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ON SPLITTING POLYNOMIALS IN NONCOMMUTATIVE
EXTENSIONS

TOMASZ MASZCZYK†

Abstract. We prove that for every splitting of a polynomial f(X) ∈ K[X]
into linear factors in a K-algebra A, any cyclic permutation of linear factors
gives the same result and all roots of linear factors are roots of that polynomial.
We use it to identify moding out A[X]/(f(X)) by the left ideal generated by
a linear factor with the right substitution of its root. With a splitting we
associate a distributive law between monads and prove that any splitting of a
separable polynomial in the center Z(A) does not admit formal deformations
in A with a nontrivial distributive law.

1. Introduction. Let f(X) = fnX
n + fn−1X

n−1 + · · · + f0 ∈ A[X] be a poly-
nomial with coefficients in a commutative unital ring A. Suppose there is given
a splitting of f(X) in A[X]

f(X) = fn(X − a1) · · · (X − an).(1)

Then by the substitution homomorphism argument one sees that all ak’s are roots
of f(X) and by commutativity of A[X] any permutation of them defines the same
splitting. Therefore the problem of splitting of a given polynomial reduces to the
problem of finding the set of its roots. This fact is fundamental for Galois theory
and algebraic geometry.

In the case of noncommutative coefficients of a given polynomial the situation
is much worse. First of all, a given splitting does not reduce to the set of elements
ak, since we cannot permute linear factors because of noncommutativity of A[X].
Moreover, if a ∈ A is not central in A then the substitution homomorphism of
rings

Z[X] → A, X 7→ a(2)

does not extend to a homomorphism of A-algebras

A[X] → A, X 7→ a,(3)

because X is central in A[X]. This means that one can not use the substitution
A-algebra homomorphism argument to prove that elements a1, . . . , an appearing
in the decomposition

f(X) = fn(X − a1) · · · (X − an)(4)

are roots of f(X). The problem of such splittings in terms of relationships be-
tween coefficients of a given polynomial with a generic set of its (left or right)
roots and elements ak (so called pseudoroots) was related to quadratic algebras
with structure encoded by graphs in [1][3][2][5]. However, these relationships are
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much more complicated than in the commutative case and make sense only if
some elements of the algebra are invertible.

The interest for splitting polynomials in noncommutative algebras started in
1921 when Wedderburn proved [6] that any minimal polynomial f(X) ∈ K[X]
of an element of a central division algebra A algebraic over the center K of A
splits in A[X] into linear factors which can be permuted cyclically and every
pseudoroot appearing in this splitting is a root of f(X). This fact was very
helpful in determining the structure of division algebras of small order [6] and
found many other applications (see e.g. [4] for references).

We start this paper from an observation that under the assumption that co-
efficients (which do not have to commute one with each other) commute with
pseudoroots (which do not have to commute one with each other) the situation is
much closer to the commutative case. We show that then pseudoroots are roots
and any cyclic permutation of them gives the same splitting. This means that
instead of finite sets of commutative roots (ordered n-tuples up to all permuta-
tions) we obtain finite cyclically ordered sets (ordered n-tuples up to all cyclic
permutations) of noncommutative roots. We give examples of such splittings,
beyond the context of division rings, where in spite of cyclic symmetry, trans-
position of any two consequtive linear factors is impossible. It does not seem
that this elementary fact could be derived from the known theory of splitting
polynomials in noncommutative algebras (Gelfand-Retakh-Wilson [3]). The rea-
son is that the condition of commutativity between coefficients and pseudoroots
is a closed condition while the general theory works for generic elements. We
will see in examples that the above elementary fact is true even if differences of
pseudoroots are non-invertible or even nilpotent.

Next, we apply this observation to construct a canonical map A ⊗K L →
A × · · · × A related to a given splitting. This map generalizes evaluation map
on polynomials with coefficients in a commutative extension A of K modulo the
ideal generated by a given polynomial split in A evaluated on the corresponding
set of roots. Since in the definition of the canonical map we use right substitution
which is not an algebra homomorphism it is a bit surprising that its structure
is related to the very fundamental mathematical structure, a distributive law
between monads. Such a distributive law defines (and is equivalent to) some
multiplication on the tensor product A ⊗K L. In the commutative case this
multiplication coincides with the standard multiplication on A ⊗K L regarded
as a push-out in the category of commutative rings. We show noncommutative
examples where this multiplication is different from the standard one. However,
we show that any formal deformation of the standard multiplication, induced by
a formal (possibly noncommutative) deformation of a splitting of any separable
polynomial in the center of the algebra A, is trivial.

In the examples one can observe some intimate relations between automor-
phisms of the extension and the above splitting twist (equivalently, the above
distributive law for monads). Regretfully, at this stage it is not clear whether
one could expect any precise connection between splittings of polynomials in
noncommutative extensions and their automorphisms, resembling Galois theory.

2. Results. We start from a lemma which is the essence of the original argument
of Wedderburn [6]. However, the original context of division rings is inessential
for properties we are interested in.
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Lemma 1. Let g, h be elements of a monoid G, where h is right cancelable and
the product gh commutes with h. Then g and h commute.

Proof. Since gh commutes with h, we have

ghh = hgh.(5)

But h is right cancelable, hence consequently

gh = hg. �(6)

Lemma 2. Let A be a ring and Aa be its subring of elements commuting with a
fixed a ∈ A. If f(X) ∈ Aa[X] decomposes in A[X] as follows

f(X) = g(X)(X − a)(7)

then g(X) ∈ Aa[X] and f(a) = 0.

Proof. To prove that g(X) ∈ Aa[X] = A[X]X−a take G = A[X] with mul-
tiplication of polynomials, g = g(X), h = h(X) = X − a and apply Lemma
1.

Using the already proven fact that g(X) ∈ Aa[X] we can apply the substitution
homomorphism

Aa[X] → Aa,(8)

X 7→ a

well defined by the definition of Aa, to the decomposition (7), which proves the
root property. �

Theorem 1. Let A be a unital ring and Aa1,...,an be its subring of elements com-
muting with a1, . . . , an ∈ A. If f(X) ∈ Aa1,...,an [X] splits in A[X] as follows

f(X) = fn(X − a1)(X − a2) · · · (X − an)(9)

then

f(X) = fn(X − an)(X − a1) · · · (X − an−1)(10)

and

f(a1) = · · · = f(an) = 0.(11)

Proof. To prove the cyclic property of the splitting take a = an, g(X) =
fn(X − a1)(X − a2) · · · (X − an−1) and apply Lemma 2. Then Lemma 2 also
implies the root property for an. By the cyclic property the same holds for all
other ak’s. �

The canonical map. The most important consequence of cyclic and root prop-
erties of the above splitting is the existence of a canonical map extending a well
known canonical ring homomorphism related to a splitting of a polynomial with
commutative coefficients by a commutative base change.

First, with every polynomial f(X) ∈ K[X] with coefficients in a unital ring K
we can associate the following cyclic left K[X]-module

L := K[X]/K[X]f(X).(12)

After tensoring it by a K-ring A we get a cyclic A[X]-module

A⊗K L = A[X]/A[X]f(X).(13)
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Assume now that f(X) splits in A[X] as follows

f(X) = fn(X − a1)(X − a2) · · · (X − an)(14)

with a1, ..., an ∈ A commuting with the image of K in A.
Fix one ai. By the cyclic property we have

f(X) = fn(X − ai+1) · · · (X − an)(X − a1) · · · (X − ai),(15)

where an+1 := a1. Substituting (15) into (13) we obtain a canonical homomor-
phism of left A-modules

A⊗K L → A[X]/A[X](X − ai).(16)

Next, by the following identity

Xk = (Xk−1 + aXk−2 + · · ·+ ak−1)(X − a) + ak(17)

in A[X], valid for every a ∈ A, we obtain a well defined canonical homomorphism
of left A-modules

πi : A[X]/A[X](X − ai) → A,(18)

Xk + A[X](X − ai) 7→ ak
i .

Although A can be noncommutative the following fact is still true, as in the
commutative case.

Lemma 3. The morphism of left A-modules (18) is an isomorphism.

Proof. Composing πi with a map

σi : A → A[X]/A[X](X − ai),(19)

a 7→ a · 1 + A[X](X − ai),

we obtain (πi ◦ σi)(a) = a and

(σi ◦ πi)(X
k + A[X](X − ai))(20)

= ak
i · 1 + A[X](X − ai)(21)

= Xk − (Xk−1 + aiX
k−2 + · · ·+ ak−1

i )(X − ai) + A[X](X − ai)(22)

= Xk + A[X](X − ai),(23)

hence σi = π−1
i . �

The following proposition says that also moding out A⊗K L = A[X]/A[X]f(X)
by the (left) ideal A[X](X−ai) still can be identified with the (right) substitution
morphism (well defined by the root property)

A[X]/A[X]f(X) → A,(24)

Xk + A[X]f(X) 7→ ak
i ,

as in the commutative case. It can be proved immediately, by simple checking.

Proposition 1. The following diagram of left A-modules, with arrows defined as
in (18), (16) and (24),

A⊗K L
↙ ↘

A[X]/A[X](X − ai)
∼=

−−−→ A,

commutes.
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Collecting together compositions of (16) and (18) for all i’s we get the following
canonical map (A-module homomorphism)

A⊗K L → A× · · · × A(25)

well defined by the formula

a⊗ (Xk + K[X]f(X)) 7→ (aak
1, . . . , aak

n).(26)

Let us note now that the right hand side of the canonical map has a canon-
ical product A-ring structure, in particular we have a canonical diagonal ring
homomorphisms A → A× · · · × A.

If K and A are commutative then the canonical map is a ring homomorphism,
where on the left (resp. right) hand side the ring structure comes from the push-
out (resp. the product) in the category of commutative rings.

If only K is commutative and A is a K-algebra, the cyclic K[X]-module L still
has a canonical structure of a commutative K-algebra and the tensor product
A⊗KL has a canonical structure of an L-algebra. The product of evaluation maps
of polynomials with coefficients in K at roots (a1, . . . , an) defines a canonical ring
homomorphism L → A×· · ·×A, well defined thanks to the root property. Then
using the formula (26) one can easily check commutativity of the diagram of
K-modules

A
↙ ↘

A⊗K L −−−→ A× · · · × A
↖ ↗

L

(27)

where the left skew arrows are ring homomorphisms defined by tensoring by the
unit of the other tensor factor, the right skew arrows are ring homomorphisms de-
scibed above and the horizontal arrow, the canonical map, is an (A, L)-bimodule
homomorphism of cyclic (A, L)-bimodules preserving the generator, i.e. mapping
1⊗ 1 7→ (1, . . . , 1).

The ? -product. If the canonical map is bijective it is an (A, L)-bimodule
isomorphism. Then one can transport the product ring structure via this iso-
morphism to A ⊗K L to obtain another K-algebra structure on A ⊗K L =
A[X]/A[X]f(X) with the same unit. Since the canonical map is an (A, L)-
bimodule homomorphism the new multiplication

(−) ? (−) : (A⊗K L)⊗K (A⊗K L) → A⊗K L(28)

is uniquely determined by the K-linear map (we call it the splitting twist)

τ : L⊗K A → A⊗K L,(29)

l ⊗ a 7→ (1⊗ l) ? (a⊗ 1)(30)

as follows

(a⊗ l) ? (a′ ⊗ l′) = aτ(l ⊗ a′)l′.(31)
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Theorem 2. The splitting twist τ is a distributive law between monads A ⊗K

(−) and L ⊗K (−) on the category of K-modules, or equivalently, the following
diagrams (32)-(34) commute.

L⊗K L⊗K A
L⊗τ

−−−→ L⊗K A⊗K L
τ⊗L

−−−→ A⊗K L⊗K L

| |
µL⊗A | | A⊗µL↓ ↓

L⊗K A
τ

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ A⊗K L,

(32)

L⊗K A⊗K A
τ⊗A

−−−→ A⊗K L⊗K A
A⊗τ

−−−→ A⊗K A⊗K L

| |
L⊗µA | | µA⊗L

↓ ↓
L⊗K A

τ
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ A⊗K L,

(33)

A
ηL⊗A ↙ ↘ A⊗ηL

L⊗K A
τ

−−−→ A⊗K L,

L
L⊗ηA ↙ ↘ ηA⊗L

L⊗K A
τ

−−−→ A⊗K L,
(34)

where η’s and µ’s denote the unit and the multiplication maps of K-algebras.

Proof. Below we use the property that maps from L and A in the commutative
diagram (27) are ring homomorphisms, associativity of the ? -product with the
unit 1⊗ 1 and the notation a(τ) ⊗ l(τ) := τ(l ⊗ a).

Proof of (32):

(τ ◦ (µL ⊗ A))(l′ ⊗ l ⊗ a) = τ(l′l ⊗ a) = (1⊗ l′l) ? (a⊗ 1)

= (1⊗ l′) ? (1⊗ l) ? (a⊗ 1) = (1⊗ l′) ? τ(l ⊗ a)

= (1⊗ l′) ? (a(τ) ⊗ l(τ)) = τ(l′ ⊗ a(τ))l(τ)(35)

= ((A⊗ µL) ◦ (τ ⊗ L) ◦ (L⊗ τ))(l′ ⊗ l ⊗ a).

Proof of (33):

(τ ◦ (L⊗ µA))(l ⊗ a⊗ a′) = τ(l ⊗ aa′) = (1⊗ l) ? (aa′ ⊗ 1)

= (1⊗ l) ? (a⊗ l) ? (a′ ⊗ 1) = τ(l ⊗ a) ? (a′ ⊗ 1)

= (a(τ) ⊗ l(τ)) ? (a′ ⊗ 1) = a(τ)τ(l(τ) ⊗ a′),(36)

= ((µA ⊗ L) ◦ (A⊗ τ) ◦ (τ ⊗ A))(l ⊗ a⊗ a′).

Proof of (34):

(τ ◦ (ηL ⊗ A))(a) = τ(1⊗ a) = (1⊗ 1) ? (a⊗ 1) = a⊗ 1

= (A⊗ ηL)(a),(37)

(τ ◦ (L⊗ ηA))(l) = τ(l ⊗ 1) = (1⊗ l) ? (1⊗ 1) = 1⊗ l

= (ηA ⊗ L)(l). �(38)

Corollary 1. The splitting twist is uniquely determined by its values on the set
of simple tensors l ⊗ a, where l’s and a’s run through the sets of generators of
K-algebras L and A, respectively.
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Deforming multiplication by deforming a splitting. Assume now that f(X)
is monic separable and splits in the center of a finite K-algebra A. Since the
square of the Vandermonde determinant of commuting roots a1, . . . , an equals the
discriminant of f(X) the Vandermonde matrix is invertible. Since for commut-
ing roots a1, . . . , an the canonical map is a ring homomorphism the ? -product
coincides with the standard multiplication on A ⊗K L. If we start to deform
this central splitting inside a noncommutative K-algebra A[X] the Vandermonde
matrix stays invertible for sufficiently small Zariski open subset in the scheme
parameterizing the deformation. The corresponding ? -product provides then a
deformation of the standard multiplication on A⊗K L, under which the unit 1⊗1
stays not deformed.

Now we are interested in deformations parameterized by the formal scheme
SpecK[[T ]]. The corresponding formal deformation of the canonical map is
uniquely determined by a K[[T ]]-linear map (we call it a formal deformation
of the splitting twist)

τ [[T ]] : L[[T ]]⊗K[[T ]] A[[T ]] → A[[T ]]⊗K[[T ]] L[[T ]],(39)

defining a distributive law between the monads A[[T ]]⊗K[[T ]](−) and L[[T ]]⊗K[[T ]]

(−) on the category of K[[T ]]-modules.
The following theorem describes a remarkable rigidity property of the commu-

tative canonical map.

Theorem 3. Any formal deformation of the splitting of a separable polynomial
f(X) ∈ K[X] with roots in the center of a finite K-algebra A to a splitting
with (possibly noncommutative) roots in A induces a trivial deformation of the
standard multiplication on A⊗K K[X]/(f(X)).

Equivalently, under such a deformation the splitting twist is constant

τ [[T ]] = τ ⊗K[[T ]].(40)

Equivalently, under such a deformation the canonical map is a ring homomor-
phism.

Proof. Any formal deformation of the splitting twist can be written as the
formal series

τ [[T ]] =
∞∑

k=0

τk ⊗ T k,(41)

where τ0 = τ is the initial splitting twist corresponding to the splitting with roots
in the center of A, which is nothing else but the flip

τ(l ⊗ a) = a⊗ l.(42)

We will prove by induction that all higher coefficients must vanish. The com-
mutativity of the diagram (32) applied to the expansion (41) gives the following
relations between its coefficients

τk ◦ (µL ⊗ A) = (A⊗ µL) ◦
∑

i+j=k

(τi ⊗ L) ◦ (L⊗ τj).(43)

Assuming that τ0(l ⊗ a) = a⊗ l, τ1 = · · · = τk = 0 we prove that τk+1 = 0.
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By (43)

τk+1 ◦ (µL ⊗ A) = (A⊗ µL) ◦ ((τ0 ⊗ L) ◦ (L⊗ τk+1) + (τk+1 ⊗ L) ◦ (L⊗ τ0))
(44)

Evaluating on l′ ⊗ l ⊗ a, using the notation a(τk) ⊗ l(τk) := τk(l ⊗ a) and the fact
that L is commutative (this moment will be indicated by c©), we obtain

(τk+1 ◦ (µL ⊗ A))(l′ ⊗ l ⊗ a) = τk+1(l
′l ⊗ a),(45)

((A⊗ µL) ◦ (τ0 ⊗ L) ◦ (L⊗ τk+1))(l
′ ⊗ l ⊗ a)(46)

= ((A⊗ µL) ◦ (τ0 ⊗ L))(l′ ⊗ τk+1(l ⊗ a))(47)

= ((A⊗ µL) ◦ (τ0 ⊗ L))(l′ ⊗ a(τk+1) ⊗ l(τk+1))(48)

= (A⊗ µL)(a(τk+1) ⊗ l′ ⊗ l(τk+1))(49)

= a(τk+1) ⊗ l′l(τk+1)(50)
c©
= a(τk+1) ⊗ l(τk+1)l′(51)

= τk+1(l ⊗ a)l′,(52)

((A⊗ µL) ◦ (τk+1 ⊗ L) ◦ (L⊗ τ0))(l
′ ⊗ l ⊗ a)(53)

= ((A⊗ µL) ◦ (τk+1 ⊗ L))(l′ ⊗ a⊗ l))(54)

= (A⊗ µL)(a(τk+1) ⊗ l′(τk+1) ⊗ l)(55)

= a(τk+1) ⊗ l′(τk+1)l(56)

= τk+1(l
′ ⊗ a)l,(57)

hence by (44)

τk+1(l
′l ⊗ a) = τk+1(l ⊗ a)l′ + τk+1(l

′ ⊗ a)l.(58)

This means that for every a ∈ A the map τk+1(−⊗ a) is a K-linear derivation

τk+1(−⊗ a) ∈ DerK(L, A⊗K L) = HomL(Ω1
L/K , A⊗K L).(59)

Since f(X) is a separable polynomial, i.e. its discriminant is invertible, L is an
étale commutative algebra, hence Ω1

L/K = 0. This implies that τk+1 = 0. �

The case of a monic polynomial. If f(X) is monic both sides of the canonical
map are free A-modules of rank n, where on the left hand side the basis consists
of the congruence equivalence classes of representatives (1, X, . . . , Xn−1). Then
the canonical map is described by means of the Vandermonde matrix

α0 + α1X + . . . + αn−1X
n−1 7→ (α0, . . . , αn−1)


1 · · · 1
a1 · · · an
...

...
an−1

1 · · · an−1
n

 .(60)

In this case the canonical map is invertible whenever the corresponding Vander-
monde matrix is invertible, hence the ? -product is given by the explicit formula
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g(X) ? h(X) = (g(a1)h(a1), . . . , g(an)h(an))


1 · · · 1
a1 · · · an
...

...
an−1

1 · · · an−1
n


−1 

1
X
...

Xn−1

 ,

(61)

where for g(X) = g0+g1X+· · ·+gn−1X
n−1 we define g(a) by the right substitution

g(a) := g0 + g1a + · · ·+ gn−1a
n−1.(62)

Note that, in spite of the fact that in general the right substitution of a non-
central element a ∈ A is not a ring homomorphism, i.e. for (gh)(X) := g(X)h(X)
we can have (gh)(a) 6= g(a)h(a), the ? -product is associative and unital with the
unit 1(X) := 1 ∈ A[X]/A[X]f(X) = A⊗K L.

The splitting twist can be regarded also as a rewriting of a left polynomial
α0 + Xα1 + · · · + Xn−1αn−1 as a right polynomial ατ

0 + ατ
1X + · · · + ατ

n−1X
n−1,

where the row vector ατ := (ατ
0 , . . . , α

τ
n−1) is computed from the column vector

α := (α0, . . . , αn−1)
ᵀ by matrix multiplication

ατ = (V ᵀα)ᵀV −1,(63)

in which V stands for the Vandermonde matrix as in (60) and (−)ᵀ denotes matrix
transposition. This rewriting is invertible whenever the transposed Vandermonde
matrix is also invertible. The latter condition is fulfilled automatically, provided
the roots a1, . . . , an commute one with each other.

Note also, that if the roots a1, . . . , an are central in A, the right substitution is a
ring homomorphism, and the Vandermonde matrix in the above formula (63) can-
cels, hence consequently g(X)?h(X) = g(X)h(X) in A[X]/A[X]f(X), as follows
from the general argument that then the canonical map is a ring homomorphism.

3. Examples.
In this paragraph we give examples of noncommutative splittings which resem-

ble, to some extent, splittings of separable polynomials in their splitting fields.
However, new phenomena appear as a consequence of noncommutativity and/or
non-separability, related to the action of the algebra endomorphisms on the roots.

Example 1. Let A = H be the algebra of quaternions over the field K = R of
real numbers and take f(X) = X2 + 1 ∈ K[X] ⊂ A[X]. It can be split as follows

f(X) = (X − a1)(X − a2),(64)

with commuting roots (a1, a2) = (i,−i) in A, where i is a quaternionic imaginary
unit. The Vandermonde matrix(

1 1
a1 a2

)
=

(
1 1
i −i

)
(65)

is invertible, as well as its inverse, since the roots commute.
Since the left hand side of the canonical map is isomorphic to the simple algebra

H⊗R C ∼= M2(C) of 2× 2 matrices over complex numbers, while the right hand
side is equal to H×H, the splitting twist is nontrivial (different from the flip)

τ(X ⊗ q) = iqi−1 ⊗X.(66)
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Note the appearance of a nontrivial automorphism of the extension in the formula
for the splitting twist.

Example 2. Let A be the ring of 3 × 3 matrices over a nonzero commutative
ring K and take f(X) = X3 − 4 ∈ K[X] ⊂ A[X]. It can be split as follows

f(X) = (X − a1)(X − a2)(X − a3),(67)

with roots in A

a1 =

 0 2 0
0 0 2
1 0 0

 , a2 =

 0 −1 0
0 0 2
−2 0 0

 , a3 =

 0 −1 0
0 0 −4
1 0 0

 .(68)

whose Vandermonde matrix

 1 1 1
a1 a2 a3

a2
1 a2

2 a2
3

 =



1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
0 2 0 0 −1 0 0 −1 0
0 0 2 0 0 2 0 0 −4
1 0 0 −2 0 0 1 0 0
0 0 4 0 0 −2 0 0 4
2 0 0 −4 0 0 −4 0 0
0 2 0 0 2 0 0 −1 0


(69)

and its ᵀ-transpose

 1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

 =



1 0 0 0 2 0 0 0 4
0 1 0 0 0 2 2 0 0
0 0 1 1 0 0 0 2 0
1 0 0 0 −1 0 0 0 −2
0 1 0 0 0 2 −4 0 0
0 0 1 −2 0 0 0 2 0
1 0 0 0 −1 0 0 0 4
0 1 0 0 0 −4 −4 0 0
0 0 1 1 0 0 0 −1 0


(70)

are both invertible, provided 6 is invertible in K, and then the splitting twist is
invertible. Although the linear factors can be cyclically permuted, none two of
them can be transposed if 3 6= 0 in K, because

[a1, a2] = [a2, a3] = [a3, a1] =

 0 0 6
−6 0 0
0 3 0

 .(71)

Moreover, if 6 is not a zero divisor in K the subalgebra Aa1,a2,a3 ⊂ A of elements
commuting with a1, a2, a3 coincides with K. Indeed, Aa1,a2,a3 consists of elements

a =

 α β 2γ
−2γ α β
−β γ α

 ,(72)

where 3β = 0, 6γ = 0.
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If 210 is invertible in K, A is generated by a1, a2, a3 as an algebra over K.
Indeed, then we have 1 0 0

0 0 0
0 0 0

 = −1

9
a2

1a2 −
1

18
a2

2a3,(73)

 0 1 0
0 0 0
0 0 0

 =
13

45
a1 −

13

90
a2 +

1

60
a2

1a
2
3 +

1

60
a2

2a
2
3 +

7

180
a2

1a
2
2,(74)

 0 0 1
0 0 0
0 0 0

 =
1

9
a2

1 −
1

18
a2

2 +
1

9
a2

3,(75)

 0 0 0
1 0 0
0 0 0

 =
1

18
a2

1 −
1

9
a2

2 −
1

9
a2

3,(76)

 0 0 0
0 1 0
0 0 0

 =
1

12
a1a

2
2 −

1

12
a3a

2
2 −

1

9
a2

1a2 −
1

18
a2

2a3,(77)

 0 0 0
0 0 1
0 0 0

 =
2

9
a1 +

2

9
a2 −

1

36
a2

1a
2
2,(78)

 0 0 0
0 0 0
1 0 0

 = − 5

18
a2 −

1

36
a2

1a
2
2 −

1

36
a2

2a
2
3,(79)

 0 0 0
0 0 0
0 1 0

 =
2

9
a2

1 +
2

9
a2

2 −
1

9
a2

3,(80)

 0 0 0
0 0 0
0 0 1

 =
1

4
a1a2a3 −

1

12
a1a

2
2 +

1

12
a3a

2
2 +

2

9
a2

1a2 +
1

9
a2

2a3.(81)

Note that a1, a2, a3 are conjugate one to each other by some K-algebra automor-
phisms of the algebra A:

a1 = u12a2u
−1
12 , a2 = u23a3u

−1
23 , a3 = u31a1u

−1
31 ,(82)

where

u12 =

 −2 0 0
0 1 0
0 0 1

 , u23 =

 1 0 0
0 1 0
0 0 −2

 , u31 =

 1 0 0
0 −2 0
0 0 1

 ,(83)

provided 2 is invertible in K. The matrices (83), which define automorphisms of
the extension A/K permuting roots of the splitting, appear also in the following
formula for the splitting twist

τ(X ⊗ a1) = a2
1u
−1
23 ⊗ 1− a2 ⊗X + u23 ⊗X2,(84)

τ(X ⊗ a2) = a2
2u
−1
31 ⊗ 1− a3 ⊗X + u31 ⊗X2,(85)

τ(X ⊗ a3) = a2
3u
−1
12 ⊗ 1− a1 ⊗X + u12 ⊗X2,(86)



12 TOMASZ MASZCZYK

reflecting the cyclic symmetry of the splitting and determining the splitting twist
uniquely, provided 210 is invertible in K. It would be desirable to find a con-
ceptual explanation of this relationship in terms of some Galois type theory con-
necting splittings of polynomials in noncommutative extensions and their auto-
morphisms.

Example 3. Let A be the ring of upper triangular 2×2 matrices over a nonzero
commutative ring K and take f(X) = X2(X − 1) ∈ K[X] ⊂ A[X]. This polyno-
mial is completely split in K and non-separable. Although it has a double root
in K it can be split in A as follows

f(X) = (X − a1)(X − a2)(X − a3),(87)

where

a1 =

(
0 0
0 1

)
, a2 =

(
0 −1
0 0

)
, a3 =

(
1 1
0 0

)
(88)

are pairwise distinct roots in A. However, the Vandermonde matrix

 1 1 1
a1 a2 a3

a2
1 a2

2 a2
3

 =


1 0 1 0 1 0
0 1 0 1 0 1
0 0 0 −1 1 1
0 1 0 0 0 0
0 0 0 0 1 1
0 1 0 0 0 0

(89)

is not invertible (look at fourth and sixth rows or first and third columns on the
right hand side). In fact, for every splitting of f(X) in A[X] (they all will be
described below) the Vandermonde matrix is not invertible.

The linear factors can be cyclically permuted, but none two of them can be
transposed, because

[a1, a2] = [a2, a3] = [a3, a1] = −a2 6= 0.(90)

First of all, it is obvious that Aa1,a2,a3 = K. Moreover, A is freely generated
by a1, a2, a3 as a module over K with a multiplication table

a1 a2 a3

a1 a1 0 0
a2 a2 0 0
a3 −a2 a2 a3

If K doesn’t contain nontrivial idempotents all endomorphisms of the extension
K ⊂ A come in families ε, ε′, εσ

s , εs parameterized by elements σ and s, where
σ’s are elements of the multiplicative monoid of K acting (from the right) on
elements s of the (right) K-module K by right multiplication. The logic of this
notation will be clear later, when the rules of matrix multiplication(

σ s
0 1

) (
τ t
0 1

)
=

(
στ σt + s
0 1

)
,

(
σ s
0 1

) (
t
1

)
=

(
σt + s

1

)
(91)

will appear in the structure of the endomorphism monoid and its various actions.
The K-algebra endomorphism monoid M of A is determined by its values on

basic elements a1, a2, a3 as follows
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a1 a2 a3

ε a1 + a2 + a3 0 0
ε′ 0 0 a1 + a2 + a3

εσ
s a1 − sa2 σa2 (1− σ + s)a2 + a3

εs (1 + s)a2 + a3 0 a1 − sa2

hence the monoid structure is

ε ε′ ετ
t εt

ε ε ε′ ε ε′

ε′ ε ε′ ε′ ε
εσ

s ε ε′ εστ
σt+s εσt+s

εs ε ε′ εs ε0
s

with the neutral element ε1
0. Note that the only invertible elements are ετ

t ’s with
τ invertible in K. All such automorphisms are inner

ετ
t (a) = uτ,tau−1

τ,t , uτ,t =

(
τ t
0 1

)
.

It is easy to check that if there is an element τ invertible in K such that (τ − 1)
is not a zero divisor in K the subring AG ⊂ A fixed by the group G of
K-algebra automorphisms of A equals K.

If K is a domain all roots and all cycles of f(X) also come in families param-
eterized by elements τ and t.

The families of roots are

rτ = τa2,

r0
t = (1 + t)a2 + a3,

rt = a1 − ta2,

r = a1 + a2 + a3.

The families of cycles are

cτ = (rτ , r−τ , r),

cτ
t = (rτ , r0

−τ+t, rt),

ct = (r0, rt, r
0
t ).

We see that

(a) The set of all roots is the union of supports of all cycles.
(b) Different cycles can have the same support: |cτ | = |c−τ |, |c0

t | = |ct|.
(c) Different cycles can define the same splitting: cτ and c−τ , c0

t and ct.

The action of the endomorphism monoid on roots is

rτ r0
t rt r

ε r0 r0 r r
ε′ r0 r r0 r
εσ

s rστ r0
σt+s rσt+s r

εs r0 rs r0
s r

which implies that
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(d) (Orbits) There are five G-orbits:
r0 and r as fixpoints,
an orbit of r1 with the additive stabilizer {ε1

s} = K ⊂ G,
an orbit of r0 with the multiplicative stabilizer {εσ

0} = K× ⊂ G,
and a free orbit of r1

0.
(e) (Sources) Every root is an M -translate of r1 or r1

0.
(f) (Sinks) r0 and r are fixed by M and every root can be translated by M

either to r0 or to r.

The action of the endomorphism monoid on cycles is

cτ cτ
t ct

ε, ε′ c0 c0 c0

εσ
s cστ cστ

σt+s cσt+s

εs c0 cs c0
s

which implies that

(g) (Orbits) There are five G-orbits:
c0 as a fixpoint,
an orbit of c1 with the additive stabilizer {ε1

s} = K ⊂ G,
two orbits, of c0 and c0

0, with the multiplicative stabilizer {εσ
0} = K× ⊂ G,

and a free orbit of c1
0.

(h) (Sources) Every cycle is an M -translate of c1 or c1
0.

(i) (Sinks) c0 is fixed by M and every cycle can be translated by M
to c0.

As we see, in our example there are many cycles and endomorphisms can move
roots from one cycle to another. It turns out that roots are no more equivalent.
Instead of strict equivalence of roots of a separable polynomial induced by the
transitive Galois action we have the action of endomorphisms on some lattice of
roots. This can be described as follows.

The lattice of ideals in K[X]

1
� �

X X − 1
� � �

X2 X(X − 1)
� �

X2(X − 1)

defines a partial order on roots by taking the minimal polynomial

r0 rτ , τ 6= 0 rτ
t rt r

X X2 X(X − 1) X(X − 1) X − 1

which looks as follows

r0 r
� � �

rτ , τ 6= 0 rτ
t , rt
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One can check that all endomorphisms act along the above poset of roots
moving them at most upwards (it is obvious that no endomorphism can diminish
a root with respect to the partial order induced by the minimal polynomial).

Among all endomorphisms only ε and ε′ do not preserve this partial order (there
are essentially four exceptions: r0 � rτ

t , r0 � rt, r � rτ
t , r � rt but ε′(r0) � ε′(rτ

t ),
ε(r0) � ε(rt), ε(r) � ε(rτ

t ), ε′(r) � ε′(rt)). In particular, all automorphisms do
preserve the above partial order on roots. All endomorphisms preserve the weaker
partial order opposite to that one which is induced by the degree (levels in the
above poset of roots). Again, it would be desirable to explain this accordance
of automorphisms of the extension with the structure of the lattice (or poset) of
roots in frames of some Galois type theory of (non-separable) polynomials split
in noncommutative and non-separable extensions.
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