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THE K-THEORY OF HEEGAARD QUANTUM LENS SPACES

PIOTR M. HAJAC, ADAM RENNIE, AND BARTOSZ ZIELI�SKI

Dedicated to Alan Carey on the occasion of his 60th birthday.

Abstract. Representing Z/NZ as roots of unity, we restrict a natural U(1)-action on the
Heegaard quantum sphere to Z/NZ, and call the quotient spaces Heegaard quantum lens spaces.
Then we use this representation of Z/NZ to construct an associated complex line bundle. This
paper proves the stable non-triviality of these line bundles over any of the quantum lens spaces
we consider. We use the pullback structure of the C∗-algebra of the lens space to compute
its K-theory via the Mayer-Vietoris sequence, and an explicit form of the Bass connecting
homomorphism to prove the stable non-triviality of the bundles. On the algebraic side we
prove the universality of the coordinate algebra of such a lens space for a particular set of
generators and relations. We also prove the non-existence of non-trivial invertibles in the
coordinate algebra of a lens space. Finally, we prolongate the Z/NZ-�bres of the Heegaard
quantum sphere to U(1), and determine the algebraic structure of such a U(1)-prolongation.
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Introduction and preliminaries

0.1. Introduction. It is hard to deny that lens spaces are interesting. Indeed, they have

provided a rich source of examples highlighting subtle phenomena in topology. They are simple

examples of closed 3-manifolds not determined by their homology and fundamental group alone.

They also give examples of spaces that might be homotopic but not homeomorphic. Even today

they still provide a fertile arena in which to study topological questions, e.g., see [18].

A typical feature of lens spaces is that they possess non-trivial line bundles giving rise to

torsion in K-theory. This property of lens spaces remains a characteristic feature of their

quantum analogues, and is a focal point of this paper. In brief, we choose a particular family

of quantum lens spaces, de�ne natural complex line bundles over them, and prove that they

generate torsion in the K0-group.

More precisely, we study a family of three-dimensional lens spaces arising from a particular

family of quantum 3-spheres, namely the Heegaard quantum spheres S3
pqθ [3]. The C

∗-algebras

of these Heegaard quantum lens spaces were de�ned in [14] as �xed-point subalgebras for a

Z/NZ-action obtained by restricting the natural (diagonal) U(1)-action α on the C∗-algebra

C(S3
pqθ) of the Heegaard quantum sphere. Likewise, we consider �xed-point subalgebras of the

coordinate algebra O(S3
pqθ) of the Heegaard quantum sphere. We denote the thus obtained

coordinate algebras and C∗-algebras of these quantum lens spaces by O(LN
pqθ) and C(LN

pqθ)

respectively.

Note that in [20] a di�erent U(1)-action was used to de�ne another type of Heegaard quantum

lens spaces. Both of these types of Heegaard quantum lens spaces are di�erent from those

quantum lens spaces studied in [15]. The latter are graph C∗-algebras and the former are

pullback C∗-algebras. This is a crucial technical di�erence between these two families of C∗-

algebras resulting in application of di�erent tools to study their K-theory.

Next, we again represent Z/NZ via roots of unity and de�ne the following associated module

(0.1) LN :=
{
x ∈ C(S3

pqθ)
∣∣∣ α

e
2πi
N

(x) = e
2πi
N x
}
⊆ C(S3

pqθ)

over C(LN
pqθ). This is a �nitely generated projective module de�ning a natural complex line

bundle for each of our quantum lens spaces. Our main result can be now summarized as follows.

Theorem 0.1. The left C(LN
pqθ)-module LN is not stably free, and [LN ] − [C(LN

pqθ)] generates

the torsion part of K0(C(LN
pqθ)).

On the way, we prove that O(LN
pqθ) is universal for a certain set of generators and relations.

Having done this, we show that O(S3
pqθ) contains no invertibles other than non-zero multiples of

the identity. This allows us to prove that the O(Z/NZ)-comodule algebra O(S3
pqθ) is non-cleft,

which re�ects the non-triviality of the noncommutative Z/NZ-principal bundle S3
pqθ → LN

pqθ.

However, to conclude a stronger result that the �nitely generated projective O(LN
pqθ)-module

(0.2) LN :=
{
x ∈ O(S3

pqθ)
∣∣∣ α

e
2πi
N

(x) = e
2πi
N x
}
⊆ O(S3

pqθ)
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is not stably free, we turn to C∗-algebras. Representing LN by an idempotent with entries in

O(LN
pqθ), we infer the stable non-triviality of LN over O(S3

pqθ) from our main result.

The �nal section proves a quantum version of the classical phenomenon that S3×Z/NZU(1) ∼=
S3 × U(1), in both the algebraic and C∗-setting. Namely, we prove that

C(S3
pqθ) ⊗̄C(U(1)) ∼= (C(S3

pqθ) ⊗̄C(U(1)))Z/NZ,

O(S3
pqθ)⊗O(U(1)) ∼= (O(S3

pqθ)⊗O(U(1)))Z/NZ.(0.3)

Here and in what follows, the unadorned tensor product stands for the algebraic tensor

product over the ground �eld k, typically of complex numbers. Since in this paper there is

no ambiguity concerning C∗-completions of the algebraic tensor product, we simply use ⊗̄ to

denote the completed tensor product. Also, we use the convention that, for algebras A, B, and

coalgebras C, D, the symbol C
AHomD

B signi�es the set of k-linear homomorphisms that are left

A-linear, right B-linear, left C-colinear and right D-colinear.

0.2. Principal comodule algebras. The comultiplication, counit and the antipode of a Hopf

algebra H are denoted by ∆, ε and S, respectively. A right H-comodule algebra P is a unital

associative algebra equipped with an H-coaction ∆P : P → P ⊗H that is an algebra map. For

a comodule algebra P , we call

(0.4) P co H := {p ∈ P |∆P (p) = p⊗ 1}

the subalgebra of coaction-invariant elements in P . A left coaction on V is denoted by V ∆.

For comultiplications and coactions, we often employ the Heynemann-Sweedler notation with

the summation symbol suppressed:

(0.5) ∆(h) =: h(1) ⊗ h(2), ∆P (p) =: p(0) ⊗ p(1), V ∆(v) =: v(−1) ⊗ v(0).

With this notation, the convolution product of maps f and g from a coalgebra to an algebra is

given by (f ∗ g)(h) := f(h(1))g(h(2)).

If M is a right comodule over a coalgebra C and N is a left C- comodule, then we de�ne

their cotensor product as

(0.6) M2
C
N := {t ∈M ⊗N | (∆M ⊗ id)(t) = (id⊗ N∆)(t)}.

In particular, for a right H-comodule algebra P and a left H-comodule V , we observe that

P2HV is a left P co H- module in a natural way. Furthermore, if V is a Hopf algebra with

comultiplication ∆̃, a Hopf algebra surjection π : V → H, and a left coaction V ∆ := (π⊗id)◦∆̃,

then P2HV becomes a V -comodule algebra for the coaction id⊗ ∆̃.

An H-comodule algebra P is called principal [4] if:

(1) P⊗BP 3 p⊗ q 7→ can(p⊗ q) := pq(0) ⊗ q(1) ∈ P ⊗H is bijective;

(2) ∃s ∈ BHomH(P,B ⊗ P ) : m ◦ s = id, where m is the multiplication map;

(3) the antipode of H is bijective.

Here (1) is the Hopf-Galois (freeness) condition, (2) means equivariant projectivity of P , and (3)

ensures a left-right symmetry of the de�nition (everything can be re-written for left comodule
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algebras). The inverse of the map can can be written explicitly using Heynemann-Sweedler like

notation: can−1(p⊗ h) := ph[1] ⊗B h
[2]. Here the map

(0.7) H 3 h 7−→ can−1(1⊗ h) =: h[1] ⊗
B
h[2] ∈ P ⊗

B
P

is called a translation map, and satis�es h[1]h[2] = ε(h).

One of the key properties of principal comodule algebras is that, for any �nite-dimensional

left H-comodule V , the left P co H-module P2HV is �nitely generated projective [4]. Here P

plays the role of a principal bundle and P2HV plays the role of an associated vector bundle.

Therefore, we call P2HV an associated module. On the other hand, if V is a Hopf algebra

and P2HV is a V -comodule algebra as described above, then (under some minor technical

assumptions) the principality of the H-coaction on P implies the principality of the V -coaction

on P2HV (see [13]). We call the principal comodule algebra P2HV the V -prolongation of P

because it is a direct analogue of a prolongation of a principal bundle that is obtained by

enlarging its structure group.

If H is a Hopf algebra with bijective antipode and P is a right H-comodule algebra, then

one can show (cf. [4]) that it is principal if and only if there exists a linear map

(0.8) ` : H −→ P ⊗ P, h 7−→ `(h) =: `(h)〈1〉 ⊗ `(h)〈2〉,

such that, for all h ∈ H, ` satis�es the three equations

`(h)〈1〉`(h)〈2〉(0) ⊗ `(h)〈2〉(1) = 1⊗ h,(0.9)

S(h(1))⊗ `(h(2))
〈1〉 ⊗ `(h(2))

〈2〉 = `(h)〈1〉(1) ⊗ `(h)〈1〉(0) ⊗ `(h)〈2〉,(0.10)

`(h(1))
〈1〉 ⊗ `(h(1))

〈2〉 ⊗ h(2) = `(h)〈1〉 ⊗ `(h)〈2〉(0) ⊗ `(h)〈2〉(1).(0.11)

Any such map ` can be made unital [4]. It is then called a strong connection [9, 6, 4], and

can be thought of as an appropriate lifting of the translation map. Given a strong connection,

we can explicitly compute an idempotent representing the module P2HV [4]. In particular, if

dimV = 1, the coaction V ∆ is determined by a group-like g ∈ H, i.e., V ∆(1) = g⊗ 1. Then, in

order to obtain an idempotent representing P2HV , we write `(g) =
∑

i xi⊗ ei, where elements

ei are chosen to be linearly independent. The desired idempotent matrix is given by eij := eixj.

A special class of principal comodule algebras is distinguished by the existence of a cleav-

ing map. A cleaving map is de�ned as a unital right H-colinear convolution-invertible map

j : H → P . Having a cleaving map, one can de�ne a strong connection as ` := (j−1 ⊗ j) ◦∆,

where j−1 stands for the convolution inverse of j. Comodule algebras admitting a cleaving

map are called cleft. In particular, if j is a colinear algebra homomorphism, it is a cleaving

map (not the other way round). In this special case a cleaving map serves as an analogue of a

trivialisation of a principal bundle. Therefore, we can refer to comodule algebras admitting a

cleaving map that is an algebra homomorphism as trivial comodule algebras. Note that proving

the non-cleftness of a principal comodule algebra is stronger than proving its non-triviality.

All modules associated with cleft comodule algebras are always free. Also, one can show

that a cleaving map is automatically injective. Therefore, as the value of a cleaving map on a

group-like element is invertible, we can conclude that the existence of a non-trivial group-like in
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H necessitates the existence of an invertible element in P that is not a multiple of 1. Hence one

of the ways to prove the non-cleftness of a principal comodule algebra over a Hopf algebra with

a non-trivial group-like is to show the lack of non-trivial invertibles in the comodule algebra.

0.3. From quantum disc to quantum lens spaces.

0.3.1. Quantum disc. A two-parameter family of quantum unit discs was de�ned in [16]. Here

we consider the one parameter subfamily studied therein. We start with a coordinate ∗-algebra
O(Dp) generated by a single element x and the relation

(0.12) x∗x− pxx∗ = 1− p, 0 ≤ p < 1.

We can introduce another algebra O−(Dp) generated by x− with relation

(0.13) x∗−x− − p−1x−x
∗
− = 1− p−1.

Then assignment x 7→ x∗− can be extended to a ∗-algebra isomorphism

(0.14) κp : O(Dp)→ O−(Dp).

Let us denote for brevity X := (1− xx∗), so that 1− x∗x = pX. It follows from (0.12) that

Xx = pxX, and more generally

(0.15) Xkxn = pknxnXk, Xkx∗n = p−knx∗nXk, n, k ∈ N,

where the second equation follows from the self-adjointness of X. The universal C∗-algebra

for the relation (0.12) contains O(Dp) and is isomorphic with the Toeplitz algebra T for all

0 ≤ p < 1 [16]. In particular, we can take the relation (0.12) with p = 0 as a convenient

presentation for the C∗-algebra T . Then (0.12) reduces to x∗x = 1, so that x becomes an

isometry.

0.3.2. Heegaard quantum sphere. For 0 ≤ p, q, θ < 1, θ irrational, the coordinate algebra of the

Heegaard quantum sphere O(S3
pqθ) [3] is the universal ∗-algebra generated by two elements a

and b satisfying the relations

ab = ei2πθba, ab∗ = e−i2πθb∗a,(0.16a)

a∗a− paa∗ = 1− p, b∗b− qbb∗ = 1− q,(0.16b)

(1− aa∗)(1− bb∗) = 0.(0.16c)

Recall that {a, a∗} and {b, b∗} generate algebras O(Dp) and O(Dq) respectively (see [3, (2.44)]).

Furthermore, by Subsection 0.3.1, for A := (1− aa∗), B := (1− bb∗), we have the relations

(0.17) Aa = paA, Ab = bA, Ba = aB, Bb = qbB, A∗ = A, B∗ = B.

Now we can write a basis of O(S3
pqθ) [3] as

(0.18) {Akaµbν | k ≥ 0, µ, ν ∈ Z} ∪ {Bkaµbν | k > 0, µ, ν ∈ Z}.

Here for µ, ν < 0 we have written bµ = b∗|µ| and aν := a∗|ν| for brevity. The C∗-algebra

of the Heegaard quantum sphere C(S3
pqθ) can also be de�ned as the universal C∗-algebra for
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the relations (0.16). One can set the parameters p and q equal to zero without changing this

C∗-algebra, and prove that it is isomorphic with a certain pullback C∗-algebra [3].

Let O(U(1)) be the coordinate ∗-Hopf algebra of U(1) generated by a unitary u. The coaction

of O(U(1)) on O(S3
pqθ) is de�ned on generators by ρ(a) = a ⊗ u, ρ(b) = b ⊗ u. This coaction

de�nes a Z-grading deg : O(S3
pqθ) → Z on O(S3

pqθ), with deg(a) = 1 = deg(b). Note that all

the basis elements in (0.18) have a de�nite grading degree. The coaction ρ can be equivalently

written as an action

(0.19) α : U(1) −→ Aut(O(S3
pqθ)), αeiϕ(a) = eiϕa, αeiϕ(b) = eiϕb.

This action extends to the C∗-algebra C(S3
pqθ). One can prove that the algebra of coaction-

invariant (or action-invariant) elements is generated as a ∗-algebra by A, B, and z = ab∗. They

satisfy the relations

A∗ = A, B∗ = B, AB = 0, Az = pzA, zB = qBz,

z∗z = 1− pA−B, zz∗ = 1− A− qB.(0.20a)

The universal ∗-algebra for these relations coincides with the coaction-invariant subalgebra.

We call it the coordinate algebra of a mirror quantum sphere [14]. Note that by [10], O(S3
pqθ)

is a piecewise trivial principal comodule algebra. The covering is given by a pair of ideals

O(S3
pqθ)A and O(S3

pqθ)B. The quotients O(S3
pqθ)/O(S3

pqθ)A and O(S3
pqθ)/O(S3

pqθ)B are both

given by quantum solid tori [3].

0.3.3. Heegaard quantum lens spaces [14, 20]. The ∗-Hopf algebra O(Z/NZ) is generated by a

unitary element ũ satisfying ũN = 1. There is a natural surjection π : O(U(1)) → O(Z/NZ)

given by u 7→ ũ. This surjection de�nes a coaction of O(Z/NZ) on O(S3
pqθ). The coaction-

invariant subspace for this O(Z/NZ)-coaction is simply the subspace of elements of degree

divisible by N . We denote this algebra by O(LN
pqθ), and call LN

pqθ the Heegaard quantum

lens space of type N . Likewise, we inject Z/NZ into U(1) via roots of unity, and use the

action α to de�ne the Z/NZ-invariant subalgebra of the C∗-algebra C(S3
pqθ). We call the

invariant subalgebra the C∗-algebra of the Heegaard quantum lens space of type N , and denote

by C(LN
pqθ).

0.4. The Bass connecting homomorphism. Consider a pullback diagram

(0.21) A
pr1

wwpppppppppp pr2

''NNNNNNNNNN

A1

π1 && &&NNNNNNNNN A2

π2xxppppppppp

A12

in the category of unital algebras. Explicitly, we can write

(0.22) A ∼= {(a1, a2) ∈ A1 × A2 | π1(a1) = π2(a2)} = Ker
(
A1 ⊕ A2

(π1,−π2)−→ A12

)
.
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If one of the de�ning morphisms (here we choose π1) is surjective, then there exists a long exact

sequence in algebraic K-theory [1]

(0.23) · · · −→ Kalg
1 (A1⊕A2) −→ Kalg

1(A12)
Bassalg−→ Kalg

0 (A) −→ Kalg
0 (A1⊕A2) −→ Kalg

0 (A12).

The mapping Bassalg : Kalg
1 (A12) −→ Kalg

0 (A) is obtained as follows. Take an invertible matrix

U ∈ GLn(A12) representing a class in Kalg
1 (A12). There exist liftings c, d ∈ Mn(A1) such that

π1(c) = U−1 and π1(d) = U . Then (e.g., see [7])

(0.24) pU :=

(
(c(2− dc)d, 1) (c(2− dc)(1− dc), 0)
((1− dc)d, 0) ((1− dc)2, 0)

)
∈M2n(A).

is an idempotent matrix. The assignment

(0.25) Bassalg : Kalg
1 (A12) 3 [U ] 7−→ [pU ]− [In] ∈ Kalg

0 (A),

where In is the identity matrix of the same size as the matrix U , gives the Bass connecting

homomorphism [17, Theorem 3.3, Page 28].

It is known that the Bass connecting homomorphism exists also for the K-theory of C∗-

algebras (cf. [8]), and is given by the same explicit formula. Since this formula is pivotal in

proving our main result, for the sake of completeness, we provide its complete proof assuming it

for the algebraic K-theory1. We proceed by translating the �nal part of the long exact sequence

(0.23) into theK-theory of C∗-algebras. TheK0-groups are simply the same, and comparing the

de�nitions ofKalg
1 andK1 immediately yields a functorial surjectionKalg

1 (A)3 [U ] 7→ [U ]∈K1(A)

for any unital C∗-algebra A.

Next, we want to split this surjection and de�ne K1(A12)
Bass−→K0(A) by composing such a

set-theoretical splitting with Bassalg. In order to show that it is independent of the choice of

a splitting, we need to use the homotopy invariance of K0. More precisely, if [U0] = [U1] ∈
K1(A12), then there exists n ∈ N such that Ũ0 := diag(U0, Ik) and Ũ1 := diag(U1, Il) are

elements of GLn(A12) that are homotopic via elements of GLn(A12). In other words, there

exists an invertible element U in the C∗-algebra C([0, 1],Mn(A12)) ∼= Mn(C([0, 1], A12)) ∼=
Mn(A12 ⊗̄C([0, 1])) satisfying ev0(U) = Ũ0 and ev1(U) = Ũ1, where evt stands for the evaluation

map at t. Furthermore, since tensoring with nuclear C∗-algebras is exact, we can conclude that

A ⊗̄C([0, 1]) is isomorphic with the pullback

(0.26) Ker ((π1,−π2)⊗ id : (A1 ⊗̄C([0, 1]))⊕ (A2 ⊗̄C([0, 1])) −→ A12 ⊗̄C([0, 1])) .

This allows us to apply the Bass construction to U to obtain an idempotent pU in the C∗-algebra

M2n(A⊗̄C([0, 1])). On the other hand, the evaluation maps ev0, ev1 : A ⊗̄C([0, 1]) → A are

homotopic, so that, by the homotopy invariance of K0, we conclude that [pfU0
] = ev0∗[pU ] =

ev1∗[pU ] = [pfU1
] ∈ K0(A). Consequently, we obtain

(0.27) Bassalg([U0]) = Bassalg([Ũ0]) = [pfU0
]− [In] = [pfU1

]− [In] = Bassalg([Ũ1]) = Bassalg([U1]).

1This proof is a courtesy of Nigel Higson.
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Thus we have de�ned a map Bass : K1(A12)
lift−→Kalg

1 (A12)
Bassalg−→ Kalg

0 (A) = K0(A). Since

[diag(U,U ′)] ∈ Kalg
1 (A12) is a lifting of [diag(U,U ′)] ∈ K1(A12), the map Bass is automati-

cally a group homomorphism. This leads to the the following diagram:

(0.28)

Kalg
1 (A1)⊕Kalg

1 (A2)
π1∗alg−π2∗alg //

�� ��

Kalg
1 (A12)

Bassalg//

��

K0(A)
(pr1∗,pr2∗) // K0(A1)⊕K0(A2)

K1(A1)⊕K1(A2)
π1∗−π2∗ // K1(A12)

Bass // K0(A)
(pr1∗,pr2∗) // K0(A1)⊕K0(A2).

Here the vertical arrows are canonical surjections. The commutativity of the �rst two squares

follows from the functoriality of these surjections. The remaining two squares are commutative

by construction. Now, the exactness of the top row (see (0.23)) and the surjectivity of all vertical

arrows imply the exactness of the bottom row. Combining this with the Bott periodicity, we

obtain the Mayer-Vietoris 6-term exact sequence [19, 2]

(0.29)

K0(A)
(pr1∗,pr2∗)−−−−−−→ K0(A1)⊕K0(A2)

π1∗−π2∗−−−−−→ K0(A12)

Bass

x y
K1(A12)

π1∗−π2∗←−−−−− K1(A1)⊕K1(A2)
(pr1∗,pr2∗)←−−−−−− K1(A) .

1. Comodule algebras over the coordinate algebras of Heegaard lens spaces

1.1. Polynomial identities for the quantum disc. Recall the de�nition of p-deformed

binomial coe�cients

(1.1)

[
n
m

]
p

:=
[n]p!

[m]p![n−m]p!
,

where p-deformed factorials [n]p! = [1]p[2]p . . . [n − 1]p[n]p for n − 1 ∈ N, [0]p! = 1, are de�ned

in terms of p-deformed naturals [n]p = 1 + p+ p2 + . . .+ pn−2 + pn−1 for n− 1 ∈ N, [0]p = 0.

Let Y be a variable. De�ne a family of polynomials in Y , for p ∈ R+ and n− 1 ∈ N, by the

formulae

(1.2) Q̃p
n(Y ) =

n∑
m=1

(−1)mp−nm+
m(m+1)

2

[
n
m

]
p

Y m.

Lemma 1.1. The polynomials (1.2) are uniquely determined by the recursive equations

(1.3) Q̃p
1(Y ) = −Y, Q̃p

n+1(Y ) = (1− Y )Q̃p
n(p−1Y )− Y.

Proof. We will proceed by induction. It follows from the de�nition of Q̃p
n, Equation (1.2), that

the case n = 1 is satis�ed. It is useful to rewrite the right-hand side of the second equation of

(1.3) as follows (1 − Y )Q̃p
n(p−1Y ) − Y = Q̃p

n(p−1Y ) − Y Q̃p
n(p−1Y ) − Y. For the �rst term we

will separate the m = 1 term from the sum de�ning Q̃p
n(p−1Y ), while for the second we will
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separate the m = n term, and then renumber the sum. This yields

(1− Y )Q̃p
n(p−1Y )− Y

= (1− Y )

(
n∑

m=1

(−1)mp−nm+
m(m+1)

2

[
n
m

]
p

p−mY m

)
− Y

= −p−n

[
n
1

]
p

Y − Y − (−1)np−
n(n+1)

2

[
n
n

]
p

Y n+1

+
n∑

m=2

(
(−1)mp−nm+

m(m+1)
2

[
n
m

]
p

p−m − (−1)m−1p−n(m−1)+
m(m−1)

2

[
n

m− 1

]
p

p−(m−1)

)
Y m

= −p−n

([
n
1

]
p

+ pn

[
n
0

]
p

)
− (−1)np−

n(n+1)
2

[
n+ 1
n+ 1

]
p

Y n+1

+
n∑

m=2

(−1)mp−(n+1)m+
m(m+1)

2

([
n
m

]
p

+ pn+1−m

[
n

m− 1

]
p

)
Y m.

At this point we recall that for all n ≥ 0, m > 0, the deformed binomial coe�cients satisfy the

recursive formula

(1.4)

[
n
n

]
p

=

[
n
0

]
p

= 1,

[
n+ 1
m

]
p

=

[
n
m

]
p

+ pn+1−m

[
n

m− 1

]
p

.

Applying this to our computation we obtain

− p−n

[
n+ 1

1

]
p

Y +
n∑

m=2

(−1)mp−(n+1)m+
m(m+1)

2

[
n+ 1
m

]
p

Y m − (−1)np−
n(n+1)

2

[
n+ 1
n+ 1

]
p

Y n+1

=
n+1∑
m=1

(−1)mp−(n+1)m+
m(m+1)

2

[
n+ 1
m

]
p

Y m = Qp
n+1(Y ).

This completes the proof. �

Lemma 1.2. For all m,n ∈ N \ {0}, the family of polynomials {Q̃p
k}k satis�es

(1.5) Q̃p
m+n(Y ) = (1 + Q̃p

m(Y ))Q̃p
n(p−mY ) + Q̃p

m(Y ).

Proof. We prove the above formula for arbitrary n ∈ N by induction on m. The case m = 1 is

true by Lemma 1.1. For the inductive step, suppose that Equation (1.5) is satis�ed for some

m > 0. Then using Lemma 1.1 yields

(1 + Q̃p
m+1(Y ))Q̃p

n(p−(m+1)Y ) + Q̃p
m+1(Y )

= (1 + (1− Y )Q̃p
m(p−1Y )− Y )Q̃p

n(p−1−mY ) + (1− Y )Q̃p
m(p−1Y )− Y

= (1− Y )
(
(1 + Q̃p

m(p−1Y ))Q̃p
n(p−1−mY ) + Q̃p

m(p−1Y )
)
− Y

= (1− Y )Q̃p
n+m(p−1Y )− Y

= Q̃p
n+m+1(Y ),(1.6)

as desired. �
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We now de�ne polynomials for all µ ∈ Z by the formulae

(1.7) Qp
µ(Y ) =


Q̃p

µ(Y ) if µ > 0
0 if µ = 0

Q̃p−1

−µ (pY ) if µ < 0

.

Note that the polynomials Qp
−µ for µ > 0 satisfy the recursive relations

(1.8) Qp
−1(Y ) = −pY, Qp

−µ−1(Y ) = (1− pY )Qp
−µ(pY )− pY.

Lemma 1.3. The generators x and x∗ of the quantum disc O(Dp) satisfy the relations

(1.9) xµx−µ = 1 +Qp
µ(X), µ ∈ Z, x−n := x∗n, n ∈ N.

Proof. We proceed by induction on |µ|, and begin by observing that the formula (1.9) is im-

mediately true for µ = 0,±1. Suppose the formula is satis�ed for some µ > 0. Then, using

Lemma 1.1 yields

xµ+1x∗(µ+1) = x(xµx∗µ)x∗

= x
(
1 +Qp

µ(X)
)
x∗

= xx∗
(
1 +Qp

µ(p−1X)
)

= (1−X)
(
1 +Qp

µ(p−1X)
)

= 1 +Qp
µ+1(X).(1.10)

The proof for µ < 0 proceeds in the same way, because the identities for deformed factorials

and binomial coe�cients are the same for 0 < p < 1 and p > 1. �

Let us de�ne the family Qp
µ;ν of polynomials, for all µ, ν ∈ Z by the formulae

(1.11) Qp
µ;ν(Y ) =


0 if µν ≥ 0
Qp

µ(Y ) if µν < 0 and |µ| ≤ |ν|
Qp
−ν(p

−(µ+ν)Y ) if µν < 0 and |µ| > |ν|
.

Now we can generalise Lemma 1.3.

Lemma 1.4. Let X := 1− xx∗, µ, ν ∈ Z, and for µ < 0 write xµ = x∗|µ|. Then the generators

of the algebra O(Dp) satisfy

(1.12) xµxν = (1 +Qp
µ;ν(X))xµ+ν .

Proof. The statement is obvious if µν ≥ 0, and we now consider the two cases when µν < 0.

First, for |µ| ≤ |ν| we �nd

(1.13) xµxν = (xµx−µ)xµ+ν = (1 +Qp
µ(X))xµ+ν = (1 +Qp

µ;ν(X))xµ+ν .

Next, for |µ| > |ν| we obtain

xµxν = xµ+ν(x−νxν) = xν+µ(1 +Qp
−ν(X)) = (1 +Qp

−ν(p
−(ν+µ)X))xν+µ = (1 +Qp

µ;ν(X))xν+µ,

as needed. �
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1.2. Heegaard quantum lens spaces in terms of generators and relations. In what

follows we will frequently need the following formula. Let x and y be two elements in an

algebra such that xy = eiϕyx, where ϕ ∈ R. Then

(1.14) xµyµ = eiϕ
µ(µ−1)

2 (xy)µ, for µ ∈ Z, x−n := (x∗)n, y−n := (y∗)n, n ∈ N.

We recall the coaction of O(Z/NZ) on O(S3
pqθ) from Subsection 0.3.3. The coaction-invariant

subspace of this coaction is simply the subspace of elements of degree divisible by N , and it is

called a lens space LN
pqθ of type N . It follows from (0.18) that O(LN

pqθ) is spanned as a vector

space by the set

(1.15) {Akaµbν | k, λ, µ, ν ∈ Z, k ≥ 0, µ+ ν = λN}
∪ {Bkaµbν | k, λ, µ, ν ∈ Z, k > 0, µ+ ν = λN},

where for µ, ν < 0 we have written bµ = b∗|µ| and aν := a∗|ν| for brevity. Let us also de�ne

(1.16) ã := aN , b̃ := bN , z := ab∗.

It is not di�cult to verify that the elements A, B, z, ã, b̃ satisfy the commutation relations

A∗ = A, B∗ = B, AB = 0, Az = pzA, zB = qBz,(1.17a)

z∗z = 1− pA−B, zz∗ = 1− A− qB,(1.17b)

Aã = pN ãA, Ab̃ = b̃A, Bã = ãB, Bb̃ = qN b̃B, zã = eiN2πθãz, zb̃∗ = e−iN2πθb̃∗z,(1.17c)

zã∗ − e−iN2πθã∗z = e−iN(N+1)πθ(pN − 1)Az1−N b̃∗,(1.17d)

zb− eiN2πθbz = eiπθN(N−1)q(q−N − 1)Bz1−N ã,(1.17e)

ãb̃ = eiN22πθb̃ã, ãb̃∗ = e−iN22πθb̃∗ã, ãb̃∗ = e−iπθN(N−1)zN ,(1.17f)

ã∗ã = 1 +Qp
−N(A), ãã∗ = 1 +Qp

N(A), b̃∗b̃ = 1 +Qq
−N(B), b̃b̃∗ = 1 +Qq

N(B).(1.17g)

Here the polynomials Qp
µ were de�ned in Equation (1.7). Formulas (1.17a)-(1.17c) and the

�rst two equations in (1.17f) are straightforward consequences of Equations (0.16). In order

to prove the last equality in (1.17f), we use (1.14). Equalities (1.17g) follow immediately from

Lemma 1.3. In order to prove Equation (1.17d), we need to do a little work. First we note that

for all n > 0 we have

(1.18) aa∗n − a∗na = (pn − 1)Aa∗(n−1).

Indeed, this formula holds for n = 1, and for n > 1 we can write

aa∗n − a∗na = (aa∗)a∗(n−1) − a∗(n−1)(a∗a)

= (1− A)a∗(n−1) − a∗(n−1)(1− pA)

= −Aa∗(n−1) + ppn−1Aa∗(n−1)

= (pn − 1)Aa∗(n−1).(1.19)
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Now we are ready to prove Equation (1.17d). Using Equation (1.18) in step (a) and Lemma 1.4

in step (b), we compute

zã∗ − e−iN2πθã∗z = ab−1a−N − e−iN2πθa−Nab−1

= e−iN2πθ(aa−N − a−Na)b−1

(a)
= e−iN2πθ(pN − 1)Aa1−Nb−1

(b)
= e−iN2πθ(pN − 1)Aa1−N

(
bN−1b−N −Qq

N−1;−N(B)b−1
)
.(1.20)

Next, we use the fact that AQq
N−1;−N(B) = 0 (due to AB = 0) and commutation relations for

A to obtain

zã∗ − e−iN2πθã∗z = e−iN2πθ(pN − 1)A(a1−NbN−1)b−N

= e−iN2πθ−i(N−1)22πθ(pN − 1)A(aN−1b−(N−1))∗b−N

= e−iN2πθ−i(N−1)22πθ+iπθ(N−1)(N−2)(pN − 1)A((ab∗)N−1)∗b−N

= e−iN(N+1)πθ(pN − 1)Az1−N b̃∗.(1.21)

Here the second last equality follows from (1.14). The proof of Equation (1.17e) is similar.

We are now ready for the main claim of this subsection.

Theorem 1.5. Let A be the universal ∗-algebra generated by the elements ã′, b̃′, z′, A′ and B′,

and satisfying the same relations (1.17) as their unprimed counterparts. Then O(LN
pqθ) and A

are isomorphic as ∗-algebras, and the set of vectors

(1.22) B := {(A′)k(z′)µ(b̃′)ν | k > 0, µ, ν ∈ Z} ∪ {(B′)k(z′)µ(ã′)ν | k ≥ 0, µ, ν ∈ Z}

is a basis of A. Here for µ, ν < 0 we have written (b̃′)µ = (b̃′)∗|µ|, (ã′)ν := (ã′)∗|ν| and (z′)µ =

(z′)∗|µ| for brevity.

The proof of this theorem will occupy the remainder of this section. Until the �nal stage of

the proof, we will abuse notation by dropping the primes on the generators of A. First we will
prove some additonal commutation relations.

Lemma 1.6. Let µ, ν ∈ Z, and for µ, ν < 0 write b̃µ = b̃∗|µ| and ãν := ã∗|ν|. Then we have the

relations

zµzν = (1 +Qp
µ;ν(A) +Qq

−µ;−ν(B))zµ+ν ,(1.23a)

ãµãν = (1 +Qp
Nµ;Nν(A))ãµ+ν ,(1.23b)

b̃µb̃ν = (1 +Qq
Nµ;Nν(B))b̃µ+ν ,(1.23c)

Aãν = e−iπθNν(Nν−1)AzNν b̃ν ,(1.23d)

Azν b̃µ = eiN2πθµνAb̃µzν ,(1.23e)

where the polynomials Qp
µ;ν were de�ned in (1.11).

Proof. We prove each of the Equations (1.23) separately. For Equation (1.23a), we �rst prove,

by induction, the simpler result

(1.24) znz∗n = 1 +Qp
n(A) +Qq

−n(B), z∗nzn = 1 +Qp
−n(A) +Qp

n(B).
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Equations (1.24) is clearly satis�ed for n = 0, 1 by Equations (1.17b) and (1.7). We will prove

the �rst equality, the second being proved similarly. So suppose that n > 0. Then

zn+1z∗(n+1) = z(znz∗n)z∗

= z (1 +Qp
n(A) +Qq

−n(B)) z∗

= zz∗
(
1 +Qp

n(p−1A) +Qq
−n(qB)

)
= (1− A− qB)

(
1 +Qp

n(p−1A) +Qq
−n(qB)

)
= 1 +

(
(1− A)Qp

n(p−1A)− A
)

+ ((1− qB)Qq
−n(qB)− qB)

= 1 +Qp
n+1(A) +Qq

−(n+1)(B),(1.25)

where in the last equality we used the recursive relations (1.3) and (1.8). Now Equation (1.23a)

clearly holds when µν ≥ 0. When µν < 0 there are four cases, and we will show how the proof

works in a single instance. Suppose then, that |µ| ≤ |ν| and ν < 0. Then using (1.24) and

(1.11) we obtain

z|µ|z∗|ν| = (z|µ|z∗|µ|)z∗(|ν|−|µ|)

= (1 +Qp
µ(A) +Qq

−µ(B))z∗(|ν|−|µ|)

= (1 +Qp
µ;ν(A) +Qq

−µ;−ν(B))z∗(|ν|−|µ|).(1.26)

Equations (1.23b) and (1.23c) are proved in the same way, and we just prove Equation (1.23b).

First we prove the formulae

(1.27) ãnã∗n = 1 +Qp
Nn(A), ã∗nãn = 1 +Qp

−Nn(A),

by induction. By (1.17g), these formulae are true for n = 0, 1. For n > 0 we use formula (1.5)

and Equation (1.7) to �nd

ãn+1ã∗(n+1) = ããnã∗nã∗

= ã(1 +Qp
Nn(A))ã∗

= ãã∗(1 +Qp
Nn(p−NA))

= (1 +Qp
N(A))(1 +Qp

Nn(p−NA))

= 1 +Qp
N(n+1)(A).(1.28)

Similarly

(1.29) ã∗(n+1)ãn+1 = ã∗(1+Qp
−nN(A))ã = (1+Qp

−N(A))(1+Qp
−nN(pNA)) = 1+Qp

−N(n+1)(A).

Now the full formula (1.23b) can be easily proven using (1.27) and (1.11) by applying similar

methods to those used to prove Equation (1.23a).

To prove Equation (1.23d), �rst note that, as a direct consequence of (1.14) and (1.17f), we

obtain

(1.30) ãµb̃−µ = e−iπθNµ(Nµ−1)zNµ, ã−n := ã∗n, b̃−n := b̃∗n, µ, n ∈ Z, n > 0.

Then Equation (1.23c) and Equation (1.30) yield

(1.31) Aãµ = Aãµb̃−µb̃µ − AãµQq
−µN ;µN(B) = A(ãµb̃−µ)b̃µ − 0 = e−iπθNµ(Nµ−1)AzNµb̃µ.



14 PIOTR M. HAJAC, ADAM RENNIE, AND BARTOSZ ZIELI�SKI

Finally, Equation (1.23e) follows directly from the commutation relations between b̃±1 and

z±1 (Equations (1.17c), (1.17e)) and the fact that the additional term which might appear as

a side e�ect of commuting b̃±1 with z±1 is proportional to B. �

Let V be the linear subspace of A spanned by B. Our aim is to show �rst that the generators

of A belong to V . Then, using some additional commutation relations, we will show that V is

closed under multiplication, and hence equal to A. Finally, we will argue that A is isomorphic

to O(LN
pqθ). First we prove that b̃, b̃

∗ ∈ V . Equations (1.17) allow us to write

(1.32) b̃ = b̃(ã∗ã−Qp
−N(A)) = eiπθN(N−1)z∗N ã−Qp

−N(A)b̃.

Similarily b̃∗ = b̃∗(ãã∗ −Qp
N(A)) = eiπθN(N+1)zN ã∗ −Qp

N(A)b̃∗, which completes the argument,

since Qp
N(A) has no constant term.

The previous argument, along with the de�nition of V , shows that all the generators ã, b̃, z,
A, B, are contained in V . Thus to show that V = A we just need to prove that V is closed

under multiplication. To this end, let us denote for brevity the following linear subspaces of V :

VA := Span{Akzµb̃ν | k, µ, ν ∈ Z, k > 0},(1.33a)

V0 := Span{zµãν | µ, ν ∈ Z}, VB := Span{Bkzµãν | k, µ, ν ∈ Z, k > 0},(1.33b)

W := Span(V0 ∪ VB).(1.33c)

Here for µ, ν < 0 we have written b̃µ = b̃∗|µ|, ãν := ã∗|ν| and zµ = z∗|µ| for brevity. The relation

between these subspaces and V is

(1.34) V = Span(VA ∪W) = Span(VA ∪ V0 ∪ VB).

Lemma 1.7. For all ν ∈ Z, we have the inclusions

VAb̃
ν ⊆ VA, b̃νVA ⊆ VA,(1.35a)

VAz
ν ⊆ VA, zνVA ⊆ VA,(1.35b)

VAã
ν ⊆ VA, ãνVA ⊆ VA.(1.35c)

Proof. It is enough to consider an arbitrary vector from the set spanning VA, namely Akzσ b̃τ ,

where k, σ, τ ∈ Z and k > 0. It follows from Equation (1.23c) that Akzσ b̃τ b̃ν = Akzσ b̃τ+ν ∈ VA.

Similarly, using equations (1.23e) and (1.23c), we obtain

(1.36) b̃νAkzσ b̃τ = Akb̃νzσ b̃τ = e−iN2πθνσAkzσ b̃ν b̃τ = e−iN2πθνσAkzσ b̃ν+τ ∈ VA.

Next, using equations (1.23a) and (1.23e), we obtain

(1.37) Akzσ b̃τzν = e−iN2πθτνAkzσzν b̃τ = e−iN2πθτνAk(1 +Qp
σ;ν(A))zσ+ν b̃τ ∈ VA.

Similarly, Equation (1.23a) yields

(1.38) zνAkzσ b̃τ = p−νkAkzνzσ b̃τ = p−νkAk(1 +Qp
ν;σ(A))zν+σ b̃τ ∈ VA.

The �nal inclusions follows immediately from Equation (1.35b) and Equation (1.35a) using

Equation (1.23d). �
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Lemma 1.8. For all µ, ν ∈ Z, we have the commutation relation

(1.39) ãνzµ − e−iN2πθµνzµãν ∈ VA.

Here for µ, ν < 0 we have written ãν := ã∗|ν| and zµ = z∗|µ| for brevity.

Proof. The cases µ and ν both positive or both negative follow immediately from Equa-

tion (1.17c), even replacing VA by the zero subspace. For µ > 0 and ν < 0, the result fol-

lows from Equation (1.17d). The �nal case follows by taking the adjoint of Equation (1.17d),

manipulating the result using Equations (1.17a), (1.17c), and then �nally applying Equa-

tion (1.23e). �

Lemma 1.9. The vector subspace V ⊆ A is closed under multiplication.

Proof. It is enough to consider products of basis vectors. First we note that because the only

cost of commuting A and B through any other generator of V is the appearing of central

coe�cients and AB = BA = 0, we can easily conclude that VAVB = VBVA = 0. Next, from

Lemma 1.7 one immediately concludes that VA · VA ⊆ VA, VA · V0 ⊆ VA and V0 · VA ⊆ VA.

Furthermore, using (1.39), (1.35), (1.23a), (1.23b), one can conclude that, for all µ, ν, σ, τ ∈ Z,

zµãνzσãτ ∈ e−iN2πθνσzµzσãν ãτ + zµVAã
τ ⊆ e−iN2πθνσzµzσãν ãτ + VA

= e−iN2πθνσ(1 +Qp
µ;σ(A) +Qq

−µ;−σ(B))zµ+σ(1 +Qp
Nν;Nτ (A))ãν+τ + VA

= e−iN2πθνσ(1 +Qν,τ
µ,σ(A) +Qq

−µ;−σ(B))zµ+σãν+τ + VA,(1.40)

where we have denoted Qν,τ
µ,σ(A) = Qp

µ;σ(A)+Qp
Nν;Nτ (p

−µ−σA)(1+Qp
µ;σ(A)) for brevity. Observe

that due to Equation (1.23d) we have Qν,τ
µ,σ(A)zµ+σãν+τ ∈ VA, so that zµãνzσãτ ∈ V for all

µ, ν, σ, τ ∈ Z. It follows immediately that also W ·W ⊆ V, which completes the proof. �

Summarising, we conclude that V = A because V contains generators of A and is closed

under multiplication. Hence the vectors in the set B, Equation (1.22), span A. This proves

half of Theorem 1.5, and we now complete the proof. To this end, we take the natural ∗-
homomorphism f : A → O(LN

pqθ) de�ned on generators of A by

(1.41) A′ 7→ A := 1− aa∗, B′ 7→ B := 1− bb∗, z′ 7→ ab∗, ã′ 7→ aN , b̃′ 7→ bN .

It is enough to prove that this ∗-homomorphism is a linear bijection.

Before doing so, we note that it follows from (0.16) and (1.14) that

(1.42) f((z′)µ) = eiπθµ(µ−1)aµb−µ, µ ∈ Z.

Also, it follows from Equation (1.12) and relations (0.16), that the values of f on linear gener-

ators (1.22) of A are given by

f((A′)k(z′)µ(b̃′)ν) = eiπθµ(µ−1)AkaµbNν−µ,(1.43a)

f((B′)k(z′)µ(ã′)ν) = ei2πθ(µ(µ−1)
2

+Nµν)Bkaµ+Nνb−µ,(1.43b)

f((z′)µ(ã′)ν) = ei2πθ(µ(µ−1)
2

+Nµν)(1 +Qp
µ;Nν(A))aµ+Nνb−µ,(1.43c)

for all k, µ, ν ∈ Z, k > 0.
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First we show that the homomorphism f is surjective. It is enough to prove that an arbitrary

vector from basis (1.15) is in the image of f . For all k, µ, ν ∈ Z, k > 0, we have

(1.44) AkaµbNν−µ = f
(
e−iπθµ(µ−1)(A′)k(z′)µ(b̃′)ν

)
.

On the other hand, (1.43b) implies that for all k, µ, ν ∈ Z, k > 0, we have

(1.45) BkaµbNν−µ = f
(
e−i2πθ( (−Nν+µ)(−Nν+µ−1)

2
+N(−Nν+µ)ν)(B′)k(z′)−Nν+µ(ã′)ν

)
.

Finally, it follows from the same computation which led to Equation (1.45) that for all µ, ν ∈ Z

(1.46) f
(
e−i2πθ( (−Nν+µ)(−Nν+µ−1)

2
+N(−Nν+µ)ν)(z′)−Nν+µ(ã′)ν

)
= (1 +Qp

−Nν+µ;Nν(A))aµbNν−µ.

Hence, using Equation (1.44) we �nd that for all µ, ν ∈ Z

aµbNν−µ = f
(
e−i2πθ( (−Nν+µ)(−Nν+µ−1)

2
+N(−Nν+µ)ν)(z′)−Nν+µ(ã′)ν

)
(1.47)

− f
(
e−iπθµ(µ−1)Qp

−Nν+µ;Nν(A
′)(z′)µ(b̃′)ν

)
.

Next, to show that the homomorphism f is injective, we suppose that f(v) = 0 for some

v ∈ A. Since the set B spans A, we can write v as a linear combination

v =
∑

k>0; µ,ν∈Z

αkµν(A
′)k(z′)µ(b̃′)ν +

∑
k′>0; µ′,ν′∈Z

βk′µ′ν′(B
′)k′(z′)µ′(ã′)ν′ +

∑
µ′′,ν′′∈Z

γµ′′ν′′(z
′)µ′′(ã′)ν′′ .

Using equations (1.43), we can explicitly compute f(v) to be

f

( ∑
k>0; µ,ν∈Z

αkµν(A
′)k(z′)µ(b̃′)ν +

∑
k′>0; µ′,ν′∈Z

βk′µ′ν′(B
′)k′(z′)µ′(ã′)ν′ +

∑
µ′′,ν′′∈Z

γµ′′ν′′(z
′)µ′′(ã′)ν′′

)

=
∑

k>0; µ,ν∈Z

αkµνe
iπθµ(µ−1)AkaµbNν−µ +

∑
k′>0; µ′,ν′∈Z

βk′µ′ν′e
i2πθ

“
µ′(µ′−1)

2
−Nµ′ν′

”
Bk′aµ′+Nν′b−µ′

+
∑

µ′′,ν′′∈Z

γµ′′ν′′e
i2πθ

“
µ′′(µ′′−1)

2
−Nµ′′ν′′

”
(1 +Qp

µ′′;Nν′′(A))aµ′′+Nν′′b−µ′′ .

Since the set of vectors (1.15) is linearly independent, it follows immediately that f(v) = 0

implies that βk′µ′ν′ = 0, for all k′, µ′, ν ′ ∈ Z, k′ > 0. Now considering the terms γµ′′ν′′a
µ′′+Nν′′b−µ′′

in the last sum, we see that γµ′′ν′′ = 0, for all µ′′, ν ′′ ∈ Z. Then also αkµν = 0, for all k, µ, ν ∈ Z,
k > 0. Hence v = 0, so that f is injective. Finally, note that this also proves that the set of

vectors (1.22) is linearly independent.

1.3. Non-cleftness of the Heegaard O(Z/NZ)-comodule algebras. Let us begin by show-

ing that O(S3
pq) is a principal comodule algebra. As explained in the preliminaries, to this end

it su�ces to construct a strong connection. It turns out that a simple modi�cation of the for-

mulae for a strong connection given in [12, (4.4)�(4.6)] yields a strong connection in our case.

We de�ne the linear map

(1.48) ` : O(Z/NZ) 3 h 7−→ `(h) =: h〈1〉 ⊗ h〈2〉 ∈ O(S3
pqθ)⊗O(S3

pqθ)
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(summation understood in h〈1〉 ⊗ h〈2〉) by setting its values on the basis elements ũn, n =

0, . . . , N − 1, to be

(1.49) `(1) = 1⊗1, `(ũ) = a∗⊗a+p−1b∗A⊗b, `(ũn) = ũ〈1〉`(ũn−1)ũ〈2〉, n = 2, . . . , N−1.

Proving that the above de�ned map is a strong connection is almost identical to an argument

provided in [12].

The method we use to show the non-existence of a cleaving map, is to prove that there are

not enough invertibles in the comodule algebra of the quantum sphere to accomodate the range

of such a map.

Theorem 1.10. The only invertible elements in the algebra of polynomial functions on the

Heegaard quantum sphere O(S3
pqθ) are non-zero multiples of the identity.

Proof. Our proof will follow the general idea and structure of the proof of non-existence of non-

trivial invertible elements in another noncommutative deformation of the polynomial algebra

of S3, namely the Hopf algebra O(SLq(2)) [11]. Here we use the basis (0.18) to present each

element in O(S3
pqθ) as a linear combination of monomials aµbν , µ, ν ∈ Z, with coe�cients in the

polynomial algebra generated by A and B. The crux of the proof is that a and b are invertible

up to polynomials in A and B.

For the duration of this proof, for Z 3 µ, ν < 0 we will write bµ = b∗|µ| and aν := a∗|ν| for

brevity. Recall that any element r ∈ O(S3
pqθ) can be expanded using basis (0.18) as

(1.50) r =
∑
µ,ν∈Z
�nite

Cr
µ;ν(A,B)aµbν ,

where {Cr
µ;ν}µ,ν∈Z is a family of complex polynomials in two variables without mixed monomials.

Here no mixed monomials means that it can be written as

(1.51) Cr
µ;ν(X, Y ) = γr

µ;ν + αr
µ;ν(X) + βr

µ;ν(Y ),

where γr
µ;ν ∈ C and αr

µ;ν and βr
µ;ν are polynomials such that αr

µ;ν(0) = 0 and βr
µ;ν(0) = 0. Since

the family of vectors (0.18) is a linear basis, it follows that the polynomials Cr
µ;ν are uniquely

determined by r.

We endow Z× Z with the lexicographical order, i.e.,

(1.52) (µ, ν) ≤ (µ′, ν ′) := µ < µ′ ∨ (µ = µ′ ∧ ν ≤ ν ′).

This order is linear (total) and satis�es

(1.53) (µ, ν) ≤ (µ′, ν ′) ⇐⇒ (−µ′,−ν ′) ≤ (−µ,−ν).

The latter justi�es introducing a notation −(µ, ν) = (−µ,−ν). Next, we de�ne a Z2-grading

deg : O(S3
pqθ)→ Z2 by declaring

(1.54) deg(C(A,B)aµbν) := (µ, ν), for all µ, ν ∈ Z and C(A,B) 6= 0,

where C is a polynomial in two variables with coe�cients in C.
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We will also need to divide O(S3
pqθ) into the following linear subspaces:

X = Span{Akaµbν | k ≥ 0, µ, ν ∈ Z}, X1 = Span{Akaµbν | k > 0, µ, ν ∈ Z},
Y = Span{Bkaµbν | k ≥ 0, µ, ν ∈ Z}, Y1 = Span{Bkaµbν | k > 0, µ, ν ∈ Z}.(1.55)

Note that

(1.56) X ∩ Y1 = X1 ∩ Y = {0}, X ⊕ Y1 = X1 ⊕ Y = O(S3
pqθ),

i.e., we have two splittings of O(S3
pqθ) into a direct sum of subspaces. The expansion (1.50) and

formula (1.51) provide a way to split any element r ∈ O(S3
pqθ) into a sum of vectors from these

subspaces. For instance, we can split r into vectors

(1.57)
∑

µ,ν∈Z

(γr
µ;ν + αr

µ;ν(A))aµbν ∈ X and
∑

µ,ν∈Z

βr
µ;ν(B)aµbν ∈ Y1.

Using commutation relations (0.16) and Equation (1.12), we can write the expansion of a

product of elements r and s of O(S3
pqθ) as

rs =

(∑
µ,ν∈Z

Cr
µ;ν(A,B)aµbν

)( ∑
µ′,ν′∈Z

Cs
µ′;ν′(A,B)aµ′bν

′

)
=

∑
µ,ν,µ′,ν′∈Z

ei2πθνµ′Cr
µ;ν(A,B)Cs

µ′;ν′(p
−µA, q−νB)(aµaµ′)(bνbν

′
)

=
∑

µ,ν,µ′,ν′∈Z

ei2πθνµ′Cr
µ;ν(A,B)Cs

µ′;ν′(p
−µA, q−νB)(1 +Qp

µ;µ′(A))(1 +Qq
ν;ν′(B))aµ+µ′bν+ν′ .

(1.58)

Hence we obtain

Crs
µ;ν(A,B)(1.59)

=
∑

µ′,ν′∈Z

ei2πθν′(µ−µ′)Cr
µ′;ν′(A,B)Cs

µ−µ′;ν−ν′(p
−µ′A, q−ν′B)

(
1 +Qp

µ′;µ−µ′(A) +Qq
ν′;ν−ν′(B)

)
.

It follows immediately that

(1.60) XY1 ⊆ Y1, Y1X ⊆ Y1, YX1 ⊆ X1, X1Y ⊆ X1.

Furthermore, writing

(1.61) r =
∑
µ,ν∈Z
�nite

Cr
µ;ν(A,B)aµbν =

∑
µ,ν∈Z
�nite

(
γr

µ;ν + αr
µ;ν(A) + βr

µ;ν(B)
)
aµbν

we observe that if r is invertible and either all γr
µ;ν 's or all γ

r−1

µ;ν 's are zero, then the expansion

of rr−1 in terms of basis (0.18) would contain only vectors from X1 or Y1. However, this is

impossible because 1 /∈ X1 ⊕ Y1. Hence, if r is invertible, then at least one of the γr
µ;ν 's (and

also one of the γr−1

µ;ν 's) is non-zero. This observation allows us to de�ne maps on the invertible
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elements of O(S3
pqθ) by

max degX :O(S3
pqθ) −→ Z× Z, r 7−→ max{(µ, ν) ∈ Z× Z | γr

µ;ν + αr
µ;ν(A) 6= 0},(1.62a)

max degY :O(S3
pqθ) −→ Z× Z, r 7−→ max{(µ, ν) ∈ Z× Z | γr

µ;ν + βr
µ;ν(B) 6= 0},(1.62b)

min degX :O(S3
pqθ) −→ Z× Z, r 7−→ min{(µ, ν) ∈ Z× Z | γr

µ;ν + αr
µ;ν(A) 6= 0},(1.62c)

min degY :O(S3
pqθ) −→ Z× Z, r 7−→ min{(µ, ν) ∈ Z× Z | γr

µ;ν + βr
µ;ν(B) 6= 0}.(1.62d)

Next, let r, s ∈ O(S3
pqθ) be invertible, and let (µ, ν) = max degX (r) and (µ′, ν ′) = max degX (s).

Then, by Equation (1.59),

(1.63) γrs
µ+µ′;ν+ν′ + αrs

µ+µ′;ν+ν′(A) = ei2πθνµ′(γr
µ;ν + αr

µ;ν(A))(γs
µ′;ν′ + αs

µ′ν′(p
−µA))(1 +Qp

µ;µ′(A)).

The factors on the right-hand side are non-zero by the de�nition of (µ, ν) and (µ′, ν ′) and

because the algebra generated by A does not contain zero-divisors. It follows that γrs
µ+µ′;ν+ν′ +

αrs
µ+µ′;ν+ν′(A) 6= 0. Therefore, for all invertible r and s we have

(1.64a) max degX (rs) = max degX (r) + max degX (s),

where the addition of pairs of integers is done componentwise. Similarily, we prove that for all

invertible r and s we have

max degY(rs) = max degY(r) + max degY(s),(1.64b)

min degX (rs) = min degX (r) + min degX (s),(1.64c)

min degY(rs) = min degY(r) + min degY(s).(1.64d)

Suppose now that r ∈ O(S3
pqθ) is invertible. Then max degX (rr−1) = max degX (1) = (0, 0),

and similarily max degY(rr
−1) = min degY(rr

−1) = min degX (rr−1) = (0, 0). Hence Equa-

tions (1.64) imply that

max degX (r−1) = −max degX (r), max degY(r
−1) = −max degY(r),(1.65)

min degX (r−1) = −min degX (r), min degY(r
−1) = −min degY(r).

In particular, starting with an obvious property that min degX (r−1) ≤ max degX (r−1) and

substituting Equation (1.65) into it yields that −min degX (r) ≤ −max degX (r). Hence, using

Equation (1.53), we obtain that max degX (r) ≤ min degX (r), so that

(1.66a) max degX (r) = min degX (r) = −max degX (r−1) = −min degX (r−1).

Similarily we prove that

(1.66b) max degY(r) = min degY(r) = −max degY(r
−1) = −min degY(r

−1).

On the other hand, we already know that in the sum (1.61) ∃ (µ, ν) : γr
µ;ν 6= 0. By the linear

independence, also γr
µ;ν +αr

µ;ν(A) 6= 0 and γr
µ;ν +βr

µ;ν(B) 6= 0. Therefore, by (1.66a) and (1.66b),

max degX (r) = (µ, ν) = max degY(r). Using again the linear independence, we conclude that

all terms in (1.61) with the index di�erent from (µ, ν) must vanish.

Summarising, so far we have proven that an invertible element r ∈ O(S3
pqθ) and its inverse

must have the form

(1.67) r = (γr
µ;ν + αr

µ;ν(A) + βr
µ;ν(B))aµbν , r−1 = (γr−1

−µ;−ν + αr−1

−µ;−ν(A) + βr−1

−µ;−ν(B))a−µb−ν



20 PIOTR M. HAJAC, ADAM RENNIE, AND BARTOSZ ZIELI�SKI

for some µ, ν ∈ Z, with γr
µ;νγ

r−1

−µ;−ν 6= 0. Then inserting r and r−1 into formula (1.59) yields

(1.68) 1 = e−i2πθµν(γr
µ;ν + αr

µ;ν(A))(γr−1

−µ;−ν + αr−1

−µ;−ν(A))(1 +Qp
µ;−µ(A)) +B (polynomial(B)).

By linear independence, the term in B vanishes. Now by polynomial degree counting, we can

conclude that the polynomial in A is of degree zero, and hence so are its factors. This yields

(1.69) αr
µ;ν(A) = αr−1

−µ;−ν(A) = Qp
µ;−µ(A) = 0.

Repeating the argument for B gives

(1.70) βr
µ;ν(B) = βr−1

−µ;−ν(B) = Qq
ν;−ν(B) = 0.

Recalling that Qp
µ;−µ(A) = Qq

ν;−ν(B) = 0 only if ν = µ = 0, we infer that r = γr
0;0 ∈ C\{0}. �

Since the Hopf algebra O(Z/NZ) contains a non-trivial group-like element, in the image

of a cleaving map there would have to be a non-trivial invertible (see preliminaries). Hence

Theorem 1.10 implies that a cleaving map does not exist:

Corollary 1.11. O(S3
pqθ) is a non-cleft O(Z/NZ)-comodule algebra.

2. Comodule algebras over the C∗-algebras of Heegaard lens spaces

2.1. K-groups. For theK-theory calculations to come, we utilise a description of the Heegaard

quantum sphere as a pullback of U(1)-C∗-algebras, see the �rst example of Section 5.2 in [10].

We write T for the Toeplitz algebra, and since we will have two copies of this algebra, we

denote their generating isometries by z±. The corresponding unitaries implementing the crossed

products T o±θ Z are denoted by u±. Finally, Z+ and U+ stand for the two generating unitaries

of the noncommutative torus C(S1) oθ Z. With this notation, the pullback structure of

(2.1) C(S3
pqθ) = {(a+, a−) ∈ T oθ Z⊕ T o−θ Z : π1(a+) = π2(a−)}

is given by the following diagram and maps:

(2.2)

C(S3
pqθ)

~~~~
~~

~~
~~

~~
~

  A
AA

AA
AA

AA
AA

T o
θ

Z

π1

��<
<<

<<
<<

<<
<<

<

T o
−θ

Z

π2

����
��

��
��

��
��

z+_

��

u+_

��

z−_

��

u−_

��

C(S1) o
θ

Z

Z+ U+ Z−1
+ Z+U+ .

This is a pullback diagram of U(1)-C∗-algebras, with the natural U(1)-action on the Z-parts.
We restrict this action of U(1) to Z/NZ and consider the pullback diagram obtained by the
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restriction of the above one to its Z/NZ-invariant part:

(2.3)

C(LN
pqθ)

||yy
yy

yy
yy

yy
yy

""E
EE

EE
EE

EE
EE

E

T o
θ
NZ

��>
>>

>>
>>

>>
>>

>>
>

T o
−θ
NZ

����
��

��
��

��
��

��

z+_

��

uN
+_

��

z−_

��

uN
−_

��

C(S1) o
θ
NZ

Z+ UN
+ Z−1

+ (Z+U+)N .

We can use the commutation relations in the noncommutative torus to simplify the rightmost

map as (Z+U+)N = eiN(N−1)πθZN
+U

N
+ . Introducing the generators

(2.4) z̃+ := z+, ũ+ := uN
+ , z̃− := z−, ũ− := uN

− , Z := Z+, U := UN
+ ,

we can rewrite this pullback diagram as

(2.5)

C(LN
pqθ)

pr1

~~}}
}}

}}
}}

}}
}

pr2

  A
AA

AA
AA

AA
AA

T o
Nθ

Z

π̃1

��;
;;

;;
;;

;;
;;

;;

T o
−Nθ

Z

π̃2

����
��

��
��

��
��

�

z̃+_

��

ũ+_

��

z̃−_

��

ũ−_

��

C(S1) o
Nθ

Z

Z U Z−1 eiN(N−1)πθZNU.

For the K-theory calculations to come, we need to know the e�ect of the maps in the pullback

diagram on K-theory generators. These are given by

K0(T o
Nθ

Z) ∼= Z 3 m π̃1∗7−→ (m, 0) ∈ Z⊕ Z ∼= K0(C(S1) o
Nθ

Z),

K0(T o
−Nθ

Z) ∼= Z 3 m π̃2∗7−→ (m, 0) ∈ Z⊕ Z ∼= K0(C(S1) o
Nθ

Z),

K1(T o
Nθ

Z) ∼= Z 3 n π̃1∗7−→ (0, n) ∈ Z⊕ Z ∼= K1(C(S1) o
Nθ

Z),

K1(T o
−Nθ

Z) ∼= Z 3 n π̃2∗7−→ (Nn, n) ∈ Z⊕ Z ∼= K1(C(S1) o
Nθ

Z).(2.6)
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Inserting these K-theory groups and maps into the Mayer-Vietoris 6-term exact sequence (see

preliminaries)

(2.7)

K0(C(LN
pqθ)) // K0(T o

Nθ
Z)⊕K0(T o

−Nθ
Z) // K0(C(S1) o

Nθ
Z)

��
K1(C(S1) o

Nθ
Z)

OO

K1(T o
Nθ

Z)⊕K1(T o
−Nθ

Z)oo K1(C(LN
pqθ))oo

yields the exact sequence

(2.8)

K0(C(LN
pqθ)) // Z⊕ Z

(m,n) 7→(m−n,0)
// Z⊕ Z

��

Z⊕ Z

OO

Z⊕ Z
(−Nn,m−n)←[(m,n)
oo K1(C(LN

pqθ)).
0oo

Thus we immediately obtain that K1(C(LN
pqθ)) = Z. Using this information, we can simplify

the sequence (2.8) to the exact sequence

(2.9) 0→ NZ⊕ Z ↪→ Z⊕ Z→ K0(C(LN
pqθ))→ Z⊕ Z→ Z→ 0.

Consequently, the sequence

(2.10) 0→ NZ ↪→ Z f→ K0(C(LN
pqθ))→ Z→ 0

is exact. Since Z is projective, K0(C(LN
pqθ)) = Imf ⊕ Z and Imf = Z/NZ. Summarising, we

have derived

Theorem 2.1. K0(C(LN
pqθ)) = Z/NZ⊕ Z and K1(C(LN

pqθ)) = Z.

2.2. The generators of K0. With the foregoing computation of K-groups at hand, we are

ready to prove the main result of this paper.

Theorem 2.2. Let LN := {x ∈ C(S3
pqθ) | αe

2πi
N

(x) = e
2πi
N x} ⊆ C(S3

pqθ). Then LN is not stably

free as a left C(LN
pqθ)-module.

Proof. The C∗-algebra C(S3
pqθ) is isomorphic as a U(1)-C∗-algebra to C(S3

00θ) [3, Theorem 2.8].

The latter is generated by isometries s and t with the U(1)-action given by α̃eiϕ(s) = eiϕs,

α̃eiϕ(t) = eiϕt. The induced Z/NZ-action can be therefore written as ∆R(s) = s⊗ ũ, ∆R(t) =

t⊗ ũ, where ũ ∈ C(Z/NZ), ũ(e
2πik

N ) = e
2πik

N . One can immediately check that the formula

(2.11) `(ũk) = s∗k ⊗ sk, k ∈ {0, . . . , N − 1}

de�nes a strong connection, so that C(S3
pqθ) is a C(Z/NZ)-principal comodule algebra (see

preliminaries).

Next, let C be a left C(Z/NZ)-comodule via %(1) = ũ ⊗ 1. Then, as explained in Subsec-

tion 0.2, we can write

(2.12) LN
∼= C(S3

pqθ) 2
C(Z/NZ)

C ∼= C(LN
pqθ)ss

∗.
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Thus ss∗ ∈ C(L3
pqθ(N)) is an idempotent (in fact, projection) representing the K0 class of LN .

On the other hand, we know from the preceding K-theory computation that the Z/NZ-part
of K0(C(LN

pqθ)) is generated by the Bass connecting homomorphism applied to the K1-class of

the unitary Z ∈ C(S1) oNθ Z. In other words, Bass[Z] 6= 0 and NBass[Z] = 0. To compute

Bass[Z], we lift Z and Z−1 to z̃+, z̃
∗
+ ∈ T oNθ Z respectively. The Bass construction (0.24)

yields

(2.13)

(
(1, 1) (0, 0)
(0, 0) (1− z̃+z̃

∗
+, 0)

)
=

(
1 0
0 1

)
−
(

0 0
0 (z̃+z̃

∗
+, 1)

)
.

Finally, using the pullback description of C(S3
00θ) in Equation (2.1), we note that s is expressed

as (z+u+, u−). Hence ss∗ can be written as (z+z
∗
+, 1). As this element belongs to the Z/NZ-

invariant part, we can rewrite it in terms of the C(LN
pqθ) = C(S3

pqθ)
Z/NZ-generators, which in

this instance just means adding ,̃ so that ss∗ := (z̃+z̃
∗
+, 1). Now it is clear that

(2.14) Bass[Z] = 2[1]− [LN ]− [1] = [1]− [LN ].

If LN were stably free, then there would exist k, m ∈ N such that LN ⊕C(LN
pqθ)

k ∼= C(LN
pqθ)

m

as modules. Then the foregoing equation would imply

(2.15) Bass[Z] = [1] + k[1]− [LN ⊕ C(LN
pqθ)

k] = (k + 1−m)[1].

However, since Bass[Z] 6= 0, we conclude that k + 1 −m 6= 0. Hence N(k + 1 −m) 6= 0 and

N(k + 1−m)[1] = 0. This contradicts the fact that the projection map C(LN
pqθ)

pr1−→ T oNθ Z
takes the identity to the identity inducing the map

(2.16) K0(C(LN
pqθ))

pr1∗−→ K0(T o
Nθ

Z) = Z[1], N(k + 1−m)[1]
pr1∗7−→ N(k + 1−m)[1] 6= 0.

Hence LN is not stably free. �

The above theorem shows that the module LN associated to the C(Z/NZ)-principal comodule

algebra C(Spqθ)) is responsible for the torsion part of K0(C(LN
pqθ)) and is not stably free. There

is a hierarchy of implications: associated module not stably free ⇒ associated module not

free ⇒ principal comodule algebra not cleft ⇒ principal comodule algebra not trivial. In the

algebraic part of this paper, we managed to prove by elementary methods that the O(Z/NZ)-

principal comodule algebra O(S3
pqθ) is not cleft. Not going beyond algebraic methods, we could

also prove that the associated O(LN
pqθ)-module

(2.17) LN :=
{
x ∈ O(S3

pqθ)
∣∣∣ α

e
2πi
N

(x) = e
2πi
N x
}
∼= O(S3

pqθ) 2
C(Z/NZ)

C

is not free. However, to show that LN is not stably free, we need to take advantage of Theo-

rem 2.2.

Corollary 2.3. The O(LN
pqθ)-module LN is not stably free.

Proof. Replacing formula (2.11) by (1.49) de�nes a strong connection on C(Z/NZ)-principal

comodule algebra C(S3
pqθ). As in the proof of Theorem 2.2, we can use this strong connection
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to compute an idempotent matrix representing the associated C(LN
pqθ)-module LN . It turns out

to be

(2.18) eN :=

(
1− A p−1zA
z∗ p−1A

)
∈M2(O(LN

pqθ)) ⊆M2(C(LN
pqθ)).

It follows from Theorem 2.2 that, for any non-negative integers k and l, there are no matrices

v and w over C(LN
pqθ) such that

(2.19) vw =

(
eN 0
0 Ik

)
and wv = Il,

where Ik and Il are identity matrices of the size k and l respectively. Hence there are no

such matrices over O(LN
pqθ). On the other hand, since LN is associated by the same group-

like ũ as LN , and the same formulae (1.49) de�ne a strong connection on both O(S3
pqθ) and

C(S3
pqθ) comodule algebras over O(Z/NZ) = C(Z/NZ), we infer that the idempotent matrix

eN also represents LN as an O(LN
pqθ)-module. Combining these two facts, we conclude that the

O(LN
pqθ)-module LN is not stably isomorphic to O(LN

pqθ)
l for any positive integer l. �

3. U(1)-prolongations

3.1. Prolongations in the algebraic setting. By Subsection 0.2, the prolongation ofO(S3
pqθ)

by O(U(1)) is a principal comodule algebra. Furthermore, using [5, Proposition 4.1], one can

prove that it is not cleft if there are no invertible elements in O(S3
pqθ) other then multiples of

identity. Therefore, Theorem 1.10 enjoys the following corollary.

Corollary 3.1. The prolongation O(S3
pqθ)2O(Z/NZ)O(U(1)) is a non-cleft O(U(1))-comodule

algebra.

Now we will try to describe the algebra O(S3
pqθ)2O(Z/NZ)O(U(1)) in more detail. First, we ob-

serve that the cotensor productO(S3
pqθ)2O(Z/NZ)O(U(1)) is equal to (O(S3

pqθ)⊗O(U(1))) coO(Z/NZ)

for the coaction

(3.1) O(S3
pqθ)⊗O(U(1)) 3 p⊗h 7→ p(0)⊗h(2)⊗p(1)S(π(h(1))) ∈ O(S3

pqθ)⊗O(U(1))⊗O(Z/NZ).

This coaction de�nes the following Z/NZ-action:

α̃ : Z/NZ 3 e
2πik

N 7→ α̃
e

2πik
N
∈ Aut(O(S3

pqθ)⊗O(U(1))),(3.2)

α̃
e

2πik
N

(x⊗ h) := α
e

2πik
N

(x)⊗ h(· e
−2πik

N ).

With this action in mind, we can now write

(3.3) O(S3
pqθ) 2

O(Z/NZ)
O(U(1)) = (O(S3

pqθ)⊗O(U(1)))Z/NZ

Next, a straightforward calculation inspired by [5, Lemma 5.3] and taking advantage of the

Hopf ∗-algebra isomorphism

(3.4) ψ : O(U(1)) 3 u 7−→ uN ∈ coO(Z/NZ)O(U(1)) := {h ∈ O(U(1)) | π(h(1))⊗ h(2) = 1⊗ h}

allows us to prove the following result.
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Proposition 3.2. The assigments

O(S3
pqθ)⊗O(U(1)) 3 x⊗ h ϕ7−→ x(0) ⊗ x(1)ψ(h) ∈ (O(S3

pqθ)⊗O(U(1)))Z/NZ,

(O(S3
pqθ)⊗O(U(1)))Z/NZ 3

∑
i

xi ⊗ hi ϕ−1

7−→
∑

i

xi
(0) ⊗ ψ−1(S(xi

(1))h
i) ∈ O(S3

pqθ)⊗O(U(1)),

de�ne mutually inverse isomorphisms of ∗-algebras.

3.2. Prolongations in the C∗-setting. As above, we can argue that the prolongation of

C(S3
pqθ) by O(U(1)) is a principal comodule algebra. However, we need to apply a di�erent

reasoning than above to show that it is not cleft. Recall �rst that, by Theorem 2.2, the

�nitely generated projective left C(LN
pqθ)-module LN is not free. Together with the natural

identi�cations

(3.5) LN
∼= C(S3

pqθ) 2
O(Z/NZ)

C ∼= C(S3
pqθ) 2

O(Z/NZ)
O(U(1)) 2

O(U(1))
C,

we see that the rightmost module is also not free. Since every module associated with a cleft

comodule algebra is necessarily free, we arrive at the following corollary of Theorem 2.2.

Corollary 3.3. The O(U(1))-comodule algebra C(S3
pqθ) 2

O(Z/NZ)
O(U(1)) is not cleft.

To prove an analogue of Proposition 3.2, we use the identi�cation C(X,A) ∼= A⊗̄C(X),

where X is a compact Hausdor� space, A is a unital C∗-algebra, C(X,A) is the algebra of

norm-continuous functions, and C(X) := C(X,C). Furthermore, we easily check that the

formulae

(F1(f))(eiϕ1 , eiϕ2) := αeiϕ1 (f(eiϕ2)),(3.6)

(F2(g))(e
iϕ) := g(eiϕ, eiϕN),(3.7)

(G1(f))(eiϕ1 , eiϕ2) := αeiϕ1 (f(eiϕ2)),(3.8)

(G2(g))(e
iϕ) := g(e

−iϕ
N , e

iϕ
N ),(3.9)

de�ne C∗-homomorphisms in the diagram

(3.10) C(U(1), C(S3
pqθ))

F1 // C(U(1)× U(1), C(S3
pqθ))

G2

oo
F2 // CZ/NZ(U(1), C(S3

pqθ))
G1

oo

C(S3
pqθ)⊗̄C(U(1))

∼=

OO

// (
C(S3

pqθ)⊗̄C(U(1))
)Z/NZ

.

∼=

OO

oo

Here the right bottom corner is de�ned via an extension of the action (3.2) to the C∗-algebra

C(S3
pqθ)⊗̄C(U(1)). Verifying that F2 ◦ F1 and G2 ◦ G1 are mutually inverse maps yields the

desired isomorphism result.

Proposition 3.4. The C∗-algebras C(S3
pqθ)⊗̄C(U(1)) and (C(S3

pqθ)⊗̄C(U(1)))Z/NZ are isomor-

phic.
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