INSTITUTE OF MATHEMATICS of the Polish Academy of Sciences

http://www.impan.pl

IM PAN Preprint 740 (2012)

Jerzy Zabczyk

A note on the paper "Stability and stabilizability of infinite dimensional systems" by A. J. Pritchard and J. Zabczyk, SIAM Review, 23 (1981), 25-52

Published as manuscript

Received 01 October 2012

A NOTE ON THE PAPER "STABILITY AND STABILIZABILITY OF INFINITE DIMENSIONAL SYSTEMS", BY A. J. PRITCHARD AND J. ZABCZYK, SIAM REVIEW, 23 (1981), 25–52

J. ZABCZYK

ABSTRACT. The paper provides details of the proof of a stability result for abstract hyperbolic systems presented in a survey paper by A. J. Pritchard and the author.

The following result, in a slightly weaker formulation, was presented in [2] and proved there in a rather concise way. It is my intention to provide here its detailed proof. I am grateful to professor Kai Liu whose questions motivated me to write the note.

Let A be a negative, in general, unbounded operator on a Hilbert space Z and α a positive number. Consider the second order system:

(1)
$$\ddot{z} + \alpha \dot{z} - Az = 0,$$

(2)
$$\dot{z}(0) \in Z, \quad z(0) \in \mathcal{D}((-A)^{1/2}).$$

To have the semigroup formulation of (1) and (2) one defines the state space $\mathcal{H} = \mathcal{D}((-A)^{1/2} \times Z$ with the norm:

$$\left\| \begin{bmatrix} x \\ y \end{bmatrix} \right\| = \left(|x|^2 + |(-A)^{1/2}y|^2 \right)^{1/2}, \quad \begin{bmatrix} x \\ y \end{bmatrix} \in \mathcal{H}$$

and the scalar product:

$$\left\langle \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} \overline{x} \\ \overline{y} \end{bmatrix} \right\rangle = \langle x, \overline{x} \rangle + \langle (-A)^{1/2} y, (-A)^{1/2} \overline{y} \rangle.$$

It is well known, see e.g. [2], that the following operator \mathcal{A} defined on the domain $\mathcal{D}(\mathcal{A}) = \mathcal{D}(\mathcal{A}) \times \mathcal{D}((-\mathcal{A})^{1/2})$ by the formula

$$\mathcal{A} = \begin{bmatrix} 0, & I \\ A, & -\alpha \end{bmatrix}$$

defines a C_0 -semigroup $S(t), t \ge 0$ on \mathcal{H} . The solution to (1)–(2) is given by the formula

$$\begin{bmatrix} z(t) \\ \dot{z}(t) \end{bmatrix} = S(t) \begin{bmatrix} z(0) \\ \dot{z}(0) \end{bmatrix}, \quad t \ge 0.$$

Let

$$\underline{\omega}(A) = \sup\{\lambda, \ \lambda \in \sigma(A)\} < 0$$

1

where $\sigma(A)$ is the spectrum of the operator A.

Theorem 1. 1) The operator

$$P = \begin{bmatrix} I - \frac{\alpha^2}{2}A^{-1}, & -\frac{\alpha}{2}A^{-1} \\ \frac{\alpha}{2}I, & I \end{bmatrix}$$

is the unique non-negative solution of the Liapunov equation

(3)
$$2\left\langle P\mathcal{A}\begin{bmatrix} x\\ y \end{bmatrix}, \begin{bmatrix} x\\ y \end{bmatrix}\right\rangle = -\alpha \left\| \begin{bmatrix} x\\ y \end{bmatrix} \right\|^2, \quad x \in \mathcal{D}(A)$$

 $y \in \mathcal{D}(-A)^{1/2}.$

2) The following estimate holds:

(4)
$$\gamma_{-} \left\| \begin{bmatrix} x \\ y \end{bmatrix} \right\|^{2} \leq \left\langle P \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \right\rangle \leq \gamma_{+} \left\| \begin{bmatrix} x \\ y \end{bmatrix} \right\|^{2}, \quad \begin{bmatrix} x \\ y \end{bmatrix} \in \mathcal{H},$$

where

$$\gamma_{-} = \frac{\sqrt{1+a}}{1+\sqrt{1+a}}, \quad \gamma_{+} = 1 + \frac{1+\sqrt{1+a}}{a}$$

and

$$a = \frac{4|\underline{\omega}(A)|}{\alpha^2}$$

Moreover, γ_{-} and γ_{+} are the best constants in (4).

3) For arbitrary $t \ge 0$

$$||S(t)|| \le \sqrt{\frac{\gamma_-}{\gamma_+}} e^{-\frac{\alpha}{2\gamma_+}t}.$$

Proof of 1). In the following calculations we use elementary properties of seladjoint operators, see [1].

To check that P is symmetric take $\begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} \overline{x} \\ \overline{y} \end{bmatrix} \in \mathcal{H}$. Then

$$\begin{split} &\left\langle P\begin{bmatrix} x\\ y \end{bmatrix}, \begin{bmatrix} \overline{x}\\ \overline{y} \end{bmatrix} \right\rangle \\ = \left\langle \begin{bmatrix} I - \frac{\alpha^2}{2}A^{-1}, & -\frac{\alpha}{2}A^{-1}\\ \frac{\alpha}{2}I, & I \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}, \begin{bmatrix} \overline{x}\\ \overline{y} \end{bmatrix} \right\rangle \\ = \left\langle \begin{bmatrix} \left(I - \frac{\alpha^2}{2}A^{-1}\right)x - \frac{\alpha}{2}A^{-1}y\\ \frac{\alpha}{2}x + y \end{bmatrix}, \begin{bmatrix} \overline{x}\\ \overline{y} \end{bmatrix} \right\rangle \\ = \left\langle (-A)^{1/2} \begin{bmatrix} \left(I - \frac{\alpha^2}{2}A^{-1}\right)x - (-A)^{1/2}\frac{\alpha}{2}A^{-1}y \end{bmatrix}, (-A)^{1/2}\overline{x} \right\rangle + \left\langle \frac{\alpha}{2}x + y, \overline{y} \right\rangle \\ = \left\langle (-A)^{1/2}x + \frac{\alpha^2}{2}(-A)^{1/2}(-A)^{-1}x + (-A)^{1/2}\frac{\alpha}{2}(-A)^{-1}y, (-A)^{1/2}\overline{x} \right\rangle \\ + \left\langle \frac{\alpha}{2}x + y, \overline{y} \right\rangle \\ = \left\langle (-A)^{1/2}x + \frac{\alpha^2}{2}(-A)^{-1/2}x + \frac{\alpha}{2}(-A)^{-1/2}y, (-A)^{1/2}\overline{x} \right\rangle \\ + \left\langle \frac{\alpha}{2}x + y, \overline{y} \right\rangle = \left\langle (-A)^{1/2}x, (-A)^{1/2}\overline{x} \right\rangle \\ + \left\langle \frac{\alpha^2}{2}x + y, \overline{y} \right\rangle = \left\langle (-A)^{1/2}x, (-A)^{1/2}\overline{x} \right\rangle \\ + \left\langle \frac{\alpha^2}{2}(x, \overline{x}) + \frac{\alpha}{2}\langle y, \overline{x} \rangle + \frac{\alpha}{2}\langle x, \overline{y} \rangle + \langle y, \overline{y} \rangle. \end{split}$$

This implies symmetricity of P.

The operator P is non-negative as it follows from the identities:

$$\left\langle P \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \right\rangle = |(-A)^{1/2}x|^2 + \frac{\alpha^2}{2}|x|^2 + \alpha \langle x, y \rangle + |y|^2$$
$$= |(-A)^{1/2}x|^2 + \frac{1}{2} \left[|\alpha x|^2 + 2\langle \alpha x, y \rangle + |y|^2 \right] + \frac{1}{2}|y|^2$$
$$= |(-A)^{1/2}x|^2 + \frac{1}{2} \left(|\alpha x + y|^2 + |y|^2 \right) \ge 0.$$

To prove that P solves the Liapunov equation (3) note that for $\begin{bmatrix} x \\ y \end{bmatrix} \in \mathcal{D}(A)$

$$\begin{split} \left\langle P\mathcal{A} \begin{bmatrix} x\\ y \end{bmatrix}, \begin{bmatrix} x\\ y \end{bmatrix} \right\rangle &= \left\langle P \begin{bmatrix} y\\ Az - \alpha y \end{bmatrix}, \begin{bmatrix} x\\ y \end{bmatrix} \right\rangle \\ &= \left\langle (-A)^{1/2}y, (-A)^{1/2}x \right\rangle + \frac{\alpha^2}{2} \left\langle y, x \right\rangle + \frac{\alpha}{2} \left\langle Ax - \alpha y, x \right\rangle + \frac{\alpha}{2} \left\langle y, y \right\rangle + \left\langle Ax - \alpha y, y \right\rangle \\ &= \left\langle (-A)^{1/2}y, (-A)^{1/2}x \right\rangle + \frac{\alpha^2}{2} \left\langle y, x \right\rangle + \frac{\alpha}{2} \left\langle Ax, x \right\rangle - \frac{\alpha^2}{2} \left\langle y, x \right\rangle \\ &+ \frac{\alpha}{2} \left\langle y, y \right\rangle + \left\langle Ax, y \right\rangle - \alpha \left\langle y, y \right\rangle \\ &= - \left\langle y, Ax \right\rangle + \frac{\alpha^2}{2} \left\langle y, x \right\rangle + \frac{\alpha}{2} \left\langle Ax, x \right\rangle - \frac{\alpha^2}{2} \left\langle y, x \right\rangle + \frac{\alpha}{2} \left\langle y, y \right\rangle + \left\langle Ax, y \right\rangle - \alpha \left\langle y, y \right\rangle \\ &= -\frac{\alpha}{2} \left\langle (-A)x, x \right\rangle - \frac{\alpha}{2} |y|^2 = -\frac{\alpha}{2} \left(|(-A)^{1/2}x|^2 + |y|^2 \right) = -\frac{\alpha}{2} \left\| \begin{bmatrix} x\\ y \end{bmatrix} \right\|^2. \end{split}$$

The proof that P is a non-negative solution to (3) is therefore complete.

The uniqueness will follow from the fact S(t) is exponentially stable as then

$$P = \alpha \int_0^{+\infty} S^*(t) S(t) dt.$$

The exponential stability of S(t) will follow from 3).

We pass to the proof of 2). We will find the maximal $\gamma \geq 0$ such that for all $\begin{bmatrix} x \\ y \end{bmatrix} \in \mathcal{H}$:

(5)
$$\left| (-A)^{1/2} x \right|^2 + \frac{\alpha^2}{2} |x|^2 + \alpha \langle x, y \rangle + |y|^2 \ge \gamma \left(|(-A)^{1/2} x|^2 + |y|^2 \right).$$

If $\gamma = 1$, inequality (5) becomes:

$$\frac{\alpha^2}{2}|x|^2 + \alpha \langle x, y \rangle \ge 0,$$

equivalent to

$$\left|\frac{\alpha}{\sqrt{2}}x + \frac{\sqrt{2}}{2}y\right|^2 - \left|\frac{\sqrt{2}}{2}y\right|^2 \ge 0,$$

which, obviously, does not hold for all $\begin{bmatrix} x \\ y \end{bmatrix} \in \mathcal{H}$. Therefore $\gamma \in [0, 1[$ and (5) becomes

(6)
$$(1-\gamma) \left| (-A)^{1/2} x \right|^2 + \frac{\alpha^2}{2} |x|^2 + \alpha \langle x, y \rangle + (1-\gamma) |y|^2 \ge 0.$$

For fixed x the minimal value, with respect to y, of the expression

$$\alpha \langle x, y \rangle + (1 - \gamma) |y|^2 = (1 - \gamma) \left| y + \frac{\alpha}{2(1 - \delta)} x \right|^2 - \frac{\alpha^2}{4(1 - \gamma)} |x|^2$$

 $-\frac{\alpha^2}{4(1-\gamma)}|x|^2.$

J. ZABCZYK

Thereofre the required $\gamma \in [0, 1[$ should be such that for $x \in D(-A)^{1/2}$,

$$(1-\gamma)\left|(-A)^{1/2}x\right|^2 \ge \frac{\alpha^2}{2}\left(\frac{1}{2(1-\gamma)} - 1\right)|x|^2$$

Equivalently, one is looking for the maximal $\gamma \in [0, 1[$ such that

$$\inf_{x \neq 0} \frac{\left| (-A)^{1/2} x \right|^2}{|x|^2} = |\underline{\omega}(A)| \ge \frac{\alpha^2}{4} \left(\frac{1}{(1-\gamma)^2} - 2\frac{1}{1-\gamma} \right),$$

or,

$$a \ge \frac{1}{(1-\gamma)^2} - 2\frac{1}{1-\gamma}.$$

This easily gives:

$$\gamma_{-} = \frac{\sqrt{1+a}}{1+\sqrt{1+a}}$$

In a similar way the expression for γ_+ can be obtained. This time one is looking for a minimal number $\gamma > 0$ such that for all $\begin{bmatrix} x \\ y \end{bmatrix} \in \mathcal{H}$:

(7)
$$\left| (-A)^{1/2} x \right|^2 + \frac{\alpha^2}{2} |x|^2 + \alpha \langle x, y \rangle + |y|^2 \le \gamma \left(|(-A)^{1/2} x|^2 + |y|^2 \right).$$

It is clear that one should look for $\gamma > 1$. For fixed $x \in D(-A)^{1/2}$, the maximal value, with respect to y, of the expression

$$-(\gamma - 1)|y|^{2} + \alpha \langle x, y \rangle = -(\gamma - 1)\left|y - \frac{\alpha}{2(\gamma - 1)}x\right|^{2} + \frac{\alpha^{2}}{4(\gamma - 1)}|x|^{2}$$

is

$$\frac{\alpha^2}{4(\gamma-1)}|x|^2.$$

Therefore, the required $\gamma > 1$ should be such that

$$(\gamma - 1) \left| (-A)^{1/2} x \right|^2 \ge \frac{\alpha^2}{2} \left(1 + \frac{1}{2(1 - \gamma)} \right) |x|^2.$$

Equivalently, one is looking for minimal $\gamma > 1$ such that

$$\inf_{x \neq 0} \frac{\left| (-A)^{1/2} x \right|^2}{|x|^2} = |\underline{\omega}(A)| \ge \frac{\alpha^2}{4} \left(\frac{1}{(\gamma - 1)^2} + 2\frac{1}{\gamma - 1} \right),$$

or

$$a \geq \frac{1}{(\gamma-1)^2} + 2\frac{1}{1-\gamma}$$

This easily gives

$$\gamma_+ = 1 + \frac{1 + \sqrt{1 + a}}{a}$$

To prove the final part of the theorem denote by $z(t), t \ge 0$, the strong solution of the problem

$$\frac{d}{dt}z(t) = \mathcal{A}z(t), \quad z(0) = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathcal{D}(\mathcal{A}).$$

Then, from the Liapunov equation,

$$\frac{d}{dt} \langle Pz(t), z(t) \rangle = -\alpha ||z(t)||^2, \quad t \ge 0.$$

On the other hand

$$\gamma_{-} ||z(t)||^{2} \le \langle Pz(t), z(t) \rangle \le \gamma_{+} ||z(t)||^{2},$$

and therefore

$$\frac{d}{dt} \langle Pz(t), z(t) \rangle = -\alpha \|z(t)\|^2 \le -\frac{\alpha}{\gamma_+} \langle Pz(t), z(t) \rangle.$$

Consequently

$$\langle Pz(t), z(t) \rangle \le e^{-\frac{\alpha}{\gamma_+}t} \langle Pz(0), z(0) \rangle \le e^{-\frac{\alpha}{\gamma_+}t} \gamma_+ ||z(0)||^2.$$

Finally,

and

$$||z(t)||^2 \le \frac{1}{\gamma_-} \langle Pz(t), z(t) \rangle \le \frac{\gamma_+}{\gamma_-} e^{-\frac{\alpha}{\gamma_+}t} ||z(0)||^2$$

$$\|S(t)\| \le \sqrt{\frac{\gamma_+}{\gamma_-}} e^{-\frac{\alpha}{2\gamma_+}t}, \quad t \ge 0.$$

References

- N. Dunford and J. T. Schwartz, *Linear operators, Part II*, Interscience Publishers, 1963.
- [2] A. J. Pritchard and J. Zabczyk, Stability and Stabilizability of Infinite Dimensional Systems, SIAM Review, 23 (1981), 25–52.

J. ZABCZYK, INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, WARSAW, POLAND

E-mail address: J.Zabczyk@impan.pl