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Abstract A resolution of the intersection of a finite number of subgroups of an

abelian group by means of their sums is constructed, provided the lattice generated by

these subgroups is distributive. This is used for detecting singularities of modules over

Dedekind rings. A generalized Chinese remainder theorem is derived as a consequence

of the above resolution. The Gelfand-Naimark duality between finite closed coverings of

compact Hausdorff spaces and the generalized Chinese remainder theorem is clarified.
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1 Introduction

The Gelfand-Naimark duality identifies lattices of closed subsets in compact Hausdorff

spaces with lattices opposite to surjective systems of quotients of unital commutative

C*-algebras. Therefore, given a finite collection I0, . . . , In of closed *-ideals in a C*-

algebra A = C(X) of continuous functions on a compact Hausdorff space X, it identifies

coequalizers in the category of compact Hausdorff spaces (V (I) ⊂ X is the zero locus

of the ideal I ⊂ A = C(X))

n⋃
α=0

V (Iα)←
n∐

α=0

V (Iα) ⇔
n∐

α,β=0

V (Iα) ∩ V (Iβ) (1)

with equalizers in the category of unital commutative C*-algebras

A/

n⋂
α=0

Iα →
n∏

α=0

A/Iα ⇒
n∏

α,β=0

A/Iα + Iβ . (2)
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In particular, finite families of closed *-ideals intersecting to zero correspond to finite

families of closed subsets covering X. In general, lattices of closed *-ideals in com-

mutative unital C*-algebras are always distributive, since they are isomorphic by the

Gelfand-Naimark duality to lattices opposite to sublattices of subsets. Therefore one

can think about finite families of closed subsets in a compact Hausdorff space as of

finite subsets in a distributive lattice of ideals. By Hilbert’s Nullstellensatz one can

replace a compact Hausdorff space and its closed subsets by an affine algebraic set

X over an algebraically closed field and its algebraic subsets on one hand, and closed

ideals in a C*-algebra by radical ideals in the algebra O[X] of polynomial functions on

X, on the other hand. One can take also a finite set of monomial ideals in a ring of

polynomials over a field [5] as well as a finite set of congruences in the ring of integers

and the family of corresponding ideals. In all above cases the fact that the diagram (2)

is an equalizer is a consequence of distributivity of a corresponding lattice of ideals,

and in view of the last example can be regarded as a generalized Chinese remainder

theorem. More examples can be obtained from the fact that every algebra of finite

representation type has distributive lattice of ideals [12] and the property of having

distributive lattice of ideals is Morita invariant and open under deformations of finite

dimensional algebras [14].

The aim of the present paper is to show that the generalized Chinese theorem is

a consequence of vanishing of first cohomology of a canonical complex associated with

a finite number of members I0, . . . , In of a distributive lattice L of subgroups of an

abelian group A. The respective vanishing theorem (Theorem 1) depends only on that

lattice. Since it is independent of the ambient abelian group A, Theorem 1 is prior

to the generalized Chinese remainder theorem. It is also more general, since it claims

vanishing of the whole higher cohomology. This can be used for computing some higher

Ext’s detecting singularity of modules over Dedekind rings (Corollary 1).

2 Distributive lattices and homological algebra

In this section we consider lattices of subgroups of a given abelian group with the

intersection and the sum as the meet and the join operations, respectively. As for a

general lattice the distributivity condition can be written in two equivalent forms:

– The sum distributes over the intersection

P0 ∩ (P1 + P2) = (P0 ∩ P1) + (P0 ∩ P2). (3)

– The intersection distributes over the sum

I0 + I1 ∩ I2 = (I0 + I1) ∩ (I0 + I2). (4)

The aim of this section is to explain homological nature of the first and cohomological

nature of the second form of distributivity. Homological characterization of distribu-

tivity was used by Zharinov in [18] to generalize famous edge-of-the-wedge theorem

of Bogolyubov. In the present paper we prove a cohomological characterization of dis-

tributivity and derive from it a generalized Chinese remainder theorem. Note that in

general the category of modules is not selfdual, so our cohomological characterization

requires a proof independent of the homological proof of Zharinov. In this section we

show also that both characterizations have consequences for arithmetic.
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2.1 Homology

Let P0, . . . , Pn be a finite family of members of some fixed lattice L of subgroups in

an abelian group A. We define a group of q-chains Cq(P0, . . . , Pn) as a quotient of the

direct sum ⊕
0≤α0,...,αq≤n

Pα0 ∩ . . . ∩ Pαq (5)

by a subgroup generated by elements

pα0,...,α′,...,α′′,...,αq
+ pα0,...,α′′,...,α′,...,αq

, pα0,...,α,...,α,...,αq , (6)

and boundary operators (in terms of representatives of elements of quotient groups)

∂ : Cq(P0, . . . , Pn)→ Cq−1(P0, . . . , Pn), (7)

(∂p)α0...αq−1 =
∑
αq

pα0...αq−1αq . (8)

By a standard argument from homological algebra ∂◦∂ = 0. We denote by H•(P0, . . . , Pn)

the homology of the complex (C•(P0, . . . , Pn), ∂).

Theorem 1 (Zharinov [18]) 1) H0(P0, . . . , Pn) = P0 + · · ·+ Pn,

2) If the lattice L is distributive then Hq(P0, . . . , Pn) = 0 for q > 0,

3) If H1(P0, P1, P2) = 0 for all P0, P1, P2 ∈ L then the lattice L is distributive.

The following corollary provides a homological characterization of distributivity of

a lattice L.

Corollary 1 The following conditions are equivalent.

1) L is distributive,

2) For all P0, . . . , Pn ∈ L the canonical morphisms of complexes

C•(P0, . . . , Pn)→ P0 + . . . + Pn (9)

are quasiisomorphisms.

In particular, since Cq(P0, . . . , Pn) can be identified with the direct sum

Cq(P0, . . . , Pn) =
⊕

0≤α0<...<αq≤n

Pα0 ∩ . . . ∩ Pαq , (10)

the above corollary provides a homological resolution of the sum of subgroups

P0 + . . . + Pn by means of their intersections Pα0 ∩ . . . ∩ Pαq , 0 ≤ α0 < . . . < αq ≤ n,

provided the lattice L is distributive.

In [1] authors introduce a class of so called G*GCD rings, defined as such for which

gcd(P1, P2) exists for all finitely generated projective ideals P1, P2. This class includes

GGCD rings, semihereditary rings, f.f. rings (and hence flat rings), von Neumann reg-

ular rings, arithmetical rings, Prüfer domains and GGCD domains. For every such a

ring the class of finitely generated projective ideals is closed under intersection [1].

Therefore, for an arithmetical ring R every sum P0 + . . . + Pn of finitely generated

projective ideals in A admits a canonical resolution (9) by finitely generated projective

modules, which implies the following corollary.
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Corollary 2 Let P0, . . . , Pn be finitely generated projective ideals in an arithmetical

ring R. Then

ExtqR(P0 + . . . + Pn,−) = Hq(HomR(C•(P0, . . . , Pn),−)), (11)

TorRq (P0 + . . . + Pn,−) = Hq(C•(P0, . . . , Pn)⊗R −). (12)

2.2 Cohomology

Let I0, . . . , In be a finite family of members of some fixed lattice L of subgroups in an

abelian group A. We define a group of q-cochains Cq(I0, . . . , In) as a subgroup of the

product ∏
0≤α0,...,αq≤n

Iα0 + . . . + Iαq (13)

consisting of sequences (iα0...αq ) which are completely alternating with respect to in-

dices α0, . . . , αq, i.e.

iα0,...,α′,...,α′′,...,αq
+ iα0,...,α′′,...,α′,...,αq

= 0, iα0,...,α,...,α,...,αq = 0, (14)

and coboundary operators

d : Cq(I0, . . . , In)→ Cq+1(I0, . . . , In), (15)

(di)α0...αq+1 =

q+1∑
p=0

(−1)piα0...α̂p...αq+1
. (16)

By a standard argument from homological algebra d◦d = 0. We denote by H•(I0, . . . , In)

the cohomology of the complex (C•(I0, . . . , In), d).

Theorem 2 1) H0(I0, . . . , In) = I0 ∩ . . . ∩ In,

2) If the lattice L is distributive then Hq(I0, . . . , In) = 0 for q > 0,

3) If H1(I0, I1, I2) = 0 for all I0, I1, I2 ∈ L then the lattice L is distributive.

Proof. Let us note first that Cq(I0, . . . , In) can be identified with the product

Cq(I0, . . . , In) =
∏

0≤α0<...<αq≤n

Iα0 + · · ·+ Iαq . (17)

1) Since the difference iβ − iα is alternating with respect to the indices α, β we

have

H0(I0, . . . , In) = ker(
∏

0≤α≤n

Iα →
∏

0≤α<β≤n

Iα + Iβ), (iα) 7→ (iβ − iα), (18)

which consists of constant sequences (iα = i | i ∈ I0 ∩ . . . ∩ In).

2) For q > 0 induction on n. For n = 0 obvious. Inductive step: Consider (I0, . . . , In)

for n > 0. Then every q-cochain (iα0...αq , iα0...αq−1n), for q > 0, can be identified with

a sequence consisting of elements

iα0...αq ∈ Iα0 + . . . + Iαq , for 0 ≤ α0 < . . . < αq ≤ n− 1, (19)

iα0...αq−1n ∈ Iα0 + . . . + Iαq−1 + In, for 0 ≤ α0 < . . . < αq−1 ≤ n− 1. (20)
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This is a cocycle iff
q+1∑
p=0

(−1)piα0...α̂p...αq+1
= 0, (21)

for all 0 ≤ α0 < . . . < αq+1 ≤ n− 1, and

q∑
p=0

(−1)piα0...α̂p...αqn + (−1)q+1iα0...αq = 0. (22)

for all 0 ≤ α0 < . . . < αq ≤ n− 1.

By the inductive hypothesis Hq(I0, . . . , In−1) = 0 for q > 0. Then (21) implies that

for all 0 ≤ α0 < . . . < αq−1 ≤ n − 1 there exist iα0...αq−1 ∈ Iα0 + . . . + Iαq−1 , such

that for all 0 ≤ α0 < . . . < αq ≤ n− 1

iα0...αq =

q∑
p=0

(−1)piα0...α̂p...αq
, (23)

hence by (22)

q∑
p=0

(−1)piα0...α̂p...αqn +

q∑
p=0

(−1)p+q+1iα0...α̂p...αq
= 0, (24)

which can be rewritten as

q∑
p=0

(−1)p(iα0...α̂p...αqn − (−1)qiα0...α̂p...αq
) = 0. (25)

For q = 1 we know by already proven point 2) of the theorem that Hq−1(I0 +

In, . . . , In−1+In) = (I0+In)∩. . .∩(In−1+In) which is equal to I0∩. . .∩In−1+In, since

the lattice L is distributive. Therefore by (25) for q = 1 there exist i ∈ I0 ∩ . . . ∩ In−1

and in ∈ In such that for all 0 ≤ α ≤ n− 1

iαn + iα = i + in, (26)

hence

iαn = in − (iα − i). (27)

Equations (23) for q = 1, which reads as

iαβ = iβ − iα = (iβ − i)− (iα − i), (28)

and (27) together mean that i = (iαβ , iαn | 0 ≤ α < β ≤ n − 1) ∈ C1(I0, . . . , In)

is coboundary of (iα − i, in | 0 ≤ α ≤ n − 1) ∈ C0(I0, . . . , In) which proves that

H1(I0, . . . , In) = 0.

For q > 1 by the inductive hypothesis Hq−1(I0 +In, . . . , In−1 +In) = 0, hence (25)

implies that for all 0 ≤ α0 < . . . < αq−2 ≤ n− 1 there exist iα0...αq−2n ∈ (Iα0 + In) +

. . .+(Iαq−2 +In) = Iα0 +. . .+Iαq−2 +In, such that for all 0 ≤ α0 < . . . < αq−1 ≤ n−1

iα0...αq−1n − (−1)qiα0...αq−1 =

q−1∑
p=0

(−1)piα0...α̂p...αq−1n, (29)
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which can be rewritten as

iα0...αq−1n =

q−1∑
p=0

(−1)piα0...α̂p...αq−1n + (−1)qiα0...αq−1 . (30)

Equations (23) and (30) together mean that (iα0...αq , iα0...αq−1n) is coboundary of

(iα0...αq−1 , iα0...αq−2n), hence Hq(I0, . . . , In) = 0 for q > 1.

3) We have to prove that for all I0, I1, I2 ∈ L

(I0 + I1) ∩ (I0 + I2) = I0 + I1 ∩ I2. (31)

The inclusion (I0 + I1) ∩ (I0 + I2) ⊃ I0 + I1 ∩ I2 is obvious. To prove the opposite

inclusion take i ∈ (I0 + I1) ∩ (I0 + I2). It can be written in two ways as

i = i01 + i′12, where i01 ∈ I0 ⊂ I0 + I1, i′12 ∈ I1 ⊂ I1 + I2, (32)

i = i02 + i′′12, where i02 ∈ I0 ⊂ I0 + I2, i′′12 ∈ I2 ⊂ I1 + I2. (33)

Define i12 := i′12 − i′′12. Subtracting (33) from (32) we get the cocycle condition

i12 − i02 + i01 = 0. (34)

Since H1(I0, I1, I2) = 0 (34) implies that there exist iα ∈ Iα, α = 0, 1, 2, such that

iαβ = iβ − iα, (35)

in particular

i′12 − i′′12 = i12 = i2 − i1, (36)

hence

i1 + i′12 = i2 + i′′12. (37)

Since i0 ∈ I0 and by (32) i01 ∈ I0 (35) implies that

i1 = i0 + i01 ∈ I0. (38)

By (32) (resp. (33)) the left (resp. right) hand side of (37) belongs to I1 (resp. I2),

hence

i1 + i′12 ∈ I1 ∩ I2. (39)

Finally, by (32), (38) and (39)

i = i01 + i′12 = (i01 − i1) + (i1 + i′12) ∈ I0 + I1 ∩ I2.ut (40)

The following corollary provides a cohomological characterization of distributivity

of a lattice L.

Corollary 3 The following conditions are equivalent.

1) L is distributive,

2) For all I0, . . . , In ∈ L the canonical morphisms of complexes

I0 ∩ . . . ∩ In → C•(I0, . . . , In), (41)

are quasiisomorphisms.
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In particular, by the identification (17) the above corollary provides a cohomological

resolution of the intersection of subgroups I0 ∩ . . . ∩ In by means of their sums Iα0 +

· · ·+ Iαq , 0 ≤ α0 < . . . < αq ≤ n, provided the lattice L is distributive.

This fact together with the fact that each finitely generated module over a Dedekind

ring is a direct sum of distributive modules (i.e. modules whose lattice of submodules is

distributive) [15] can be used for detecting singularities of modules over Dedekind rings.

First of all, in a non-singular left module (i.e. left module without nonzero elements

annihilated by all essential left ideals) the intersection of injective submodules is again

injective [17]. Therefore, given injective submodules I0, . . . , In in a left module A over

a ring R, the functors ExtqR(−, I0 ∩ . . . ∩ In) for q > 0 detect singularity of A. These

functors can be computed with use of our resolution whenever every sum of injective

submodules of a left R-module A is injective. The latter property characterizes left

Noetherian left hereditary rings [9], hence it holds for Dedekind rings. Therefore we

can apply Theorem 2 to obtain the following corollary.

Corollary 4 Let I0, . . . , In be injective submodules in a distributive left R-module A

over a left Noetherian and left hereditary ring R. Then

ExtqR(−, I0 ∩ . . . ∩ In) = Hq(HomR(−, C•(I0, . . . , In))). (42)

Therefore, if A is a finitely generated and non-singular module over a Dedekind ring R

Hq(HomR(−, C•(I0, . . . , In))) = 0 (43)

for q > 0.

3 Generalized Chinese Remainder Theorem

As next application we will prove the following generalized Chinese remainder theorem.

Corollary 5 For any finite family I0, . . . , In of members of some fixed distributive

lattice L of subgroups in an abelian group A the canonical diagram

A/

n⋂
α=0

Iα →
n∏

α=0

A/Iα ⇒
n∏

α,β=0

A/Iα + Iβ . (44)

is an equalizer.

Proof. Injectivity of the first arrow is obvious. Exactness of (44) in the middle term

is equivalent to exactness in the middle term of the canonical complex

A
π→

∏
0≤α≤n

A/Iα
δ→

∏
0≤α<β≤n

A/Iα + Iβ , (45)

where π(a) = (a + Iα | 0 ≤ α ≤ n), δ(aα + Iα | 0 ≤ α ≤ n) = (aβ − aα + Iα + Iβ | 0 ≤
α < β ≤ n). We have

ker δ = (aα + Iα | aβ − aα ∈ Iα + Iβ), (46)

hence (iαβ := aβ − aα | 0 ≤ α < β ≤ n) is a cocycle in C1(I0, . . . , In). By Theorem

1 there exist iα ∈ Iα such that aβ − aα = iβ − iα. Let a := aα − iα = aβ − iβ . Then

(aα + Iα | 0 ≤ α ≤ n) = π(a), which proves exactness of (45) in the middle term. ut
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Remark. It is well known that if all Iα’s are pairwise coprime ideals in a unital

associative ring A, i.e. Iα + Iβ = A for α 6= β, then the diagram (44) is an equalizer

and I1 ∩ . . .∩ In =
∑

σ Iσ(1) . . . Iσ(n), where σ’s are sufficiently many permutations of

{1, . . . , n}. These facts are independent of distributivity of the lattice of ideals. There-

fore Corollary 5 (essentialy present already in [10], next rediscovered and generalized

many times, e.g. [4], [3], [16], [5]) should be understood as a generalization of the

Chinese remainder theorem to the non-coprime case, for which distributivity of the

lattice of ideals is a sufficient condition. In fact, the lattice of left ideals in a (unital

associative) ring is distributive iff the above generalized Chinese remainder theorem

holds for such ideals [3]. Therefore in the commutative case there is “one necessary

and sufficient condition that places the theorem in proper perspective. It states that the

Chinese remainder theorem holds in a commutative ring if and only if the lattice of

ideals of the ring is distributive” [13]. The aim of this section was to show how lattice

theory communicates with modular arithmetic through homology theory.

4 Noncommutative Topology

Finite families of closed subsets covering a topological space are important for the

Mayer-Vietoris principle in sheaf cohomology with supports and topological K-theory.

Since by the Gelfand-Naimark duality gluing of a compact Hausdorff space X from

finite number of compact Hausdorff pieces is equivalent to a generalized Chinese re-

mainder theorem (2) for closed *-ideals in a commutative unital C*-algebra C(X), one

is tempted to define a “noncommutative closed covering of a noncommutative space

dual to an associative C*-algebra A” as a finite collection of closed *-ideals intersecting

to zero and generating a distributive lattice [6], [8].

In [8] authors focus on the combinatorial side of such gluing in terms of the poset

structure on X induced by such a covering. This poset structure has its own topology

(Alexandrov topology), drastically different from the original compact Hausdorff one.

After fixing an order of the finite closed covering, they represent the distributive lattice

generated by these originally closed (now Alexandrov open) subsets as a homomorphic

image of the free distributive lattice generated by the same finite set of generators.

Next, authors pull-back quotient C*-algebras A/I to that free lattice and view the

resulting surjective system of quotient algebras as flabby sheaf of C*-algebras on the

Alexandrov topology corresponding to that free lattice. Finally, they formulate the

Gelfand-Naimark duality between ordered coverings of compact Hausdorff spaces by

N closed sets and flabby sheaves of commutative unital C*-algebras on the Alexandrov

topology corresponding to the free distributive lattice with N generators.

The aim of the present section is to avoid the auxiliary Alexandrov topology. In

fact, creating new topology by declaring old closed subsets to be new opens is not

necessary. The reason is that there is no need to see the generalized Chinese remainder

theorem as the sheaf condition. The following definitions introduce a notion, which

replaces sheaves when finite closed coverings replace open coverings.

Definition. For any topological space X we define a category of functors P (we call

them patterns) from the lattice of closed subsets of X to the category of sets (abelian

groups, rings, algebras etc) satisfying the following unique gluing property with respect
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to finite closed coverings (C0, . . . , Cn) of closed subsets C = C0 ∪ . . .∪Cn ⊂ X, which

demands that all canonical diagrams

P(C)→
n∏

α=0

P(Cα) ⇒
n∏

α,β=0

P(Cα ∩ Cβ) (47)

are equalizers.

Definition. We call a pattern P on X global if for any closed subset C ⊂ X the

restriction morphism P(X)→ P(C) is surjective.

Definition. For a continuous map f : X → Y the preimage f−1(D) of any closed

subset D ⊂ Y is closed in X and f defines the direct image functor f∗ of patterns:

(f∗P)(D) := P(f−1(D)).

We call (globally) algebraized space a pair consisting of a topological space X

equipped with a (global) pattern AX of algebras.

Definition. A morphism of (globally) algebraized spaces consists of a continuous map

of topological spaces f : X → Y and a morphism of patterns of algebras AY → f∗AX .

In this framework the aforementioned Gelfand-Naimark duality between gluing

of compact Hausdorff spaces and the generalized Chinese remainder theorem for C*-

algebras reads now as follows.

Theorem 3 The Gelfand-Naimark duality induces a full embedding of the category

opposite to unital commutative C*-algebras equipped with lattices of closed *-ideals into

the category of compact Hausdorff globally algebraized spaces.

Note that in the above theorem the Gelfand-Naimark duality between pairs (A, L)

and (X,AX) dualizes a unital commutative C*-algebra A to a compact Hausdorff space

X and the lattice L of closed *-ideals in A to a global pattern of algebras AX .

Note that every lattice of closed *-ideals in a C*-algebra is distributive. Therefore,

according to the general ideology of noncommutative topology, a pair consisting of

a unital associative C*-algebra A and a lattice L of closed *-ideals in A should be

regarded as a “noncommutative compact Hausdorff globally algebraized space”.

4.1 C*-algebras and patterns

4.1.1 Continuous fields of C*-algebras

In functional analysis of function C*-algebras, in opposite to algebraic geometry, the

notion of sheaf plays no a significant role. The appropriate replacement is then the

notion of sections of continuous fields of C*-algebras [7]. They are contravariant func-

tors on the category of closed subsets transforming closed embeddings into surjective

restriction homomorphisms. It is easy to observe that they satisfy the unique gluing

property with respect to finite closed coverings of closed subsets , i.e. they are patterns

in our terminology. This property was used in computation of K-theory of an impor-

tant class of Toeplitz algebras on Lie groups, with use of the Mayer-Vietoris sequence

[11].
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4.1.2 Continuous functions vanishing at infinity

Another example of patterns arising in theory of function C*-algebras comes from

continuous functions vanishing at infinity. For any locally compact space one has a

non-unital C*-algebra C0(X) of continuous functions vanishing at infinity. It is widely

accepted that C0(X) is an appropriate C*-algebraic replacement of the locally compact

space X, mostly in view of the Gelfand-Naimark duality in the unital-versus-compact

case. A beautiful part of functional analysis was created to extend the Gelfand-Naimark

duality in this way. However, an idea that relaxing compactness to local compactness

can be dualized to forgetting about the unit of the C*-algebra is specious, at least if

one wants to preserve the usual relation between continuous functions and topology.

First, about C*-algebras and locality. Although continuous functions form a sheaf

under restriction to open subsets, the vanishing at infinity property does not survive the

restriction. This means that given two open subsets U ⊂ V ⊂ X there is no a restriction

homomorphism from C0(V ) to C0(U). Strange enough, there is a well defined injective

homomorphism of non-unital algebras in the opposite direction C0(U)→ C0(V ), given

by the extension by zero. Moreover, given open subsets U0, . . . , Un one has a canonical

equalizer diagram

C0(U)→
n∏

α=0

C0(Uα) ⇒
n∏

α,β=0

C0(Uα ∪ Uβ), (48)

whose arrows are defined as collections of extensions by zero with respect to inclusions

U = U0 ∩ . . . ∩ Un ⊂ Uα, Uα ⊂ Uα ∪ Uβ and Uβ ⊂ Uα ∪ Uβ .

The Čech-Stone compactification X ↪→ βX and the Gelfand-Naimark duality put

the problem of geometric description of the extension by zero into the right perspec-

tive. The extension by zero C0(U) → C0(V ) is equivalent to a surjective restriction

homomorphism of unital quotient algebras

C(βX \ U) = C(βX)/C0(U)→ C(βX)/C0(V ) = C(βX \ V ), (49)

when we regard C0(U) as a closed *-ideal in the C*-algebra C(βX) ∼= Cb(X) of con-

tinuous functions on βX isomorphic to the C*-algebra of bounded functions on X.

This restriction homomorphism is Gelfand-Naimark dual to the closed inclusion C :=

βX \ U ⊂ βX \ V =: D, and makes (48) the equalizer diagram verifying the pattern

property of the assignment C 7→ I(C) := C0(βX \ C) on the finite closed covering

βX \ U =

n⋃
α=0

(βX \ Uα). (50)

This means that the pattern I is a (sub)pattern of ideals in the constant pattern

C(βX) of algebras. The pattern C 7→ C(C) is then the pattern of quotient algebras.

4.1.3 Pattern cohomology on topological spaces

Patterns admit an analog of the Čech cohomology with respect to finite closed cover-

ings. Assume that there is given such a covering X = C0 ∪ . . . ∪ Cn of a topological

space X and a pattern P. Mimicking the Čech complex construction we define the

pattern cohomology
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Hp(C0, . . . , Cn;P) := Hp(
∏

i0<...<i•

P(Ci0 ∩ . . . ∩ Ci•)). (51)

The pattern property implies that

H0(C0, . . . , Cn;P) = P(X). (52)

If the pattern takes values in a distributive lattice of subgroups of an abelian group A

in such a way that

P(Ci0 ∩ . . . ∩ Cip
) = P(Ci0) + . . . + P(Cip

) (53)

P(Ci0 ∪ . . . ∪ Cip
) = P(Ci0) ∩ . . . ∩ P(Cip

). (54)

then by Theorem 2 we obtain for p > 0

Hp(C0, . . . , Cn;P) = 0. (55)

In particular, for the constant pattern A(C) := A

Hp(C0, . . . , Cn; A) =

{
A if p = 0,

0 if p 6= 0
(56)

and for its subpattern I taking values in a distributive lattice of subgroups of A,

satisfying (53) and (54), and such that I(X) = 0

Hp(C0, . . . , Cn; I) = 0 (57)

for all p. The short exact sequence of patterns

0→ I → A→ A/I → 0 (58)

induces then a long exact sequence of pattern cohomology, which implies that

Hp(C0, . . . , Cn; A/I) =

{
A if p = 0,

0 if p 6= 0
(59)

This shows, in particular, that the cohomological behavior of the operation of taking

remainders modulo ideals (restrictions to closed subsets) of an arithmetical ring A

expressed in terms of the globally algebraized space structure defined on the Zariski

topology of Spec(A) is similar to the cohomological behavior of localizations (restric-

tions to open subsets) of A expressed in terms of the locally ringed space structure on

Spec(A).

4.1.4 Sheaves versus patterns

Due to Cartan, Leray’s “faisceaux continus” on locally compact spaces are equivalent

to sheaves. Actually, given a sheaf F on a locally compact space X one can assign

to every closed subset C ⊂ X the stalk of F along C. This assignment is different

from our “pattern”. For a sheaf of continuous functions the stalk at a point consists of

germs, while the evaluation of the pattern on a point consists of values. If the space X

is not discrete the kernel of the surjective evaluation map from the stalk to the set of

values is usually big.
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5. Brun, M.; Bruns, W.; , Römer, T.: Cohomology of partially ordered sets and local
cohomology of section rings. Adv. Math. 208 (2007), 210–235.

6. Calow,D.; Matthes, R.: Covering and gluing of algebras and differential algebras. J.
Geom. Phys. 32 (2000), no. 4, 364–396.

7. Dixmier, J.: C*-algebras. North-Holland Mathematical Library, Vol. 15. North-
Holland Publishing Co., Amsterdam-New York-Oxford, 1977.

8. Hajac, P.M.; Krahmer, U.; Matthes, R.; Zielinski, B.: Piecewise principal comodule
algebras. Preprint IHES/M/08/50

9. He, Zheng-Xu: Characterizations of Noetherian and hereditary rings. Proc. Amer.
Math. Soc. 93 (1985), no. 3, 414–416.

10. MacDuffee, C. C.: An Introduction to Abstract Algebra. Wiley, New York, 1940.
11. Park, E.: Index theory and Toeplitz algebras on one-parameter subgroups of Lie

groups. Pacific J. Math. 158 (1993), no. 1, 189-199.
12. Riedtmann, Ch.: Algebres de type de représentation fini (d’apres Bautista, Bongartz,

Gabriel, Roiter et d’autres). Seminar Bourbaki, Vol. 1984/85. Astérisque No. 133–
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