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An easy proof of Gowers’ FINk theorem

Ryszard Frankiewicz Sławomir Szczepaniak

Abstract
A Gowers’ Pigeon Principle is proved without using ultrafilters.

The purpose of the paper is to give a proof of Gowers theorem ([5]) being
a generalization of Hindman theorem ([6]). The presented proof is purely
combinatorial and does not use the theory of ultrafilters as in the original
Gowers’ proof. The method is similar to Baumgartner’s simplification of
the Hindman’s original proof (see [2]); in fact our proof stands in the same
relation to Baumgartner’s as the ’tricky’ (via ultrafilters) proof of Hindman
theorem to the proof of Gowers theorem (see e.g. [7]). In forthcoming paper
[4] the authors extend some of ideas to study distortion problem in Banach
spaces. It is worth to mention that Gowers theorem was motivated by this
problem as well.

The paper is organized in two sections. Section 1. consists of useful no-
tations and basic facts. The second section includes crucial Lemma 4 and
the proof of the Theorem. In fact the proof of the theorem is very similar
to [2] and the most essential (or original) is a proof of Lemma 4.

1. Basic facts and notations.

Throughout the paper we use the following letters i, j, k, l,m, n for non-
negative natural numbers and by ω we denote their universe. We prefer to use
Von Neumann’s definition of numbers; thus for example k+1 = {0, 1, . . . , k}
and i < 2 means i ∈ {0, 1}. Gowers’ Pigeon Principle is a Ramsey-type the-
orem about particular families of functions (sequences) and that is why we
need specific notations; some of them we borrow from [7]. For k and function
p : ω → k + 1 we denote its support by supp(p) = {n < ω : p(n) 6= 0} and
its range p[ω] by rng(p). Define

FINk = {p ∈ω (k + 1) : |supp(p)| < ω & k ∈ rng(p)} .

In particular FIN0 is a singleton of the null function FIN0 = {{(i, 0) : i < ω}}.
Note also that FINk is a subset of a linear space

c00 = {p ∈ω R : |supp(p)| < ω}.
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We equip the collections FINk with a partial ordering defined as

p < q if max supp(p) < min supp(q)

and two operations

• sum p+q: (p+ q)(n) = p(n) + q(n), n < ω, if supp(p) ∩ supp(q) = ∅;

• tetris T : FINk → FINk−1 : T (p)(n) = max{p(n)− 1, 0}, n < ω.

If we write p+q it is always implicite assumed that suppp(p)∩ suppp(q) = ∅.
Moreover, for a subset C of c00 we use the following notation

C + C = {p+ q ∈ c00 : p, q ∈ C (if p+ q is defined)}.
Let us now call a (finite or infinite) family B ⊆ FINk block sequence

if b0 < b1 for any different elements b0, b1 of B. For a block sequence B we
define 〈B〉 as the smallest subfamily of FINk consisting of B and (almost)
closed on the summing and tetris operation, e.i.

〈B〉 =
⋃
f∈N

(T (f(0))[B] + T (f(1))[B] + · · ·+ T (f(|f |-1))[B]) ,

where N is a set of sequences defined as follows

f ∈ N if and only if f is a finite sequence such that 0 ∈ rng(f) ⊆ k + 1,

T (i) is an ith iteration of tetris operation and |f | stands for a length of a given
sequence f . We say that 〈B〉 is generated by block sequence B. Note that
FINk = 〈{{(i, k)} : i < ω}〉. On the family of block sequences of FINk we
define the following partial ordering

B0 � B1 iff B0 ⊆ 〈B1〉.
We say that a family F ⊆ 〈B〉 is B-dense if F ∩ 〈B′〉 6= ∅ for all B′ � B.
Put

DB = {F ⊆ 〈B〉 : F is B-dense} and D[B] =
⋃
{DB′ : B′ � B} .

We end this section with three simple lemmas concerning above families.
The proofs are almost the same as in [2] and they are easy consequences of
definitions but we include them for completeness. Below we consider only
infinite block sequences B ⊆ FINk.

Lemma 1 If F ∈ DB and S ⊆ FINk is finite then {p ∈ F : ∀s∈S s < p} ∈ DB.

Proof:
Suppose F ′ = {p ∈ F : ∀s∈S s < p} /∈ DB for some finite S ⊆ FINk. We
can find then B′ � B such that 〈B′〉 ∩ F ′ = ∅. However it implies that an
infinite block sequence {b ∈ B′ : ∀s∈S s < b} � B witnesses that F /∈ DB.
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Lemma 2 The family D[B] forms (nonpricipal) coideal (see [7]), i.e.

• B ∈ DB ⊆ D[B];

• if F ∈ D[B] and F ⊆ F ′ then F ′ ∈ D[B];

• if F0 ∪ F1 ∈ D[B] then Fi ∈ D[B] for some i < 2.

Proof:
Only the last point is not immediate. Suppose F0 /∈ D[B] and F0∪F1 ∈ DB′

for some B′ � B. Then 〈B′〉 ∩ F0 = ∅ and for arbitrary B′′ � B′ it holds
(F0 ∪ F1) ∩ 〈B′′〉 6= ∅ and F0 ∩ 〈B′′〉 = ∅. Therefore F1 ∈ DB′ ⊆ D[B].

Lemma 3 Let F ∈ DB for some block sequence B ⊆ FINk and let j < k.
If for every i < j it holds

ϕ(F , B, i) ≡ ∀
p,q∈B∩F

T (i)(p) + q ∈ F ,

then ϕ(F ′, B′, j) is satisfied for some F ′ ⊆ F and B′ 6 B with F ′ ∈ DB′ .

Proof:

If we enumerate B = {b0 < b1 < b2 < . . . } then it is easy to check that
F ′ = (T (j)[F ] + F) ∩ F ∈ DB′ , where B′ = {b′0 < b′1 < b′2 < . . . } and
b′n = b2n + T (j)(b2n+1), n < ω, do the work.

2. Lemma, theorem and proof.

The following proof is basically an adaptation of Baumgartner’s proof of
Hindman Theorem to the Gowers Theorem. An idea of the proof using
Lemma 4 is from combinatorial point of view a rather standard concept of
increasing dimension of Ramsey-type theorems; from the geometrical angle
it is a folklore gliding hump argument in infinite-dimensional Banach space
theory. Interested reader is advised to consult with a proof Positive Stepping
Up Lemma from [3] (especially a notion of an end-homogenous set) and for
example the proof that c0 is prime from or more generally Pelczynski-Bessaga
Selection Principle from e.g. [1]. All block sequences below are assumed to
be infinite. We start with aforementioned ’gliding hump’ lemma.
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Lemma 4 Let F ∈ DB for some block sequence B ⊆ FINk. Then there exist
s ∈ F such that

C(F , s) = {p ∈ F : 〈{s, p}〉 ⊆ F} ∈ D[B].

Proof:

If we could find for every n < ω a function pn ∈ B such that pn > pi for
i < n and 〈{pi}i6n〉 ∩ F = ∅ then we would have that 〈{pi}i<ω〉 ∩ F = ∅, a
contradiction with F ∈ DB. Therefore there exist p0, . . . , pn0 such that for
any p ∈ F we have 〈{pi}i6n0 ∪ {p}〉 ∩ F 6= ∅. This gives us the following
finite decomposition of F ′ = {p ∈ F : ∀i6n0 pi < p} ∈ DB (by Lemma 1):

F ′ =
⋃
{{p ∈ F ′ : 〈{p, q}〉 ∩ F 6= ∅} : q ∈ 〈{pi}i6n〉}.

Next by Lemma 2 there exists s ∈ 〈{pi}i6n0〉 and B′ 6 B such that
F ′′ = {p ∈ F ′ : 〈{s, p}〉 ∩ F 6= ∅} ∈ DB′ . After repeating this procedure in
order to obtain consecutive vectors s0 < s1 < . . . and using denseness we can
assume in fact that the above s is in F . Finally, an application of Lemma
3 to F ′′ ∈ DB′ we get the desired objects (note that for k = 1 the above
lemma is a crucial step in Baumgartner’s proof [2]).

Theorem (Gowers’ pigeon principle)
For every finite coloring of FINk there is an block sequence B such that 〈B〉
is monochromatic.

Proof:

Note that it suffices to prove the theorem for two colors. Therefore, assume
that FINk = F∪F ′ is a partition such that there is no infinite block sequence
B ⊆ FINk such that 〈B〉 ⊆ F ′. However it means that F is FINk-dense.

Now, starting from F0 = F and applying Lemma 1 and Lemma 4
recursively, we obtain sequences (Fi)i<ω, S = {sn : n < ω} ⊆ FINk with
si ∈ Fi for i < ω and FINk = B0 > B1 > . . . such that

Fi+1 = {p ∈ C(Fi, si) : ∀j6i sj < p} ∈ DBi+1
for i < ω.

Then observe that S is a block sequence contained in F . Moreover, the
definition of sets of type C(F , s) and F = F0 ⊇ F1 . . . ensure that 〈S〉 ⊆ F .
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