INSTITUTE OF MATHEMATICS of the Polish Academy of Sciences

ul. Śniadeckich 8, P.O.B. 21, 00-956 Warszawa 10, Poland

IM PAN Preprint 740 (2012)

Jerzy Zabczyk

A note on the paper
"Stability and stabilizability of infinite dimensional systems" by A. J. Pritchard and J. Zabczyk, SIAM Review, 23 (1981), 25-52

Published as manuscript

A NOTE ON THE PAPER "STABILITY AND STABILIZABILITY OF INFINITE DIMENSIONAL SYSTEMS", BY A. J. PRITCHARD AND J. ZABCZYK, SIAM REVIEW, 23
 (1981), 25-52

J. ZABCZYK

Abstract

The paper provides details of the proof of a stability result for abstract hyperbolic systems presented in a survey paper by A. J. Pritchard and the author.

The following result, in a slightly weaker formulation, was presented in [2] and proved there in a rather concise way. It is my intention to provide here its detailed proof. I am grateful to professor Kai Liu whose questions motivated me to write the note.

Let A be a negative, in general, unbounded operator on a Hilbert space Z and α a positive number. Consider the second order system:

$$
\begin{align*}
& \ddot{z}+\alpha \dot{z}-A z=0 \tag{1}\\
& \dot{z}(0) \in Z, \quad z(0) \in \mathcal{D}\left((-A)^{1 / 2}\right) . \tag{2}
\end{align*}
$$

To have the semigroup formulation of (1) and (2) one defines the state space $\mathcal{H}=\mathcal{D}\left((-A)^{1 / 2} \times Z\right.$ with the norm:

$$
\left\|\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\|=\left(|x|^{2}+\left|(-A)^{1 / 2} y\right|^{2}\right)^{1 / 2}, \quad\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathcal{H}
$$

and the scalar product:

$$
\left\langle\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
\bar{x} \\
\bar{y}
\end{array}\right]\right\rangle=\langle x, \bar{x}\rangle+\left\langle(-A)^{1 / 2} y,(-A)^{1 / 2} \bar{y}\right\rangle
$$

It is well known, see e.g. [2], that the following operator \mathcal{A} defined on the domain $\mathcal{D}(\mathcal{A})=\mathcal{D}(A) \times \mathcal{D}\left((-A)^{1 / 2}\right)$ by the formula

$$
\mathcal{A}=\left[\begin{array}{cc}
0, & I \\
A, & -\alpha
\end{array}\right]
$$

defines a C_{0}-semigroup $S(t), t \geq 0$ on \mathcal{H}. The solution to (1)-(2) is given by the formula

$$
\left[\begin{array}{l}
z(t) \\
\dot{z}(t)
\end{array}\right]=S(t)\left[\begin{array}{l}
z(0) \\
\dot{z}(0)
\end{array}\right], \quad t \geq 0 .
$$

Let

$$
\underline{\omega}(A)=\sup \{\lambda, \quad \lambda \in \sigma(A)\}<0
$$

where $\sigma(A)$ is the spectrum of the operator A.

Theorem 1. 1) The operator

$$
P=\left[\begin{array}{cc}
I-\frac{\alpha^{2}}{2} A^{-1}, & -\frac{\alpha}{2} A^{-1} \\
\frac{\alpha}{2} I, & I
\end{array}\right]
$$

is the unique non-negative solution of the Liapunov equation

$$
2\left\langle P \mathcal{A}\left[\begin{array}{l}
x \tag{3}\\
y
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\rangle=-\alpha\left\|\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\|^{2}, \quad \begin{aligned}
& x \in \mathcal{D}(A) \\
& y \in \mathcal{D}(-A)^{1 / 2}
\end{aligned}
$$

2) The following estimate holds:

$$
\gamma_{-}\left\|\left[\begin{array}{l}
x \tag{4}\\
y
\end{array}\right]\right\|^{2} \leq\left\langle P\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\rangle \leq \gamma_{+}\left\|\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\|^{2}, \quad\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathcal{H}
$$

where

$$
\gamma_{-}=\frac{\sqrt{1+a}}{1+\sqrt{1+a}}, \quad \gamma_{+}=1+\frac{1+\sqrt{1+a}}{a}
$$

and

$$
a=\frac{4|\underline{\omega}(A)|}{\alpha^{2}} .
$$

Moreover, γ_{-}and γ_{+}are the best constants in (4).
3) For arbitrary $t \geq 0$

$$
\|S(t)\| \leq \sqrt{\frac{\gamma_{-}}{\gamma_{+}}} e^{-\frac{\alpha}{2 \gamma_{+}} t}
$$

Proof of 1). In the following calculations we use elementary properties of seladjoint operators, see [1].

To check that P is symmetric take $\left[\begin{array}{l}x \\ y\end{array}\right],\left[\begin{array}{l}\bar{x} \\ \bar{y}\end{array}\right] \in \mathcal{H}$. Then

$$
\begin{aligned}
& \left\langle P\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
\bar{x} \\
\bar{y}
\end{array}\right]\right\rangle \\
& =\left\langle\left[\begin{array}{cc}
I-\frac{\alpha^{2}}{2} A^{-1}, & -\frac{\alpha}{2} A^{-1} \\
\frac{\alpha}{2} I, & I
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
\bar{x} \\
\bar{y}
\end{array}\right]\right\rangle \\
& =\left\langle\left[\begin{array}{c}
\left(I-\frac{\alpha^{2}}{2} A^{-1}\right) x-\frac{\alpha}{2} A^{-1} y \\
\frac{\alpha}{2} x+y
\end{array}\right],\left[\begin{array}{l}
\bar{x} \\
\bar{y}
\end{array}\right]\right\rangle \\
& =\left\langle(-A)^{1 / 2}\left[\left(I-\frac{\alpha^{2}}{2} A^{-1}\right) x-(-A)^{1 / 2} \frac{\alpha}{2} A^{-1} y\right],(-A)^{1 / 2} \bar{x}\right\rangle+\left\langle\frac{\alpha}{2} x+y, \bar{y}\right\rangle \\
& =\left\langle(-A)^{1 / 2} x+\frac{\alpha^{2}}{2}(-A)^{1 / 2}(-A)^{-1} x+(-A)^{1 / 2} \frac{\alpha}{2}(-A)^{-1} y,(-A)^{1 / 2} \bar{x}\right\rangle \\
& \quad+\left\langle\frac{\alpha}{2} x+y, \bar{y}\right\rangle \\
& =\left\langle(-A)^{1 / 2} x+\frac{\alpha^{2}}{2}(-A)^{-1 / 2} x+\frac{\alpha}{2}(-A)^{-1 / 2} y,(-A)^{1 / 2} \bar{x}\right\rangle \\
& \quad+\left\langle\frac{\alpha}{2} x+y, \bar{y}\right\rangle=\left\langle(-A)^{1 / 2} x,(-A)^{1 / 2} \bar{x}\right\rangle \\
& \quad+\frac{\alpha^{2}}{2}\langle x, \bar{x}\rangle+\frac{\alpha}{2}\langle y, \bar{x}\rangle+\frac{\alpha}{2}\langle x, \bar{y}\rangle+\langle y, \bar{y}\rangle .
\end{aligned}
$$

This implies symmetricity of P.

The operator P is non-negative as it follows from the identities:

$$
\begin{aligned}
\left\langle P\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\rangle & =\left|(-A)^{1 / 2} x\right|^{2}+\frac{\alpha^{2}}{2}|x|^{2}+\alpha\langle x, y\rangle+|y|^{2} \\
& =\left|(-A)^{1 / 2} x\right|^{2}+\frac{1}{2}\left[|\alpha x|^{2}+2\langle\alpha x, y\rangle+|y|^{2}\right]+\frac{1}{2}|y|^{2} \\
& =\left|(-A)^{1 / 2} x\right|^{2}+\frac{1}{2}\left(|\alpha x+y|^{2}+|y|^{2}\right) \geq 0
\end{aligned}
$$

To prove that P solves the Liapunov equation (3) note that for $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathcal{D}(A)$

$$
\begin{aligned}
& \left\langle P \mathcal{A}\left[\begin{array}{l}
x \\
y
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\rangle=\left\langle P\left[\begin{array}{c}
y \\
A z-\alpha y
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\rangle \\
& =\left\langle(-A)^{1 / 2} y,(-A)^{1 / 2} x\right\rangle+\frac{\alpha^{2}}{2}\langle y, x\rangle+\frac{\alpha}{2}\langle A x-\alpha y, x\rangle+\frac{\alpha}{2}\langle y, y\rangle+\langle A x-\alpha y, y\rangle \\
& =\left\langle(-A)^{1 / 2} y,(-A)^{1 / 2} x\right\rangle+\frac{\alpha^{2}}{2}\langle y, x\rangle+\frac{\alpha}{2}\langle A x, x\rangle-\frac{\alpha^{2}}{2}\langle y, x\rangle \\
& \quad+\frac{\alpha}{2}\langle y, y\rangle+\langle A x, y\rangle-\alpha\langle y, y\rangle \\
& =-\langle y, A x\rangle+\frac{\alpha^{2}}{2}\langle y, x\rangle+\frac{\alpha}{2}\langle A x, x\rangle-\frac{\alpha^{2}}{2}\langle y, x\rangle+\frac{\alpha}{2}\langle y, y\rangle+\langle A x, y\rangle-\alpha\langle y, y\rangle \\
& =-\frac{\alpha}{2}\langle(-A) x, x\rangle-\frac{\alpha}{2}|y|^{2}=-\frac{\alpha}{2}\left(\left|(-A)^{1 / 2} x\right|^{2}+|y|^{2}\right)=-\frac{\alpha}{2}\left\|\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\|^{2}
\end{aligned}
$$

The proof that P is a non-negative solution to (3) is therefore complete.
The uniqueness will follow from the fact $S(t)$ is exponentially stable as then

$$
P=\alpha \int_{0}^{+\infty} S^{*}(t) S(t) d t
$$

The exponential stability of $S(t)$ will follow from 3$)$.
We pass to the proof of 2). We will find the maximal $\gamma \geq 0$ such that for all $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathcal{H}:$

$$
\begin{equation*}
\left|(-A)^{1 / 2} x\right|^{2}+\frac{\alpha^{2}}{2}|x|^{2}+\alpha\langle x, y\rangle+|y|^{2} \geq \gamma\left(\left|(-A)^{1 / 2} x\right|^{2}+|y|^{2}\right) \tag{5}
\end{equation*}
$$

If $\gamma=1$, inequality (5) becomes:

$$
\frac{\alpha^{2}}{2}|x|^{2}+\alpha\langle x, y\rangle \geq 0
$$

equivalent to

$$
\left|\frac{\alpha}{\sqrt{2}} x+\frac{\sqrt{2}}{2} y\right|^{2}-\left|\frac{\sqrt{2}}{2} y\right|^{2} \geq 0
$$

which, obviously, does not hold for all $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathcal{H}$. Therefore $\gamma \in[0,1[$ and (5) becomes

$$
\begin{equation*}
(1-\gamma)\left|(-A)^{1 / 2} x\right|^{2}+\frac{\alpha^{2}}{2}|x|^{2}+\alpha\langle x, y\rangle+(1-\gamma)|y|^{2} \geq 0 \tag{6}
\end{equation*}
$$

For fixed x the minimal value, with respect to y, of the expression

$$
\alpha\langle x, y\rangle+(1-\gamma)|y|^{2}=(1-\gamma)\left|y+\frac{\alpha}{2(1-\delta)} x\right|^{2}-\frac{\alpha^{2}}{4(1-\gamma)}|x|^{2}
$$

is

$$
-\frac{\alpha^{2}}{4(1-\gamma)}|x|^{2}
$$

Thereofre the required $\gamma \in\left[0,1\left[\right.\right.$ should be such that for $x \in D(-A)^{1 / 2}$,

$$
(1-\gamma)\left|(-A)^{1 / 2} x\right|^{2} \geq \frac{\alpha^{2}}{2}\left(\frac{1}{2(1-\gamma)}-1\right)|x|^{2} .
$$

Equivalently, one is looking for the maximal $\gamma \in[0,1[$ such that

$$
\inf _{x \neq 0} \frac{\left|(-A)^{1 / 2} x\right|^{2}}{|x|^{2}}=|\underline{\omega}(A)| \geq \frac{\alpha^{2}}{4}\left(\frac{1}{(1-\gamma)^{2}}-2 \frac{1}{1-\gamma}\right),
$$

or,

$$
a \geq \frac{1}{(1-\gamma)^{2}}-2 \frac{1}{1-\gamma} .
$$

This easily gives:

$$
\gamma_{-}=\frac{\sqrt{1+a}}{1+\sqrt{1+a}} .
$$

In a similar way the expression for γ_{+}can be obtained. This time one is looking for a minimal number $\gamma>0$ such that for all $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathcal{H}$:

$$
\begin{equation*}
\left|(-A)^{1 / 2} x\right|^{2}+\frac{\alpha^{2}}{2}|x|^{2}+\alpha\langle x, y\rangle+|y|^{2} \leq \gamma\left(\left|(-A)^{1 / 2} x\right|^{2}+|y|^{2}\right) . \tag{7}
\end{equation*}
$$

It is clear that one should look for $\gamma>1$. For fixed $x \in D(-A)^{1 / 2}$, the maximal value, with respect to y, of the expression

$$
-(\gamma-1)|y|^{2}+\alpha\langle x, y\rangle=-(\gamma-1)\left|y-\frac{\alpha}{2(\gamma-1)} x\right|^{2}+\frac{\alpha^{2}}{4(\gamma-1)}|x|^{2}
$$

is

$$
\frac{\alpha^{2}}{4(\gamma-1)}|x|^{2}
$$

Therefore, the required $\gamma>1$ should be such that

$$
(\gamma-1)\left|(-A)^{1 / 2} x\right|^{2} \geq \frac{\alpha^{2}}{2}\left(1+\frac{1}{2(1-\gamma)}\right)|x|^{2} .
$$

Equivalently, one is looking for minimal $\gamma>1$ such that

$$
\inf _{x \neq 0} \frac{\left|(-A)^{1 / 2} x\right|^{2}}{|x|^{2}}=|\underline{\omega}(A)| \geq \frac{\alpha^{2}}{4}\left(\frac{1}{(\gamma-1)^{2}}+2 \frac{1}{\gamma-1}\right)
$$

or

$$
a \geq \frac{1}{(\gamma-1)^{2}}+2 \frac{1}{1-\gamma}
$$

This easily gives

$$
\gamma_{+}=1+\frac{1+\sqrt{1+a}}{a}
$$

To prove the final part of the theorem denote by $z(t), t \geq 0$, the strong solution of the problem

$$
\frac{d}{d t} z(t)=\mathcal{A} z(t), \quad z(0)=\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathcal{D}(\mathcal{A})
$$

Then, from the Liapunov equation,

$$
\frac{d}{d t}\langle P z(t), z(t)\rangle=-\alpha\|z(t)\|^{2}, \quad t \geq 0
$$

On the other hand

$$
\gamma_{-}\|z(t)\|^{2} \leq\langle P z(t), z(t)\rangle \leq \gamma_{+}\|z(t)\|^{2},
$$

and therefore

$$
\frac{d}{d t}\langle P z(t), z(t)\rangle=-\alpha\|z(t)\|^{2} \leq-\frac{\alpha}{\gamma_{+}}\langle P z(t), z(t)\rangle .
$$

Consequently

$$
\langle P z(t), z(t)\rangle \leq e^{-\frac{\alpha}{\gamma_{+}} t}\langle P z(0), z(0)\rangle \leq e^{-\frac{\alpha}{\gamma_{+}} t} \gamma_{+}\|z(0)\|^{2} .
$$

Finally,

$$
\|z(t)\|^{2} \leq \frac{1}{\gamma_{-}}\langle P z(t), z(t)\rangle \leq \frac{\gamma_{+}}{\gamma_{-}} e^{-\frac{\alpha}{\gamma_{+}} t}\|z(0)\|^{2}
$$

and

$$
\|S(t)\| \leq \sqrt{\frac{\gamma_{+}}{\gamma_{-}}} e^{-\frac{\alpha}{2 \gamma_{+}} t}, \quad t \geq 0
$$

References

[1] N. Dunford and J. T. Schwartz, Linear operators, Part II, Interscience Publishers, 1963.
[2] A. J. Pritchard and J. Zabczyk, Stability and Stabilizability of Infinite Dimensional Systems, SIAM Review, 23 (1981), 25-52.
J. Zabczyk, Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland

E-mail address: J.Zabczyk@impan.pl

