
INSTITUTE OF MATHEMATICS
of the

Polish Academy of Sciences
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Abstract

Let n > 1 be an odd natural number and let r (1 < r < n) be
a natural number relatively prime to n. Denote by χn the trivial
character modulo n. We prove some new congruences for the sums

Tr,k(n) =
∑[n/r]

i=1 (χn(i)/i
k) (modns+1) for s ∈ {0, 1, 2}, for all divisors

r of 24 and for some natural numbers k ≥ 1, in particular for k = 1
or 2 in all the cases. These congruences are obtained by using an
identity proved in [16], which was earlier successfully exploited in [16],
[13] and [7] to solve some other problems. The congruences generalize
those obtained by M. Lerch [12], E. Lehmer [11] and Z.-H. Sun [14] in
the case when n = p is an odd prime. We obtain 82 new congruences
for Tr,k(n). Two congruences for Tr,k(n) (modn2) were proved in [1],
resp. [9] for (r, k) = (2, 1), resp. (4, 2).

MSC: primary 11B68; secondary 11R42; 11A07
Keywords: Congruence; Generalized Bernoulli number; Special value
of L-function; Ordinary Bernoulli number; Bernoulli polynomial; Eu-
ler number

1 Notation and introduction

Let n > 1 be odd and let χ0,n (sometimes abbreviated as χn) be the trivial
Dirichlet character modulo n (with χ0,1 designating the constant function
χ0,1(x) = 1 for all integers x). For r ≥ 2 prime to n denote by qr(n) the
Euler quotient, i.e.,

qr(n) =
rϕ(n) − 1

n
.
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Here and throughout the paper ϕ is the Euler phi-function and Bn,χ denotes
the n-th generalized Bernoulli number attached to the Dirichlet character χ.
For definitions see [18], [8] or [17].

Given the discriminant d of a quadratic field, let χd denote its quadratic
character (Kronecker symbol). We shall denote by χd,n the character χd
modulo n.

It was proved in [4] that the numbers Bi,χd
/i are rational integers unless

d = −4 or d = ±p, where p is an odd prime of a special form. If d = −4 and i
is odd, then the numbers Ei−1 = −2Bi,χ−4/i are odd integers, called the Euler
numbers. If d = ±p, then the numbers Bi,χd

have p in their denominators
and pBi,χd

≡ p− 1 (mod pordp(i)+1).
We consider the ordinary Bernoulli numbers Bi

(1) and the so-called D-
numbers defined in [10] and [6] by Di−1 = −3Bi,χ−3/i for i odd, having
powers of 3 in their denominators. We also consider the rational integers
Ai−1 = Bi,χ8/i, Fi−1 = Bi,χ−3χ−4

/i and Gi−1 = Bi,χ−3χ−8
/i, if i ≥ 2 even,

and Ci−1 = −Bi,χ−8/i and Hi−1 = −Bi,χ−3χ8
/i if i ≥ 1 odd.

In this paper we shall consider congruences for the character sums with
negative weight

Tr,k(n) =
∑

0<i<n/r

χn(i)

ik

modulo powers ns+1 for n > 1 odd and s ∈ {0, 1, 2} where χn = χ0,n and
r (r | 24 and 1 < r < n) is coprime to n, and k ≥ 1 is subject to the
condition k ≤ nsϕ(n). Note that since χn(i) = 0 for (i, n) > 1, the sum is
over (i, n) = 1.

The central role in this paper is played by an identity proved in [16]. Let
χ be a Dirichlet character modulo M , N a positive integral multiple of M ,
and r (> 1) a positive integer prime to N . Then for any integer m ≥ 0 we
have
(1)

(m+ 1)rm
∑

0<n<N/r

χ(n)nm = −Bm+1,χr
m +

χ(r)

ϕ(r)

∑
ψ∈G(r)

ψ(−N)Bm+1,χψ(N) ,

where the sum on the right hand side is taken over all Dirichlet characters
ψ modulo r. We denote by G(r) the group of all such characters; then
#G(r) = ϕ(r). Here Bn,χ(X) =

∑n
i=0

(
n
i

)
Bn−i,χX

i denotes the n-th gener-
alized Bernoulli polynomial attached to χ. Since r | 24, the group G(r) has
exponent 2 and all characters modulo r are quadratic.

(1)Which are generalized Bernoulli numbers attached to the trivial primitive character
χ0,1 (except when i = 1; then B1,χ0,1

= 1/2 = −B1).
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If the character χ modulo M is induced from a character χ̃ modulo some
divisor of M then

(2) Bn,χ = Bn,χ̃

∏
p|M

(
1− χ̃(p)pn−1

)
,

where the product is taken over all primes p dividing M .

If (i, n) = 1, then by Euler’s theorem we have iϕ(n) ≡ 1 (modn), and
more generally,

iϕ(n)n
s ≡ 1 (modns+1)

for s ≥ 0.

Given r prime to n and integers s ≥ 0, k ≥ 1 we denote

Sr,k,s(n) =
∑

0<i<n/r

χn(i)i
nsϕ(n)−k .

Then we have the congruence

(3) Tr,k(n) ≡ Sr,k,s(n) (modns+1),

which allows us to study Tr,k(n) through Sr,k,s(n).

The main results of the paper are congruences for the sums Tr,k(n) modulo
ns+1 for s ∈ {0, 1, 2}. The congruences will be obtained by applying identity
(1) to the sums Sr,k,s(n).

(2) They extend those proved by M. Lerch [12], E.
Lehmer [11] and Z.-H. Sun [14] in the case when n = p is an odd prime. In
principle, the congruences in this particular case have a different form from
those obtained for any natural odd n. Sometimes it is not easy to derive the
former congruences from the latter. We shall do it in the second part of the
paper.

Two such congruences modulo n2 were earlier obtained, by using (1), in
[1] for r = 2, k = 1 and in [9] for r = 4, k = 2. In the present paper we
find 82 new congruences for the sums Tr,k(n) (modns+1) for s ∈ {0, 1, 2},
r | 24 and k ≥ 1, in particular for k = 1 or 2. Most of our congruences for
Tr,k(n) have not been known earlier even in the particular case when n = p
is a prime. The machinery introduced in [16] is much more efficient than the
methods exploited in [12], [11] and [14]. In an appendix to the paper we shall
extend some congruences of E. Lehmer’s type proved in [2] and [3].

(2)This identity was earlier successfully exploited in [16], [13] and [7] to solve some other
problems. See also the book [17] devoted to the identity and related problems.
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2 Some auxiliary formulae

The idea exploited in [1] and [9] to use identity (1) to extend classical congru-
ences for the sums Tr,k(n) seems to be very efficient. This identity allows us
to obtain almost automatically many new congruences. Usually the proofs
using (1) are much easier, more unified and much shorter than those applying
other methods.

The general scheme of reasoning is uniform. To obtain congruences for
the sums Tr,k(n) modulo ns+1 we first determine, using (1), the sums Sr,k,s(n)
modulo ns+1. We substitute in (1) m = nsϕ(n) − k ≥ 0 (and so m + 1 =
nsϕ(n)− k + 1) and N =M = n. Since r | 24 we assume that n > 1 is odd;
then we have (n, r) = 1. If 3 - r then we have (n, r) = 1. If 3 | r, then we
additionally assume that n is not divisible by 3. Note that, since r | 24, all
generalized Bernoulli numbers occurring in Sr,k,s(n) are rational.

Thus, throughout the paper, we write m = nsϕ(n) − k ≥ 0.(3) Conse-
quently, we obtain

(4) Sr,k,s(n) = S1 + S2 ,

where, by (2),

(5) S1 = −
Bm+1,χ0,n

m+ 1
= −Bm+1

m+ 1

∏
p|n

(
1− pm

)
and

S2 =
1

ϕ(r)(m+ 1)rm

∑
ψ∈G(r)

ψ(−n)Bm+1,χ0,nψ
(n) .

Note that χ0,n is even. Thus, if m ̸= 0 is even, then Bm+1 = 0, and so S1 = 0.
If m = 0, then 1− pm = 0, and so S1 = 0 too. Otherwise, in view of (5), we
have S1 ̸= 0. Furthermore,

S2 =
1

ϕ(r)(m+ 1)rm

∑
ψ∈G(r)

ψ(−n)
m+1∑
i=0

(
m+ 1

i

)
Bi,χ0,nψ

nm+1−i

=
1

ϕ(r)(m+ 1)rm

m+1∑
i=0

(
m+ 1

i

)
nm+1−i

∑
ψ∈G(r)

ψ(−n)Bi,χ0,nψ

=
nm+1

ϕ(r)(m+ 1)rm

∑
ψ∈G(r)

ψ(−n)B0,χ0,nψ

(3)That is, k ≤ nsϕ(n).
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+
1

ϕ(r)(m+ 1)rm

m+1∑
i=1

(
m+ 1

i

)
nm+1−i

∑
ψ∈G(r)

ψ(−n)Bi,χ0,nψ

=
nmϕ(n)

(m+ 1)rm+1

+
1

ϕ(r)(m+ 1)rm

m∑
i=0

(
m+ 1

i+ 1

)
nm−i

∑
ψ∈G(r)

ψ(−n)Bi+1,χ0,nψ

because B0,χ0,nψ
= 0 if ψ is not trivial modulo r and

B0,χ0,nχ0,r
=
ϕ(rn)

rn

otherwise, and hence (recall that (r, n) = 1)

nm+1

ϕ(r)(m+ 1)rm

∑
ψ∈G(r)

ψ(−n)B0,χ0,nψ
=

nmϕ(n)

(m+ 1)rm+1
.

Consequently,

(6) S2 = Θs +
1

ϕ(r)rm

m∑
i=0

(
m

i

)
nm−iUi(r) ,

where

Θs = Θs(n,m, r) =
nmϕ(n)

(m+ 1)rm+1

and

Ui(r) =
∑

ψ∈G(r)

ψ(−n)
Bi+1,χ0,nψ

i+ 1
.

2.1 Ui(r) for r | 24
Let n > 1 be odd and relatively prime to r. Here and subsequently, we set

B̃i = Bi

∏
p|n

(
1− pi−1

)
,

Ãi = (−1)
n2−1

8 Ai
∏
p|n

(
1− (−1)

p2−1
8 pi

)
,

C̃i = (−1)
(n−1)(n+5)

8 Ci
∏
p|n

(
1− (−1)

(p−1)(p+5)
8 pi

)
,
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D̃i = (−1)ν(n)Di

∏
p|n

(
1− (−1)ν(p)pi

)
,

Ẽi = (−1)
n−1
2 Ei

∏
p|n

(
1− (−1)

p−1
2 pi

)
,

F̃i = (−1)
n−1
2

+ν(n)Fi
∏
p|n

(
1− (−1)

p−1
2

+ν(p)pi
)
,

G̃i = (−1)
(n−1)(n+5)

8
+ν(n)Gi

∏
p|n

(
1− (−1)

(p−1)(p+5)
8

+ν(p)pi
)
,

H̃i = (−1)
n2−1

8
+ν(n)Hi

∏
p|n

(
1− (−1)

p2−1
8

+ν(p)pi
)
,

where χ−3(n) = (−1)ν(n), ν(n) = 0, resp. 1 if n ≡ 1, resp.− 1 (mod 3).

In the following, we compute Ui(r) for r = 2, 3, 4, 6, 8, 12 or 24.

1. Case r = 2

Then #G(2) = 1 and G(2) = {χ0,2}. Then, by definition and identity (2),

(7) Ui(2) =

{
B̃i+1

i+1

(
1− 2i

)
, if i is odd;

0, if i is even.

2. Case r = 3

Then #G(3) = 2 and G(3) = {χ0,3, χ−3}. Then, by definition and identity
(2),

(8) Ui(3) =

{
B̃i+1

i+1

(
1− 3i

)
, if i is odd;

1
3
D̃i, if i is even.

3. Case r = 4

Then #G(4) = 2 and G(4) = {χ0,4, χ−4}. Thus, by definition and the same
arguments as in the case r = 3 (note that both characters χ−3 and χ−4 are
odd), in view of (2) we obtain

(9) Ui(4) =

{
B̃i+1

i+1

(
1− 2i

)
, if i is odd;

1
2
Ẽi, if i is even.

4. Case r = 6
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Then #G(6) = 2 and G(6) = {χ0,6, χ−3,6}. Consequently, by (2) and the
same arguments as in the previous case we obtain

(10) Ui(6) =

{
B̃i+1

i+1

(
1− 2i

)(
1− 3i

)
, if i is odd;

1
3
D̃i

(
1 + 2i

)
, if i is even.

5. Case r = 8

Then #G(8) = 4 and G(8) = {χ0,8, χ−4,8, χ−8, χ8}. Therefore, in view of (2),

(11) Ui(8) =

{
B̃i+1

i+1

(
1− 2i

)
+ Ãi, if i is odd;

1
2
Ẽi + C̃i, if i is even.

6. Case r = 12

Then #G(12) = 4 and G(12) = {χ0,12, χ−3,12, χ−4,12, χ(−3)(−4)}. Conse-

quently, by definition and (2),

(12) Ui(12) =

{
B̃i+1

i+1

(
1− 2i

)(
1− 3i

)
+ F̃i, if i is odd;

1
3
D̃i

(
1 + 2i

)
+ 1

2
Ẽi

(
1 + 3i

)
, if i is even.

7. Case r = 24

Then #G(24) = 8 and

G(24) = {χ0,24, χ−3,24, χ−4,24, χ(−3)(−4),24, χ(−3)(−8), χ(−3)8, χ−8,24, χ8,24} .

Consequently, in view of (2),
(13)

Ui(24) =

{
B̃i+1

i+1

(
1− 2i

)(
1− 3i

)
+ F̃i + G̃i + Ãi

(
1 + 3i

)
, if i is odd;

1
3
D̃i

(
1 + 2i

)
+ 1

2
Ẽi

(
1 + 3i

)
+ H̃i + C̃i

(
1− 3i

)
, if i is even.

2.2 The sums Sr,k,s(n) (modns+1) for m > s, r | 24, s ≤ 2

The generalized Bernoulli numbers attached to Dirichlet characters modulo
r, with r | 24, are rational numbers. In what follows we consider congruences
for Sr,k,s(n) modulo ns+1 for n > 1 odd and s ∈ {0, 1, 2}. We assume that n
is not divisible by 3 if 3 | r; then r and ϕ(r) are coprime to n.

It is shown in the previous section that the numbers Ui(r) are linear

combinations of the numbers Ãi, C̃i, D̃i, Ẽi, F̃i, G̃i, H̃i and the quotients B̃i+1

i+1
.

Denote by U odd
i (r), resp. U even

i (r) the sum Ui(r) taken over odd, resp. even
characters ψ modulo r. Note that Ui(r) = U odd

i (r)+U even
i (r) and U odd

i (r) = 0
U even
i (r) = 0 if i is odd or even, respectively.
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First we recall some divisibility properties of the quotients
Bi+1,χ

i+1
for prim-

itive Dirichlet characters χ of conductors fχ | nr. These quotients, multiplied
by some Euler factors, are summands of Ui. We start with some elementary
lemmas on the quotients Bi+1

i+1
of the ordinary Bernoulli numbers. Lemma 1

is called the von Staudt and Clausen theorem. Lemma 2 due to L. Carlitz is
its generalization.

Lemma 1. (See [18, Theorem 5.10] or [8, Corollary to Theorem 3, p. 233]).
Let k be an even natural number and let p be a prime number. Then Bk

contains p in its denominator if and only if p− 1 | k and pBk ≡ −1 (mod p).

Lemma 2. (See [5].) If pν(p− 1) | k, ν ≥ 0 then pBk ≡ p− 1 (mod pν+1).

Lemma 3. (See [8, Proposition 15.2.4, p. 238]). If p−1 - k then the quotients
Bk/k are p-integral.

Since conductors of non-trivial characters occurring in Ui(r) are coprime
to n, they are not powers of a prime divisor of n. In such cases we have a
useful lemma:

Lemma 4. (See [6, Theorem 1.5].) Let χ be a primitive Dirichlet character
with conductor fχ. If fχ is not a power of a given prime number p, then the

quotients Bn,χ

n
(n ≥ 1) are p-integral.

We set NTU even
i (r) = U even

i (r) − B̃i+1

i+1

∏
p|r

(
1 − pi

)
. By Lemma 4 we

obtain:

Lemma 5. Let r be coprime to p for a given prime number p | n. Then
the numbers U odd

i (r) for i even and the numbers NTU even
i (r) for i odd are

p-integral.

Assume that m = nsϕ(n)− k > s for s ∈ {0, 1, 2}.(4) Since for odd n > 1
ϕ(n) is even, m and k are of the same parity. We divide each of the cases
s = 0, 1 or 2 into two subcases:

(i) if k is even (example: k = 2),

(ii) if k is odd (example: k = 1).

Our purpose is to obtain some congruences for the sums Sr,k,s(n) modulo
ns+1 for s ∈ {0, 1, 2}, and next using congruence (3) to obtain congruences
for the sums Tr,k(n). We prove that the latter sums are congruent modulo

ns+1 to linear combinations of the quotients B̃m/m and some of the numbers

(4)Then k < nsϕ(n)− s.
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Ãm−1, C̃m, C̃m−2, D̃m, D̃m−2, Ẽm, Ẽm−2, F̃m−1, G̃m−1, H̃m, H̃m−2 if k is even,
and of the quotients B̃m−1/(m− 1), B̃m+1/(m+1) and some of the numbers

Ãm, Ãm−2, C̃m−1, D̃m−1, Ẽm−1, F̃m, F̃m−2, G̃m, G̃m−2, H̃m−1 if k is odd.(5)

We start with the study of the case s = 2. Next, similarly, we derive the
remaining congruences modulo n2 and modulo n. First we show when the
numbers Θs (defined in (6)) are congruent to 0 modulo ns+1.

Lemma 6. Let n > 1 be odd and let 1 < r ≤ n be coprime to n. Assume
that m > s and p | n is a prime. Then the numbers Θs in (6) are p-integral
and

Θs =
nmϕ(n)

(m+ 1)rm+1
≡ 0 (modns+1)

except when s = 1, 3∥n, 3 - ϕ(n) and m = 2.(6)

Proof. First we prove that the numbers Θs are p-integral for m ≥ s + 1. It
suffices to show that mordp(n)− ordp(m+1) ≥ 0. Let us define the function
g(x) = x − logp(x + 1), which is increasing for x ≥ 1. Since logp(m + 1) ≥
ordp(m+ 1) and ordp(n) ≥ 1 we obtain that

mordp(n)− ordp(m+ 1) ≥ m− logp(m+ 1) = g(m) ≥ g(s+ 1) > 0

because g(3) = 3−logp(5) > 0, g(2) = 2−logp(4) > 0 and g(1) = 1−logp(2) >
0 for any prime p.

Let us consider the functions fs(x) = x− s− logp(x+1) for x ≥ 1, which

are increasing for x ≥ 1.(7) Note that the congruence Θs ≡ 0 (modns+1) for
m > s holds if and only if

(m− s)ordp(n) + ordp(ϕ(n))− ordp(m+ 1) > 0

for every p | n.
In view of logp(m+ 1) ≥ ordp(m+ 1) and ordp(n) ≥ 1 the above follows

from the inequality fs(m) > 0 for m ≥ 3 if s = 1, 2, and for m ≥ 1 if s = 0
because

(m− s)ordp(n)− ordp(m+ 1) ≥ (m− s)− logp(m+ 1) = fs(m)

(5)As well as of Euler’s quotients q2(n) or q3(n) if k = 1.
(6)Then Θ1 = n2ϕ(n)/3r3 and the exceptional n′s have the form n = 3

∏u
i=1 p

ei
i where

pi ≡ 2 (mod 3) for i = 1, . . . , u. Moreover k = nϕ(n)− 2 is even. Obviously, if k ≥ 2 and
(k − 1, n) = 1, then the congruence Θ1 ≡ 0 (modns+1) is true because m + 1 and n are
coprime. We leave it to the reader to verify that the congruence holds if k = 1.

(7)The functions g(x) and fs(x) are increasing since g′(x) = f ′
s(x) = 1 − 1

(x+1)logp > 0

for x ≥ 1.
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and fs(m) ≥ f2(3) = 1−logp(4) > 0 if s = 2, fs(m) ≥ f1(3) = 2−logp(4) > 0
if s = 1 and fs(m) ≥ f0(1) = 1 − logp(2) > 0 if s = 0 for every p | n. This
gives the congruence Θs ≡ 0 (modns+1) for s = 0, 2 and m > s and s = 1
and m ≥ 3.

In the case when s = 1 and m = 2 we have f1(2) = 1 − logp(3) > 0 if
p ≥ 5, and so the congruence holds for 3 - n. We are left with the task of
checking when the congruence holds for s = 1, m = 2 and 3 | n. Then it is

easily seen that the congruence Θ1 = n2ϕ(n)
3r3

≡ 0 (modn2) holds if and only
if ord3(ϕ(n)) ≥ 1. This does not hold if and only if s = 1, 3∥n, 3 - ϕ(n),
m = 2, as claimed.

2.2.1 The case when s = 2

Assume that m = n2ϕ(n) − k and 1 ≤ k < n2ϕ(n) − 2 (m > 2). Then, by
Lemma 6, Θ2 ≡ 0 (modn3).

Case (i):

If k ≥ 2 is even, then m+1 = n2ϕ(n)−k+1 is odd. Consequently S1 = 0
in (4). Thus, combining (4) and (6) gives Sr,k,2(n) = Θ2+S2 ≡ S2 (modn3),
and

Sr,k,2(n) ≡ S2 ≡
1

ϕ(r)rm

(
U odd
m (r) +mnU even

m−1(r)

+

(
m

2

)
n2U odd

m−2(r) +

(
m

3

)
n3U even

m−3(r)
)
(modn3)

(14)

because for every prime number p | n, by Lemma 5, the summands U odd
m (r),(

m
2

)
n2U odd

m−2(r), mnU
even
m−1(r) and

(
m
3

)
n3U even

m−3(r)
(8) are p-integral.

Case (ii):

If k ≥ 1 is odd, then m + 1 is even and S1 ̸= 0. Moreover, by Lemma 6,
Θ2 ≡ 0 (modn3). Thus, by (4), (5), (6), we obtain

Sr,k,2(n) ≡ − B̃m+1

m+ 1
+

1

ϕ(r)rm

(
U even
m (r)

+mnU odd
m−1(r) +

(
m

2

)
n2U even

m−2(r)
)
(modn3)

(8)With m, m− 2 even and m− 1, m− 3 odd.
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since, by Lemmas 4 or 5,
(
m
3

)
n3U odd

m−3(r)
(9) is p-integral for any p | n and

divisible by n3.
Consequently, if k is odd and r, ϕ(r) are relatively prime to n, we find,

by Lemma 4, that

Sr,k,2(n) ≡
B̃m+1

m+ 1

(
− 1 +

1

ϕ(r)rm

∏
q|r

(
1− qm

))
+

1

ϕ(r)rm

(
NTU even

m (r) +mnU odd
m−1(r) +

(
m

2

)
n2U even

m−2(r)
)
(modn3) .

(15)

Note that for p | n, by Lemma 5, the summands NTU even
m (r),

(
m
2

)
n2U even

m−2(r)

and mnU odd
m−1(r)

(10) are p-integral.
Moreover, if p | n and p− 1 | m+1, i.e., p is in the denominator of Bm+1,

then by the little Fermat theorem, we have qm ≡ q−1 (mod pordp(m+1)+1) and
rm ≡ r−1 (mod pordp(m+1)+1) (recall that r is coprime to n), and

−1 +
1

ϕ(r)rm

∏
q|r

(
1− qm

)
≡ −1 +

r

ϕ(r)

∏
q|r

(
1− q−1

)
= 0 (mod pordp(m+1)+1) .

Hence and from Lemma 2, it follows that for p | n the first summand of
the right hand side of (15) is p-integral in the case when p − 1 | m + 1. If
p− 1 - m+ 1, then the same conclusion follows from Lemma 3.

2.2.2 The case when s = 1

Assume that m = nϕ(n) − k and 1 ≤ k < nϕ(n) − 1 (m > 1). Then, by
Lemma 6, Θ1 ≡ 0 (modn2) if m > 2. If m = 2 and r | 8, then the congruence
holds if n is not divisible by 3 or divisible by 9. If m = 2 and 3∥n, then it is
true for 3 | ϕ(n).

Case (i):

If k ≥ 2 is even, then analysis similar to that in the proof of (14) shows
that

(16) Sr,k,1(n) ≡
1

ϕ(r)rm

(
U odd
m (r) +mnU even

m−1(r)
)
(modn2)

if m > 2 or m = 2 and n is not exceptional in the sense of Lemma 6
since

(
m
2

)
n2U odd

m−2(r) +
(
m
3

)
n3U even

m−3(r) is divisible by n2. If m = 2 and n is

(9)With m− 3 even.
(10)With m, m− 2 odd and m− 1 even.



12 Shigeru Kanemitsu, Takako Kuzumaki and Jerzy Urbanowicz

exceptional, i.e. 3∥n and 3 - ϕ(n), then we should add to the right hand side
of (16) the correction Θ1 = n2ϕ(n)/3r3, but we prefer to exclude the case
when m = 2, i.e., k = nϕ(n)− 2.

Case (ii):

If k ≥ 1 is odd, then by Lemma 6 we have Θ1 ≡ 0 (modn2) and a similar
argument to that in the proof of (15) shows that

Sr,k,1(n) ≡
B̃m+1

m+ 1

(
− 1 +

1

ϕ(r)rm

∏
q|r

(
1− qm

))
+

1

ϕ(r)rm

(
NTU even

m (r) +mnU odd
m−1(r) +

(
m

2

)
n2U even

m−2(r)
)
(modn2) .

(17)

2.2.3 The case when s = 0

Assume that m = ϕ(n) − k and 1 ≤ k < ϕ(n). Then, by Lemma 6, Θ0 ≡
0 (modn).

Case (i):

If k ≥ 2 is even, then in the same way as in the proof of (16) we obtain

(18) Sr,k,0(n) ≡
1

ϕ(r)rm

(
U odd
m (r) +mnU even

m−1(r)
)
(modn).

Case (ii):

If k ≥ 1 is odd, then by a similar argument to that in the proof of (17)
we find
(19)

Sr,k,0(n) ≡
B̃m+1

m+ 1

(
−1+

1

ϕ(r)rm

∏
q|r

(
1−qm

))
+

1

ϕ(r)rm
NTU even

m (r) (modn)

because mnU odd
m−1(r) +

(
m
2

)
n2U even

m−2(r) is divisible by n, which is an easy con-
sequence of Lemmas 1 and 5.

3 The main results of the paper

In this section we compute the sums Tr,k(n) (modns+1) for s ∈ {0, 1, 2} and
all r | 24, using congruence (3) and congruences for the sums Sr,k,s(n), namely
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congruences (14) and (15) if s = 2, (16) and (17) if s = 1, and (18) and (19)
if s = 0.

We divide each of the three cases s = 0, 1 or 2 into seven subcases: r =
2, 3, 4, 6, 8, 12, 24, obtaining congruences for Tr,k(n) for 1 ≤ k < nsϕ(n)−s.
In the second part of the paper we shall derive from obtained congruences
some congruences in the case when n = p is an odd prime. Some of such
congruences were proved by M. Lerch [12], E. Lehmer [11] and Z.-H. Sun
[14], but most of them were not earlier known.

We substitute formulae (7–13) into congruences (14), (16) and (18) if k
is even and congruences (15), (17) and (19) if k is odd. Consequently, after
some calculations, we obtain Theorems 1–35.

In the theorems below, given any k ≥ 1 and ρ ∈ Z, we write

I(k, ρ) = {n > 1: 2 - n and p - n if p− 1 | k + ρ}(11)

and

Q2(n) = −2q2(n)+nq
2
2(n)−

2

3
n2q32(n), Q3(n) = −3

2
q3(n)+

3

4
nq23(n)−

1

2
n2q33(n) .

The sums Tr,1(n) presented in Theorems 4, 9, 14, 19, 24, 29 and 34 below are

congruent to linear combinations of Euler’s quotients ÊQr(n) plus some

generalized Bernoulli numbers where ÊQ2(n) = Q2(n), ÊQ3(n) = Q3(n),

ÊQ4(n) =
3
2
Q2(n), ÊQ6(n) = Q2(n)+Q3(n), ÊQ8(n) = 2Q2(n), ÊQ12(n) =

3
2
Q2(n) + Q3(n) and ÊQ24(n) = 2Q2(n) + Q3(n). For i = 2, 3 set Q′′

i (n) =
Qi(n) (modn2) and Q′

i(n) = Qi(n) (modn).

1. Case r = 2

Theorem 1. Given an odd n > 1 and 1 ≤ k < n2ϕ(n) − 2, write m =
n2ϕ(n)− k. Then:
(i)

T2,k(n) ≡
1

2

(
2k+1 − 1

)
nB̃m +

1

24

(
k + 1

2

)(
2k+3 − 1

)
n3B̃m−2 (modn3)

if k is even, and in particular,

T2,k(n) ≡
1

2

(
2k+1 − 1

)
nB̃m (modn3)

(11)Note that if k and ρ are of the same parity and n ∈ I(k, ρ), then 3 - n; e.g., I(1, 1) =
{n > 1: 2, 3 - n}, I(3, 1) = I(2, 2) = {n > 1: 2, 3, 5 - n} or I(5, 1) = I(4, 2) = {n >
1: 2, 3, 7 - n}.
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if n ∈ I(k, 2);
(ii)

T2,k(n) ≡ 2k
(
1− 2m+1

) B̃m+1

m+ 1
− k

8

(
2k+2 − 1

)
n2B̃m−1 (modn3)

if k is odd.

Proof. If k is even, resp. odd, then it suffices to apply congruence (14),
resp. (15). Substituting (7) into these congruences gives the theorem im-
mediately.

Theorem 2. Given an odd n > 1 and 1 ≤ k < nϕ(n) − 2,(12) write m =
nϕ(n)− k. Then:
(i)

T2,k(n) ≡
1

2

(
2k+1 − 1

)
nB̃m (modn2)

if k is even;
(ii) (cf. [14] if n = p is an odd prime number)

T2,k(n) ≡ 2k
(
1− 2m+1

) B̃m+1

m+ 1
− k

8

(
2k+2 − 1

)
n2B̃m−1 (modn2)

if k is odd, and in particular,

T2,k(n) ≡ 2k
(
1− 2m+1

) B̃m+1

m+ 1
(modn2)

if n ∈ I(k, 1).

Proof. Theorem 2 follows easily from (16), resp. (17) and (7), if k is even,
resp. odd.

Theorem 3. Given an odd n > 1 and 1 ≤ k < ϕ(n), write m = ϕ(n) − k.
Then:
(i)

T2,k(n) ≡
1

2

(
2k+1 − 1

)
nB̃m (modn)

if k is even, and in particular,

T2,k(n) ≡ 0 (modn)

(12)Theorem 2(i) is also true for k = nϕ(n)− 2 if we assume that n is not exceptional in
the sense of Lemma 6; for exceptional n we should add the correction Θ1 = 1

24n
2ϕ(n) to

the right hand side of the congruence.
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if n ∈ I(k, 0);
(ii)

T2,k(n) ≡ 2k
(
1− 2m+1

) B̃m+1

m+ 1
(modn)

if k is odd.

Proof. Theorem 3 follows from (18), resp. (19) if k is even, resp. odd and
from (7) in both cases.

Theorem 4. Let n > 1 be odd. Then:
(i) (cf. [14] if n = p is an odd prime)

T2,1(n) ≡ Q2(n)−
7

8
n2B̃n2ϕ(n)−2 (modn3);

(ii) (see [1] and cf. [14] if n = p is an odd prime)

T2,1(n) ≡ Q′′
2(n) (modn2)

if n is not divisible by 3;
(iii) (cf. [11] if n = p is an odd prime)

T2,1(n) ≡ Q′
2(n) (modn).

Proof. This is a particular case of Theorems 1–3(ii) for k = 1. Then m+1 =
nsϕ(n) and, by 2ϕ(n) = nq2(n) + 1, we have

2
(
1− 2m+1

) B̃m+1

m+ 1
= 2

(
1− (2ϕ(n))n

s)B̃nsϕ(n)

nsϕ(n)
= 2

(
1− (1 + nq2(n))

ns)B̃nsϕ(n)

nsϕ(n)

≡
(
Q2(n) + αn3)

nB̃nsϕ(n)

ϕ(n)
≡ Q2(n) (modns+1)

because α ∈ Z, s ≤ 2 and

(20)
nB̃nsϕ(n)

ϕ(n)
≡ 1 (modns+1) .

Indeed, if p0 | n is a prime, then (p0 − 1)p
(s+1)ordp0 (n)−1
0 | nsϕ(n) and, by

Lemma 2,

nB̃nsϕ(n)

ϕ(n)
≡

n
(
p0 − 1

)
p0ϕ(n)

∏
p|n, p̸=p0

(
1− p−1

)
= 1

(
mod p

(s+1)ordp0 (n)
0

)
.

This completes the proof of (20) and of Theorem 4.



16 Shigeru Kanemitsu, Takako Kuzumaki and Jerzy Urbanowicz

Theorem 5. Let n > 1 be odd. Then:
(i)

T2,2(n) ≡
7

2
nB̃n2ϕ(n)−2 +

31

8
n3B̃n2ϕ(n)−4 (modn3),

and in particular

T2,2(n) ≡
7

2
nB̃n2ϕ(n)−2 (modn3)

if 3, 5 - n;
(ii)

T2,2(n) ≡
7

2
nB̃nϕ(n)−2 (modn2);

(iii)
T2,2(n) ≡ 0 (modn)

if 3 - n.

Proof. This is an immediate consequence of Theorems 1–3(i) for k = 2.

2. Case r = 3

Theorem 6. Given an odd n > 1 not divisible by 3 and 1 ≤ k < n2ϕ(n)− 2,
write m = n2ϕ(n)− k. Then:
(i)

T3,k(n) ≡
3k−1

2
D̃m +

1

6

(
3k+1 − 1

)
nB̃m +

3k−1

2

(
k + 1

2

)
n2D̃m−2 (modn3)

if k is even and n ∈ I(k, 2);
(ii)

T3,k(n) ≡
3k

2

(
1−3m+1

) B̃m+1

m+ 1
− 3k−1

2
knD̃m−1−

k

36

(
3k+2−1

)
n2B̃m−1 (modn3)

if k is odd.

Proof. For k even, resp. odd we combine formula (8) with congruence (14),
resp. (15). Hence the theorem follows at once.

Theorem 7. Given an odd n > 1 not divisible by 3 and 1 ≤ k < nϕ(n)− 1,
write m = nϕ(n)− k. Then:
(i)

T3,k(n) ≡
3k−1

2
D̃m +

1

6

(
3k+1 − 1

)
nB̃m (modn2)

if k is even;
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(ii)

T3,k(n) ≡
3k

2

(
1− 3m+1

) B̃m+1

m+ 1
− 3k−1

2
knD̃m−1 (modn2)

if k is odd and n ∈ I(k, 1).

Proof. In this case we substitute (8) into congruences (16) if k is even or (17)
if k is odd.

Theorem 8. Given an odd n > 1 not divisible by 3 and 1 ≤ k < ϕ(n), write
m = ϕ(n)− k. Then:
(i) (cf. [14] if n = p is a prime)

T3,k(n) ≡
3k−1

2
D̃m (modn)

if k is even and n ∈ I(k, 0);
(ii) (cf. [14] if n = p is a prime.)

T3,k(n) ≡
3k

2

(
1− 3m+1

) B̃m+1

m+ 1
(modn)

if k is odd.

Proof. Theorem 8 follows from (8) and congruences (18) if k is even or (19)
if k is odd.

Theorem 9. Let n > 1 be odd and not divisible by 3. Then:
(i) (cf. [14] if n = p is a prime)

T3,1(n) ≡ Q3(n)−
1

2
nD̃n2ϕ(n)−2 −

13

18
n2B̃n2ϕ(n)−2 (modn3);

(ii)

T3,1(n) ≡ Q′′
3(n)−

1

2
nD̃nϕ(n)−2 (modn2);

(iii)
T3,1(n) ≡ Q′

3(n) (modn).

Proof. This is a particular case of Theorems 6–8(ii) for k = 1. Then m+1 =
nsϕ(n) and, by 3ϕ(n) = nq3(n) + 1 and (20), we obtain

3

2

(
1− 3m+1

) B̃m+1

m+ 1
=

3

2

(
1− (3ϕ(n))n

s)B̃nsϕ(n)

nsϕ(n)
=

3

2

(
1− (1 + nq3(n))

ns)B̃nsϕ(n)

nsϕ(n)

≡
(
Q3(n) + βn3

)nB̃nsϕ(n)

ϕ(n)
≡ Q3(n) (modns+1)

because β ∈ Z and s ≤ 2. The rest of the proof is straightforward.
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Theorem 10. Let n > 1 be odd and not divisible by 3. Then:
(i)

T3,2(n) ≡
3

2
D̃n2ϕ(n)−2 +

13

3
nB̃n2ϕ(n)−2 +

9

2
n2D̃n2ϕ(n)−4 (modn3)

if n is not divisible by 5;
(ii)

T3,2(n) ≡
3

2
D̃nϕ(n)−2 +

13

3
nB̃nϕ(n)−2 (modn2);

(iii)

T3,2(n) ≡
3

2
D̃ϕ(n)−2 (modn) .

Proof. This is a particular case of Theorems 6–8(i) for k = 2.

3. Case r = 4

Theorem 11. Given an odd n > 3 and 1 ≤ k < n2ϕ(n) − 2, write m =
n2ϕ(n)− k. Then:
(i)

T4,k(n) ≡ 22k−2Ẽm + 2k−2
(
2k+1 − 1

)
nB̃m + 22k−2

(
k + 1

2

)
n2Ẽm−2 (modn3)

if k is even and n ∈ I(k, 2);
(ii)

T4,k(n) ≡ 22k−1
(
1− 2m − 22m+1

) B̃m+1

m+ 1
− 22k−2knẼm−1

− 2k−4k
(
2k+2 − 1

)
n2B̃m−1 (modn3)

if k is odd.

Proof. This is an immediate consequence of (14) or (15). We apply formula
(9).

Theorem 12. Given an odd n > 3 and 1 ≤ k < nϕ(n) − 2,(13) write m =
nϕ(n)− k. Then:
(i)

T4,k(n) ≡ 22k−2Ẽm + 2k−2
(
2k+1 − 1

)
nB̃m (modn2)

(13)Theorem 12(i) is also true for k = nϕ(n)− 2 if we assume that n is not exceptional in
the sense of Lemma 6; for exceptional n we should add the correction Θ1 = 1

192n
2ϕ(n) to

the right hand side of the congruence.
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if k is even;
(ii) (cf. [14] if n = p is an odd prime)

T4,k(n) ≡ 22k−1
(
1− 2m − 22m+1

) B̃m+1

m+ 1
− 22k−2knẼm−1 (modn2)

if k is odd and n ∈ I(k, 1).

Proof. We substitute (9) into (16) or (17) and the theorem follows.

Theorem 13. Given an odd n > 3 and 1 ≤ k < ϕ(n)−1, write m = ϕ(n)−k.
Then:
(i) (cf. [14] if n = p is an odd prime)

T4,k(n) ≡ 22k−2Ẽm (modn)

if k is even and n ∈ I(k, 0);
(ii) (cf. [14] if n = p is an odd prime)

T4,k(n) ≡ 22k−1
(
1− 2m − 22m+1

) B̃m+1

m+ 1
(modn)

if k is odd.

Proof. Here we use congruences (18) or (19) together with formula (9).

Theorem 14. Let n > 3 be odd. Then:
(i) (cf. [14] if n = p is an odd prime)

T4,1(n) ≡
3

2
Q2(n)− nẼn2ϕ(n)−2 −

7

8
n2B̃n2ϕ(n)−2 (modn3);

(ii) (cf. [14] if n = p is an odd prime)

T4,1(n) ≡
3

2
Q′′

2(n)− nẼnϕ(n)−2 (modn2)

if n is not divisible by 3;
(iii)

T4,1(n) ≡
3

2
Q′

2(n) (modn) .

Proof. This is a particular case of Theorems 11–13(ii) for k = 1. Then
m+ 1 = nsϕ(n) and, by 2ϕ(n) = nq2(n) + 1 and (20), we have

2
(
1− 2m − 22m+1

) B̃m+1

m+ 1
=

(
2− (2ϕ(n))n

s − (2ϕ(n))2n
s)B̃nsϕ(n)

nsϕ(n)
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=
(
(1− (1 + nq2(n))

ns

) + (1− (1 + nq2(n))
2ns

)
)B̃nsϕ(n)

nsϕ(n)

≡
(1
2
Q2(n) +Q2(n) + γn3

)nB̃nsϕ(n)

ϕ(n)
≡ 3

2
Q2(n) (modns+1)

because γ ∈ Z and s ≤ 2. This gives the theorem at once since the rest of
the proof is straightforward.

Theorem 15. Let n > 3 be odd. Then:
(i)

T4,2(n) ≡ 4Ẽn2ϕ(n)−2 + 7nB̃n2ϕ(n)−2 + 12n2Ẽn2ϕ(n)−4 (modn3)

if 3, 5 - n;
(ii) (see [9])

T4,2(n) ≡ 4Ẽnϕ(n)−2 + 7nB̃nϕ(n)−2 (modn2);

(iii)

T4,2(n) ≡ 4Ẽϕ(n)−2 (modn)(14)

if n is not divisible by 3.

Proof. This is a particular case of Theorems 11–13(i) in case k = 2.

4. Case r = 6

Theorem 16. Given an odd n > 5 not divisible by 3 and 1 ≤ k < n2ϕ(n)−2,
write m = n2ϕ(n)− k. Then:
(i)

T6,k(n) ≡
3k−1

2

(
2k + 1

)
D̃m +

1

12

(
2k+1 − 1

)(
3k+1 − 1

)
nB̃m

+
3k−1

8

(
k + 1

2

)(
2k+2 − 1

)
n2D̃m−2 (modn3)

if k is even and n ∈ I(k, 2);
(ii)

T6,k(n) ≡ 2k−13k
B̃m+1

m+ 1

(
1− 2m − 3m − 6m

)
− 3k−1

4

(
2k+1 + 1

)
knD̃m−1

− k

144

(
2k+2 − 1

)(
3k+2 − 1

)
n2B̃m−1 (modn3)

if k is odd.

(14)It was an open problem in [2, p. 204].



On congruences for the sums
∑[n/r]

i=1
χn(i)
ik

of E. Lehmer’s type 21

Proof. This is an immediate consequence of congruences (14) if k is even or
(15) if k is odd and formula (10).

Theorem 17. Given an odd n > 5 not divisible by 3 and 1 ≤ k < nϕ(n)−1,
write m = nϕ(n)− k. Then:
(i)

T6,k(n) ≡
3k−1

2

(
2k + 1

)
D̃m +

1

12

(
2k+1 − 1

)(
3k+1 − 1

)
nB̃m (modn2)

if k is even;
(ii)

T6,k(n) ≡ 2k−13k
B̃m+1

m+ 1

(
1−2m−3m−6m

)
− 3k−1

4

(
2k+1+1

)
knD̃m−1 (modn2)

if k is odd and n ∈ I(k, 1).

Proof. Substituting (10) into congruences (16), resp. (17) gives the theorem
if k is even, resp. odd at once.

Theorem 18. Given an odd n > 5 not divisible by 3 and 1 ≤ k < ϕ(n),
write m = ϕ(n)− k. Then:
(i) (cf. [14] if n = p is an odd prime)

T6,k(n) ≡
3k−1

2

(
2k + 1

)
D̃m (modn)

if k is even and n ∈ I(k, 0);
(ii) (cf. [14] if n = p is an odd prime)

T6,k(n) ≡ 2k−13k
B̃m+1

m+ 1

(
1− 2m − 3m − 6m

)
(modn)

if k is odd.

Proof. This follows from (18), resp. (19) and (10) for k even, resp. odd.

Theorem 19. Let n > 5 be odd and not divisible by 3. Then:
(i)

T6,1(n) ≡ Q2(n) +Q3(n)−
5

4
nD̃n2ϕ(n)−2 −

91

72
n2B̃n2ϕ(n)−2 (modn3);

(ii)

T6,1(n) ≡ Q′′
2(n) +Q′′

3(n)−
5

4
nD̃nϕ(n)−2 (modn2);

(iii)
T6,1(n) ≡ Q′

2(n) +Q′
3(n) (modn).
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Proof. This is a particular case of Theorems 16–18(ii) for k = 1. Then
m + 1 = nsϕ(n) and, in view of 2ϕ(n) = nq2(n) + 1, 3ϕ(n) = nq3(n) + 1 and
(20), we find that

3
(
1− 2m − 3m − 6m

) B̃m+1

m+ 1

=
1

2

(
6− 3(2ϕ(n))n

s − 2(3ϕ(n))n
s − (2ϕ(n))n

s

(3ϕ(n))n
s)B̃nsϕ(n)

nsϕ(n)

=
1

2

(
3(1− (1 + nq2(n))

ns

) + 2(1− (1 + nq3(n))
ns

)

+ (1− (1 + nq2(n)
ns

(1 + nq3(n))
ns

)
)B̃nsϕ(n)

nsϕ(n)

≡ 1

2

(3
2
Q2(n) +

4

3
Q3(n) +

1

2
Q2(n) +

2

3
Q3(n) + λn3

)nB̃nsϕ(n)

ϕ(n)

≡ Q2(n) +Q3(n) (modns+1)

because λ ∈ Z and s ≤ 2. This gives the theorem.

Theorem 20. Let n > 5 be odd and not divisible by 3. Then:
(i)

T6,2(n) ≡
15

2
D̃n2ϕ(n)−2 +

91

6
nB̃n2ϕ(n)−2 +

153

8
n2D̃n2ϕ(n)−4 (modn3);

(ii)

T6,2(n) ≡
15

2
D̃nϕ(n)−2 +

91

6
nB̃nϕ(n)−2 (modn2);

(iii)

T6,2(n) ≡
15

2
D̃ϕ(n)−2 (modn).

Proof. The theorem follows easily from Theorems 16–18(i) for k = 2.

5. Case r = 8

Theorem 21. Given an odd n > 7 and 1 ≤ k < n2ϕ(n) − 2, write m =
n2ϕ(n)− k. Then:
(i)

T8,k(n) ≡ 23k−3Ẽm + 23k−2C̃m + 22k−3
(
2k+1 − 1

)
nB̃m − 23k−2knÃm−1

+ 23k−3

(
k + 1

2

)
n2Ẽm−2 + 23k−2

(
k + 1

2

)
n2C̃m−2 (modn3)
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if k is even and n ∈ I(k, 2);
(ii)

T8,k(n) ≡ 23k−2
(
1− 2m − 23m+2

) B̃m+1

m+ 1
+ 23k−2Ãm

− 23k−3knẼm−1 − 23k−2knC̃m−1

− 22k−5kn2
(
2k+2 − 1

)
B̃m−1 + 23k−2

(
k + 1

2

)
n2Ãm−2 (modn3)

if k is odd.

Proof. This follows from congruence (14), resp. (15) for k even, resp. odd
and formula (11).

Theorem 22. Given an odd n > 7 and 1 ≤ k < nϕ(n) − 1,(15) write m =
nϕ(n)− k. Then:
(i)

T8,k(n) ≡ 23k−3Ẽm + 23k−2C̃m + 22k−3
(
2k+1 − 1

)
nB̃m

− 23k−2knÃm−1 (modn2)

if k is even;
(ii)

T8,k(n) ≡ 23k−2
(
1− 2m − 23m+2

) B̃m+1

m+ 1
+ 23k−2Ãm − 23k−3knẼm−1

− 23k−2knC̃m−1 (modn2)

if k is odd and n ∈ I(k, 1).

Proof. This follows from (11), and (16), resp. (17) if k is even, resp. odd.

Theorem 23. Given an odd n > 7 and 1 ≤ k < ϕ(n), write m = ϕ(n)− k.
Then:
(i)

T8,k(n) ≡ 23k−3Ẽm + 23k−2C̃m (modn)

if k is even and n ∈ I(k, 0);
(ii)

T8,k(n) ≡ 23k−2
(
1− 2m − 23m+2

) B̃m+1

m+ 1
+ 23k−2Ãm (modn)

if k is odd.

(15)Theorem 22(i) is also true for k = nϕ(n)− 2 if we assume that n is not exceptional in
the sense of Lemma 6; for exceptional n we should add the correction Θ1 = 1

1536n
2ϕ(n)

to the right hand side of the congruence.
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Proof. This is an immediate consequence of (11) and congruences (18), resp.
(19) if k is even, resp. odd.

Theorem 24. Let n > 7 be odd. Then:
(i)

T8,1(n) ≡ 2Q2(n) + 2Ãn2ϕ(n)−1 − nẼn2ϕ(n)−2 − 2nC̃n2ϕ(n)−2

− 7

8
n2B̃n2ϕ(n)−2 + 2n2Ãn2ϕ(n)−3 (modn3);

(ii)

T8,1(n) ≡ 2Q′′
2(n) + 2Ãnϕ(n)−1 − nẼnϕ(n)−2 − 2nC̃nϕ(n)−2 (modn2)

if n is not divisible by 3;
(iii)

T8,1(n) ≡ 2Q′
2(n) + 2Ãϕ(n)−1 (modn).

Proof. This is a particular case of Theorems 21–23(ii) for k = 1. Then
m+ 1 = nsϕ(n) and, by virtue of 2ϕ(n) = nq2(n) + 1 and (20), we obtain

2
(
1− 2m − 23m+2

) B̃m+1

m+ 1
=

(
2− (2ϕ(n))n

s − (2ϕ(n))3n
s)B̃nsϕ(n)

nsϕ(n)

=
(
2− (1 + nq2(n))

ns − (1 + nq2(n))
3ns)B̃nsϕ(n)

nsϕ(n)

≡
(1
2
Q2(n) +

3

2
Q2(n) + ξn3

)nB̃nsϕ(n)

ϕ(n)
≡ 2Q2(n) (modns+1)

because ξ ∈ Z and s ≤ 2. This gives the theorem at once.

Theorem 25. Let n > 7 be odd. Then, we have:
(i)

T8,2(n) ≡ 8Ẽn2ϕ(n)−2 + 16C̃n2ϕ(n)−2 + 14nB̃n2ϕ(n)−2 − 32nÃn2ϕ(n)−3

+ 24n2Ẽn2ϕ(n)−4 + 48n2C̃n2ϕ(n)−4 (modn3)

if 3, 5 - n;
(ii)

T8,2(n) ≡ 8Ẽnϕ(n)−2 + 16C̃nϕ(n)−2 + 14nB̃nϕ(n)−2 − 32nÃnϕ(n)−3 (modn2);

(iii)

T8,2(n) ≡ 8Ẽϕ(n)−2 + 16C̃ϕ(n)−2 (modn)

if n is not divisible by 3.
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Proof. Apply Theorems 21–23(i) for k = 2.

6. Case r = 12

Theorem 26. Given an odd n > 11 not divisible by 3 and 1 ≤ k < n2ϕ(n)−2,
write m = n2ϕ(n)− k. Then:
(i)

T12,k(n) ≡ 2k−23k−1
(
2k + 1

)
D̃m + 22k−3

(
3k + 1

)
Ẽm

+
2k−3

3

(
2k+1 − 1

)(
3k+1 − 1

)
nB̃m − 22k−23kknF̃m−1

+ 2k−43k−1

(
k + 1

2

)(
2k+2 + 1

)
n2D̃m−2

+
22k−3

9

(
k + 1

2

)(
3k+2 + 1

)
n2Ẽm−2 (modn3)

if k is even and n ∈ I(k, 2);
(ii)

T12,k(n) ≡ 22k−23k
B̃m+1

m+ 1

(
1− 2m − 3m + 6m − 4 · 12m

)
+ 22k−23kF̃m

− 2k−33k−1
(
2k+1 + 1

)
knD̃m−1 −

22k−3

3

(
3k+1 + 1

)
knẼm−1

− 2k−5

9

(
2k+2 − 1

)(
3k+2 − 1

)
kn2B̃m−1

+ 22k−23k
(
k + 1

2

)
n2F̃m−2 (modn3)

if k is odd.

Proof. Apply congruences (14), resp. (15) and formula (12).

Theorem 27. Given an odd n > 11 not divisible by 3 and 1 ≤ k < nϕ(n)−1,
write m = nϕ(n)− k. Then:
(i)

T12,k(n) ≡ 2k−23k−1
(
2k + 1

)
D̃m + 22k−3

(
3k + 1

)
Ẽm

+
2k−3

3

(
2k+1 − 1

)(
3k+1 − 1

)
nB̃m − 22k−23kknF̃m−1 (modn2)

if k is even;
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(ii)

T12,k(n) ≡ 22k−23k
B̃m+1

m+ 1

(
1− 2m − 3m + 6m − 4 · 12m

)
+ 22k−23kF̃m

− 2k−33k−1
(
2k+1 + 1

)
knD̃m−1 −

22k−3

3

(
3k+1 + 1

)
knẼm−1 (modn2)

if k is odd and n ∈ I(k, 1).

Proof. The above congruences follow from congruences (16), resp. (17), if k
is even, resp. odd. We also use formula (12).

Theorem 28. Given an odd n > 11 not divisible by 3 and 1 ≤ k < ϕ(n),
write m = ϕ(n)− k. Then:
(i)

T12,k(n) ≡ 2k−23k−1
(
2k + 1

)
D̃m + 22k−3

(
3k + 1

)
Ẽm (modn)

if k is even and n ∈ I(k, 0);
(ii)

T12,k(n) ≡ 22k−23k
B̃m+1

m+ 1

(
1− 2m − 3m + 6m − 4 · 12m

)
+ 22k−23kF̃m (modn)

if k is odd.

Proof. We proceed in the same way as in the proof of the previous theorem.
Now we use congruences (18), resp. (19) if k is even, resp. odd, and formula
(12).

Theorem 29. Let n > 11 be odd not divisible by 3. Then:
(i)

T12,1(n) ≡
3

2
Q2(n) +Q3(n) + 3F̃n2ϕ(n)−1 −

5

4
nD̃n2ϕ(n)−2 −

5

3
nẼn2ϕ(n)−2

− 91

72
n2B̃n2ϕ(n)−2 + 3n2F̃n2ϕ(n)−3 (modn3);

(ii)

T12,1(n) ≡
3

2
Q′′

2(n)+Q
′′
3(n)+3F̃nϕ(n)−1−

5

4
nD̃nϕ(n)−2−

5

3
nẼnϕ(n)−2 (modn2);

(iii)

T12,1(n) ≡
3

2
Q′

2(n) +Q′
3(n) + 3F̃ϕ(n)−1 (modn).



On congruences for the sums
∑[n/r]

i=1
χn(i)
ik

of E. Lehmer’s type 27

Proof. This is a particular case of Theorems 26–28(ii) for k = 1. Then
m+ 1 = nsϕ(n) and, by virtue of 2ϕ(n) = nq2(n) + 1, 3ϕ(n) = nq3(n) + 1 and
(20), we have

3
(
1− 2m − 3m + 6m − 4 · 12m

) B̃m+1

m+ 1

=
(
3− 3

2
(2ϕ(n))n

s−(3ϕ(n))n
s

+
1

2
(2ϕ(n))n

s

(3ϕ(n))n
s−(2ϕ(n))2n

s

(3ϕ(n))n
s
)B̃nsϕ(n)

nsϕ(n)

=
(3
2

(
1− (1 + nq2(n))

ns)
+
(
1− (1 + nq3(n))

ns)
− 1

2

(
1− (1 + nq2(n))

ns

(1− (1 + nq3(n))
ns)

+
(
1− (1 + nq2(n))

2ns

(1 + nq3(n))
ns))B̃nsϕ(n)

nsϕ(n)

≡
(3
4
Q2(n)+

2

3
Q3(n)−

1

4
Q2(n)−

1

3
Q3(n) +Q2(n)+

2

3
Q3(n)+ηn

3
)nB̃nsϕ(n)

ϕ(n)

≡ 3

2
Q2(n) +Q3(n) (modns+1)

because η ∈ Z and s ≤ 2. The rest of the proof is straightforward.

Theorem 30. Let n > 11 be odd and not divisible by 3. Then:

(i)

T12,2(n) ≡ 15D̃n2ϕ(n)−2 + 20Ẽn2ϕ(n)−2 +
91

3
nB̃n2ϕ(n)−2 − 72nF̃n2ϕ(n)−3

+
153

4
n2D̃n2ϕ(n)−4 +

164

3
n2Ẽn2ϕ(n)−4 (modn3)

if n is not divisible by 5;

(ii)

T12,2(n) ≡ 15D̃nϕ(n)−2 + 20Ẽnϕ(n)−2 +
91

3
nB̃nϕ(n)−2 − 72nF̃nϕ(n)−3 (modn2);

(iii)

T12,2(n) ≡ 15D̃ϕ(n)−2 + 20Ẽϕ(n)−2 (modn).

Proof. This follows at once from Theorems 26–28(i) for k = 2.

7. Case r = 24
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Theorem 31. Given an odd n > 23 not divisible by 3 and 1 ≤ k < n2ϕ(n)−2,
write m = n2ϕ(n)− k. Then:
(i)

T24,k(n) ≡ 22k−33k−1
(
2k + 1

)
D̃m + 23k−4

(
3k + 1

)
Ẽm + 23k−33kH̃m

+23k−3
(
3k−1

)
C̃m+

22k−4

3

(
2k+1−1

)(
3k+1−1

)
nB̃m−23k−33kknF̃m−1

− 23k−33kknG̃m−1 −
23k−3

3

(
3k+1 + 1

)
knÃm−1

+22k−53k−1

(
k + 1

2

)(
2k+2+ 1

)
n2D̃m−2+

23k−4

9

(
k + 1

2

)(
3k+2+1

)
n2Ẽm−2

+23k−33k
(
k + 1

2

)
n2H̃m−2+

23k−3

9

(
3k+2−1

)(k + 1

2

)
n2C̃m−2(modn3)

if k is even and n ∈ I(k, 2);
(ii)

T24,k(n) ≡ 23k−33k
B̃m+1

m+ 1

(
1− 2m − 3m + 6m − 8 · 24m

)
+ 23k−33kF̃m

+ 23k−33kG̃m + 23k−3
(
3k + 1

)
Ãm − 22k−43k−1

(
2k+1 + 1

)
knD̃m−1

− 23k−4

3

(
3k+1+1

)
knẼm−1−23k−33kknH̃m−1 −

23k−3

3

(
3k+1−1

)
knC̃m−1

− 22k−6

9

(
2k+2 − 1

)(
3k+2 − 1

)
kn2B̃m−1 + 23k−33k

(
k + 1

2

)
n2F̃m−2

+23k−33k
(
k + 1

2

)
n2G̃m−2+

23k−3

9

(
k + 1

2

)(
3k+2+1

)
n2Ãm−2(modn3)

if k is odd.

Proof. This follows from congruences (14), resp. (15) if k is even, resp. odd
with the use of (13).

Theorem 32. Given an odd n > 23 not divisible by 3 and 1 ≤ k < nϕ(n)−1,
write m = nϕ(n)− k. Then:
(i)

T24,k(n) ≡ 22k−33k−1
(
2k + 1

)
D̃m + 23k−4

(
3k + 1

)
Ẽm + 23k−33kH̃m

+ 23k−3
(
3k − 1

)
C̃m +

22k−4

3

(
2k+1 − 1

)(
3k+1 − 1

)
nB̃m

− 22k−33kknF̃m−1 − 23k−33kknG̃m−1
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− 23k−3

3

(
3k+1 + 1

)
knÃm−1 (modn2)

if k is even;
(ii)

T24,k(n) ≡ 23k−33k
B̃m+1

m+ 1

(
1− 2m − 3m + 6m − 8 · 24m

)
+ 23k−33kF̃m

+ 23k−33kG̃m + 23k−3
(
3k + 1

)
Ãm − 22k−43k−1

(
2k+1 + 1

)
knD̃m−1

− 23k−4

3

(
3k+1 + 1

)
knẼm−1 − 23k−33kknH̃m−1

− 23k−3

3

(
3k+1 − 1

)
knC̃m−1 (modn2)

if k is odd and n ∈ I(k, 1).

Proof. The same reasoning as in the proof of the previous theorem applies
to congruences modulo n2. Now we use congruences (16), resp. (17) and
formula (13).

Theorem 33. Given an odd n > 23 not divisible by 3 and 1 ≤ k < ϕ(n),
write m = ϕ(n)− k. Then:
(i)

T24,k(n) ≡ 22k−33k−1
(
2k + 1

)
D̃m + 23k−4

(
3k + 1

)
Ẽm

+ 23k−33kH̃m + 23k−3
(
3k − 1

)
C̃m (modn)

if k is even and n ∈ I(k, 0);
(ii)

T24,k(n) ≡ 23k−33k
B̃m+1

m+ 1

(
1− 2m − 3m + 6m − 8 · 24m

)
+ 23k−33kF̃m + 23k−33kG̃m + 23k−3

(
3k + 1

)
Ãm (modn)

if k is odd.

Proof. This follows from congruences (18), resp. (19) if k is even, resp. odd.
We make use of formula (13).

Theorem 34. Let n > 23 be odd and not divisible by 3. Then:
(i)

T24,1(n) ≡ 2Q2(n) +Q3(n) + 3F̃n2ϕ(n)−1 + 3G̃n2ϕ(n)−1 + 4Ãn2ϕ(n)−1
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− 5

4
nD̃n2ϕ(n)−2 −

5

3
nẼn2ϕ(n)−2 − 3nH̃n2ϕ(n)−2 −

8

3
nC̃n2ϕ(n)−2

− 91

72
n2B̃n2ϕ(n)−2+3n2F̃n2ϕ(n)−3+3n2G̃n2ϕ(n)−3+

28

9
n2Ãn2ϕ(n)−3(modn3);

(ii)

T24,1(n) ≡ 2Q′′
2(n) +Q′′

3(n) + 3F̃nϕ(n)−1 + 3G̃nϕ(n)−1 + 4Ãnϕ(n)−1

− 5

4
nD̃nϕ(n)−2 −

5

3
nẼnϕ(n)−2 − 3nH̃nϕ(n)−2 −

8

3
nC̃nϕ(n)−2 (modn2);

(iii)

T24,1(n) ≡ 2Q′
2(n) +Q′

3(n) + 3F̃ϕ(n)−1 + 3G̃ϕ(n)−1 + 4Ãϕ(n)−1 (modn).

Proof. This is a particular case of Theorems 31–33(ii) for k = 1. Then
m + 1 = nsϕ(n) and, in view of 2ϕ(n) = nq2(n) + 1, 3ϕ(n) = nq3(n) + 1 and
(20), we have

3
(
1− 2m − 3m + 6m − 8 · 24m

) B̃m+1

m+ 1

=
(
3− 3

2
(2ϕ(n))n

s−(3ϕ(n))n
s

+
1

2
(2ϕ(n))n

s

(3ϕ(n))n
s−(2ϕ(n))3n

s

(3ϕ(n))n
s
)B̃nsϕ(n)

nsϕ(n)

=
(3
2

(
1− (1 + nq2(n))

ns)
+
(
1− (1 + nq3(n))

ns)
− 1

2

(
1− (1 + nq2(n))

ns

(1 + nq3(n))
ns)

+
(
1− (1 + nq2(n))

3ns

(1 + nq3(n))
ns))B̃nsϕ(n)

nsϕ(n)

≡
(3
4
Q2(n)+

2

3
Q3(n)−

1

4
Q2(n)−

1

3
Q3(n)+

3

2
Q2(n)+

2

3
Q3(n)+ωn

3
)nB̃nsϕ(n)

ϕ(n)

≡ 2Q2(n) +Q3(n) (modns+1)

because ω ∈ Z and s ≤ 2. This proves the theorem.

Theorem 35. Let n > 23 be odd and not divisible by 3. Then:
(i)

T24,2(n) ≡ 30D̃n2ϕ(n)−2 + 40Ẽn2ϕ(n)−2 + 72H̃n2ϕ(n)−2 + 64C̃n2ϕ(n)−2

+
182

3
nB̃n2ϕ(n)−2 − 144nF̃n2ϕ(n)−3 − 144nG̃n2ϕ(n)−3 −

448

3
nÃn2ϕ(n)−3

+
153

2
n2D̃n2ϕ(n)−4 +

328

3
n2Ẽn2ϕ(n)−4 + 216n2H̃n2ϕ(n)−4
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+
640

3
n2C̃n2ϕ(n)−4 (modn3)

if n is not divisible by 5;
(ii)

T24,2(n) ≡ 30D̃nϕ(n)−2 + 40Ẽnϕ(n)−2 + 72H̃nϕ(n)−2 + 64C̃nϕ(n)−2

+
182

3
nB̃nϕ(n)−2 − 36nF̃nϕ(n)−3 − 144nG̃nϕ(n)−3

− 448

3
nÃnϕ(n)−3 (modn2);

(iii)

T24,2(n) ≡ 30D̃ϕ(n)−2 + 40Ẽϕ(n)−2 + 72H̃ϕ(n)−2 + 64C̃ϕ(n)−2 (modn)

Proof. This follows easily from Theorems 31–33(i) for k = 2.

4 Concluding remarks

Let p ≥ 3 be a prime number and let r be a natural number such that
1 < r < p. In the next part of the paper we are going to prove some new
congruences for the sums Tr,k(p) =

∑[p/r]
i=1 (1/i

k) modulo ps+1 for s = 0, 1 or
2, all divisors r of 24 and k ≥ 1, in particular for k = 1 or 2 in all the cases.
We shall use the congruences proved in the present paper in the case when
n = p is an odd prime as well as Kummer’s congruences for the generalized
Bernoulli numbers.
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