INSTITUTE OF MATHEMATICS of the Polish Academy of Sciences

ul. Śniadeckich 8, P.O.B. 21, 00-956 Warszawa 10, Poland

IM PAN Preprint 736 (2012)

Takako Kuzumaki, Jerzy Urbanowicz

On congruences for the sums $\sum_{i=1}^{[n / r \mid]} \frac{x_{n}(i)}{n-r i}$ of E.Lehmer's type

Published as manuscript

On congruences for the sums $\sum_{i=1}^{[n / r]} \frac{\chi_{n}(i)}{n-r i}$ of E. Lehmer's type*

Takako Kuzumaki ${ }^{\dagger}$ Jerzy Urbanowicz ${ }^{\ddagger}$

Abstract

The present paper is an appendix to the paper [9]. We obtain some new congruences for the sums $U_{r}(n)=\sum_{i=1}^{[n / r]} \frac{\chi_{n}(i)}{n-r i}\left(\bmod n^{s+1}\right)$ for $s \in\{0,1,2\}$ and $r \mid 24$. These congruences are consequences of those proved in [9] by using an identity from [15]. Our congruences for $s=1$ extend those obtained in [2] and [3] for $r \in\{2,3,4,6\}$ and $2,3 \nmid n$. These four congruences have the same form as those proved by E. Lehmer [11] in the case when $n=p$ is an odd prime. They are rational linear combinations of Euler's quotients. In the case when $r \in$ $\{8,12,24\}$, omitted in [11], [2] and [3], the congruences are linear combinations of the Euler quotients and three generalized Bernoulli numbers $\frac{1}{n \phi(n)} B_{n \phi(n), \chi} \prod_{p \mid n}\left(1-p^{n \phi(n)-1}\right)$ attached to even quadratic characters χ of conductor dividing 24. Also some new congruences for $s=$ 2 with one additional summand $-\frac{n^{2}}{2 r^{3}} B_{n^{2} \phi(n)-2} \prod_{p \mid n}\left(1-p^{n^{2} \phi(n)-3}\right)$ for all $r \mid 24$ are obtained.

$M S C$: primary 11B68; secondary 11R42; 11A07
Keywords: Congruence; Generalized Bernoulli number; Special value of L-function; Ordinary Bernoulli number; Bernoulli polynomial; Euler number

1 Notation and introduction

Following [9], let $n \in \mathbb{N}$ be odd and let χ_{n} be the trivial Dirichlet character modulo n. For $r \geq 2$ coprime to $n, q_{r}(n)$ denotes the Euler quotient, i.e.,

$$
q_{r}(n)=\frac{r^{\phi(n)}-1}{n}
$$

[^0]where ϕ is the Euler phi-function. Let $B_{i, \chi}$ denote the i-th generalized Bernoulli number attached to a Dirichlet character χ; as usual B_{i} are the ordinary Bernoulli numbers. For definitions see [17], [7] or [16].

Given the discriminant d of a quadratic field, let χ_{d} denote its quadratic character (Kronecker symbol). It follows from [4] that the quotients $B_{i, \chi_{d}} / i$ are rational integers unless $d=-4$ or $d= \pm p$, where p is an odd prime of a special form. We shall consider such numbers (with $d= \pm p$) only if $d=-3$; then we have the so-called D-numbers defined in [10] and [5] by $D_{i-1}=-3 B_{i, \chi-3} / i$ for i odd. ${ }^{(1)}$

If $d=-4$ and i is odd, then the numbers $E_{i-1}=-2 B_{i, \chi_{-4}} / i$ are odd integers, called the Euler numbers. Following [9], we also consider the rational integers $A_{i-1}=B_{i, \chi_{8}} / i, F_{i-1}=B_{i, \chi_{-3} \chi_{-4}} / i$ and $G_{i-1}=B_{i, \chi_{-3} \chi_{-8}} / i$, if $i \geq 2$ even, and $C_{i-1}=-B_{i, \chi_{-8}} / i$ and $H_{i-1}=-B_{i, \chi_{-3} \chi_{8}} / i$ if $i \geq 1$ odd.

In the present paper we find congruences for the sums

$$
U_{r}(n)=\sum_{0<i<n / r} \frac{\chi_{n}(i)}{n-r i}
$$

modulo n^{s+1} for $s \in\{0,1,2\}$ and $r \mid 24(1<r<n)$ coprime to n. To obtain such congruences it suffices to use appropriate congruences for the sums

$$
T_{r, k}(n)=\sum_{0<i<n / r} \frac{\chi_{n}(i)}{i^{k}}
$$

or, equivalently, for the sums

$$
S_{r, k, s}(n)=\sum_{0<i<n / r} \chi_{n}(i) i^{n^{s} \phi(n)-k}
$$

for $k \in\{1,2,3\}$. Such congruences were shown in [9]. In [9] the congruence

$$
\begin{equation*}
T_{r, k}(n) \equiv S_{r, k, s}(n)\left(\bmod n^{s+1}\right) \tag{1}
\end{equation*}
$$

was proved by using an identity from $[15]^{(2)}$ and a well-known congruence

$$
\begin{equation*}
i^{n^{s} \phi(n)} \equiv 1\left(\bmod n^{s+1}\right) \tag{2}
\end{equation*}
$$

which holds for $(i, n)=1$ and is implied by Euler's congruence $i^{\phi(n)} \equiv$ $1(\bmod n)$. Here we assume that $n^{s} \phi(n)-k \geq 0$.

[^1]The congruences obtained for the sum $U_{r}(n)$ extend those proved in [11], [2] and [3]. ${ }^{(3)}$ For other related papers, see also [12] and [14]. Throughout the paper, following [9], we set

$$
\begin{aligned}
& \widetilde{B}_{i}=B_{i} \prod_{p \mid n}\left(1-p^{i-1}\right), \widehat{B}_{i}=\frac{\widetilde{B}_{i}}{i}, \\
& \widetilde{A}_{i}=(-1)^{\frac{n^{2}-1}{8}} A_{i} \prod_{p \mid n}\left(1-(-1)^{\frac{p^{2}-1}{8}} p^{i}\right), \\
& \widetilde{C}_{i}=(-1)^{\frac{(n-1)(n+5)}{8}} C_{i} \prod_{p \mid n}\left(1-(-1)^{\frac{(p-1)(p+5)}{8}} p^{i}\right), \\
& \widetilde{D}_{i}=(-1)^{\nu(n)} D_{i} \prod_{p \mid n}\left(1-(-1)^{\nu(p)} p^{i}\right), \\
& \widetilde{E}_{i}=(-1)^{\frac{n-1}{2}} E_{i} \prod_{p \mid n}\left(1-(-1)^{\frac{p-1}{2}} p^{i}\right), \\
& \widetilde{F}_{i}=(-1)^{\frac{n-1}{2}+\nu(n)} F_{i} \prod_{p \mid n}\left(1-(-1)^{\frac{p-1}{2}+\nu(p)} p^{i}\right), \\
& \widetilde{G}_{i}=(-1)^{\frac{(n-1)(n+5)}{8}+\nu(n)} G_{i} \prod_{p \mid n}\left(1-(-1)^{\frac{(p-1)(p+5)}{8}+\nu(p)} p^{i}\right), \\
& \widetilde{H}_{i}=(-1)^{\frac{n^{2}-1}{8}+\nu(n)} H_{i} \prod_{p \mid n}\left(1-(-1)^{\frac{p^{2}-1}{8}+\nu(p)} p^{i}\right),
\end{aligned}
$$

where $\chi_{-3}(n)=(-1)^{\nu(n)}, \nu(n) \in\{0,1\}$ for $3 \nmid n$.

2 The main results

In the Theorem we find some congruences for $U_{r}(n)$ modulo n^{s+1} for $s \in$ $\{0,1,2\}$ in each of the seven cases $r=2,3,4,6,8,12$ or 24 . Some of these congruences for $s \in\{0,1\}$ and $r \in\{2,3,4,6\}$ were proved in [2] and [3]. The remaining ones are new. Three of them for $s=1$ and $r \in\{8,12,24\}$ were omitted both in [11] and in [2], [3].

Write $\rho_{i}(r)=1-\delta_{\text {ord }_{i}(r), 0}(i=2,3)$ where, as usual, $\delta_{X, Y}$ denotes the Kronecker delta function. Given odd $n>r$, we set

$$
\begin{align*}
E Q_{r}(n) & =\alpha_{2}(r) q_{2}(r)+\alpha_{3}(r) q_{3}(r)+\beta_{2}(r) n q_{2}^{2}(n)+\beta_{3}(r) n q_{3}^{2}(n) \\
& +\gamma_{2}(r) n^{2} q_{2}^{3}(n)+\gamma_{3}(r) n^{2} q_{3}^{3}(n), \tag{3}
\end{align*}
$$

[^2]where
\[

$$
\begin{aligned}
& \alpha_{2}(r)=\rho_{2}(r)\left(\frac{\operatorname{ord}_{2}(r)}{r}+\frac{1}{2 \phi(r)}-\frac{\rho_{3}(r)}{6 \phi(r)}\right), \\
& \alpha_{3}(r)=\rho_{3}(r)\left(\frac{\operatorname{ord}_{3}(r)}{r}+\frac{1}{3 \phi(r)}-\frac{\rho_{2}(r)}{6 \phi(r)}\right), \\
& \beta_{2}(r)=\rho_{2}(r)\left(-\frac{\operatorname{ord}_{2}(r)}{2 r}-\frac{1}{4 \phi(r)}+\frac{\rho_{3}(r)}{12 \phi(r)}\right), \\
& \beta_{3}(r)=\rho_{3}(r)\left(-\frac{\operatorname{ord}_{3}(r)}{2 r}-\frac{1}{6 \phi(r)}+\frac{\rho_{3}(r)}{12 \phi(r)}\right), \\
& \gamma_{2}(r)=\rho_{2}(r)\left(\frac{\operatorname{ord}_{2}(r)}{3 r}+\frac{1}{6 \phi(r)}-\frac{\rho_{3}(r)}{18 \phi(r)}\right), \\
& \gamma_{3}(r)=\rho_{3}(r)\left(\frac{\operatorname{ord}_{3}(r)}{3 r}+\frac{1}{9 \phi(r)}-\frac{\rho_{2}(r)}{18 \phi(r)}\right)
\end{aligned}
$$
\]

and

$$
B_{r}(n)=-\frac{n^{2}}{2 r^{3}} \widetilde{B}_{n^{2} \phi(n)-2}
$$

Set $E Q_{r}^{\prime}(n)=\alpha_{2}(r) q_{2}(r)+\alpha_{3}(r) q_{3}(r)$ and $E Q_{r}^{\prime \prime}=\alpha_{2}(r) q_{2}(r)+\alpha_{3}(r) q_{3}(r)+$ $\beta_{2}(r) n q_{2}^{2}(n)+\beta_{3}(r) n q_{3}^{2}(n)$. Obviously, we have $E Q_{r}(n) \equiv E Q_{r}^{\prime}(n)(\bmod n)$ and $E Q_{r}(n) \equiv E Q_{r}^{\prime \prime}(n)\left(\bmod n^{2}\right)$. Note that $B_{r}(n) \equiv 0(\bmod n)$, and $B_{r}(n) \equiv$ $0\left(\bmod n^{2}\right)$ if n is not divisible by 3 .

Following [9], set
$Q_{2}(n)=-2 q_{2}(n)+n q_{2}^{2}(n)-\frac{2}{3} n^{2} q_{2}^{3}(n), Q_{3}(n)=-\frac{3}{2} q_{3}(n)+\frac{3}{4} n q_{3}^{2}(n)-\frac{1}{2} n^{2} q_{3}^{3}(n)$.
The sums $T_{r, 1}(n)$ presented in the lemmas below are congruent to linear combinations of Euler's quotients $\widehat{E Q}_{r}(n)$ plus some generalized Bernoulli numbers. It was shown in [9] that $\widehat{E Q}_{2}(n)=Q_{2}(n), \widehat{E Q}_{3}(n)=Q_{3}(n)$, $\widehat{E Q}_{4}(n)=\frac{3}{2} Q_{2}(n), \widehat{E Q}_{6}(n)=Q_{2}(n)+Q_{3}(n), \widehat{E Q}_{8}(n)=2 Q_{2}(n), \widehat{E Q}_{12}(n)=$ $\frac{3}{2} Q_{2}(n)+Q_{3}(n)$ and $\widehat{E Q}_{24}(n)=2 Q_{2}(n)+Q_{3}(n)$. In view of Proposition 1 below we have $E Q_{r}(n)=-\frac{1}{r} \widehat{E Q}_{r}(n)$.
Theorem. Assume that $s \in\{0,1,2\}$ and $r \mid 24$. Let $n>r$ be odd and not divisible by 3 if $s=1$ or $3 \mid r$. Then, in the above notation:
(i)

$$
U_{r}(n) \equiv E Q_{r}(n)+B_{r}(n)\left(\bmod n^{s+1}\right)
$$

if $r \leq 6$;
(ii)

$$
U_{r}(n) \equiv E Q_{r}(n)+B_{r}(n)-\frac{1}{4} \widetilde{A}_{n^{s} \phi(n)-1}\left(\bmod n^{s+1}\right)
$$

if $r=8$;
(iii)

$$
U_{r}(n) \equiv E Q_{r}(n)+B_{r}(n)-\frac{1}{4} \widetilde{F}_{n^{s} \phi(n)-1}\left(\bmod n^{s+1}\right)
$$

if $r=12$;
(iv)
$U_{r}(n) \equiv E Q_{r}(n)+B_{r}(n)-\frac{1}{6} \widetilde{A}_{n^{s} \phi(n)-1}-\frac{1}{8} \widetilde{F}_{n^{s} \phi(n)-1}-\frac{1}{8} \widetilde{G}_{n^{s} \phi(n)-1}\left(\bmod n^{s+1}\right)$
if $r=24$. Here $E Q_{r}(n) \equiv E Q_{r}^{\prime}(n)(\bmod n), E Q_{r}(n) \equiv E Q_{r}^{\prime \prime}(n)\left(\bmod n^{2}\right)$, $B_{r}(n) \equiv 0\left(\bmod n^{2}\right)$ if n is not divisible by 3 and $B_{r}(n) \equiv 0(\bmod n)$.

3 Some useful observations

We deduce the main theorem of the paper from Propositions 1,2 and Lemmas $1-21$ below on congruences for the sums $T_{r, k}(n)$. For proofs of the lemmas, we refer the reader to [9]. First we find some useful congruences between the sums $U_{r}(n)$ and some linear combinations of $T_{r, 1}(n), T_{r, 2}(n)$ and $T_{r, 3}(n)$ modulo powers of n.
Proposition 1. Assume that $n>1$ is odd and $r(1<r<n)$ is coprime to n. Then:

$$
U_{r}(n) \equiv\left\{\begin{array}{l}
-\frac{1}{r} T_{r, 1}(n)-\frac{n}{r^{2}} T_{r, 2}(n)-\frac{n^{2}}{r^{3}} T_{r, 3}(n)\left(\bmod n^{3}\right) \\
-\frac{1}{r} T_{r, 1}(n)-\frac{n}{r^{2}} T_{r, 2}(n)\left(\bmod n^{2}\right) \\
-\frac{1}{r} T_{r, 1}(n)(\bmod n)
\end{array}\right.
$$

Proof. Obviously, $(n, i)=1$ if and only if $(n-r i, n)=1$. Consequently, by (2),

$$
\begin{aligned}
U_{r}(n) & \equiv \sum_{0<i<n / r} \chi_{n}(i)(n-r i)^{n^{s} \phi(n)-1} \\
& =\sum_{0<i<n / r} \chi_{n}(i) \sum_{j=0}^{n^{s} \phi(n)-1}\binom{n^{s} \phi(n)-1}{j} n^{j}(-r i)^{n^{s} \phi(n)-1-j}\left(\bmod n^{s+1}\right),
\end{aligned}
$$

and hence, since $r^{n^{s} \phi(n)-j} \equiv r^{-j}\left(\bmod n^{s+1}\right)$ and $\binom{n^{2} \phi(n)-1}{2} n^{2} \equiv n^{2}\left(\bmod n^{3}\right)$,

$$
U_{r}(n) \equiv\left\{\begin{array}{l}
-\frac{1}{r} S_{r, 1,2}(n)-\frac{n}{r^{2}} S_{r, 2,2}(n)-\frac{n^{2}}{r^{3}} S_{r, 3,2}(n)\left(\bmod n^{3}\right), \\
-\frac{1}{r} S_{r, 1,1}(n)-\frac{n}{r^{2}} S_{r, 2,2}(n)\left(\bmod n^{2}\right), \\
-\frac{1}{r} S_{r, 1,0}(n)(\bmod n) .
\end{array}\right.
$$

Now Proposition 1 follows from (1) at once.

In [9] some formulae for $\widehat{E Q}_{r}(n)$ are determined. Since, by Proposition 1, we have $E Q_{r}(n)=-\frac{1}{r} \widehat{E Q}_{r}(n)$, the formulae imply corresponding formulae for $E Q_{r}(n)$. In the next proposition, we present the formulae in a slightly different form.

Proposition 2. (cf. [9]) In the above notation, if $r \mid 24$, then (3) holds.
Proof. Following [9, (15)] and Proposition 1 we know that

$$
E Q_{r}(n)=-\frac{1}{r} \widehat{E Q}_{r}(n) \equiv-\frac{1}{r} \widehat{B}_{m+1}\left(-1+\frac{1}{\phi(r) r^{m}} \prod_{q \mid r}\left(1-q^{m}\right)\right)\left(\bmod n^{s+1}\right)
$$

where $m=n^{s} \phi(n)-1$. Consequently,

$$
\begin{equation*}
E Q_{r}(n) \equiv \frac{X \widetilde{B}_{m+1}}{r^{m+1}(m+1)}\left(\bmod n^{s+1}\right) \tag{4}
\end{equation*}
$$

where

$$
X=r^{m}-\frac{1}{\phi(r)} \prod_{q \mid r}\left(1-q^{m}\right)
$$

Thus, in view of (5) and the congruence

$$
\frac{n \widetilde{B}_{n^{s} \phi(n)}}{\phi(n)} \equiv 1\left(\bmod n^{s+1}\right)
$$

(see $[9,(20)])$ to obtain (3) it suffices to determine $X\left(\bmod n^{s+4}\right)$.
Indeed, we have

$$
\begin{aligned}
X & =\frac{1}{r}\left(r^{\phi(n)}\right)^{n^{s}}-\frac{1}{\phi(r)}\left(1-\frac{\rho_{2}(r)}{2}\left(2^{\phi(n)}\right)^{n^{s}}\right)\left(1-\frac{\rho_{3}(r)}{3}\left(3^{\phi(n)}\right)^{n^{s}}\right) \\
& =\frac{1}{r}\left(2^{\phi(n)}\right)^{\operatorname{ord}_{2}(r) n^{s}}\left(3^{\phi(n)}\right)^{\operatorname{ord}_{3}(r) n^{s}}-\frac{1}{\phi(r)}+\frac{\rho_{2}(r)}{2 \phi(r)}\left(2^{\phi(n)}\right)^{n^{s}}+\frac{\rho_{3}(r)}{3 \phi(r)}\left(3^{\phi(n)}\right)^{n^{s}} \\
& -\frac{\rho_{2}(r) \rho_{3}(r)}{6 \phi(r)}\left(2^{\phi(n)}\right)^{n^{s}}\left(3^{\phi(n)}\right)^{n^{s}},
\end{aligned}
$$

and by virtue of $i^{\phi(n)}=1+n q_{i}(n)(i=2,3)$

$$
\begin{aligned}
X & =\frac{1}{r}\left(1+n q_{2}(n)\right)^{\operatorname{ord}_{2}(r) n^{s}}\left(1+n q_{3}(n)\right)^{\operatorname{ord}_{3}(r) n^{s}}-\frac{1}{\phi(r)}+\frac{\rho_{2}(r)}{2 \phi(r)}\left(1+n q_{2}(n)\right)^{n^{s}} \\
& +\frac{\rho_{3}(r)}{3 \phi(r)}\left(1+n q_{3}(n)\right)^{n^{s}}-\frac{\rho_{2}(r) \rho_{3}(r)}{6 \phi(r)}\left(1+n q_{2}(n)\right)^{n^{s}}\left(1+n q_{3}(n)\right)^{n^{s}} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
X & \equiv \frac{1}{r}\left(1+n^{s+1} \operatorname{ord}_{2}(r) q_{2}(n)+n^{s+1} \operatorname{ord}_{3}(r) q_{3}(n)-\frac{1}{2} n^{s+1} \operatorname{ord}_{2}(r) n q_{2}^{2}(n)\right. \\
& \left.-\frac{1}{2} n^{s+1} \operatorname{ord}_{3}(r) n q_{3}^{2}(n)+\frac{1}{3} n^{s+1} \operatorname{ord}_{2}(r) n^{2} q_{2}^{3}(n)+\frac{1}{3} n^{s+1} \operatorname{ord}_{3}(r) n^{2} q_{3}^{3}(n)\right) \\
& -\frac{1}{\phi(r)}+\frac{\rho_{2}(r)}{2 \phi(r)}\left(1+n^{s+1} q_{2}(n)-\frac{1}{2} n^{s+1} n q_{2}^{2}(n)+\frac{1}{3} n^{s+1} n^{2} q_{2}^{3}(n)\right) \\
& +\frac{\rho_{3}(r)}{3 \phi(r)}\left(1+n^{s+1} q_{3}(n)-\frac{1}{2} n^{s+1} n q_{3}^{2}(n)+\frac{1}{3} n^{s+1} n^{2} q_{3}^{3}(n)\right) \\
& -\frac{\rho_{2}(r) \rho_{3}(r)}{6 \phi(r)}\left(1+n^{s+1} q_{2}(n)+n^{s+1} q_{3}(n)-\frac{1}{2} n^{s+1} n q_{2}^{2}(n)\right. \\
& \left.-\frac{1}{2} n^{s+1} n q_{3}^{2}(n)+\frac{1}{3} n^{s+1} n^{2} q_{2}^{3}(n)+\frac{1}{3} n^{s+1} n^{2} q_{3}^{3}(n)\right)\left(\bmod n^{s+4}\right),
\end{aligned}
$$

and so,

$$
\begin{aligned}
X & \equiv Y+\frac{1}{r} n^{s+1}\left(\operatorname{ord}_{2}(r) q_{2}(n)+\operatorname{ord}_{3}(r) q_{3}(n)-\frac{1}{2} \operatorname{ord}_{2}(r) n q_{2}^{2}(n)\right. \\
& \left.-\frac{1}{2} \operatorname{ord}_{3}(r) n q_{3}^{2}(n)+\frac{1}{3} \operatorname{ord}_{2}(r) n^{2} q_{2}^{3}(n)+\frac{1}{3} \operatorname{ord}_{3}(r) n^{2} q_{3}^{3}(n)\right) \\
& +\frac{\rho_{2}(r)}{2 \phi(r)} n^{s+1}\left(q_{2}(n)-\frac{1}{2} n q_{2}^{2}(n)+\frac{1}{3} n^{2} q_{2}^{3}(n)\right) \\
& +\frac{\rho_{3}(r)}{3 \phi(r)} n^{s+1}\left(q_{3}(n)-\frac{1}{2} n q_{3}^{2}(n)+\frac{1}{3} n^{2} q_{3}^{3}(n)\right) \\
& -\frac{\rho_{2}(r) \rho_{3}(r)}{6 \phi(r)} n^{s+1}\left(q_{2}(n)+q_{3}(n)-\frac{1}{2} n q_{2}^{2}(n)\right. \\
& \left.-\frac{1}{2} n q_{3}^{2}(n)+\frac{1}{3} n^{2} q_{2}^{3}(n)+\frac{1}{3} n^{2} q_{3}^{3}(n)\right)\left(\bmod n^{s+4}\right),
\end{aligned}
$$

where

$$
Y=\frac{1}{r}-\frac{1}{\phi(r)}+\frac{\rho_{2}(r)}{2 \phi(r)}+\frac{\rho_{3}(r)}{3 \phi(r)}-\frac{\rho_{2}(r) \rho_{3}(r)}{6 \phi(r)} .
$$

An easy verification shows that $Y=0$. To check it we consider the cases. If $\rho_{2}(r)=0$ and $\rho_{3}(r)=1$; then $r=3$ and obviously $Y=0$. If $\rho_{2}(r)=1$ and $\rho_{3}(r)=0$; then $r=2,4,8$ and we have $Y=\frac{1}{r}-\frac{1}{2 \phi(r)}=0$ since $r=2 \phi(r)$ for these r. Finally, if $\rho_{2}(r)=\rho_{3}(r)=1$; then $r=6,12,24$ and $Y=\frac{1}{r}-\frac{1}{3 \phi(r)}=0$ since $r=3 \phi(r)$ in these cases. This completes the proof of Proposition 2.

4 Proof of the Theorem

The proof of the Theorem falls naturally into seven cases $r=2,3,4,6,8,12$ or 24. In view of Proposition 1, in each of the cases, it suffices to determine:
(i) the sums $T_{r, 1}(n)\left(\bmod n^{s+1}\right)$ for $s \in\{0,1,2\}$, which are determined in Theorems $4,9,14,19,24,29$ or 34 of [9];
(ii) the congruences for $n T_{r, 2}(n)\left(\bmod n^{s+1}\right)$ for $s \in\{1,2\}$, which follow immediately from parts (i) and (ii) of Theorems 5, 10, 15, 20, 25, 30 or 35 of [9];
(iii) the congruences for $n^{2} T_{r, 3}(n)\left(\bmod n^{3}\right)$, which follow easily from parts (ii) of Theorems $1,6,11,16,21,26$ or 31 of [9] for $k=3$. ${ }^{(4)}$

Set $Q_{i}^{\prime}(n) \equiv Q_{i}(n)(\bmod n)$ and $Q_{i}^{\prime \prime}(n) \equiv Q_{i}(n)\left(\bmod n^{2}\right)(i=2,3)$. We consider the cases:

1. If $r=2$, then part (i) of the Theorem for $s=2$ is a consequence of Proposition 1, Theorems 4(i), 5(i) and Theorem 1(ii) of [9]; then for $n>1$ odd we have
$T_{2,1}(n) \equiv Q_{2}(n)-\frac{7}{8} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right), n T_{2,2}(n) \equiv \frac{7}{2} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right)$ and

$$
n^{2} T_{2,3}(n) \equiv-3 n^{2} \widetilde{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right)
$$

The first of these congruences is the same as that in [9] and the second one is an immediate consequence of that in [9]. The third congruence follows immediately from Theorem 1(ii) [9] for $k=3$; then $n^{2} T_{2,3}(n) \equiv 6 n^{2} \widehat{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right)$. On the other hand,

$$
\begin{equation*}
n^{2} \widehat{B}_{n^{2} \phi(n)-2} \equiv-\frac{1}{2} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right) \tag{5}
\end{equation*}
$$

which completes the proof in this case.
The part (i) of the Theorem for $s=1$ follows immediately from Proposition 1 and Theorems 4(ii), 5(ii) of [9]; then
$T_{2,1}(n) \equiv Q_{2}^{\prime \prime}(n)-\frac{7}{8} n^{2} \widetilde{B}_{n \phi(n)-2}\left(\bmod n^{2}\right), n T_{2,2}(n) \equiv \frac{7}{2} n^{2} \widetilde{B}_{n \phi(n)-2}\left(\bmod n^{2}\right)$.

[^3]If we assume that $3 \nmid n$, then $\widetilde{B}_{n \phi(n)-2}$ is p-integral for any $p \mid n$ and so

$$
T_{2,1}(n) \equiv Q_{2}^{\prime \prime}(n)\left(\bmod n^{2}\right), n T_{2,2}(n) \equiv 0\left(\bmod n^{2}\right)
$$

as claimed. The part (i) of the Theorem for $s=0$ follows at once from Theorem 4(iii) of [9]; then $T_{2,1}(n) \equiv Q_{2}^{\prime}(n)(\bmod n)$.
2. If $r=3$, then part (i) of the Theorem for $s=2$ is an immediate consequence of Proposition 1, Theorems 9(i), 10(i) and Theorem 6(ii) of [9]; then for $n>1,3 \nmid n$ we have

$$
\begin{gathered}
T_{3,1}(n) \equiv Q_{3}(n)-\frac{1}{2} n \widetilde{D}_{n^{2} \phi(n)-2}-\frac{13}{18} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right) \\
n T_{3,2}(n) \equiv \frac{3}{2} n \widetilde{D}_{n^{2} \phi(n)-2}+\frac{13}{3} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right)
\end{gathered}
$$

and

$$
n^{2} T_{3,3}(n) \equiv-6 n^{2} \widetilde{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right)
$$

Again the first congruence is the same as that in [9] and the second one is an easy consequence of that in [9]. The third congruence follows from Theorem 6 (ii) of [9] for $k=3$ and (5); then $n^{2} T_{3,3}(n) \equiv 12 n^{2} \widehat{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right)$.

The part (i) of the Theorem for $s=1$ follows immediately from Proposition 1 and Theorems 9(ii), 10(ii) of [9]; then

$$
T_{3,1}(n) \equiv Q_{3}^{\prime \prime}(n)-\frac{1}{2} n \widetilde{D}_{n \phi(n)-2}\left(\bmod n^{2}\right), n T_{3,2}(n) \equiv \frac{3}{2} n \widetilde{D}_{n \phi(n)-2}\left(\bmod n^{2}\right) .
$$

Likewise, part (i) of the Theorem for $s=0$ is an obvious consequence of Proposition 1 and Theorem 9(iii) of [9]; then $T_{3,1}(n) \equiv Q_{3}^{\prime}(n)(\bmod n)$.
3. If $r=4$, then part (i) of the Theorem for $s=2$ follows from Proposition 1 and Theorems 14(i), 15(i) and 11(ii) of [9]; then for $n>3$ odd we have

$$
\begin{gathered}
T_{4,1}(n) \equiv \frac{3}{2} Q_{2}(n)-n \widetilde{E}_{n^{2} \phi(n)-2}-\frac{7}{8} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right), \\
n T_{4,2}(n) \equiv 4 n \widetilde{E}_{n^{2} \phi(n)-2}+7 n^{2} \widetilde{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right)
\end{gathered}
$$

and

$$
n^{2} T_{4,3}(n) \equiv-\frac{27}{2} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right) .
$$

The first congruence is the same as that in [9] and the second one is an immediate consequence of that in [9]. The third congruence follows immediately from Theorem 11(ii) of $[9]$ for $k=3$; then $n^{2} T_{4,3}(n) \equiv 27 n^{2} \widehat{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right)$ and it suffices to use (5).

The part (i) of the Theorem for $s=1$ follows immediately from Proposition 1 and Theorems 14(ii), 15(ii) of [9]; then

$$
\begin{gathered}
T_{4,1}(n) \equiv \frac{3}{2} Q_{2}^{\prime \prime}(n)-n \widetilde{E}_{n \phi(n)-2}-\frac{7}{8} n^{2} \widetilde{B}_{n \phi(n)-2}\left(\bmod n^{2}\right), \\
n T_{4,2}(n) \equiv 4 n \widetilde{E}_{n \phi(n)-2}+7 n^{2} \widetilde{B}_{n \phi(n)-2}\left(\bmod n^{2}\right),
\end{gathered}
$$

and so

$$
T_{4,1}(n) \equiv \frac{3}{2} Q_{2}^{\prime \prime}(n)-n \widetilde{E}_{n \phi(n)-2}\left(\bmod n^{2}\right), n T_{4,2}(n) \equiv 4 n \widetilde{E}_{n \phi(n)-2}\left(\bmod n^{2}\right)
$$

if $3 \nmid n$. The part (i) of the Theorem for $s=0$ is an obvious consequence of Theorem 14(iii) of [9]; then $T_{4,1}(n) \equiv \frac{3}{2} Q_{2}^{\prime}(n)(\bmod n)$.
4. If $r=6$, then part (i) of the Theorem for $s=2$ is an immediate consequence of Proposition 1, Theorems 19(i), 20(i) and Theorem 16(ii) of [9]; then for $n>5,3 \nmid n$ we have

$$
\begin{gathered}
T_{6,1}(n) \equiv Q_{2}(n)+Q_{3}(n)-\frac{5}{4} n \widetilde{D}_{n^{2} \phi(n)-2}-\frac{91}{72} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right) \\
n T_{6,2}(n) \equiv \frac{15}{2} n \widetilde{D}_{n^{2} \phi(n)-2}+\frac{91}{6} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right)
\end{gathered}
$$

and

$$
n^{2} T_{6,3}(n) \equiv-45 n^{2} \widetilde{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right)
$$

The first congruence is the same as that in [9] and the second one is an immediate consequence of that in [9]. The third congruence follows from the congruence $n^{2} T_{6,3}(n) \equiv 90 n^{2} \widehat{B}_{n^{2} \phi(n)-2}\left(\bmod n^{3}\right)$ and (5).

The part (i) of the Theorem for $s=1$ follows immediately from Proposition 1 and Theorems 19(ii), 20(ii) of [9]; then

$$
\begin{gathered}
T_{6,1}(n) \equiv Q_{2}^{\prime \prime}(n)+Q_{3}^{\prime \prime}(n)-\frac{5}{4} n \widetilde{D}_{n \phi(n)-2}\left(\bmod n^{2}\right) \\
n T_{6,2}(n) \equiv \frac{15}{2} n \widetilde{D}_{n \phi(n)-2}\left(\bmod n^{2}\right)
\end{gathered}
$$

The part (i) of the Theorem for $s=0$ follows at once from Proposition 1 and Theorem 19(iii) of [9]; then $T_{6,1}(n) \equiv Q_{2}^{\prime}(n)+Q_{3}^{\prime}(n)(\bmod n)$.
5. If $r=8$, then part (ii) of the Theorem for $s=2$ follows from Proposition 1, Theorems 24(i), 25(i) and Theorem 21(ii) of [9]; then for $n>7$ odd we have

$$
T_{8,1}(n) \equiv 2 Q_{2}(n)+2 \widetilde{A}_{n^{2} \phi(n)-1}-n \widetilde{E}_{n^{2} \phi(n)-2}-2 n \widetilde{C}_{n^{2} \phi(n)-2}
$$

On congruences for the sums $\sum_{i=1}^{[n / r]} \frac{\chi_{n}(i)}{n-r i}$ of E. Lehmer's type

$$
\begin{gathered}
-\frac{7}{8} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}+2 n^{2} \widetilde{A}_{n^{2} \phi(n)-3}\left(\bmod n^{3}\right) \\
n T_{8,2}(n) \equiv 8 n \widetilde{E}_{n^{2} \phi(n)-2}+16 n \widetilde{C}_{n^{2} \phi(n)-2}+14 n^{2} \widetilde{B}_{n^{2} \phi(n)-2}-32 n^{2} \widetilde{A}_{n^{2} \phi(n)-3}\left(\bmod n^{3}\right)
\end{gathered}
$$

and

$$
n^{2} T_{8,3}(n) \equiv-\frac{111}{2} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}+128 n^{2} \widetilde{A}_{n^{2} \phi(n)-3}\left(\bmod n^{3}\right)
$$

The first congruence is the same as that in [9], the second one follows from that in [9] and the third one is an immediate consequence of Theorem 21(ii) of [9] for $k=3$; then $n^{2} T_{8,3}(n) \equiv 111 n^{2} \widehat{B}_{n^{2} \phi(n)-2}+128 n^{2} \widetilde{A}_{n \phi(n)-3}\left(\bmod n^{3}\right)$ and the congruence follows from (5).

The part (ii) of the Theorem for $s=1$ follows immediately from Proposition 1 and Theorems 24(ii), 25(ii) of [9]; then

$$
\begin{gathered}
T_{8,1}(n) \equiv 2 Q_{2}^{\prime \prime}(n)+2 \widetilde{A}_{n \phi(n)-1}-n \widetilde{E}_{n \phi(n)-2}-2 n \widetilde{C}_{n \phi(n)-2}-\frac{7}{8} n^{2} \widetilde{B}_{n \phi(n)-2}\left(\bmod n^{2}\right), \\
n T_{8,2}(n) \equiv 8 n \widetilde{E}_{n \phi(n)-2}+16 n \widetilde{C}_{n \phi(n)-2}+14 n^{2} \widetilde{B}_{n \phi(n)-2}\left(\bmod n^{2}\right)
\end{gathered}
$$

and so

$$
\begin{gathered}
T_{8,1}(n) \equiv 2 Q_{2}^{\prime \prime}(n)+2 \widetilde{A}_{n \phi(n)-1}-n \widetilde{E}_{n \phi(n)-2}-2 n \widetilde{C}_{n \phi(n)-2}\left(\bmod n^{2}\right) \\
n T_{8,2}(n) \equiv 8 n \widetilde{E}_{n \phi(n)-2}+16 n \widetilde{C}_{n \phi(n)-2}\left(\bmod n^{2}\right)
\end{gathered}
$$

if $3 \nmid n$. The part (ii) of the Theorem for $s=0$ is an easy consequence of Theorem 24(iii) of [9]; then $T_{8,1}(n) \equiv 2 Q_{2}^{\prime}(n)+2 \widetilde{A}_{\phi(n)-1}(\bmod n)$.
6. If $r=12$, then part (iii) of the Theorem for $s=2$ follows at once from Proposition 1, Theorems 29(i), 30(i) and Theorem 26(ii) of [9]; then for $n>11$ odd we have

$$
\begin{aligned}
& T_{12,1}(n) \equiv \frac{3}{2} Q_{2}(n)+Q_{3}(n)+3 \widetilde{F}_{n^{2} \phi(n)-1}-\frac{5}{4} n \widetilde{D}_{n^{2} \phi(n)-2}-\frac{5}{3} n \widetilde{E}_{n^{2} \phi(n)-2} \\
&-\frac{91}{72} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}+3 n^{2} \widetilde{F}_{n^{2} \phi(n)-3}\left(\bmod n^{3}\right), \\
& n T_{12,2}(n) \equiv 15 n \widetilde{D}_{n^{2} \phi(n)-2}+20 n \widetilde{E}_{n^{2} \phi(n)-2}+\frac{91}{3} n^{2} \widetilde{B}_{n^{2} \phi(n)-2} \\
& \quad-72 n^{2} \widetilde{F}_{n^{2} \phi(n)-3}\left(\bmod n^{3}\right)
\end{aligned}
$$

and

$$
n^{2} T_{12,3}(n) \equiv-\frac{363}{2} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}+432 n^{2} \widetilde{F}_{n \phi(n)-3}\left(\bmod n^{3}\right)
$$

The first congruence is the same as that in [9], the second one is implied by that in [9] and the third one follows from Theorem 26(ii) of [9] for $k=3$; then $n^{2} T_{12,3}(n) \equiv 363 n^{2} \widehat{B}_{n^{2} \phi(n)-2}+432 n^{2} \widetilde{F}_{n \phi(n)-3}\left(\bmod n^{3}\right)$ and it suffices to use (5). The part (iii) of the Theorem for $s=1$ follows at once from Proposition 1 and Theorems 29(ii), 30(ii) of [9]; then

$$
\begin{gathered}
T_{12,1}(n) \equiv \frac{3}{2} Q_{2}^{\prime \prime}(n)+Q_{3}^{\prime \prime}(n)+3 \widetilde{F}_{n \phi(n)-1}-\frac{5}{4} n \widetilde{D}_{n \phi(n)-2}-\frac{5}{3} n \widetilde{E}_{n \phi(n)-2}\left(\bmod n^{2}\right), \\
n T_{12,2}(n) \equiv 15 n \widetilde{D}_{n \phi(n)-2}+20 n \widetilde{E}_{n \phi(n)-2}\left(\bmod n^{2}\right)
\end{gathered}
$$

Part (iii) of the Theorem for $s=0$ follows easily from Proposition 1 and Theorem 29(iii) of [9]; then $T_{12,1}(n) \equiv \frac{3}{2} Q_{2}^{\prime}(n)+Q_{3}^{\prime}(n)+3 \widetilde{F}_{\phi(n)-1}(\bmod n)$.
7. If $r=24$, then part (iv) of the Theorem for $s=2$ follows from Proposition 1, Theorems 34(i), 35(i) and Theorem 31(ii) of [9]; then for $n>23$ odd we have

$$
\begin{aligned}
T_{24,1}(n) & \equiv 2 Q_{2}(n)+Q_{3}(n)+3 \widetilde{F}_{n^{2} \phi(n)-1}+3 \widetilde{G}_{n^{2} \phi(n)-1}+4 \widetilde{A}_{n^{2} \phi(n)-1} \\
& -\frac{5}{4} n \widetilde{D}_{n^{2} \phi(n)-2}-\frac{5}{3} n \widetilde{E}_{n^{2} \phi(n)-2}-3 n \widetilde{H}_{n^{2} \phi(n)-2}-\frac{8}{3} n \widetilde{C}_{n^{2} \phi(n)-2} \\
& -\frac{91}{72} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}+3 n^{2} \widetilde{F}_{n^{2} \phi(n)-3}+3 n^{2} \widetilde{G}_{n^{2} \phi(n)-3}+\frac{28}{9} n^{2} \widetilde{A}_{n^{2} \phi(n)-3}\left(\bmod n^{3}\right), \\
n T_{24,2}(n) & \equiv 30 n \widetilde{D}_{n^{2} \phi(n)-2}+40 n \widetilde{E}_{n^{2} \phi(n)-2}+72 n \widetilde{H}_{n^{2} \phi(n)-2}+64 n \widetilde{C}_{n^{2} \phi(n)-2} \\
& +\frac{182}{3} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}-144 n^{2} \widetilde{F}_{n^{2} \phi(n)-3}-144 n^{2} \widetilde{G}_{n^{2} \phi(n)-3} \\
& -\frac{448}{3} n^{2} \widetilde{A}_{n^{2} \phi(n)-3}\left(\bmod n^{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
n^{2} T_{24,3}(n) & \equiv-\frac{1455}{2} n^{2} \widetilde{B}_{n^{2} \phi(n)-2}+1728 n^{2} \widetilde{F}_{n^{2} \phi(n)-3} \\
& +1728 n^{2} \widetilde{G}_{n^{2} \phi(n)-3}+1792 n^{2} \widetilde{A}_{n^{2} \phi(n)-3}\left(\bmod n^{3}\right) .
\end{aligned}
$$

Again the first congruence is the same as that in [9], the second one follows immediately from that in [9] and the third one follows from Theorem 26(ii) of [9] for $k=3$; then

$$
\begin{aligned}
n^{2} T_{24,3}(n) & \equiv 1455 n^{2} \widehat{B}_{n^{2} \phi(n)-2}+1728 n^{2} \widetilde{F}_{n^{2} \phi(n)-3} \\
& +1728 n^{2} \widetilde{G}_{n^{2} \phi(n)-3}+1792 n^{2} \widetilde{A}_{n^{2} \phi(n)-3}\left(\bmod n^{3}\right)
\end{aligned}
$$

and it suffices to use (5).
Part (iv) of the Theorem for $s=1$ follows immediately from Proposition 1 and Theorems 34(ii), 35(ii) of [9]; then we have

$$
\begin{aligned}
T_{24,1}(n) & \equiv 2 Q_{2}^{\prime \prime}(n)+Q_{3}^{\prime \prime}(n)+3 \widetilde{F}_{n \phi(n)-1}+3 \widetilde{G}_{n \phi(n)-1}+4 \widetilde{A}_{n \phi(n)-1} \\
& -\frac{5}{4} n \widetilde{D}_{n \phi(n)-2}-\frac{5}{3} n \widetilde{E}_{n \phi(n)-2}-3 n \widetilde{H}_{n \phi(n)-2}-\frac{8}{3} n \widetilde{C}_{n \phi(n)-2}\left(\bmod n^{2}\right), \\
n T_{24,2}(n) & \equiv 30 n \widetilde{D}_{n \phi(n)-2}+40 n \widetilde{E}_{n \phi(n)-2}+72 n \widetilde{H}_{n \phi(n)-2}+64 n \widetilde{C}_{n \phi(n)-2}\left(\bmod n^{2}\right) .
\end{aligned}
$$

Part (iii) of the Theorem for $s=0$ is implied by Proposition 1 and Theorem 34(iii) of [9]; then

$$
T_{24,1}(n) \equiv 2 Q_{2}^{\prime}(n)+Q_{3}^{\prime}(n)+3 \widetilde{F}_{\phi(n)-1}+3 \widetilde{G}_{\phi(n)-1}+4 \widetilde{A}_{\phi(n)-1}(\bmod n) .
$$

This completes the proof of the Theorem.

5 Concluding remarks

Let $p \geq 3$ be a prime number and let r be a natural number such that $1<r<p$. In the next part of the paper we are going to derive some new congruences for the sums $U_{r}(p)=\sum_{i=1}^{[p / r]} \frac{1}{p-r i}$ modulo p^{s+1} for $s \in\{0,1,2\}$ and for all divisors r of 24 . We shall use the congruences obtained in the present paper in the case when $n=p$ is an odd prime as well as Kummer's congruences for the generalized Bernoulli numbers.

References

[1] T.X. Cai, A congruence involving the quotients of Euler and its applications (I), Acta Arithmetica 103 (2002), 313-320.
[2] T.X. Cai, X.D. Fu and X. Zhou, A congruence involving the quotients of Euler and its applications (II), Acta Arithmetica 130 (2007), 203-214.
[3] H.-Q. Cao and H. Pan, Note on some congruences of Lehmer, J. Number Theory 129 (2009), 1813-1819.
[4] L. Carlitz, Arithmetic properties of generalized Bernoulli numbers, J. Reine Angew. Math. 202 (1959), 174-182.
[5] R. Ernvall, Generalized Bernoulli numbers, generalized irregular primes, and class number, Ann. Univ. Turku, Ser. A1, 178 (1979), 72 pp.
[6] G.J. Fox, J. Urbanowicz and K.S. Williams, Gauss' congruence from Dirichlet's class number formula and generalizations, in: K. Györy, H. Iwaniec and J. Urbanowicz, editors, Number Theory in Progress (Zakopane, 1997), vol. II, Walter de Gruyter, Berlin-New York, 1999, 813839.
[7] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd edition, Springer-Verlag, New York, 1990.
[8] S. Kanemitsu, J. Urbanowicz and N.-L. Wang, On some new congruences for generalized Bernoulli numbers, accepted for publication in Acta Arithmetica, 2012.
[9] S. Kanemitsu, T. Kuzumaki and J. Urbanowicz, On congruences for the sums $\sum_{i=1}^{[n / r]} \frac{\chi_{n}(i)}{i^{k}}$ of E. Lehmer's type, submitted for publication, 2012.
[10] H. Kleboth, Untersuchung über Klassenzahl und Reziprozitätsgesetz im Körper der 6l-ten Einheitswurzeln und die Diophantische Gleichung $x^{2 l}+3^{l} y^{2 l}=z^{2 l}$ für eine Primzahl l grosser als 3, Dissertation, Universität Zürich, 1955, 37 pp .
[11] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Annals of Math. 39 (1938), 350-360.
[12] M. Lerch, Zur Theorie des Fermatschen Quotienten $\frac{a^{p-1}-1}{p}=q(a)$, Math. Annalen 60 (1905), 471-490.
[13] A. Schinzel, J. Urbanowicz and P. Van Wamelen, Class numbers and short sums of Kronecker symbols, J. Number Theory 78 (1999), 62-84.
[14] Z.-H. Sun, Congruences involving Bernoulli and Euler numbers, J. Number Theory 128 (2008), 280-312.
[15] J. Szmidt, J. Urbanowicz and D. Zagier, Congruences among generalized Bernoulli numbers, Acta Arithmetica 71 (1995), 273-278.
[16] J. Urbanowicz and K.S. Williams, Congruences for L-functions, Kluwer Academic Publishers, Dordrecht/Boston/London, 2000.
[17] L.C. Washington, Introduction to Cyclotomic Fields, second edition, Springer-Verlag, New York, 1997.

[^0]: *The paper submitted for publication!
 ${ }^{\dagger}$ Department of Electrical Engineering, Faculty of Engineering, Gifu University, Gifu, Japan; kuzumaki@gifu-u.ac.jp
 ${ }^{\ddagger}$ Institute of Mathematics, Polish Academy of Sciences, and Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland; urbanowi@impan.pl

[^1]: ${ }^{(1)}$ The denominators of the numbers D_{i} are powers of 3 . For details, see [5].
 ${ }^{(2)}$ This identity was already successfully exploited in [13], [6], [1], [8] and [9]. Using it, T. Cai [1] generalized, in an elegant way, E. Lehmer's congruence for $T_{2,1}(n)\left(\bmod n^{2}\right)$.

[^2]: ${ }^{(3)}$ E. Lehmer proved her congruences in the case when $n=p$ is an odd prime. The congruences proved in [2] and [3] are for n odd and not divisible by 3 .

[^3]: ${ }^{(4)}$ More precisely, we need to determine $T_{r, 1}(n), n T_{r, 2}(n), n^{2} T_{r, 3}(n)\left(\bmod n^{3}\right)$ if $s=2$, $T_{r, 1}(n), n T_{r, 2}(n)\left(\bmod n^{2}\right)$ if $s=1$ and $T_{r, 1}(n)(\bmod n)$ if $s=0$.

