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DIVISION WITH REMAINDER IN ALGEBRAS WITH
VALUATION

TOMASZ MASZCZYK†

Abstract. To any integral algebra with valuation an abelian group
is associated, which measures how much the uniqueness of the di-
vision with remainder is violated. The analogy with the divisor
class group is discussed. Examples of such groups are computed in
cases of formal local rings of some cusps on an algebraic curve.

1. Introduction

In order to understand complexity of a singularity on an algebraic
variety one can search, how much arithmetic properties expected for a
local ring of a regular point, fail at a singular point. If one thinks, for
instance, of the unique factorization property, one discovers that this
failure is captured by an abelian group (the divisor class group), which
can be in many cases effectively computed [1]. In this paper we con-
sider the property of the unique division with remainder in local ring
of a cusp on an algebraic curve completed with respect to the valuation
coming from the unique dominating valuation ring. First, we develop
some general theory of division with remainder in algebras with valua-
tion, introduce the property of the unique division with remainder and
define an abelian group, which captures its failure. We search carefully
the behavior of our construction under completion. We also discuss the
analogy and connection between our group and the divisor class group.
Finally, we compute it in cases of some simple cusps. The property
of strictly unique division with remainder has been already studied by
Korotkov [3], whose result specializes for commutative rings to the case
of polynomials over a field only. In this paper the uniqueness of divi-
sion with remainder holds in fact up to the choice of some splitting,
which allows applications to local rings, in the spirit of the Weierstrass
Division Theorem.

†The author was partially supported by the KBN grant 2P03A 050 22.
Mathematics Subject Classification (2010): Primary 13F30, 13J10, 14H20.
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2 TOMASZ MASZCZYK

2. Theory of unique division with remainder in algebras
with valuation

Let R be a ring with 1, A - an integral R-algebra, K - the field of
fractions of a domain A, U - the group of units of A. Let v : A\{0} → S
be a surjective valuation with values in a totally ordered non-negative
abelian semigroup S, i.e.

1) v(aa′) = v(a) + v(a′),
2) v(a + a′) ≥ min(v(a), v(a′)) when a + a′ 6= 0.

We will use frequently also the following well known property of
valuations:

v(a + a′) = v(a), if v(a) < v(a′).

Definition. Let

As := {a ∈ A | v(a) ≥ s}.

We have a natural filtration such that:
i) A0 = A,
ii) As ⊂ At, if s ≥ t,
iii) AsAt ⊂ As+t.

Let S have the cancellation property. Then the valuation v extends
uniquely to the surjective valuation v on K with values in G(S) - the
Grothendieck group of S.

Let K∗ denote the topological multiplicative group of topological
field K equipped with the topology of valuation.

By Â we denote the completion of A with respect to the valuation.
When saying about completion we always assume that Â is integral.

Definition. We define on A \ {0} the following relation: a ∼ a′, if
either a = a′, or a 6= a′ and v(a′ − a) > v(a).

Remark. ∼ is an equivalence relation and equivalent elements have
the same valuation. Moreover ∼-equivalence classes are open.

Definition. We call A a valuation algebra, if A\{0} = {a ∈ K | v(a) ≥
0}.

Definition. We call a valuation v semi-discrete if for every s ∈ S the
set {t ∈ S | t < s} is finite.

Example. For A = R[[x]] the order v with respect to x is a semi-
discrete valuation.
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Definition. Let W ⊂ A \ {0} be a subset of elements w such that:
(W1) the canonical short exact sequence of R-modules

0→ (w)→ A→ A/(w)→ 0

splits,
(W2) each a ∈ A has a decomposition

a = wq + r,

where v(r) < v(w) if r 6= 0.

Remark. All non-zero remainders r in all such decompositions (pro-
vided we fix a and w), are ∼ -equivalent, hence they have the same val-
uation. Given a splitting of the sequence (W1) there exists the unique
decomposition with r in the image of A/(w) under this splitting.

Example. Let A = R[[x]], v - an order with respect to x, w = xn. One
usually chooses the splitting such that the image of A/(w) consists of
polynomials of degree < n.

Definition. We call A a unique division with remainder domain, if
W = A \ {0}.

Theorem 1. 1.0. w ∈ W ⇒ Av(w) = (w),
1.1. U ⊂ W ,
1.2. {(w) | w ∈ W} is linearly ordered by inclusion,
1.3. WW ⊂ W .

Proof of 1.0. Let v(a) ≥ v(w) and a = wq + r be a decomposition
as in (W1). If r 6= 0 then v(r) < v(w) ≤ v(a), so v(r) = v(a − r).
Therefore we get the following contradiction:

v(w) > v(r) = v(a− r) ≥ v(w) + v(q) ≥ v(w).(1)

Proof of 1.1. We can divide by any u ∈ U with the remainder r = 0.
Proof of 1.2. Let w, w′ ∈ W . Dividing mutually with remainder we

get

w′ = wq + r,(2)

w = w′q′ + r′.(3)

Therefore

w(1− qq′) = rq′ + r′,(4)

v(w) ≤ v(w) + v(1− qq′) = v(rq′ + r′).(5)

Let us assume that r, r′ 6= 0.
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If v(w) ≥ v(w′), then by (5)

v(rq′ + r′) ≥ v(w) ≥ v(w′) > v(r′).(6)

Therefore

v(rq′) = v((rq′ + r′)− r′) = v(r′) < v(w′).(7)

On the other hand v(r) ≤ v(r) + v(q′) = v(rq′), hence v(r) < v(w′).
Therefore we get the following contradiction

v(w) ≤ v(w) + v(q) = v(wq) = v(w′ − r) = v(r) < v(w).(8)

By symmetry with respect to w and w′ we get that the assumption
r, r′ 6= 0 leads to a contradiction. Consequently either r = 0 or r′ = 0,
hence either (w′) ⊂ (w) or (w) ⊂ (w′).

Proof of 1.3.

Lemma 1. Given a non-zero-divisor w of any algebra A over a unital
ring R there is a one-to-one correspondence between splittings of the
short exact sequence of R-modules

0→ (w)→ A→ A/(w)→ 0

and endomorphisms ϕw ∈ EndR(A) of the R-module A such that for
all q ∈ A ϕw(wq) = q.

Proof of Lemma 1. A splitting of the above sequence may be viewed
as a morphism of R-modules πw : A → (w) such that πw(wq) = wq.
Since w is not a zero divisor, then there exists the unique ϕw ∈ EndR(A)
such that πw(a) = wϕw(a). Then we have

wϕw(wq) = πw(wq) = wq.(9)

Since w is not a zero-divisor, then this implies that ϕw(wq) = q. �
Let ϕw and ϕw′ correspond to the two splittings of respective se-

quences for w and w′. If we put ϕww′ := ϕw′ ◦ ϕw then

ϕww′(ww′q) = ϕw′(ϕww(w(w′q))) = ϕw′(w′q) = q,(10)

so ϕww′ corresponds to a splitting of the respective sequence for ww′.
Let us take a ∈ A and perform two consequtive divisions with re-

mainder:

a = wq + r, v(r) < v(w) if r 6= 0,(11)

q = w′q′ + r′, v(r′) < v(w′) if r′ 6= 0.(12)

We get

a = (ww′)q′ + (wr′ + r).(13)



DIVISION WITH REMAINDER IN ALGEBRAS WITH VALUATION 5

Let r, r′ 6= 0. Then

v(wr′) = v(w) + v(r′) ≥ v(w) > v(r),(14)

hence

v(wr′ + r) = v(r) < v(w) ≤ v(w) + v(w′) = v(ww′).(15)

If were wr′ + r = 0, we would get the following contradiction

v(r) = v(wr′) = v(w) + v(r′) > v(r) + v(r′) ≥ v(r).(16)

Let r = 0, r′ 6= 0. Then

a = (ww′)q′ + wr′,(17)

v(wr′) = v(w) + v(r′) < v(w) + v(w′) = v(ww′).(18)

Since r′ 6= 0 then wr′ 6= 0.
Let r 6= 0, r′ = 0. Then

a = (ww′)q′ + r,(19)

v(r) < v(w) ≤ v(w) + v(w′) = v(ww′).(20)

Let r, r′ = 0. Then

a = (ww′)q′. �(21)

Definition. The kernel of the endomorphism idA−wϕw is equal to the
ideal (w), so this endomorphism defines an embedding A/(w) ↪→ A.

Let us denote its image by H. Of course (w) ∩H = 0.

Corollary 1. Let N := v(W ) ⊂ S and

(W )n := (w) where w ∈ W and v(w) = n.

By 1.0 (W )n does not depend on the choice of w provided v(w) = n.
By 1.1, 1.2, 1.3 N is a linearly ordered sub-semigroup in S and we get
the natural filtration:

1.1.1) (W )0 = A,
1.1.2) (W )m ⊂ (W )n, if m ≥ n,
1.1.3) (W )m(W )n ⊂ (W )m+n.

By 1.0 both filtrations are compatible: for n ∈ N

An = (W )n.
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Definition. We define the following abelian groups

@(A) := K∗/G(W ),

@′(A) := G(S)/G(N).

Proposition 1. If A is a valuation algebra, then the canonical epimor-
phism induced by the valuation

@(A)→ @′(A)

is an isomorphism.

Proof. From the short exact sequence

0→ U → K∗ → G(S)→ 0(22)

by the definition of @(A) we get the short exact sequence

0→ G(W )/U → G(S)→ @(A)→ 0,(23)

which fits into the canonical diagram with exact rows and columns

0
↓

0 0 ker
↓ ↓ ↓

0 → G(W )/U → G(S) → @(A) → 0
↓ ↓ ↓

0 → G(N) → G(S) → @′(A) → 0
↓ ↓ ↓
0 0 0.

Therefore, by the snake lemma we get ker = 0. �

Theorem 2. An integral domain A with valuation is unique division
with remainder iff @(A) = 0.

Proof. We have to prove that if @(A) = 0 then A \ {0} ⊂ W .
If @(A) = 0 then K∗ = G(W ). Let us take

w =
w′

w′′ ∈ A \ {0}, where w′, w′′ ∈ W.(24)

If we put

ϕw(a) := ϕw′(w′′a),(25)

then

ϕw(wa) = ϕw′(ww′′a) = ϕw′(w′a) = a.(26)

Let us take a ∈ A \ {0} and divide w′′a with remainder by w′:

w′′a = w′q + r′,(27)
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Then

a = wq + r,(28)

where r = r′/w′′. Of course r = a−wq ∈ A ⊂ K. If r 6= 0 then r′ 6= 0,
hence v(r′) < v(w′) and we get

v(r) = v(r′)− v(w′′) < v(w′)− v(w′′) = v(w).(29)

Therefore w ∈ W . �

Remark. Theorem 2 is an analog of the well known theorem for noe-
therian normal domains in which the divisor class group plays the role
of our group @:

Theorem 2’. A is a unique factorization domain iff Cl(A) = 0.

Remark. If v is semi-discrete and A is a unique division with remain-
der domain then we have the Euclid algorithm for A. Therefore if A
is also noetherian then it is a principal ideal domain, hence a unique
factorization domain. This shows, that in this particular case the fol-
lowing implication holds

@(A) = 0 ⇒ Cl(A) = 0.(30)

In general, however, the relationship between our @ and other arith-
metical invariants is not clear.

An analog of the Weierstrass Division Theorem looks as follows:

Theorem 3. Let in addition S satisfy Archimedes’ axiom and let A
be complete with respect to the valuation. Then W is a union of ∼-
equivalence classes.

Proof. We have to prove that if w ∈ W and w′ ∼ w then w′ ∈ W as
well. Let us choose a splitting ϕw ∈ EndR(A) according to Lemma 1.

Let v(w′−w) > v(w). Let us divide any a ∈ A with remainder by w

a = wq + r,(31)

where q = ϕw(a), r = a− wϕw(a). We have

v((w′ − w)q) = v(w′ − w)− v(w) + v(wq).(32)

If r = 0 then

v(wq) = v(a).(33)

If r 6= 0 then

v(wq) = v(w) + v(q) ≥ v(w) > v(r) = v(wq + r) = v(a).(34)
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Then in both cases

v(wq) ≥ v(a),(35)

hence by (32)

v((w′ − w)ϕw(a)) ≥ v(w′ − w)− v(w) + v(a).(36)

Lemma 2. ϕw is automatically continuous.

Proof of Lemma 2. Let us divide any a ∈ A with remainder by w

a = wq + r,(37)

where q = ϕw(a), r = a− wϕw(a).
If r = 0 then

v(ϕw(a)) = v(a)− v(w).(38)

If r 6= 0 then v(r) < v(w). Since v(q) ≥ 0 then

v(wq) = v(w) + v(q) ≥ v(w) > v(r),(39)

hence

v(wq) > min(v(wq), v(r)) = v(wq + r) = v(a),(40)

so

v(ϕw(a)) > v(a)− v(w).(41)

In both cases

v(ϕw(a)) ≥ v(a)− v(w),(42)

hence ϕw is continuous in the topology of v. �

Let Ik := Aks, where k = 0, 1, ..., and s := v(w′ − w)− v(w). Then

I0 = A, Ik → 0,

(w′ − w)ϕw(Ik) ⊂ Ik+1,

hence by Theorem 2.2 of [4] we have the unique decomposition

a = w′q′ + r′(43)

with r′ ∈ H, and the respective short exact sequence for w′ is split with
the same H. Moreover we have

r′ − r = (w − w′)q + w′(q′ − q).(44)

Let r 6= 0. Then

v((w − w′)q) = v(w − w′) + v(q) > v(w) + v(q) ≥ v(w) > v(r),(45)

v(w′(q′ − q)) = v(w′) + v(q′ − q) = v(w) + v(q′ − q) ≥ v(w) > v(r).

(46)
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So,

v(r′ − r) ≥ min(v((w − w′)q), v(w′(q′ − q))) > v(r),(47)

hence r′ 6= 0, r′ ∼ r and therefore

v(r′) = v(r) < v(w) = v(w′).(48)

Let r = 0. By 1.0 there exists p ∈ A such that w′ = wp. Therefore
from (44)

r′ = wq − w′q′ = w(q − pq′) ∈ (w).(49)

But r′ ∈ H and H ∩ (w) = 0, hence r′ = 0. Consequently, w′ ∈ W . �

Example. A = R[[x]], v - an order with respect to x, w = cnx
n with

cn invertible in R. Of course w ∈ W and we can choose the respec-
tive splitting such that H is the R-submodule in R[[x]] consisting of
polynomials of degree < n. Let

w′ = cnx
n + cn+1x

n+1 + ...,

with arbitrary cm for m > n. Since w ∼ w′, then w′ ∈ W as well.
Therefore, if R is a field A is a unique division with remainder domain.

Corollary 2. Under assumptions of Theorem 3 the group @(A) with
the quotient topology is a discrete group.

Proof. We have to prove that the subgroup G(W ) is open in K∗.
For that it is enough to show that if for any given x ∈ K∗

v(x− w

w′ )� 0 for some w, w′ ∈ W,(50)

there exist w′′, w′′′ ∈ W such that

x =
w′′

w′′′ .(51)

Let

v(x− w

w′ ) > max(v(w)− v(w′), 0).(52)

Then

v(xw′ − w) > v(w),(53)

hence xw′ ∼ w and by Theorem 3 w′′ := xw′ belongs to W . Then
indeed

x =
w′′

w′ ,(54)

and one can take w′′′ := w′. �
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The following theorem describes the behaviour of @ groups under
completion.

Theorem 4. Let in addition S satisfy Archimedes’ axiom and let

A ↪→ A′(55)

be a dense valuation preserving embedding into a complete A′. Then
W embeds into W ′ and this induces the epimorphism of groups

@(A) � @(A′).(56)

If in addition W is dense in W ′ the above homomorphism is an
isomorphism.

Proof. Let w ∈ W ⊂ A and ϕw be a respective splitting. We have
the implication

a− wϕw(a) 6= 0 ⇒ v(a− wϕw(a)) < v(w).(57)

Let an → a′. Then an − wϕw(an)→ a′ − wϕw(a′), where

ϕw(a′) := lim
n

ϕw(an)(58)

is well defined independently of the choice of the sequence an → a′

because by Lemma 2 ϕw is continuous R-linear and A′ is complete.

Lemma 3. For every R-algebra A with valuation v : A \ {0} → S as
in the beginning, we have the following implication

an → a, v(an) < s ⇒ v(a) < s.(59)

Proof of Lemma 3. Let us suppose that v(a) ≥ s. For almost all n
v(an − a) ≥ s, hence for almost all n

v(an) = v((an − a) + a) ≥ min(v(an − a), v(a)) ≥ s.(60)

Contradiction. �
Therefore, by continuity of ϕw, we get the following sequence of

implications

a′ − wϕw(a′) 6= 0 ⇒ an − wϕw(an) 6= 0 for almost all n(61)

⇒ v(an − wϕw(an)) < v(w) ⇒ v(a′ − wϕw(a′)) < v(w) for almost all n,

(62)

hence W ↪→ W ′ and consequently G(W ) ↪→ G(W ′). Thus the dense
embedding K∗ ↪→ K ′∗ induces a continuous homomorphism of topo-
logical groups @(A) → @(A′) with dense image. Since the right-hand
side group is discrete, then it is an epimorphism. Now we are to show
that if W is dense in W ′ then it is also a monomorphism.
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Lemma 4. G(W ) is closed in K∗.

Proof of Lemma 4. Let us take a sequence

G(W ) 3 w′
n

wn

→ a′

a
∈ K∗.(63)

Then for almost all n ∈ N

v(
w′

n

wn

− a′

a
) > −v(a),(64)

or equivalently

v(w′
na− wna

′) > v(wn).(65)

But the equality

w′
na = wna

′ + (w′
na− wna

′)(66)

is a division of w′
na by wn with the remainder w′

na − wna
′, so if were

w′
na−wna

′ 6= 0, then would be v(w′
na−wna

′) < v(wn), because all non-
zero remainders in division by wn have the same valuation < v(wn).
Contradiction.

Therefore for almost all n ∈ N w′
na− wna

′ = 0, hence

a′

a
=

w′
n

wn

∈ G(W ). �(67)

Lemma 5. If in the following commutative diagram of subspaces of a
topological space Y ′

X ⊂ X ′

∩ ∩
Y ⊂ Y ′

X is dense in X ′ and closed in Y , then Y ∩X ′ = X.

Proof of Lemma 5. Of course X ⊂ Y ∩X ′. Let X be the closure of
X in Y ′.

Since X is dense in X ′, then X ′ ⊂ X.
Since X is closed in Y , then Y ∩X ⊂ X. Therefore we get

Y ∩X ′ ⊂ Y ∩X ⊂ X. �(68)

Taking the diagram

G(W ) → G(W ′)
↓ ↓

K∗ → K ′∗,

assuming that W is dense in W ′, hence G(W ) is dense in G(W ′), and
applying Lemma 4 and Lemma 5 we get

K∗ ∩G(W ′) = G(W ),(69)
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hence the homomorphism (56) is indeed an embedding. �

Remark. By Lemma 4 @(A) with the canonical quotient topology is
always Hausdorff.

Finally, we will show that the situation of our Example arises in a
canonical way in the process of some completion.

Theorem 5. Let t ∈ A be not a zero divisor of a commutative R-
algebra A over a commutative ring R, such that the following canonical
homomorphism

R→ A/(t)(70)

is an isomorphism. Then t is transcendental over R and we have the
canonical isomorphism of R-algebras

lim
n

A/(t)n = R[[t]].(71)

Proof. First of all, under the assumption the canonical homomor-
phism R → A is injective. Let us assume now that t is algebraic over
R, i.e. there are r0, ..., rn ∈ R not all equal to zero, such that

rnt
n + rn−1t

n−1 + ... + r0 = 0.(72)

Then reducing by (t) we get r0 = 0, hence

rnt
n−1 + rn−1t

n−2 + ... + r1 = 0,(73)

because t is not a zero divisor. Repeating this procedure we get that
all ri’s are zero. Contradiction shows that t is transcendental over R.

Now we are to show that for every n = 0, 1, 2, ... the isomorphism
R→ A/(t) induces canonical splittings of the following canonical short
exact sequences

0→ (t)n → A→ A/(t)n → 0(74)

such that the image Hn ⊂ A of A/(t)n consists of elements of the form

a = a0 + a1t + ... + an−1t
n−1,(75)

where ai ∈ R. We will prove it by induction.
To start the induction we compose the canonical homomorphism

R → A with the inverse to the isomorphism R → A/(t) to get a
splitting A ← A/(t) of the short exact sequence (74) for n = 1 as
follows

0 → (t) → A → A/(t) → 0.
↑ ↗
R

(76)

Let ϕt ∈ EndR(A) be the respective endomorphism, as in Lemma 1.
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Since the projection A → A/(t) and the splitting A ← A/(t) are
unit preserving, the endomorphism ϕt ∈ EndR(A) annihilates the unit
1 ∈ A, hence H1 = R, as it should be. Then, according to (10), the
endomorphism

ϕtn := ϕn
t = ϕt ◦ ... ◦ ϕt(77)

defines the splitting of the respective sequence for tn and Hn = kerϕtn .
We have

ϕn
t (a) = ϕt(ϕ

n−1
t (a)).(78)

Therefore, for every a ∈ Hn, putting an := ϕn
t (a) ∈ H1 = R, we have

ϕn
t (a− ant

n) = 0,(79)

since by (77) ϕn
t (tn) = ϕtn(tn) = 1, so (a− ant

n) ∈ Hn. If Hn consists
already of elements of the desired form, then there exist a0, ..., an−1 ∈ R
such that

a− ant
n = a0 + a1t + ... + an−1t

n−1,(80)

hence a is also of that form.
Now it is clear that the canonical homomorphism of R-algebras

R[t]→ A(81)

induces a compatible system of isomorphisms

R[t]/(t)n → A/(t)n,(82)

which gives the desired canonical isomorphism of limits. �

The above theorem has the following immediate consequence in al-
gebraic geometry.

Corollary 3. The formal neighborhood of any Cartier divisorial section
of a fibration of an integral scheme is locally canonically isomorphic to
the formal neighborhood of the zero section in the trivial line bundle.

The Cartier hypothesis for the divisor in the above theorem is nec-
essary as the following example shows.

Example. Take R := k[X], the ring of polynomial functions on the
affine line over a field k, A := k[X,Y, Z]/(Z2 −XY ), the ring of poly-
nomial functions on the quadratic cone fibred over the affine line by the
ring homomorphism k[X]→ k[X, Y, Z]/(Z2−XY ), X 7→ X. The (non-
principal) ideal I := (Y, Z) ⊂ A cuts out a Weil divisorial section of this
fibration. Since the conormal module I/I2 = (k[X]/(X))Y ⊕ k[X]Z is
not locally free, the formal neighborhood of that divisorial section can
not be locally trivial.
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3. Application to singularities of algebraic curves

In this paragraph we will give examples of computing @(A), when
A is a formal local ring of a point on an algebraic curve over a field
R, being formally irreducible at this point. The valuation comes from
the discrete valuation ring of a point on the normalization dominating
a given point. Then @ of that is an invariant of formal equivalence [5],
in particular points with different @ cannot be formally equivalent.

Example. Smooth point. The formal local ring of a smooth point is
isomorphic to R[[x]]. Therefore by the last example

@(A) = 0.(83)

Example. One-branch singularity. Let us recall that a singular point
on an algebraic curve over a field R is called one-branch singularity
(or generalized cusp) if its local ring is contained in one and only one
valuation ring of the field of rational functions of a given curve. The
following theorem (Thm. 1 of [2]) describes all formal local rings of
such singularities.

Theorem. The complete local ring of a one-branch singularity is iso-
morphic to a proper R-subalgebra of R[[t]] which contains its conductor.
Every such subalgebra is isomorphic to a formal local ring of some one-
branch singularity.

Let us consider, for example, a singular point of a curve over a field
R, formally equivalent at this point to the cusp y2 = xd for d = 3, 5.
We claim that

@(A) ∼= R⊕ Z; for d = 3,(84)

@(A) ∼= R2 ⊕ Z; for d = 5, char(R) 6= 3.(85)

Let us compute this. The formal local ring A = R[[x, y]]/(y2 − xd)
is integral. The normalization has the form

R[[x, y]]/(y2 − xd) ↪→ R[[t]],(86)

x 7→ t2, y 7→ td.(87)

The image of that consists of formal series of the form:

a = a0 + a2t
2 + a3t

3 + a4t
4 + ..., for d = 3,(88)

a = a0 + a2t
2 + a4t

4 + a5t
5 + ..., for d = 5(89)

(for d = 3 without a summand of degree 1, for d = 5 without summands
of degree 1 and 3). The valuation is an order with respect to t. Using
the above representation one can easily see that for d = 2 : W =
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R∗ + (t)2 and for d = 5 : W = R∗ + R · t2 + (t)4, where (t) is the
maximal ideal in the dominating discrete valuation ring R[[t]]. Indeed,
by Theorem 4 it is enough to show that if tn ∈ W then n = 0. By
definition w ∈ W iff for every a ∈ A there exists q ∈ A such that

v(a− wq) ≥ v(w) ⇒ a− wq = 0.(90)

When n ≥ 2 let us take

w = tn, a = tn+1,(91)

Then, in both cases d = 3, 5, for all q = q0 +q2t
2 + ... we have a−wq =

−q0t
n + tn+1 − ..., and of course a − wq 6= 0 but v(a − wq) ≥ v(w).

Therefore in both cases G(W ) coincides with the group of units U of A
and is contained in the group of units R∗ + (t) of R[[t]]. The field K of
fractions of A coincides with the field of fractions of its normalization,
which is a field of Laurent series

a = a−nt
−n + ... + a0 + a1t + ...(92)

Therefore the short exact sequence of multiplicative abelian groups, for
d = 3 or d = 5 respectively,

1→ (R∗ + (t))/(R∗ + (t)2)→ K∗/(R∗ + (t)2)→ K∗/(R∗ + (t))→ 1,

(93)

1→ (R∗ + (t))/(R∗ + R · t2 + (t)4)→ K∗/(R∗ + R · t2 + (t)4)→ K∗/(R∗ + (t))→ 1

(94)

is isomorphic to the split short exact sequence of abelian groups

1→ Gd → @(A)→ Z→ 1,(95)

where Gd is a multiplicative quotient group. For d = 3 the latter
abelian group is isomorphic to the additive quotient group

G3
∼= (t)/(t)2 ∼= R.(96)

For to understand the structure of the group G5 let us use the following
factorization.

a0 + a1t + a2t
2 + a3t

3 + ... = (1 + b1t + b3t
3)(c0 + c2t

2 + c4t
4 + ...).

(97)

Provided a0 is invertible in R this factorization is unique. Therefore
G5 can be identified with the set of pairs (b1, b3) with the group law
coming from the following unique decomposition

(1 + b1t + b3t
3)(1 + b′1t + b′3t

3)(98)

= (1 + b′′1t + b′′3t
3)(c0 + c2t

2 + c4t
4 + ...),(99)
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i.e.

(b1, b3)(b
′
1, b

′
3) = (b1 + b′1, b3 + b′3 − (b1 + b′1)b1b

′
1).(100)

It is easy to see that if char(R) 6= 3 then we have the following isomor-
phism onto the additive group

G5 → R2,(101)

(b1, b3) 7→ (b1, b3 +
1

3
b3
1).
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