X → km.

For example the set S =
⋃m

i=1{x ∈ kn : xi = 0} is a testing set for polynomial mappings
f : X → km and we have the following statement:
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Corollary 1.4. Let X be a affine k-uniruled variety. Let f = (f1, . . . , fm) : X → km be a
generically-finite polynomial mapping. If restrictions of f to hypersurfaces V (fi) = {x ∈
X : fi(x) = 0}, i = 1, . . . , m are finite, then the mapping f is finite, too.

We also continue the study the set of non-properness of a generically-finite polynomial
mapping f = (f1, . . . , fn) : X → Y, where X is an affine k−uniruled variety and Y is an
affine variety. Let us recall that f is not proper at a point y if there is no Zariski open
neighborhood U of y such that f−1(cl(U)) is proper. We prove:

Theorem 1.5. For a generically-finite dominant polynomial mapping f : X → Y , where
X is a k−uniruled affine variety and Y is an affine variety, the set Sf is either empty or
it is a k−uniruled hypersurface (in Y ).

2. Preliminaries.

We assume that k is an algebraically closed field. For simplicity we also assume that
k is uncountable. In this paper by a locally principal divisor on a variety X we mean
a Cartier divisor, which is locally given by polynomial equations. If D is given by a
system {Uα, fα}α∈A, (where fα ∈ k[Uα]), then by its support we mean a hypersurface
| D |:= ⋃

α∈A{x ∈ Uα : fα(x) = 0}.
Definition 2.1. Let X ⊂ kn be a curve. We say that X is an affine parametric curve if
there is a surjective polynomial mapping φ : k 3 t → φ(t) ∈ X.

In analogous way we say that a projective curve X is parametric, if there is a surjective
polynomial mapping φ : P1(k) 3 t → φ(t) ∈ X.

Now let us recall some basic facts abouts k-uniruled varieties (see [7] and [10]).

Proposition 2.2. Let k be an uncountable field. Let X be an irreducible affine variety of
dimension ≥ 1. The following conditions are equivalent:

1) for every point x ∈ X there is a polynomial affine curve in X going through x;
2) there exists a Zariski-open, non-empty subset U of X, such that for every point x ∈ U

there is a polynomial affine curve in X going through x;
3) there exists an affine variety W with dim W = dim X−1 and a dominant polynomial

mapping φ : W × k → X.

We have the following definition of a k-uniruled variety .

Definition 2.3. An affine irreducible variety X is called k-uniruled if it is of dimension
≥ 1, and satisfies one of equivalent conditions 1)− 3) listed in Proposition 2.2.

Example 2.4. Let H ⊂ kn be an irreducible hypersurface of degree d < n. Then H is a
k-uniruled variety. In fact H can be covered by lines.

Let us recall the following:

Definition 2.5. An irreducible algebraic variety X we will call semi-affine if there exists
a proper generically-finite polynomial mapping X → X ′, where X ′ is an affine variety.

We say that a semi-affine variety X is k-uniruled if there is a dominant generically finite
morphism f : H × k → X, where H is an affine variety. Of course we can assume that H
is smooth.
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We also have to recall some facts about sets of non-properness of polynomial mappings
(see [7] and [8]).

Definition 2.6. Let f : X → Y be a polynomial map. We say that f is proper at a point
y ∈ Y if there exists an open neighborhood U of y such that resf−1(U)f : f−1(U) → U is
a finite map.

We have the following important theorem ( for a proof see [7]):

Theorem 2.7. Let f : X → Y be a dominant polynomial map of irreducible varieties
of the same dimension. Assume that X is semi-affine and Y affine. Then the set Sf of
points at which f is not proper is either empty or it is a hypersurface.

Remark 2.8. The proof given in [7] is over k = C, however essentially it works for
arbitrary field, some obvious modification we leave to the reader.

3. The case of surfaces.

Our next aim is to give a characterization of the testing sets, as well as the character-
ization of the set of non-proper points for a dominant map f : X → km, where X is a
affine k−uniruled surface. In fact we will do it in a more general setting.

Definition 3.1. Let X, Y be algebraic varieties and f : X → Y be a polynomial dominant
map. By a compactification of f we mean a variety X and a map f : X → Y , such that

1) f is proper,

2) X ⊂ X,

3) resXf = f.

We have the following easy proposition:

Proposition 3.2. Let X,Y be algebraic varieties and f : X → Y be a polynomial domi-
nant map. Then f has a compactification. Moreover, if X is normal we can choose X to
be normal, too. If X is semi-affine, then X is also semi-affine.

Proof. It is enough to take X := closure of graph(f) ⊂ X ′×Y , (where X ′ is a completion
of X), and to take as f the canonical projection. If X is normal we can additionally take
the normalization of X. ¤
Remark 3.3. Assume that X is a smooth surface. Since we can resolve singularities of a
surface (see [1]), we can always assume that X is smooth, too.

Let a map f be a compactification of some dominant map f : X → Y , where X
is a semi-affine variety and Y is an affine variety. By the lemma below the subvariety
D := X \X is a hypersurface. Let D1 ∪ . . .∪Dr be a decomposition of D into irreducible
components. We call a component Di horizontal if dim f(Di) =dim Di, otherwise we call
it vertical.

Lemma 3.4. Let V be an algebraic variety which contains a semi-affine variety X as an
open dense subset. Then the subvariety D := V \X is a hypersurface. Moreover, if V is
complete of dimension n ≥ 2, then D is connected.

Let X be a smooth projective surface and let D =
∑n

i=1 Di be a simple normal crossing
(s.n.c) divisor on X (here we consider only reduced divisors). Let graph(D) be a graph of
D, i.e., a graph with one vertex Qi for each irreducible component Di of D, and one edge
between Qi and Qj for each point of intersection of Di and Dj .
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Definition 3.5. Let D be a simple normal crossing divisor on a smooth surface X. We
say that D is a tree if graph(D) is connected and acyclic.

We have the following fact which is obvious from graph theory:

Proposition 3.6. Let X be a smooth projective surface and let divisor D ⊂ X be a tree.
Assume that D′, D′′ ⊂ D are connected divisors without common components. Then D′
and D′′ have at most one common point.

Now we can prove:

Theorem 3.7. Let X,Y be algebraic surfaces, X is normal, semi-affine and Y is affine.
Assume, that X contains a smooth cylinder H = Γ × k as an open, dense subset. Let
f : X → Y be a dominant polynomial map and f : X → Y be a compactification of f. Let
Q := X \X. Then

1) every horizontal component of Q is an affine parametric curve,
2) every vertical component of Q is a projective parametric curve,
3) if H1, H2 are horizontal components, then H1 ∩H2 = ∅,
4) every connected vertical curve meets at most one horizontal component.

Proof. We can assume that X and X are smooth. Let X̃ be a smooth completion of X.
We can assume that the mapping f : X → Y has an extension to a morphism f ′ : X̃ → Y ,
where Y is a projective closure of Y. In particular f ′−1(Y \ Y ) = X̃ \X.

The inclusion ι : Γ × k → X induces the birational mapping φ : Γ × P1(k) → X̃, (here
Γ is a smooth completion of Γ). Note that the divisor D = Γ ×∞ +

∑l
i=1{ai} × P1 is a

tree. Now we have the following picture:
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Here mappings f1 and f2 are compositions of blowing-up’s. Note that the divisor D′ =
f∗1 (D) is a tree. Let Γ×∞′ denote a proper transform of Γ×∞. It is an easy observation
that f2(Γ×∞′) ⊂ X̃ \X. The curve L = X̃ \X is a complement of a semi-affine variety
hence it is connected (for details see [7], Lemma 4.5). So also the curve L′ = f−1

2 (L) ⊂ D′
is connected. Now by Proposition 3.6 we have that every irreducible curve Z ⊂ D′ which
does not belong to L′ has at most one common point with L′. Let S ⊂ Q be a horizontal
component. There is a curve Z ⊂ D′, which has exactly one common point with L′ such
that S = f2(Z \ L). Moreover Z is different from Γ × ∞′, hence Z \ L = k. Now let
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S be a vertical component. Now the curve Z which lies over S is disjoint from L′ and
S = f2(Z) = f2(P1(k)).

Let H1, H2 be horizontal components. Take Z1 = f−1
2 (H1), Z2 = f−1

2 (H2). The curves
Z1, Z2 are connected and they have common points with L′. Since D′ is the tree, we have
(Z1 \L′)∩ (Z2 \L′) = ∅. Consequently H1∩H2 = ∅. In a similar way we can prove 4).This
completes the proof. ¤
Theorem 3.8. Let X, Y be algebraic surfaces, where X is semi-affine and Y is affine.
Let f : X → Y be a polynomial dominant map. Let us assume that X contains a smooth
cylinder H = Γ × k, as an open, dense subset. The set Sf of points at which f is not
proper consists of a finite number (possibly 0) of affine parametric curves.

Proof. Taking a normalization we can assume that X is normal. Let f : X → Y be a
normal compactification of f. By Theorem 2.7 the set Sf is a curve. Moreover, it is easy to
see that Sf = f(X \X). Thus in fact we have Sf = f(R), where R is a union of horizontal
components of X \X. Now the conclusion holds by Theorem 3.7. ¤
Corollary 3.9. Let X, Y be affine algebraic surfaces and let X be k−uniruled. Let f :
X → Y be a polynomial dominant map. Then the set Sf of points at which f is not proper
consists of a finite number (possibly 0) of affine parametric curves.

Proof. Since X is k−uniruled, we have a dominant mapping φ : Γ × k → X. We can
assume that the curve Γ is smooth. Let φ : Z → X be a compactification of φ and take
g = f ◦ φ. Then Sf = Sg. Now the conclusion holds by Theorem 3.8. ¤

We state now the following basic definition:

Definition 3.10. Let X, Y be algebraic varieties, where X is semi-affine and Y is affine.
Let S be a closed subset of Y. We will call S a testing set for properness of polynomial
mappings f : X → Y (briefly a testing set) if for every generically-finite polynomial
mapping f : X → Y, if resf−1(S)f : f−1(S) 3 x → f(x) ∈ S is proper then f is proper,
too.

The following fact will be frequently used

Lemma 3.11. Let X,Y be algebraic varieties, where X is semi-affine and Y is affine.
Let f : X → Y be a generically finite dominant mapping. Assume that T =

⋃m
j=1 Ti is a

connected hypersurface in Y , with irreducible components Ti, which is a support of a locally
principal divisor. Moreover, assume that resf−1(T )f : f−1(T ) → T is a proper mapping.
If for every j = 1, . . . ,m the mapping f is proper at some point yj ∈ Tj, then it is proper
at every point y ∈ T.

Proof. We can assume that X is normal. Let f : X → Y be a normal compactification of
f and denote D := X \X. By the Stein Factorization Theorem (see e.g. [4]) there exist a
variety W , and regular surjective mappings p : X → W , q : W → Y , such that f = q ◦ p
and p has only connected fibers (in particular being generically finite it is a birational
mapping) and q is finite.

Now assume on the contrary, that the mapping f is not proper at a point y ∈ Ti ⊂ T.
We will show that this assumption leads to a contradiction.

First of all, since resf−1(T )f : f−1(T ) → T is a proper mapping we have cl(f−1(T ))∩D =
∅, i.e., the set f−1(T ) is closed in X. Moreover, since the mapping f is proper at points
yj ∈ Tj there is no horizontal components over Tj , j = 1, . . . , m.
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There are two cases possible:

a) the set f
−1(y) is finite,

b) the set f
−1(y) is infinite.

ad a) We have that there is a point b ∈ f
−1(y)∩D. Let T be a support of a divisor T ′.

Consider the locally-principal divisor Z := f
∗(T ′) ∩ (X \ f−1(T )). It has the support in

D and it has only horizontal components which go through b. One of them lies over some
Tj , which is a contradiction.

ad b) We will show that this case also is impossible. Indeed let b ∈ q−1(y) be a point
in W such that p−1(b) is infinite. Let R be an irreducible component of the hypersurface
q−1(T ) which contains the point b. The variety p−1(R) is connected and contains the
connected set p−1(b). Moreover, it is contained in f

−1(T ). Since f−1(T ) is disjoint from
D and since p−1(b) must be in D, we have that p−1(R) is also in D. But p−1(R) contains
a horizontal component which lies over R and consequently over some Tj . This is a
contradiction. ¤

Corollary 3.12. Let X,Y be algebraic varieties, where X is semi-affine and Y is affine.
Let f : X → Y be a generically finite dominant mapping. Assume that T is a connected
hypersurface in Y , such that every irreducible component of T is a support of a locally
principal divisor. Moreover, assume that resf−1(T )f : f−1(T ) → T is a proper mapping.
If the mapping f is proper at some point y1 ∈ T , then it is proper at every point y ∈ T.

Theorem 3.13. Let X,Y be algebraic surfaces, where X is semi-affine and Y is affine.
Let X contain a smooth cylinder H = Γ × k as an open, dense subset. Assume that
T =

⋃r
j=1 Tj is a curve in Y such that

1) every Tj is a support of some locally principal divisor,
2) if S ⊂ T is an irreducible component of some Tj which is an affine parametric curve,

then for some Tk we have S 6⊂ Tk and S ∩ Tk 6= ∅,
3) for every affine parametric curve Γ ⊂ Y we have Γ ∩ T 6= ∅.

Then T is a testing set for properness of polynomial mappings f : X → Y.

Proof. Let f : X → Y be a generically-finite polynomial mapping and resf−1(T )f :
f−1(T ) 3 x → f(x) ∈ T be a proper mapping. We have to show that f is proper,
too.

Taking the normalization we can assume that X is normal. Let f : X → Y be a normal
compactification of f and denote D := X \X. By the Stein Factorization Theorem there
exist a normal surface W , and regular surjective mappings p : X → W , q : W → Y , such
that f = q ◦ p and p has only connected fibers (in particular, being generically finite it is
a birational mapping) and q is finite. We have:

Lemma 3.14. Let X, Y, f be as above. Assume that S, T ⊂ Y are curves, S is irreducible
and T is the support of a locally principal divisor. Moreover, assume that the mapping
resf−1(S∪T )f : f−1(S ∪ T ) 3 x → f(x) ∈ S ∪ T is proper. If S ∩ T has an isolated point,
then the mapping f is proper at some point y ∈ S.

Proof. Let us assume the contrary, i.e., that S ⊂ Sf . Hence there is a horizontal curve
S′ ⊂ X \X such that f(S′) = S. Let a be an isolated point of the intersection S ∩ T and
b ∈ S′ be a point such that f(b) = a.

There are two cases possible:
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i) the point b is an isolated component of the set f
−1(a),

ii) the point b is not an isolated component of the set f
−1(a),

ad i) Let us note that by our assumptions the set f−1(S ∪ T ) is closed in X. Let
T ′ be a divisor with support | T ′ |= T and consider a locally-principal divisor T ′′ :=
f
∗(T ′)∩(X \f−1(S∪T )). It has support in D and cuts S′ in b. Let us denote a component

of T” which contain the point b by R. By i) the component R is horizontal. Since a is
an isolated component of the intersection S ∩ T, we have that R 6= S′, which contradicts
Theorem 4.6.

ad ii) We will show that this case is impossible. Indeed, let c ∈ q−1(a) be a point in W
such that p−1(c) is infinite and b ∈ p−1(c). Let R be an irreducible component of divisor
q∗(T ′) which contains the point c. The curve p−1(R) is connected and contains the curve
p−1(c). Moreover, it is contained in f

−1(T ). Since f−1(T ) is disjoint from D and since
p−1(c) must be in D, we have that p−1(R) is also in D. But the curve p−1(R) contains a
horizontal component H which lies over R. Moreover, since a is an isolated component of
the intersection S ∩ T, we have that H 6= S′. It means that the connected vertical curve
p−1(c) meets two different horizontal components and this is a contradiction. ¤

We now return to the proof of Theorem 3.13. By Lemma 3.11, Lemma 3.14 and Theorem
3.8 we easily see that for every y ∈ T, the mapping f is proper at y. Finally if Sf denotes
the set of points at which the mapping f is not proper, we have that Sf ∩ T = ∅. By
Theorem 3.8 and 3), this implies that Sf = ∅, i.e., the mapping f is proper. ¤

The theorem above can be slightly generalized:

Corollary 3.15. Let X,Y be algebraic surfaces, where X is semi-affine and k−uniruled
and Y is affine. Assume that T =

⋃r
j=1 Tj is a curve in Y such that

1) every Tj is a support of some locally principal divisor,
2) if S ⊂ T is an irreducible component of some Tj which is an affine parametric curve,

then for some Tk we have S 6⊂ Tk and S ∩ Tk 6= ∅,
3) for every affine parametric curve Γ ⊂ Y we have Γ ∩ T 6= ∅.

Then T is a testing set for properness of polynomial mappings f : X → Y.

Proof. Let H = Γ × k be a smooth cylinder. Let g : H → X be a dominant mapping.
Take a compactification g : H → X. Since g is a proper generically-finite mapping and
X is semi-affine, we have that H is a semi-affine surface. A mapping f : X → Y is
proper if and only if the mapping F := f ◦ g is proper. Since the mapping g is proper,
we have that resf−1(T )f : f−1(T ) 3 x → f(x) ∈ T is a proper mapping if and only if
resF−1(T )F : F−1(T ) 3 x → F (x) ∈ T is a proper mapping. Now the proof reduces to the
proof of Theorem 3.13. ¤
Corollary 3.16. Let T1, . . . , Tm be hypersurfaces in km which have no common points at
infinity. Let X be a semi-affine and k− uniruled surface. Then T =

⋃m
i=1 Ti is a testing

set for polynomial mappings f : X → km.

Proof. First take Ti = {x : xi = 0} and T =
⋃m

i=1 Ti. We have to show that if f : X → km

is a generically-finite polynomial mapping and resf−1(T )f : f−1(T ) 3 x → f(x) ∈ T is
a proper mapping then f is a proper mapping, too. Let us take Y = cl(f(X)) and take
T ′i = Ti ∩ Y, T ′ =

⋃m
i=1 T ′i . We can assume that Y 6⊂ Ti for i = 1, . . . , m. Hence all T ′i are
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locally principal divisors on Y. We will show that T ′ satisfies all assumptions of Corollary
3.15. It satisfies 1),3), because T =

⋃m
i=1 Ti satisfies 1),3) in km.

It also satisfies 2). Indeed, let Γ ⊂ T ′ be an affine parametric curve, we have to
show that Γ meets another component of T ′. We can assume that Γ ⊂ T1, . . . , Ts but
Γ 6⊂ Ts+1, . . . , Tm (where s < m, because the intersection of all Ti is one point). If we put
Z =

⋂s
i=1 Ti and Zi = Ti ∩ Z for i > s, then Zi are coordinate hyperplanes in Z ∼= km−s.

It means that for at least one index ”j > s” we have Γ ∩ Zj 6= ∅. Hence Γ has common
points with the curve Tj ∩Y = T ′j . By construction all components of T ′j are different from
Γ.

The general case can be easily deduced from the particular one. Indeed, let Ti = V (gi)
for some reduced polynomial gi ∈ k[y1, . . . , ym], i = 1, . . . ,m. By the assumption, the
mapping G := (g1, . . . , gm) : km → km is finite. Now it is enough to consider the mapping
f ′ = G ◦ f and to use the first part of our proof. ¤

In particular the set S =
⋃m

i=1{x : xi = 0} is a testing set for polynomial mappings
f : X → km and we have the following statement

Corollary 3.17. Let X be a semi-affine and k−uniruled surface. Let f = (f1, . . . , fm) :
X → km be a generically-finite polynomial mapping. If the restrictions of f to curves
V (fi), i = 1, . . . , m are proper, then the mapping f is also proper.

4. Geometric characterization of Sf .

Now we pass to the general situation.

Theorem 4.1. Let f : X → Y be a dominant polynomial map of n−dimensional varieties,
where X is semi-affine, k−uniruled and Y is affine. Then the set Sf of points at which f
is not proper is either empty or it is a k-uniruled hypersurface.

Proof. As usual we can assume that X contains a smooth affine cylinder H = Γ× k as an
open, dense subset. Let f : X → Y be a compactification of the mapping f.

Let y0 ∈ Sf . There is a curve Λ ⊂ X such that the mapping f |Λ is not proper at y0.
Moreover we can assume that Λ ∩H 6= ∅. Consequently we can assume that Λ ⊂ H. Let
π : H 3 (γ, t) → γ ∈ Γ and Λ′ = π(Λ). We can assume that Λ′ is a curve. Hence the curve
Λ is contained in a cylindrical surface S = Λ′ × k ⊂ H. Let S′ be a closure of S in X. Put
f ′ = f |S′ . Then Sf ′ ⊂ Sf . Since y0 ∈ Sf ′ by a construction and the set Sf ′ is a union of
parametric curves the proof is complete. ¤

We can apply our result to find out something about geometrical properties of the set
Y \ f(X). The following corollary is an easy consequence of Theorem 4.1:

Corollary 4.2. Let f : X → Y be a dominant polynomial map of n−dimensional varieties,
where X is semi-affine, k−uniruled and Y is affine. Every n− 1-dimensional component
C of the set cl(Y \f(X)) is a k-uniruled hypersurface. In particular, for every point x ∈ C
there is an affine parametric curve in C through x.

5. Testing sets.

Our aim in this section is to generalize Theorem 3.13 to higher dimensions. First we
will prove the following variant of Lemma 3.14:
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Lemma 5.1. Let X be a semi-affine surface and let Y be an affine surface. Assume,
that X contains a smooth cylinder H = Γ × k as an open, dense subset. Let f : X → Y
be a generically-finite polynomial mapping. Assume, that Ti, i = 1, . . . , m are locally
principal divisors in Y and the mapping resf−1(T )f : f−1(T ) 3 x → f(x) ∈ T , where
T =

⋃m
j=1 | Tj |, is proper. Then f is proper at every isolated point of the intersection⋂m

j=1 | Tj | .

Proof. As usual, we can assume that X is normal. Let f : X → Y be a normal compact-
ification of f and denote D := X \X. By the Stein Factorization Theorem there exist a
normal surface W , and regular surjective mappings p : X → W , q : W → Y , such that
f = q ◦ p and p has only connected fibers (in particular being generically finite it is a
birational mapping) and q is finite.

Let a be an isolated component of
⋂m

j=1 | Tj | . There are two cases possible:

i) the set f
−1(a) is finite,

ii) the set f
−1(a) is infinite.

ad i) It is enough to show that f
−1(a)∩D = ∅. Assume on the contrary, that there is a

point b ∈ f
−1(a)∩D. Let us note that by our assumptions the set f−1(| T |) is closed in X.

We can consider locally-principal divisors Di := f
∗(Ti)∩ (X \f−1(T )), i = 1, . . . , m. They

have supports in D and meets in b. Let us denote a component of | Di | which contains
the point b, by Ri, i = 1, . . . , m. By i) the components Ri, i = 1, . . . , m are horizontal.
Since a is an isolated component of the intersection

⋂m
j=1 | Tj |, we see that Ri 6= Rj , for

some i 6= j, which contradicts Theorem 3.7.
ad ii) We will show that this case is impossible. Indeed let b ∈ q−1(a) be a point in W

such that p−1(b) is infinite. Let Ri, i = 1, . . . , m be irreducible components of divisors
q∗(Ti) which contain the point b. The curves p−1(Ri), i = 1, . . . , m are connected and
contain the curve p−1(b). Moreover, they are contained in f

−1(T ). Since f−1(T ) is disjoint
from D and since p−1(b) must be in D, we have that p−1(Ri), i = 1, . . . , m are also in D.
But the curves p−1(Ri) contain horizontal components Hi which are over Ri. Moreover,
since a is an isolated component of the intersection

⋂m
j=1 | Tj |, we see that Hi 6= Hj ,

for some i 6= j. This means that a connected vertical curve p−1(b) meets two different
horizontal components, which is a contradiction. ¤

Now we are in a position to prove the following:

Theorem 5.2. Let X, Y be irreducible n−dimensional varieties, where X is semi-affine
and k-uniruled and Y is affine. Let T be a hypersurface on Y such that

1) every irreducible component of T is a support of some locally principal divisor,
2) if T ′ ⊂ T is a connected component of T which is k-uniruled then T ′ contains

irreducible components T ′1, . . . , T
′
r such that the intersection

⋂r
i=1 T ′i has a point as an

isolated component,
3) for every affine k-uniruled hypersurface Γ ⊂ Y we have Γ ∩ T 6= ∅.

Then T is a testing set for polynomial mappings f : X → Y. Moreover, if every irreducible
component of T is not C-uniruled, then we can change the assumption 1) to the weaker
assumption that T is a support of a locally principal divisor.

Proof. As usual we can assume that X is normal and X contains a smooth affine cylinder
H = Γ× k as an open, dense subset.
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Let f : X → Y be a generically-finite polynomial mapping and resf−1(T )f : f−1(T ) 3
x → f(x) ∈ T be a proper mapping. We have to show that f is proper, too. Let f : X → Y
be a compactification of f and denote D := X \X.

We have:

Lemma 5.3. Let f, X, Y, T ′ be as above. Then f is proper at every isolated point of the
intersection

⋂r
i=1 T ′i .

Proof. Let a be an isolated component of
⋂r

i=1 T ′i . Let us assume that the mapping f is
not proper at the point a and take a point c ∈ f

−1(a) ∩D. There is an irreducible curve
Λ ⊂ X which contains the point c and Λ′ := Λ∩H 6= ∅. Moreover, we can assume that Λ′
contains a point b which is smooth with respect to f. As in previous proofs we can assume
that Λ′ is contained in a cylindrical surface S = G× k ⊂ H. Let S′ be a closure of S in X.
Put f ′ = f |S′ . Since b ∈ Λ′ and f is smooth at the point b we have that the mapping f ′
is generically-finite. Denote Y ′ := cl(f ′(S′)). The variety Y ′ is an affine surface. By the
choice of the point c and the curve Λ the mapping f ′ is not proper at the point a ∈ Y ′.

Let Ti be locally principal divisors with support T ′i , i = 1, . . . , r. We can consider
divisors Ri := ι∗(Ti), where ι : Y ′ → Y is an inclusion. We have a ∈ ⋂ | Ri | and the
point a is an isolated point of this intersection. Moreover, the mapping f ′ is proper on
the preimage of the set

⋃ | Ri | . By Lemma 5.1 it follows that the mapping f ′ is proper
at the point a, which is a contradiction. Hence our assumption that the mapping f is not
proper at the point a is false. ¤

We now return to the proof of Theorem 5.2. By Lemma 5.3 and Theorem 4.1 we can
easily see that for every y ∈ T the mapping f is proper at y. Finally, if Sf denotes the set
of points at which the mapping f is not proper we see that Sf ∩ T = ∅. By Theorem 4.1
and 3) it follows that Sf = ∅, i.e., the mapping f is proper. ¤

Corollary 5.4. Let X be a semi-affine and k-uniruled n−dimensional variety. Assume
that T is a hypersurface in kn such that

1) if T ′ ⊂ T is a connected component of T which is k− uniruled then T ′ contains
irreducible components T ′1, . . . , T

′
r such that the intersection

⋂r
i=1 T ′i has a point as an

isolated component,
2) for every affine k-uniruled hypersurface Γ ⊂ kn we have Γ ∩ T 6= ∅.

Then T is a testing set for polynomial mappings f : X → kn.

A simple application of Theorem 5.2 is that if T1, . . . , Tn are hypersurfaces in kn with-
out common points at infinity, then the set T =

⋃n
i=1 Ti is a testing set for polynomial

mappings f : X → kn ( where X is a semi-affine, k−uniruled variety). In fact we can
easily generalize this as follows:

Proposition 5.5. Let T1, . . . , Tm be hypersurfaces in km which have no common points
at infinity. Let X be a semi-affine and k−uniruled n−dimensional variety. Then the set
T =

⋃m
i=1 Ti is a testing set for polynomial mappings f : X → km.

Proof. Let f : X → kn be a dominant mapping which is proper over T. Assume that f is
not proper. We can assume that X contains an affine cylinder H = Γ×k as an open dense
subset. As in previous proofs we can construct a cylindrical surface S = G× k ⊂ H, such
that the mapping f is not proper on S′ = cl(S) ⊂ X. This contradicts Corollary 3.16. ¤
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In particular the set S =
⋃m

i=1{x : xi = 0} is a testing set for polynomial mappings
f : X → km and so we have:

Corollary 5.6. Let X be a semi-affine and k−uniruled n−dimensional variety. Let
f = (f1, . . . , fm) : X → km be a generically-finite polynomial mapping. If the mappings
resV (fi)f, i = 1, . . . , m are proper, then the mapping f is proper, too.

6. The Russell Problem.

Now we pass to the application of Theorem 5.2. Let Kn := {x ∈ kn : x1 · . . . · xn = 0}
(i.e., Kn is the union of coordinate hyperplanes in kn). Peter Russell stated the following:

Conjecture. Let k = C. Let X be an affine, smooth variety of dimension n, which is
contractible. Then X is isomorphic to kn if and only if there is a closed embedding of Kn

into X.

In the paper [7] we have showed that the Russell Conjecture is true if X is additionally
dominated by Cn. The Russell Conjecture suggests a certain characterization of the affine
space X over any field. Here we generalize our result from [7] and we prove:

Theorem 6.1. Let X be a k−uniruled smooth affine variety of dimension n. Assume that
Pic(X) = 0 and H0(X,O∗) = k. If there is a closed embedding ι : Kn → X, then X ∼= kn.
More precisely, every closed embedding ψ : Kn → X can be extended to an isomorphism
Ψ : kn → X.

Proof. Let ψ : Kn → X be a closed embedding, and let Γi := ψ({x : xi = 0}). Moreover,
denote K ′

n := ψ(Kn) and denote the point ψ(0) by a.

Take πi := {x ∈ kn : xi = 0}. Since Pic(X) = 0 there are irreducible polynomials
hj , j = 1, . . . , n such that Γj = {x ∈ X : hj(x) = 0}, j = 1, . . . , n. We see the following:

Lemma 6.2. The restriction of the mapping H = (h1, . . . , hn) : X → kn to the set K ′
n is

an isomorphism. Moreover, H−1(Kn) = K ′
n.

Proof. Let Γij = Γi ∩ Γj . Let f2 = 0, . . . , fn = 0, be irreducible equations of the sets
Γ12, . . . , Γ1n in the coordinate ring k[Γ1].

Consider ĥ2. We have {x ∈ Γ1 : ĥ2(x) = 0} = Γ12, hence from the Hilbert Nullstellensatz
there exist an integer r ≥ 1 and c2 ∈ H0(X,O∗) such that ĥ2 = c2(f2)r. By the assumption
c2 ∈ k. Since polynomials h1, . . . , hn give a local system of coordinates at the point a, we
must have r = 1 and ĥ2 = c2f2, c2 6= 0. In a similar way hj = cjfj , cj 6= 0, for j > 2.

By the symmetry we see that the polynomials ĥj = resΓihj , j 6= i, are generators of the
ideals I(Γij) in the ring k[Γi].

Now, let λ = ψ−1 : K ′
n → Kn and let us consider a mapping ε1 := resΓ1λ : Γ1 → π1.

We know that this mapping is polynomial, and moreover ε1 = (0, ε2, . . . , εn). We see
that {x ∈ Γ1 : εi(x) = 0} = Γ1i. Since ε1 is an isomorphism, the polynomials εi, i =
2, . . . , n, are irreducible in the ring k[Γ1]. Since {x ∈ Γ1 : ĥi(x) = 0} = Γ1i, there ex-
ist non-zero constants κ1i such that εi = κ1iĥi, i = 2, . . . , n. Hence ε1 has coordinates
(0, κ12ĥ2, . . . , κ1nĥn). In a similar way the mapping εk := resΓk

λ : Γk → πk has coordi-
nates (κk1ĥ1, . . . , κkk−1ĥk−1, 0, κkk+1ĥk+1, . . . , κknĥn). To end the proof of our lemma it is
enough to show that for every k, l 6= j we have κkj = κlj(:= κj). Indeed, in this case the
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mapping λ is the restriction to K ′
n of the mapping Λ = (κ1h1, . . . , κnhn), hence also the

mapping H = (h1, . . . , hn) in the restriction to K ′
n is an embedding.

Since Γk∩Γl 6⊂ Γj , there exists a point c ∈ (Γk∩Γl)\Γj . Thus λ(c) 6∈ πj (i.e., hj(c) 6= 0)
and λ(c) = εk(c) = (. . . , κkjhj(c), . . .) = (. . . , κljhj(c), . . .) = εl(c), hence κkjhj(c) =
κljhj(c) and κkj = κlj . Moreover, by the construction of H we have H−1(Kn) = K ′

n. ¤

We now complete the proof of Theorem 6.1. By the lemma above the mapping H in
the restriction to the set H−1(Kn) is proper, hence by Corollary 5.6 the mapping H is
proper. Since X is affine it means that the mapping H is finite. Since (d0ψ)−1 is an
isomorphism, we also have that the mapping daH : TaX → T0k

n is an isomorphism.
In particular the mapping H is separable and it is non-ramified at the point a. But
H−1(0) = a and consequently deg H = 1 (see e.g. [2]). This means that the mapping H
is birational. Finally, it is isomorphism by the Zariski Main Theorem. Now, if we take
Ψ := (κ1h1, . . . , κnhn)−1 : kn → X, then Ψ is an isomorphism and resKnΨ = ψ. ¤
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Poland

E-mail address: najelone@cyf-kr.edu.pl


