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Abstract: We prove that the class of principal coactions is closed under one-surjective pullbacks
in an appropriate category of algebras equipped with left and right coactions. This allows us to
handle cases of C∗-algebras lacking two different non-trivial ideals. It also allows us to go beyond the
category of comodule algebras. As an example of the former, we carry out an index computation for
noncommutative line bundles over the standard Podleś sphere using the Mayer-Vietoris type arguments
afforded by a one-surjective pullback presentation of the C∗-algebra of this quantum sphere. To
instantiate the latter, we define a family of coalgebraic noncommutative deformations of the U(1)-
principal bundle S7 → CP3.
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1 Introduction and preliminaries

The idea of decomposing a complicated object into simpler pieces and connecting data is a
fundamental computational principle throughout mathematics. In the case of (co)homology
theory, it yields the Mayer-Vietoris long exact sequence whose significance and usefulness can
hardly be overestimated. The categorical underpinning of all this are pullback diagrams: in a
given category they give a rigorous meaning to putting together two objects over a third one.

The goal of this paper is to prove a general pullback theorem for principal coactions that
significantly generalizes the main result of [13] restricted to comodule algebras and pullbacks
of surjections. More precisely, our main result is that the pullback of principal coactions
over morphisms of which at least one is surjective is again a principal coaction. It may be
viewed as a non-linear version of the Milnor construction yielding an odd-to-even connecting
homomorphism in algebraic K-theory [20]. Indeed, linearizing our pullback theorem with the
help of a corepresentation gives precisely the odd-to-even construction of a projective module
defining the connecting homomorphism in K-theory.

We apply this new result in two cases. In the first case, we keep the comodule-algebra setting
but take a one-surjective pullback diagram (only one of the defining morphisms is surjective).
In the second case, we proceed the other way round, that is, we take a pullback diagram given
by two surjections but take coactions that are not algebra homomorphisms.

The pullback picture of the standard quantum Hopf fibration gives us the first-case example.
It provides a new way of computing the index pairing for the associated quantum Hopf line
bundles (cf. [28]). This index pairing was computed in [12] using a noncommutative index
formula, and re-derived in [22]. Here we give yet another method to compute it. This simple
example shows the need to generalize from two-surjective to one-surjective pullback diagrams,
and the pullback method of index computation seems attractive due to its inherent simplicity.

To obtain the second-case example, we first show how the piecewise structure [13] of a non-
commutative join construction [9] allows one to define a certain class of piecewise principal coac-
tions. Although this class of examples can also be handled by earlier methods, it definitely shows
that there are interesting piecewise principal coactions that are not algebra homomorphisms.
To obtain a concrete example, we take Pflaum’s instanton bundle S7

q → S4
q [23] as the noncom-

mutative join of SUq(2) and turn it into the coalgebraic quantum principal bundle S7
q → CP3

q,s.
We do it with the help of the canonical surjections π : O(SUq(2))→ O(SUq(2))/Jq,s determined
by the coideals right ideals Jq,s := (O(S2

q,s) ∩ kerε)O(SUq(2)), where S2
q,s is a generic Podleś

quantum sphere [24] and kerε is the kernel of the counit map.
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The paper is organized as follows. First, to make our exposition self-contained and to
establish notation, we recall fundamental concepts that we use later on. The key Section 2
is devoted to the general pullback theorem for principal coactions of coalgebras on algebras,
Section 3 is on deriving the index pairing for quantum Hopf line bundles as a corollary to the
pullback presentation of the standard Hopf fibration of SUq(2), and the final Section 4 presents
new examples of piecewise principal coactions that go beyond Hopf-Galois theory.

Throughout the paper, we work with algebras and coalgebras over a field. The unadorned
tensor product stands for the algebraic tensor product over this field. We employ the Heyneman-
Sweedler type notation (with the summation symbol suppressed) for the comultiplication ∆(c)=
c(1)⊗ c(2) ∈ C⊗C and for coactions ∆V (v) = v(0)⊗v(1) ∈ V ⊗C, V ∆(v) = v(−1)⊗v(0) ∈ C⊗V .
The convolution product of two linear maps from a coalgebra to an algebra is denoted by ∗:
(f ∗ g)(c) := f(c(1))g(c(2)). The set of natural numbers includes 0, that is, N = {0, 1, 2, . . .}.

1.1 Pullback diagrams and fibre products

The purpose of this section is to collect some elementary facts about fibre products. We consider
the category of vector spaces as it will be the ambient category for all our pullback diagrams.
Let π1 : A1 → A12 and π2 : A2 → A12 be linear maps. The fibre product of these maps is defined
by

A1 ×
(π1,π2)

A2 := {(a1, a2) ∈ A1 × A2 | π1(a1) = π2(a2)} . (1.1)

Together with the canonical projections

pr1 : A1 ×
(π1,π2)

A2 −→ A1, pr2 : A1 ×
(π1,π2)

A2 −→ A2 (1.2)

it forms a universal construction completing the initially given two linear maps into the following
commutative diagram:

A1 ×
(π1,π2)

A2
pr2−−−→ A2

pr1

y π2

y
A1

π1−−−→ A12 .

(1.3)

Such diagrams are called pullback diagrams, and fibre products are often referred to as pullbacks.

Next, if π1 : A1 → A12 and π2 : A2 → A12 are morphisms of *-algebras, then the fibre
product A1×(π1,π2)A2 is a *-subalgebra of A1 × A2. Furthermore, if we consider the pullback
diagram (1.3) in the category of (unital) C∗-algebras, then A1×(π1,π2)A2 with its componentwise
multiplication and *-structure is a (unital) C∗-algebra. Much the same, if B is an algebra and
π1 : A1 → A12 and π2 : A2 → A12 are morphisms of left B-modules, then the fibre product
A1×(π1,π2)A2 is a left B-module via the componentwise left action b.(a1, a2) = (b.a1, b.a2).
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1.2 Odd-to-even connecting homomorphism in K-theory

Consider a pullback diagram
A

ww ''
A1

π1 && &&

A2

π2xx
A12

(1.4)

in the category of unital algebras, and assume that one of the defining morphisms (here we
choose π1) is surjective. Then there exists a long exact sequence in algebraic K-theory [20]

· · · −→ K1(A12) odd-to-even // K0(A) −→ K0(A1 ⊕ A2) −→ K0(A12). (1.5)

The mapping K1(A12) odd-to-even // K0(A) is obtained as follows. First, given left Ai-modules
Ei, i = 1, 2, we obtain left A12-modules πi∗Ei defined by A12 ⊗Ai

Ei. Since A12 is unital, there
are canonical morphisms πi∗ : Ei → πi∗Ei, πi∗(e) = 1 ⊗Ai

e. The modules Ei and πi∗Ei can
also be considered as left modules over the fibre product algebra A via the left actions given
by a.ei = pri(a).ei, for ei ∈ Ei, and a.fi = πi(pri(a)).fi, for fi ∈ πi∗Ei. Assume now that
h : π1∗E1 → π2∗E2 is a morphism of left A12-modules. Then h ◦ π1∗ : E1 → π2∗E2 and
π2∗ : E2 → π2∗E2 can be lifted to morphisms of left A-modules, and we can consider their
pullback diagram in the category of left A-modules:

E1 ×
(h◦π1∗,π2∗)

E2

pr1

xx

pr2

&&
E1

π1∗
��

E2

π2∗
��

π1∗E1 h
// π2∗E2 .

(1.6)

In [20, Section 2], it is proven in detail that, if Ei is a finitely generated projective module
over Ai, i = 1, 2, and h is an isomorphism, then the fibre product M := E1 ×(h◦π1∗ , π2∗) E2 is a
finitely generated projective A-module. Furthermore, up to isomorphism, every finitely gener-
ated projective module over A has this form, and the Ai-modules Ei and pri∗M := Ai ⊗AM ,
i = 1, 2, are naturally isomorphic. In particular, if E1

∼= An1 and E2
∼= An2 , the isomorphism

h : π1∗E1 → π2∗E2 is given by an invertible matrix U ∈ GLn(A12). Using the canonical
embedding GLn(A12) ⊆ GL∞(A12), we get a map

GL∞(A12) 3 U 7−→M ∈ Proj(A) (1.7)

given by the pullback diagram

M

uu ))
An1

π1
(( ((

An2

π2
vv

An12

U∼= An12 .

(1.8)
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This map induces an odd-to-even connecting homomorphism on the level of both algebraic
[20] and C∗-algebraic [15] K-theory. An explicit description of the module M is as follows.
Assume that π1 : A1 → A12 is surjective. Then there exist liftings c, d ∈ Matn(A1) such
that evaluating π1 on c and d componentwise yields U−1 and U respectively. Applying [11,
Theorem 2.1] to our situation yields E1 ×(h◦π1∗ , π2∗) E2

∼= A2np, where

p =

(
(c(2− dc)d, 1) (c(2− dc)(1− dc), 0)
((1− dc)d, 0) ((1− dc)2, 0)

)
∈ Mat2n(A). (1.9)

1.3 Principal coactions and associated projective modules

Recall first the general definition of an entwining structure. Let C be a coalgebra with comul-
tiplication ∆ and counit ε, and let A be an algebra with multiplication m and unit η. A linear
map

ψ : C ⊗ A −→ A⊗ C (1.10)

is called an entwining structure if and only if it is unital, counital, and distributive with respect
to both the multiplication and comultiplication:

ψ ◦ (id⊗m) = (m⊗ id) ◦ (id⊗ ψ) ◦ (ψ ⊗ id), ψ ◦ (id⊗ η) = (η ⊗ id) ◦ flip, (1.11)

(id⊗∆) ◦ ψ = (ψ ⊗ id) ◦ (id⊗ ψ) ◦ (∆⊗ id), (id⊗ ε) ◦ ψ = flip ◦ (ε⊗ id). (1.12)

If ψ is an entwining of a coalgebra C and an algebra A, and M is a right C-comodule and a
right A-module, we call M an entwined module [4] when it satisfies the compatibility condition

(ma)(0) ⊗ (ma)(1) = m(0)ψ(m(1) ⊗ a). (1.13)

Next, let P be an algebra equipped with a coaction ∆P : P → P ⊗ C of a coalgebra C.
Define the coaction-invariant subalgebra of P by

B := P coC := {b ∈ P | ∆P (bp) = b∆P (p) for all p ∈ P}. (1.14)

We call the inclusion B ⊆ P a C-extension. We call it a coalgebra-Galois C-extension when
the canonical left P -module right C-comodule map

can : P ⊗
B
P−→P ⊗ C, p⊗

B
p′ 7−→ p∆P (p′), (1.15)

is bijective [5]. Note that the bijectivity of can allows us to define the so-called translation map

τ : C −→ P ⊗
B
P, τ(c) := can−1(1⊗ c). (1.16)

Moreover, every coalgebra-Galois C-extension comes naturally equipped with a unique entwin-
ing structure that makes P a (P,C)-entwined module in the sense of (1.13). It is called the
canonical entwining structure [5], and is very useful in calculations or further constructions.
Explicitly, it can be written as:

ψ(c⊗ p) = can(can−1(1⊗ c)p). (1.17)
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An algebra P with a right C-coaction ∆P is said to be e-coaugmented if and only if there ex-
ists a group-like element e ∈ C such that ∆P (1) = 1⊗e. We call the C-extension B := P coC ⊆ P
e-coaugmented. (Much the same way, one defines the coaugmentation of left coactions.) For
the e-coaugmented coalgebra-Galois C-extensions, one can show that the coaction-invariant
subalgebra defined in (1.14) can be expressed as

P coC = {p ∈ P | ∆P (p) = p⊗ e}. (1.18)

Indeed, Formula (1.17) allows us to express the right coaction in terms of the entwining

∆P (p) = ψ(e⊗ p), (1.19)

and Equation (1.11) yields the right-in-left inclusion. The opposite inclusion is obvious.

Next, if ψ is invertible, one can use (1.12) to show that the formula

P∆(p) := ψ−1(p⊗ e) (1.20)

defines a left coaction P∆ : P → C ⊗ P . We define the left coaction-invariant subalgebra
coCP as in (1.14), and derive the left-sided version of (1.17). Hence, for any e-coaugmented
coalgebra-Galois C-extension with invertible canonical entwining, the right coaction-invariant
subalgebra coincides with the left coaction-invariant subalgebra:

P coC = {p ∈ P | ∆P (p) = p⊗ e} = {p ∈ P | P∆(p) = e⊗ p} = coCP. (1.21)

Finally, we need to assume one more condition on C-extensions to obtain a suitable definition
of a principal coaction: equivariant projectivity. It is a pivotal property that guarantees the
projectivity of associated modules, and thus leads to index pairings between K-theory and
K-homology. Putting together the aforementioned four conditions, we say that a coalgebra
C-extension B ⊆ P is principal [6] if:

(i) The canonical map can : P⊗BP→P⊗C, p⊗Bp′ 7→ p∆P (p′), is bijective (Galois condition).

(ii) The right coaction is e-coaugmented for some group-like e ∈ C, i.e. ∆P (1) = 1⊗ e.

(iii) The canonical entwining ψ : C ⊗ P→P ⊗ C, c⊗ p 7→ can(can−1(1⊗ c)p), is bijective.

(iv) The algebra P is C-equivariantly projective as a left B-module, i.e. there exists a left
B-linear and right C-colinear splitting of the multiplication map B ⊗ P → P .

In the framework of coalgebra extensions, the role of connections on principal bundles is
played by strong connections [6]. Let P be an algebra and both a left and right e-coaugmented
C-comodule. (Note that the left and right coactions need not commute.) A strong connection
is a linear map ` : C → P ⊗ P satisfying

c̃an◦ `=1⊗ id, (id⊗∆P )◦ `=(`⊗ id)◦∆, (P∆⊗ id)◦ `=(id⊗ `)◦∆, `(e) = 1⊗1. (1.22)
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Here c̃an : P⊗P → P⊗C is the lifting of can to P⊗P . Assuming that there exists an invertible
entwining ψ : C⊗P → P ⊗C making P an entwined module, the first three equations of (1.22)
read in the Heyneman-Sweedler type notation c 7→ `(c)〈1〉 ⊗ `(c)〈2〉 as follows:

`(c)〈1〉ψ(e⊗ `(c)〈2〉) = `(c)〈1〉`(c)〈2〉(0) ⊗ `(c)
〈2〉

(1) = 1⊗ c, (1.23)

`(c)〈1〉 ⊗ ψ(e⊗ `(c)〈2〉) = `(c)〈1〉 ⊗ `(c)〈2〉(0) ⊗ `(c)
〈2〉

(1) = `(c(1))
〈1〉 ⊗ `(c(1))

〈2〉 ⊗ c(2), (1.24)

ψ−1(`(c)〈1〉 ⊗ e)⊗ `(c)〈2〉 = `(c)〈1〉(−1) ⊗ `(c)
〈1〉

(0) ⊗ `(c)
〈2〉 = c(1) ⊗ `(c(2))

〈1〉 ⊗ `(c(2))
〈2〉. (1.25)

Applying id⊗ ε to (1.23) yields a useful formula

`(c)〈1〉`(c)〈2〉 = ε(c). (1.26)

It is worthwhile to observe the left-right symmetry of principal extensions. We already
noted (see (1.21)) the equality of the left and right coaction-invariant subalgebras. Now let us
define the left canonical map as

canL : P ⊗
B
P 3 p⊗ q 7−→ p(−1) ⊗ p(0)q ∈ C ⊗ P. (1.27)

One can check that it is related to the right canonical map can by the formula [7]

ψ ◦ canL = can. (1.28)

Also, if ` is a strong connection and c̃anL := (id ⊗ m) ◦ (P∆ ⊗ id) is the lifted left canonical
map, then c̃anL ◦ ` = id⊗ 1. Hence

c⊗ p 7−→ `(c)〈1〉 ⊗ `(c)〈2〉p (1.29)

is a splitting of c̃anL just as
p⊗ c 7−→ p`(c)〈1〉 ⊗ `(c)〈2〉 (1.30)

is a splitting of c̃an.

Lemma 1.1. Let P be an object in the category C
eAlgCe of all unital algebras with e-coaugmented

left and right C-coactions. Assume that there exists an invertible entwining ψ : C⊗P → P ⊗C
making P an entwined module. Then, if P admits a strong connection `, it is principal.

Proof. Following [6], first we argue that

σ : P 3 p 7−→ p(0)`(p(1))
〈1〉 ⊗ `(p(1))

〈2〉 ∈ B ⊗ P (1.31)

is a left B-linear splitting of the multiplication map. Indeed, m ◦ σ = id because of (1.26), and
the calculation

ψ(e⊗ p(0)`(p(1))
〈1〉)⊗ `(p(1))

〈2〉 = p(0)`(p(1))
〈1〉 ⊗ e⊗ `(p(1))

〈2〉 (1.32)

obtained using (1.11) proves that σ(P ) ⊆ B ⊗ P . This splitting is evidently right C-colinear,
so that its existence proves the equivariant projectivity.
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Next, let us check that the formula

can−1 : P ⊗ C −→ P ⊗
B
P, p⊗ c 7−→ p`(c)〈1〉 ⊗

B
`(c)〈2〉, (1.33)

defines the inverse of the canonical map can, so that the coaction of C is Galois. It follows from
(1.23) that

can(can−1(p⊗ c)) = p`(c)〈1〉`(c)〈2〉(0) ⊗ `(c)
〈2〉

(1) = p⊗ c . (1.34)

On the other hand, taking advantage of (1.26) and (1.31), we see that

can−1(can(p⊗
B
q)) = pq(0)`(q(1))

〈1〉 ⊗
B
`(q(1))

〈2〉 = p⊗
B
q(0)`(q(1))

〈1〉`(q(1))
〈2〉 = p⊗

B
q . (1.35)

Thus the conditions (i) and (iv) of the principality of a C-extension are satisfied. Finally,
Condition (ii) is simply assumed, and Condition (iii) follows from the uniqueness of an entwining
that makes P an entwined module.

Note that, if there exists a strong connection `, then (1.33) yields

τ(c) = `(c)〈1〉 ⊗
B
`(c)〈2〉. (1.36)

In the Heyneman-Sweedler type notation, we write τ(c) = τ(c)[1]⊗B τ(c)[2]. Then the canonical
entwining reads

ψ(c⊗ p) = τ(c)[1](τ(c)[2]p)(0) ⊗ (τ(c)[2]p)(1) = `(c)〈1〉(`(c)〈2〉p)(0) ⊗ (`(c)〈2〉p)(1). (1.37)

Remark 1.2. In [6], there is the converse statement: if P is principal, it admits a strong
connection. Thus principal extensions can be characterized as these that admit a strong con-
nection.

Recall now that classical principal bundles can be viewed as functors transforming finite-
dimensional vector spaces into associated vector bundles. Analogously, one can prove that a
principal C-extension B ⊆ P defines a functor from the category of finite-dimensional left C-
comodules into the category of finitely generated projective left B-modules [6]. Explicitly, if V
is a left C-comodule with coaction V ∆, this functor assigns to it the cotensor product

P 2
C
V := {

∑
i pi ⊗ vi ∈ P ⊗ V |

∑
i ∆P (pi)⊗ vi =

∑
i pi ⊗ V ∆(vi)}. (1.38)

In particular, if g ∈ C is a group-like element, the formula C∆(1) := g ⊗ 1 defines a 1-dimen-
sional corepresentation, and

P 2
C
C = {p∈ P | ∆P (p)=p⊗ g} =: Pg (1.39)

can be viewed as a noncommutative associated complex line bundle. Then the general formula
for computing an idempotent Eg of the associated module Pg out of a corepresentation and a
strong connection becomes a very simple special case of [6, Theorem 3.1]:

Pg ∼= BnEg , (Eg)
n
i,j=1 :=

(
gRi g

L
j

)n
i,j=1

, `(g) =:
n∑
k=1

gLk ⊗ gRk ∈ Pg−1 ⊗ Pg . (1.40)
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A fundamental special case of principal extensions is provided by principal comodule alge-
bras. One assumes then that C = H is a Hopf algebra with bijective antipode S, the canonical
map is bijective, and P is an H-equivariantly projective left B-module. This brings us in touch
with compact quantum groups. Assume that H̄ is the C∗-algebra of a compact quantum group
in the sense of Woronowicz [30, 32], and H is its dense Hopf *-subalgebra spanned by the ma-
trix coefficients of the irreducible unitary corepresentations. Let P̄ be a unital C∗-algebra and
δ : P̄ → P̄ ⊗̄H̄ an injective C∗-algebraic right coaction of H̄ on P̄ . (See [1, Definition 0.2] for a
general definition and [3, Definition 1] for the special case of compact quantum groups.) Here
⊗̄ denotes the minimal C∗-completion of the algebraic tensor product P̄ ⊗ H̄.

To extend Woronowicz’s Peter-Weyl theory [32] from compact quantum groups to compact
quantum principal bundles, one defines [2] the subalgebra Pδ(P̄ ) ⊆ P̄ of elements for which the
coaction lands in P̄ ⊗H, i.e.

Pδ(P̄ ) := {p ∈ P̄ | δ(p) ∈ P ⊗H}. (1.41)

One easily checks that it is an H-comodule algebra. We call Pδ(P̄ ) the Peter-Weyl comodule
algebra associated to the C∗-coaction δ. It follows from results of [3] and [25] that Pδ(P̄ ) is
dense in P̄ . Also, it is straightforward to verify [2] that the operation P̄ 7→ Pδ(P̄ ) gives a
functor commuting with taking fibre products (pullbacks), and that Pδ(P̄ )coH coincides with
the C∗-algebra P̄ coH̄ .

Finally, let us remark that, for a compact Hausdorff topological group G and a unital C∗-
algebra A, we can use the isomorphism A ⊗̄C(G) ∼= C(G,A) (e.g. see [29, Corollary T.6.17])
to translate a right C(G)-coaction δ into a G-action χ : G 3 g 7→ χg ∈ Aut(A) as follows:

δ : A −→ A ⊗̄C(G) ∼= C(G,A), δ(a)(g) =: χg(a) . (1.42)

Thus we can use the terminology of right C(G)-comodule C∗-algebras and G-C∗-algebras syn-
onymously. It is important to bear in mind that the Peter-Weyl functor maps G-equivariant
*-homomorphisms to colinear homomorphisms of right O(G)-comodule algebras [2].

1.4 Standard Hopf fibration of quantum SU(2)

The standard quantum Hopf fibration is given by an action of U(1) on the quantum group
SUq(2), q ∈ (0, 1). The coordinate ring of O(SUq(2)) is generated by α, β, γ, δ with relations

αβ = qβα, αγ = qγα, βδ = qδβ, γδ = qδγ, βγ = γβ, (1.43)

αδ − qβγ = 1, δα− q−1βγ = 1, (1.44)

and involution α∗ = δ, β∗ = −qγ. It is a Hopf *-algebra with comultiplication ∆, counit ε, and
antipode S given by

∆(α) = α⊗ α + β ⊗ γ, ∆(β) = α⊗ β + β ⊗ δ, (1.45)

∆(γ) = γ ⊗ α + δ ⊗ γ, ∆(δ) = γ ⊗ β + δ ⊗ δ, (1.46)

ε(α) = ε(δ) = 1, ε(β) = ε(γ) = 0, (1.47)

S(α) = δ, S(β) = −q−1β, S(γ) = −qγ, S(δ) = α. (1.48)
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Let O(U(1)) denote the commutative and cocommutative Peter-Weyl Hopf *-algebra of
U(1), and let u stand for its unitary group-like generator. Note that the counit ε and the
antipode S satisfy ε(u) = 1 and S(u) = u∗. There is a Hopf *-algebra surjection

π : O(SUq(2)) −→ O(U(1)), π(α) = u, π(δ) = u−1, π(β) = π(γ) = 0. (1.49)

Setting ∆R := (id⊗ π) ◦∆, we obtain a right O(U(1))-coaction on O(SUq(2)). On generators,
the coaction reads

∆R(α) = α⊗ u, ∆R(β) = β ⊗ u−1, ∆R(γ) = γ ⊗ u, ∆R(δ) = δ ⊗ u−1. (1.50)

The *-subalgebra of coaction invariants defines the coordinate ring of the standard Podleś
quantum sphere:

O(S2
q) := O(SUq(2))coO(U(1)) = {a ∈ O(SUq(2)) | ∆R(a) = a⊗ 1} . (1.51)

One can prove (see [24]) that O(S2
q) is isomorphic to the *-algebra generated by B and

hermitean A satisfying the relations

AB = q2BA, B∗B = A− A2, BB∗ = q2A− q4A2. (1.52)

An isomorphism is explicitly given by the formulas A = −q−1βγ and B = −βα. The irreducible
Hilbert space representations of O(S2

q) are given by

ρ0(A) = ρ0(B) = 0, ρ0(1) = 1 on H = C, (1.53)

ρ+(A)en = q2nen, ρ+(B)en = qn(1− q2n)1/2en−1 on H = `2(N), (1.54)

where {en | n = 0, 1, . . .} is an orthonormal basis of `2(N).

Recall that the universal C∗-algebra of a complex *-algebra is the C∗-completion with
respect to the universal C∗-norm given by the supremum (if it exists) of the operator norms
over all bounded *-representations. Let C(S2

q) denote the universal C∗-algebra generated by A
and B satisfying (1.52). From the above representations, it follows that C(S2

q) is the minimal
unitalization of K(`2(N)), that is,

C(S2
q)
∼= K(`2(N))⊕ C ⊆ B(`2(N)), (1.55)

(k + α)(k′ + α′) = (kk′ + α′k + αk′) + αα′, k, k′ ∈ K(`2(N)), α, α′ ∈ C. (1.56)

Here K(`2(N)) and B(`2(N)) denote the C∗-algebras of compact and bounded operators respec-
tively on the Hilbert space `2(N). The isomorphism (1.55) implies that K0(C(S2

q))
∼= Z ⊕ Z,

where one generator of K-theory is given by the class of the unit 1 ∈ C(S2
q), and the other by

the class of the 1-dimensional projection onto Ce0 ⊆ `2(N).

Furthermore, K0(C(S2
q))
∼= Z⊕Z. We identify one generator of K-homology with the class of

the pair of representations [(id, ε)], where id(k+α) = k+α and ε(k+α) = α for all k ∈ K(`2(N))
and α ∈ C. The other generator can be given by the class of the pair of representations [(ε, ε0)]
with the (non-unital) representation ε0 of K(`2(N))⊕ C defined by ε0(k + α) = αSS∗, where

S : `2(N) −→ `2(N), Sen = en+1, (1.57)
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denotes the unilateral shift on `2(N). (See [19] for a detailed treatment of the K-homology and
K-theory of Podleś quantum spheres.)

We shall also consider the coordinate ring of the quantum disc O(Dq) generated by z and
z∗ with the relation

z∗z − q2zz∗ = 1− q2. (1.58)

Its bounded irreducible Hilbert space representations are given by

µθ(z) = eiθ on H = C, θ ∈ [0, 2π), (1.59)

µ(z)en = (1− q2(n+1))1/2en+1 on H = `2(N). (1.60)

It has been shown in [16] that the universal C∗-algebra of O(Dq) is isomorphic to the Toeplitz
algebra given as the C∗-algebra generated by the unilateral shift S of Equation (1.57). The
representation µ defines then an embedding of O(Dq) into T .

Let C(U(1)) denote the C∗-algebra of continuous functions on the unit circle S1, and let u
be its unitary generator. The Toeplitz algebra gives rise to the following short exact sequence
of C∗-algebras:

0 −→ K(`2(N)) −→ T σ−→ C(U(1)) −→ 0. (1.61)

Here the so-called symbol map σ : T → C(U(1)) is given by σ(S) = u. Since S− µ(z) belongs
to K(`2(N)), it follows in particular that σ(µ(z)) = u.

Now let us consider the associated quantum line bundles as finitely generated projective
modules. They are defined by the 1-dimensional corepresentations C 3 1 7→ uN ⊗ 1, N ∈ Z, as
cotensor products (1.39):

MN := {p ∈ O(SUq(2)) | ∆R(p) = p⊗ uN}. (1.62)

Since ∆R is a morphism of algebras, MN is an O(S2
q)-bimodule. Our next step is to determine

explicitly projections describing these projective modules.

For l ∈ 1
2
N and i, j = −l,−l+ 1, . . . , l, let tli,j denote the matrix elements of the irreducible

unitary corepresentations of O(SUq(2)), that is,

∆(tli,j) =
l∑

k=−l

tli,k ⊗ tlk,j ,
l∑

k=−l

tl∗k,i t
l
k,j =

l∑
k=−l

tli,k t
l∗
j,k = δij . (1.63)

By the Peter-Weyl theorem for compact quantum groups [31], O(SUq(2)) = ⊕l∈ 1
2
N⊕li,j=−lCtli,j.

From the explicit description of tli,j [17, Section 4.2.4] and the definition of ∆R, it follows that

∆R(tli,j) = tli,j ⊗ u−2j, so that tli,−j ∈ M2j. It can be shown [14, 26] that t
|j|
i,−j, i = −|j|, . . . , |j|

generate M2j as a left O(S2
q)-module and M2j

∼= O(S2
q)

2|j|+1
E2j for all j ∈ 1

2
Z, where

E2j =


t
|j|
−|j|,−j

...

t
|j|
|j|,−j

(t|j|∗−|j|,−j , · · · , t|j|∗|j|,−j) ∈ Mat2|j|+1(O(S2
q)). (1.64)

It is clear that E2
2j = E2j due to (1.63) and E∗2j = E2j, so that E2j is a projection.
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2 Principality of one-surjective pullbacks

We begin by defining an ambient category for pullback diagrams appearing in the second part
of this section. Let P be a unital algebra equipped with both a right coaction ∆P : P → P ⊗C
and a left coaction P∆ : P → C ⊗ P of the same coalgebra C. We do not assume that
these coactions commute, but we do assume that they are coaugmented by the same group-like
element e ∈ C, i.e., ∆P (1) = 1⊗ e and P∆(1) = e⊗1. For a fixed coalgebra C and a group-like
e ∈ C, we consider the category C

eAlgCe of all such unital algebras with e-coaugmented left and
right C-coactions. Here morphisms are bicolinear algebra homomorphisms.

Since we work over a field, this category is evidently closed under any pullbacks. If
π1 : P1 → P12 and π2 : P2 → P12 are morphisms in C

eAlgCe , then the fibre product alge-
bra P := P1×(π1,π2)P2 becomes a right C-comodule via

∆P (p, q) = (p(0), 0)⊗ p(1) + (0, q(0))⊗ q(1), (2.1)

and a left C-comodule via

P∆(p, q) = p(−1) ⊗ (p(0), 0) + q(−1) ⊗ (0, q(0)). (2.2)

Also, it is clear that ∆P (1, 1) = (1, 1)⊗ e and P∆(1, 1) = e⊗ (1, 1).

2.1 Principality of images and preimages

In the following lemma, we prove that any surjective morphism in C
eAlgCe whose domain is

a principal extension can be split by a left colinear map and by a right colinear map (not
necessarily by a bicolinear map). Note that the first part of the lemma is proved much the
same way as in the Hopf-Galois case [13, Lemma 3.1]:

Lemma 2.1. Let π : P → Q be a surjective morphism in the category C
eAlgCe of unital algebras

with e-coaugmented left and right C-coactions. If P is principal, then:

(i) The induced map πcoC : P coC → QcoC is surjective.

(ii) There exists a unital right C-colinear splitting of π.

(iii) There exists a unital left C-colinear splitting of π.

(iv) Q is principal.

Furthermore, if Q′ ∈ C
eAlgCe , Q′ ⊆ Q, is principal, then so is π−1(Q′).

Proof. It follows from the right colinearity and surjectivity of π that π(P coC) ⊆ QcoC . To prove
the converse inclusion, we take advantage of the left P coC-linear retraction of the inclusion
P coC ⊆ P that was used to prove [6, Theorem 2.5(3)]:

σϕ : P −→ P coC , σϕ(p) := p(0)`(p(1))
〈1〉ϕ(`(p(1))

〈2〉) . (2.3)
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Here ` is a strong connection on P and ϕ is any unital linear functional on P . It follows from
(1.31) that σϕ(p) ∈ P coC . If π(p) ∈ QcoC , then σϕ(p) is a desired element of P coC that is
mapped by π to π(p). Indeed, since π(p(0)) ⊗ p(1) = π(p)(0) ⊗ π(p)(1) = π(p) ⊗ e, using the
unitality of π, ϕ, and `(e) = 1⊗ 1, we compute

π(σϕ(p)) = π(p(0))π(`(p(1))
〈1〉)ϕ(`(p(1))

〈2〉) = π(p). (2.4)

To show the second assertion, let us choose any unital k-linear splitting of π�P coC and denote
it by αcoC . We want to prove that the formula

αR(q) := αcoC(q(0)π(`(q(1))
〈1〉))`(q(1))

〈2〉 (2.5)

defines a unital right colinear splitting of π. Since π is surjective, we can write q = π(p). Then,
using properties of π, we obtain:

q(0)π(`(q(1))
〈1〉)⊗ `(q(1))

〈2〉 = π(p)(0)π(`(π(p)(1))
〈1〉)⊗ `(π(p)(1))

〈2〉

= π(p(0))π(`(p(1))
〈1〉)⊗ `(p(1))

〈2〉

= π(p(0)`(p(1))
〈1〉)⊗ `(p(1))

〈2〉. (2.6)

Now it follows from (1.31) that the above tensor is in QcoC ⊗ P . Hence αR is well defined.
It is straightforward to verify that αR is unital, right colinear, and splits π. (Note that, since
q ∈ QcoC implies q(0)⊗q(1) = q⊗e, we have αcoC = αR �QcoC .) The third assertion can be proven
in an analogous manner.

To prove (iv), we first show that the inverse of the canonical map canQ : Q⊗QcoC Q→Q⊗C
(see (1.15)) is given by

can−1
Q : Q⊗ C −→ Q ⊗

QcoC
Q, q ⊗ c 7−→ qπ(`(c)〈1〉) ⊗

QcoC
π(`(c)〈2〉). (2.7)

Using the properties of π and `, we get

(canQ ◦ can−1
Q ) (π(p)⊗ c) = canQ

(
π(p`(c)〈1〉) ⊗

QcoC
π(`(c)〈2〉)

)
= π

(
p `(c)〈1〉 `(c)〈2〉(0)

)
⊗ `(c)〈2〉(1)

= π(p)⊗ c. (2.8)

Similarly,

(can−1
Q ◦ canQ)

(
π(p) ⊗

QcoC
π(p ′)

)
= can−1

Q

(
π(pp ′(0))⊗ p ′(1)

)
= π(pp ′(0)`(p

′
(1))
〈1〉) ⊗

QcoC
π(`(p ′(1))

〈2〉) (2.9)

= π(p) ⊗
QcoC

π(p ′(0)`(p
′
(1))
〈1〉`(p ′(1))

〈2〉)

= π(p) ⊗
QcoC

π(p ′). (2.10)

Here we used the fact that π(p ′(0)`(p
′
(1))
〈1〉)⊗`(p ′(1))

〈2〉 ∈ QcoC⊗P . Hence the extension QcoC ⊆ Q
is Galois, and we have the canonical entwining ψQ : C ⊗Q→ Q⊗ C.
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Our next aim is to prove that ψQ is bijective. We know by assumption that the canonical
entwining ψP : C ⊗ P → P ⊗ C is invertible. To determine its inverse, recall that the left
and right coactions are given by ψ−1

P (p⊗ e) and ψP (e⊗ p), respectively. Then apply (1.11) to
compute

ψP

(
(p`(c)〈1〉)(−1) ⊗ (p`(c)〈1〉)(0) `(c)

〈2〉
)

= p`(c)〈1〉ψP

(
e⊗ `(c)〈2〉

)
= p`(c)〈1〉`(c)〈2〉(0) ⊗ `(c)

〈2〉
(1)

= p⊗ c. (2.11)

Hence ψ−1
P (p⊗ c) = (p`(c)〈1〉)(−1) ⊗ (p`(c)〈1〉)(0) `(c)

〈2〉. On the other hand,

ψQ(c⊗ π(p)) = π(`(c)〈1〉)
(
π(`(c)〈2〉)π(p)

)
(0)
⊗
(
π(`(c)〈2〉)π(p)

)
(1)

= π
(
`(c)〈1〉

)
π
(
(`(c)〈2〉p)(0)

)
⊗ (`(c)〈2〉p)(1)

= (π ⊗ id)
(
ψP (c⊗ p)

)
, (2.12)

(id⊗ π)
(
ψ−1
P (p⊗ c)

)
= (p `(c)〈1〉)(−1) ⊗ π

(
(p `(c)〈1〉)(0)

)
π
(
`(c)〈2〉

)
=
(
π(p `(c)〈1〉)

)
(−1)
⊗
(
π(p `(c)〈1〉)

)
(0)
π(`(c)〈2〉)

= Q∆(π(p)π(`(c)〈1〉))π(`(c)〈2〉). (2.13)

The second part of the above computation implies that the assignment

ψ−1
Q : Q⊗ C −→ C ⊗Q, π(p)⊗ c 7−→ (id⊗ π)(ψ−1

P (p⊗ c)) (2.14)

is well defined. Now it follows from the first part that ψ−1
Q is the inverse of ψQ:

ψQ

(
ψ−1
Q

(
π(p)⊗c

))
= ψQ

(
(id⊗π)

(
ψ−1
P (p⊗c)

))
= (π⊗id)

(
ψP
(
ψ−1
P (p⊗c)

))
= π(p)⊗c, (2.15)

ψ−1
Q

(
ψQ
(
c⊗π(p)

))
= ψ−1

Q

(
(π⊗id)

(
ψP (c⊗p)

))
= (id⊗π)

(
ψ−1
P

(
ψP (c⊗p)

))
= c⊗π(p). (2.16)

On the other hand, we observe that (π⊗π) ◦ ` is a strong connection on Q. Combined with
the just proven existence of a bijective entwining that makes Q an entwined module, it allows
us to apply Lemma 1.1 and conclude the proof of (iv).

To prove the final statement of the lemma, note first that π−1(Q′) ∈ C
eAlgCe . Next, observe

that, if `′ : C → Q′ ⊗Q′ is a strong connection on Q′, then it is also a strong connection on Q.
Now, it follows from (1.37) that for any q ∈ Q′

ψQ(c⊗ q) = `′(c)〈1〉
(
`′(c)〈2〉q

)
(0)
⊗
(
`′(c)〈2〉q

)
(1)
∈ Q′ ⊗ C. (2.17)

Much the same way, it follows from the Q-analog of the formula following (2.11) that
ψ−1
Q (Q′ ⊗ C) ⊆ C ⊗ Q′. Hence to see that ψP and ψ−1

P restrict to π−1(Q′), we can apply
(2.12) and (2.14), respectively.

A key step now is to construct a strong connection on π−1(Q′). Let αR and αL be, respec-
tively, right and left colinear unital splittings of π. Their existence is guaranteed by the already
proven (ii) and (iii). The map (αL⊗αR) ◦ `′ : C → π−1(Q)⊗π−1(Q) is bicolinear and satisfies

αL(`′(e)〈1〉)⊗ αR(`′(e)〈2〉) = 1⊗ 1. (2.18)
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However,

1⊗ c−
(
c̃an ◦ (αL ⊗ αR) ◦ `′

)
(c) = 1⊗ c− αL(`′(c(1))

〈1〉)αR(`′(c(1))
〈2〉)⊗ c(2) 6= 0. (2.19)

To solve this problem, we apply to it the splitting of the lifted canonical map given by a strong
connection ` (see (1.30)), and add to (αL ⊗ αR) ◦ `′ :

`R(c) := (αL ⊗ αR)(`′(c)) + `(c)− αL(`′(c(1))
〈1〉)αR(`′(c(1))

〈2〉)`(c
〈1〉
(2))⊗ `(c

〈2〉
(2)). (2.20)

Now c̃an ◦ `R = 1 ⊗ id, as needed. Also, `R(e) = 1 ⊗ 1 and ((π ⊗ id) ◦ `R)(C) ⊆ Q′ ⊗ P . The
right colinearity of `R is clear. To check the left colinearity of `R, using the fact that P is a ψP
entwined and e-coaugmented module, we show that (mP ◦ (αL ⊗ αR) ◦ `′) ∗ ` is left colinear.
(Here mP is the multiplication of P .) First we note that

(P∆⊗ id) ◦ ((mP ◦ (αL ⊗ αR) ◦ `′) ∗ `) = (id⊗ (mP ◦ (αL ⊗ αR) ◦ `′) ∗ `) ◦∆ (2.21)

is equivalent to

αL(`′(c(1))
〈1〉)αR(`′(c(1))

〈2〉)`(c(2))
〈1〉⊗ e⊗ `(c(2))

〈2〉

= ψP

(
c(1) ⊗ αL(`′(c(2))

〈1〉)αR(`′(c(2))
〈2〉)`(c(3))

〈1〉
)
⊗ `(c(3))

〈2〉. (2.22)

Since c(1) ⊗ αL(`′(c(2))
〈1〉)⊗ `′(c(2))

〈2〉 = ψ−1
P

(
αL(`′(c)〈1〉)⊗ e

)
⊗ `′(c)〈2〉, we obtain

ψP

(
c(1) ⊗ αL(`′(c(2))

〈1〉)αR(`′(c(2))
〈2〉)`(c(3))

〈1〉
)
⊗ `(c(3))

〈2〉

= αL(`′(c(1))
〈1〉)ψP

(
e⊗ αR(`′(c(1))

〈2〉)`(c(2))
〈1〉
)
⊗ `(c(2))

〈2〉

= αL(`′(c(1))
〈1〉)αR(`′(c(1))

〈2〉)ψP

(
c(2) ⊗ `(c(3))

〈1〉
)
⊗ `(c(3))

〈2〉

= αL(`′(c(1))
〈1〉)αR(`′(c(1))

〈2〉)ψP

(
ψ−1
P

(
`(c(2))

〈1〉 ⊗ e
))
⊗ `(c(2))

〈2〉

= αL(`′(c(1))
〈1〉)αR(`′(c(1))

〈2〉) `(c(2))
〈1〉 ⊗ e⊗ `(c(2))

〈2〉. (2.23)

Hence `R is a strong connection with the property `R(C) ⊆ π−1(Q′) ⊗ P . In a similar
manner, we construct a strong connection `L with the property `L(C) ⊂ P ⊗ π−1(Q′). Now we
need to apply the splitting of the left lifted canonical map given by ` (see (1.29)) to derive the
formula

`L := (αL ⊗ αR) ◦ `′ + `− ` ∗ (mP ◦ (αL ⊗ αR) ◦ `′). (2.24)

It is clear that `L(e) = 1 ⊗ 1 and `L(C) ⊆ P ⊗ π−1(Q′). A computation similar to (2.23)
shows the right colinearity of `L. Since furthermore ψP (1 ⊗ c) = c ⊗ 1 for any c ∈ C and
c̃an = ψP ◦ c̃anL, we obtain

c̃an(`L(c)) = ψP
(
c̃anL(`(c))

)
= ψP (c⊗ 1) = 1⊗ c. (2.25)

Hence `L is a desired strong connection. Plugging it into (2.20) instead of `, we get a strong
connection

`LR = (αL ⊗ αR) ◦ `′ + `L − (mp ◦ (αL ⊗ αR) ◦ `′) ∗ `L (2.26)

with the property `LR ⊆ π−1(Q′) ⊗ π−1(Q′). Applying now Lemma 1.1 ends the proof of this
lemma.
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2.2 The one-surjective pullbacks of principal coactions are principal

Our goal now is to show that the subcategory of principal extensions is closed under one-
surjective pullbacks. Here the right coaction is the coaction defining a principal extension and
the left coaction is the one defined by the inverse of the canonical entwining (see (1.20)). With
this structure, principal extensions form a full subcategory of CeAlgCe . The following theorem is
the main result of this paper generalizing the theorem of [13] on the pullback of surjections of
principal comodule algebras:

Theorem 2.2. Let C be a coalgebra, e ∈ C a group-like element, and P the pullback of
π1 : P1 → P12 and π2 : P2 → P12 in the category C

eAlgCe of unital algebras with e-coaugmented left
and right C-coactions. If π1 or π2 is surjective and both P1 and P2 are principal e-coaugmented
C-extensions, then also P is a principal e-coaugmented C-extension.

Proof. Without loss of generality, we assume that π1 is surjective. We first show that P inherits
an entwined structure from P1 and P2.

Lemma 2.3. Let ψ1 and ψ2 denote the entwining structures of P1 and P2, respectively. Then
P is an entwined module with an invertible entwining structure

ψ = ψ1 ◦ (id⊗ pr1) + ψ2 ◦ (id⊗ pr2). (2.27)

Here pr1 and pr2 are morphisms of the pullback diagram as in (1.3).

Proof. Our strategy is to construct a bijective map ψ̃ : C ⊗ (P1× P2)→ (P1× P2)⊗C, and to
show that it restricts to a bijective entwining on C ⊗ P . We put

ψ̃ := ψ1 ◦ (id⊗ p̃r1) + ψ2 ◦ (id⊗ p̃r2). (2.28)

The symbols p̃r1 and p̃r2 stand for respective componentwise projections. Their restrictions to
P yield pr1 and pr2. It is easy to check that the inverse of ψ̃ is given by

ψ̃−1 = ψ−1
1 ◦ (p̃r1 ⊗ id) + ψ−1

2 ◦ (p̃r2 ⊗ id) (2.29)

To show that ψ̃(C⊗P ) ⊆ P ⊗C and ψ̃−1(P ⊗C) ⊆ C⊗P , we note first that P12 and π2(P2)
are principal by Lemma 2.1(iv). Consequently, their canonical entwinings ψ12 and ψπ2(P2) are
bijective. Furthermore, arguing as in the proof of Lemma 2.1, we see that ψπ2(P2) = ψ12�C⊗π2(P2)

and ψ−1
π2(P2) = ψ−1

12 �π2(P2)⊗C . An advantage of having both summands in terms of ψ12 is that we
can apply (2.12) to compute(

(π1 ◦ p̃r1 − π2 ◦ p̃r2)⊗ id
)
◦ ψ̃ = (π1 ◦ p̃r1⊗ id)◦ψ1 ◦ (id⊗ p̃r1)− (π2 ◦ p̃r2⊗ id)◦ψ1 ◦ (id⊗ p̃r1)

+ (π1 ◦ p̃r1⊗ id)◦ψ2 ◦ (id⊗ p̃r2)− (π2 ◦ p̃r2⊗ id)◦ψ2 ◦ (id⊗ p̃r2)

= (π1⊗ id)◦ψ1 ◦ (id⊗ p̃r1)− (π2 ⊗ id)◦ψ2 ◦ (id⊗ p̃r2)

= ψ12 ◦ (id⊗ π1) ◦ (id⊗ p̃r1)− ψπ2(P2) ◦ (id⊗ π2) ◦ (id⊗ p̃r2)

= ψ12 ◦
(
id⊗ (π1 ◦ p̃r1 − π2 ◦ p̃r2)

)
. (2.30)

Hence ψ̃(C ⊗ P ) ⊆ P ⊗ C. Much the same way, using (2.14) instead of (2.12), we show that
the bijection ψ̃−1(P ⊗ C) ⊆ C ⊗ P .
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It remains to verify that the bijection ψ = ψ̃ �C⊗P is an entwining that makes P an entwined
module. The former is proven by a direct checking of (1.11) and (1.12). The latter follows from
the fact that P1 and P2 are, respectively, ψ1 and ψ2 entwined modules:

∆P (pq) = ∆P1(pr1(p)pr1(q)) + ∆P2(pr2(p)pr2(q))

= pr1(p(0))ψ1(p(1) ⊗ pr1(q)) + pr2(p(0))ψ2(p(1) ⊗ pr2(q))

=
(
pr1(p(0)) + pr2(p(0))

)(
ψ1(p(1) ⊗ pr1(q)) + ψ2(p(1) ⊗ pr2(q))

)
= p(0)ψ(p(1) ⊗ q). (2.31)

This proves the lemma.

Let α1
L and α1

R be a unital left colinear splitting and a unital right colinear splitting of π1,
respectively. Also, let α2

R be a right colinear splitting of π2 viewed as a map onto π2(P2). Such
maps exist by Lemma 2.1. On the other hand, by [6, Lemma 2.2], since P1 and P2 are principal,
they admit strong connections `1 and `2, respectively. For brevity, let us introduce the notation

α12
L := α1

L◦π2, α12
R := α1

R◦π2, α21
R := α2

R◦π1 �π−1
1 (π2(P2)) , L := mP1◦(α12

L ⊗α12
R )◦`2 , (2.32)

where mP1 is the multiplication of P1. The situation is illustrated in the following diagram:

(2.33)C

L

��

P

pr1

vv

pr2

((

π−1
1 (π2(P2))E e

ss
α21
R ++

P1 P2 .
α12
Loo

α12
R

oo

π2

ssss
π1

'' ''

π2(P2)

α2
R

33

_�

��

π2

ww
P12

α1
L

gg

α1
R

gg

Our proves hinges on constructing a strong connection on P out of strong connections on
P1 and P2. Roughly speaking, the basic idea is to take a strong connection on P2, induce a
strong connection on the the common part P12, and prolongate it to P1. To this end, we check
that (α12

L + id)⊗ (α12
R + id) is a unital bicolinear map from P2 ⊗ P2 to P ⊗ P . Therefore, as a

first approximation for constructing a strong connection on P , we choose the formula

`I :=
(
(α12

L + id)⊗ (α12
R + id)

)
◦ `2. (2.34)

It is a bicolinear map from C to P ⊗ P satisfying `I(e) = 1 ⊗ 1 as needed. However, it does
not split the lifted canonical map:

(c̃an ◦ `I)(c)− 1⊗ c
= α12

L (`2(c)〈1〉)α12
R (`2(c)〈2〉)(0) ⊗ α12

R (`2(c)〈2〉)(1) + `2(c)〈1〉`2(c)〈2〉(0) ⊗ `2(c)〈2〉(1) − 1⊗ c
= α12

L (`2(c(1))
〈1〉)α12

R (`2(c(1))
〈2〉)⊗ c(2) + (0, 1)⊗ c− 1⊗ c

= L(c(1))⊗ c(2) − (1, 0)⊗ c ∈ P1 ⊗ C. (2.35)
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We correct it by adding to `I(c) the splitting of the lifted canonical map on P1 ⊗ P1 afforded
by `1 and applied to (1, 0)⊗ c− L(c(1))⊗ c(2):

`II(c) = `I(c) + `1(c)〈1〉 ⊗ `1(c)〈2〉 − L(c(1))`1(c(2))
〈1〉 ⊗ `1(c(2))

〈2〉

= (`I + `1 − L ∗ `1)(c). (2.36)

The above approximation to a strong connection on P is clearly right colinear. Using the fact
that P1 is a ψ1-entwined and e-coaugmented module, we follow the lines of (2.21)–(2.23) to
show that L∗`1 is left colinear. Hence `II is bicolinear. It also satisfies `II(e) = 1⊗1. However,
the price we pay for having `II(c)

〈1〉 `II(c)
〈2〉

(0) ⊗ `II(c)〈2〉(1) = 1 ⊗ c is that the image of `II is
no longer in P ⊗ P .

The troublesome term `1 − L ∗ `1 takes values in P ⊗ P1. Now one would like to compose
id⊗(id+α21

R ) with `1−L∗`1 to force it taking values in P⊗P . However, since α21
R is defined only

on π−1
1 (π2(P2)), we need to replace an arbitrary strong connection `1 by a strong connection

taking values in P1 ⊗ π−1
1 (π2(P2)). Such a strong connection is provided for us by (2.24):

˜̀
1 := (α12

L ⊗ α12
R ) ◦ `2 + `1 − `1 ∗ L. (2.37)

Inserting ˜̀
1 in place of `1 allows us to apply the correction map id⊗ (id + α21

R ) to obtain

`III = `I +
(
id⊗ (id + α21

R )
)
◦ (˜̀

1 − L ∗ ˜̀
1). (2.38)

To end the proof, let us check that `III is indeed a strong connection on P . First, since `I(C) ⊆
P ⊗ P and (id + α21

R )(π−1
1 (π2(P2))) ⊆ P , we conclude that `III takes values in P ⊗ P . Next, it

is bicolinear because α21
R is right colinear. Also, it is clearly unital. To verify that `III splits the

canonical map, first we note that c̃an◦ (id⊗α21
R )◦ (˜̀

1−L∗ ˜̀
1) = 0 because mP1×P2(p1⊗p2) = 0

for all p1 ∈ P1 and p2 ∈ P2. Combining this with the fact that c̃an ◦ (`′1 − L ∗ `′1) does not
depend on the choice of a strong connection `′1, we infer that c̃an ◦ `III = c̃an ◦ `II = 1 ⊗ id.
Thus `III is a strong connection on P , as desired. Combining this fact with Lemma 2.3 and
Lemma 1.1 proves the theorem.

Putting the formulas in the proof of Theorem 2.2 together, we obtain the following strong
connection on P :

` = ((α12
L + id)⊗ (α12

R + id)) ◦ `2 (2.39)

+ (η1 ◦ ε− L) ∗ ((id⊗ (id + α21
R )) ◦ (`1 − `1 ∗ L+ (α12

L ⊗ α12
R ) ◦ `2)).

3 The pullback picture of the standard quantum Hopf

fibration

Recall that the classical Hopf fibration is a U(1)-principal bundle given by the maps

π : S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1} −→ S2 ∼= CP1, π((z1, z2)) = [(z1 : z2)],

S3 × U(1) −→ S3, (z1, z2) / u = (z1u, z2u). (3.1)
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To unravel the structure of this non-trivial fibration, we split S3 into two disjoint parts:

S3 = {(z1, z2) ∈ C2 | |z1|2 < 1, |z2|2 = 1− |z1|2} ∪ {(z1, 0) | |z1| = 1}. (3.2)

Note that both sets are invariant under the U(1)-action. The second set is U(1), and first set
is U(1)-equivariantly homeomorphic to the interior of the solid torus D × U(1) equipped with
the diagonal action. (Here D = {z ∈ C | |z| ≤ 1}.) By an appropriate U(1)-equivariant gluing
of the boundary torus of D× U(1) with U(1), we recover S3 with its U(1)-action:

(3.3)S3

φ1(z, v) = (z, v
√

1−|z|2) φ2(u) = (u, 0)

D× U(1)

φ1

==

U(1)

φ2

^^

(ι, id)(u, v) = (u, v) pr1(u, v) = u .

U(1)× U(1)

pr1

??

(ι,id)

bb

However, to view D × U(1) as a trivial U(1)-principal bundle, we need to gauge the di-
agonal action to the action on the right slot. This is achieved with the help of the following
homeomorphism intertwining these two actions:

Ψ : D× U(1) −→ D× U(1), Ψ(x, v) := (xv, v), Ψ(x, vu) = Ψ(x, v) / u. (3.4)

Let us denote the restriction of Ψ to U(1)×U(1) by the same symbol. Now we can extend the
above pushout diagram to the commutative diagram

(3.5)S3

D× U(1) Ψ // D× U(1)

φ1

;;

U(1)

φ2

``

U(1)idoo

U(1)× U(1)

pr1

>>

(ι,id)

cc

U(1)× U(1) ,

(ι,id)

ff

Ψ

OO m

;;

where m is the multiplication map. The outer diagram is again a pushout diagram of U(1)-
spaces, but now its defining U(1)-spaces are trivial U(1)-principal bundles. It is the outer
pushout diagram that we shall use to analyse a noncommutative deformation of the Hopf
fibration.

3.1 Pullback comodule algebra

We consider the tensor products P1 := T ⊗O(U(1)), P2 = C⊗O(U(1)) ∼= O(U(1)) and P12 :=
C(U(1)) ⊗ O(U(1)). These algebras are right O(U(1))-comodule algebras for the coaction
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x ⊗ uN 7→ x ⊗ uN ⊗ uN , N ∈ Z. Moreover, P1 and P2 are trivially principal with strong
connections `i : O(U(1))→ Pi⊗Pi given by `i(u

N) = (1⊗uN∗)⊗(1⊗uN), i= 1, 2. To construct
a pullback of P1 and P2, we define the following morphisms of right O(U(1))-comodule algebras:

π1 : T ⊗ O(U(1)) −→ C(U(1))⊗O(U(1)), π1(t⊗ w) = σ(t)⊗ w, (3.6)

π2 : O(U(1)) −→ C(U(1))⊗O(U(1)), π2(w) = ∆(w). (3.7)

Then the fibre product P := T ⊗ O(U(1))×(π1,π2) O(U(1)) defined by the pullback diagram

T ⊗ O(U(1)) ×
(π1,π2)

O(U(1))

pr1

vv

pr2

((
T ⊗ O(U(1))

π1 ))

O(U(1))

π2vv
C(U(1))⊗O(U(1))

(3.8)

is a right O(U(1))-comodule algebra. By Proposition 2.2, it is principal.

Furthermore, define unital respectively left colinear and right colinear splittings of π1 by

α1
L(f ⊗ uN) = α1

R(f ⊗ uN) = Tf ⊗ uN , N ∈ Z. (3.9)

Here f ∈ C(U(1)) and Tf denotes the Toeplitz operator with symbol f . In particular, TuN = SN

and Tu∗N = S∗N . A right colinear splitting of the map π2 : O(U(1))→ π2(O(U(1))) is given by

α2
R(uN ⊗ uN) = uN , N ∈ Z. (3.10)

Inserting the definitions of α1
L, αiR and `i, i= 1, 2, into (2.32) and (2.39), we obtain the following

strong connection on P :

`(uN) = (S∗N ⊗ u∗N , u∗N)⊗ (SN ⊗ uN , uN), (3.11)

`(u∗N) = (SN ⊗ uN , uN)⊗ (S∗N ⊗ u∗N , u∗N)

+ ((1− SNS∗N)⊗ uN , 0)⊗ ((1− SNS∗N)⊗ u∗N , 0), N ∈ N. (3.12)

Note next that, by construction, we have

P =
{∑

k(tk ⊗ u
k, αku

k) ∈
(
T ⊗ O(U(1))

)
×O(U(1))

∣∣∣ σ(tk) = αku
k
}
, (3.13)

where αk ∈C. For C∆(1) = uN ⊗ 1, let

LN := P �
O(U(1))

C ∼= {p ∈ P | ∆P (p) = p⊗ uN}. (3.14)

Then L0 = P coO(U(1)), each LN is a left P coO(U(1))-module and P =
⊕

N∈Z LN . From

∆P

(∑
k

(tk⊗uk, αkuk)
)

=
∑
k

(tk⊗uk, αkuk)⊗ uk, (3.15)
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it follows that

LN =
{

(t⊗ uN , αuN) ∈
(
T ⊗ O(U(1))

)
×O(U(1))

∣∣∣ σ(t) = αuN
}
. (3.16)

The next proposition shows that L0
∼= T ×(σ,1) C is isomorphic to the C∗-algebra of the

standard Podleś sphere and that

LN ∼= T ×(u−Nσ,1) C, (3.17)

where T ×(uNσ,1) C is given by the pullback diagram

T ×
(u−Nσ,1)

C
pr1

xx

pr2

&&T
σ
��

C
α 7→α1
��

C(U(1))
f 7→u−Nf

// C(U(1)).

(3.18)

Proposition 3.1. The fibre product T ×(σ,1)C is isomorphic to the C∗-algebra C(S2
q), and LN

is isomorphic to T ×(u−Nσ,1) C as a left C(S2
q)-module with respect to the left C(S2

q)-action on
T ×(u−Nσ,1) C given by (t, α) · (h, β) = (th, αβ).

Proof. For N = 0, the mappings T 3 t 7→ σ(t) ∈ C(U(1)) and C 3 α 7→ α1 ∈ C(U(1))
are morphisms of C∗-algebras, so that T ×(σ,1)C is a C∗-algebra. Next, recall that C(S2

q)
∼=

K(`2(N))⊕ C (see (1.56)), and define

φ : T ×
(σ,1)

C −→ K(`2(N))⊕ C, φ(t, α) = t, (3.19)

φ−1 : K(`2(N))⊕ C −→ T ×
(σ,1)

C, φ−1(k + α) = (k + α, α). (3.20)

Clearly, φ : T ×(σ,1)C → B(`2(N)) is a morphism of C∗-algebras. Since φ(t, α) = (t − α) + α,
and σ(t−α) = 0 by the pullback diagram (3.18), it follows from the short exact sequence (1.61)
that t − α ∈ K(`2(N)), so that φ(t, α) ∈ K(`2(N)) ⊕ C. One easily sees that φ−1 is its inverse
so that T ×(σ,1)C ∼= K(`2(N))⊕ C.

The fact that T ×(u−Nσ,1)C with the given C(S2
q)-action is a left C(S2

q)-module follows from
the discussion preceding the pullback diagram (1.6) with the free rank 1 modules E1 = T ,
E2 = C and π1∗E1 = π2∗E2 = C(U(1)). Obviously, LN 3 (t⊗uN , αuN) 7→ (t, α) ∈ T ×(u−Nσ,1)C
defines an isomorphism of left C(S2

q)-modules.

3.2 Equivalence of the pullback and standard constructions

Let us view U(1) as a compact quantum group. We consider its C∗-algebra C(U(1)) of
all continuous function together with the obvious coproduct, counit and antipode given by
∆(f)(x, y) = f(xy), ε(f) = f(1) and S(f)(x) = f(x−1), respectively. Furthermore, let ⊗̄

21



stand for the completed tensor product of C∗-algebras. In our case it is unique because of the
nuclearity of the involved C∗-algebras.

Now let π2 : C(U(1)) → C(U(1))⊗̄C(U(1)) be given by the coproduct, i.e., π2(f)(x, y) =
(∆f)(x, y) = f(xy), and let σ ⊗ id denote the tensor product of the symbol map σ : T →
C(U(1)) and id : C(U(1)) → C(U(1)). Then P̄ := T ⊗̄C(U(1)) ×(π1,π2) C(U(1)) is defined by
the pullback diagram

T ⊗̄C(U(1)) ×
(π1,π2)

C(U(1))

pr1

vv

pr2

((
T ⊗̄C(U(1))

π1=σ⊗id ))

C(U(1))

π2=∆vv
C(U(1))⊗̄C(U(1)) .

(3.21)

With the C(U(1))-coaction given by the coproduct ∆ on the right tensor factor C(U(1)),
π1 and π2 are morphisms in the category of right C(U(1))-comodule C∗-algebras. Equivalently,
we can view this diagram as a diagram in the category of U(1)-C∗-algebras (see Section 1.3).
Therefore, P̄ inherits the structure of a right U(1)-C∗-algebra. To determine the Peter-Weyl
comodule algebra P∆(P̄ ), we first note that O(U(1)) is the dense Hopf *-subalgebra of C(U(1))
spanned by the matrix coefficients of the irreducible unitary corepresentations. Using the counit
ε : C(U(1))→ C and the fact that the Peter-Weyl functor commutes with taking pullbacks, we
easily conclude that P∆(P̄ ) = T ⊗O(U(1))×(π1,π2)O(U(1)), so P∆(P̄ ) is the comodule algebra
P of Section 3.1.

Consider next the *-representation of O(SUq(2)) on `2(N) given by [27]

ρ(α)en = (1− q2n)1/2en−1, ρ(β)en = −qn+1en,

ρ(γ)en = qnen, ρ(δ)en = (1− q2(n+1))1/2en+1.
(3.22)

Note that ρ(β), ρ(γ) ∈ K(`2(N)). Comparing ρ with the representation µ of O(Dq) from (1.60),
one readily sees that ρ(O(SUq(2))) ⊆ T . Furthermore, the symbol map σ yields σ(ρ(β)) =
σ(ρ(γ)) = 0. Using an appropriate diagonal compact operator k, we also obtain

σ(ρ(α)) = σ(ρ(α)− S∗) + σ(S∗) = σ(kS∗) + σ(S∗) = u−1, σ(ρ(δ)) = σ(ρ(α))∗ = u. (3.23)

Thus we obtain a U(1)-equivariant *-algebra morphism ι : O(SUq(2))→ P by setting

ι(α) = (ρ(α)⊗ u, u), ι(γ) = (ρ(γ)⊗ u, 0). (3.24)

One easily checks that the image of a Poincaré-Birkhoff-Witt basis ofO(SUq(2)) remains linearly
independent, so that ι is injective and we can consider O(SUq(2)) as a subalgebra of P . In
particular, we have ι(MN) ⊆ LN as left O(S2

q)-modules. (See Section 1.4 and Section 3.1 for
the definitions of MN and LN , respectively.)

The main objective of this section is to establish an U(1)-C∗-algebra isomorphism between
C(SUq(2)) and P̄ . The universal C∗-algebra C(SUq(2)) of O(SUq(2)) has been studied in [18]
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and [31]. Here we shall use the fact from [18, Corollary 2.3] that a faithful *-representation ρ̂
of C(SUq(2)) on the Hilbert space `2(N)⊗̄`2(Z) is given by

ρ̂(α)(en ⊗ bk) = (1− q2n)1/2en−1 ⊗ bk−1, ρ̂(γ)(en ⊗ bk) = qnen ⊗ bk−1, (3.25)

where {en}n∈N and {bk}k∈Z denote the standard bases of `2(N) and `2(Z), respectively. To
compare (3.25) with [18, Corollary 2.3], one has to apply the unitary transformation

T : `2(N)⊗̄`2(Z)→ `2(N)⊗̄`2(Z), T (en ⊗ bk) = en ⊗ bk−n. (3.26)

A right C(U(1))-coaction on C(SUq(2)) is given by (id⊗π̄)◦∆, where ∆ denotes the coproduct of
the compact quantum group C(SUq(2)) and π̄ is the extension of the Hopf *-algebra surjection
π : O(SUq(2)) → O(U(1)) defined in (1.49) to C(SUq(2)). Using the faithfulness of ρ̂, we can
transfer π̄ to ρ̂(C(SUq(2))). In [18], it is shown that π̄ gives rise to the C∗-algebra extension

0 // K(`2(N))⊗̄C(U(1)) �
� // ρ̂(C(SUq(2))) π̄ // C(U(1)) // 0 . (3.27)

Theorem 3.2. The U(1)-C∗-algebras C(SUq(2)) and P̄ are isomorphic.

Proof. First note that ker(pr1) = {(0, y) ∈ P̄ | π2(y) = ∆(y) = 0} = {0}. Hence we can identify
P̄ with the image of pr1 in T ⊗̄C(U(1)). We will prove the theorem by applying the five lemma
to the following commutative diagram of U(1)-C∗-algebras:

0 // K(`2(N))⊗̄C(U(1))

id
��

� � // ρ̂(C(SUq(2))) π̄ //

τ
��

C(U(1))

id
��

// 0

0 // K(`2(N))⊗̄C(U(1)) �
� // pr1(P̄ ) ω // C(U(1)) // 0 .

(3.28)

To define τ , we realize C(U(1)) as a concrete C∗-algebra of bounded operators on `2(Z) by
setting u(bk) = bk−1. Then

ρ̂(α) = ρ(α)⊗ u = pr1(ρ(α)⊗ u, u) ∈ pr1(P̄ ), ρ̂(γ) = ρ(γ)⊗ u = pr1(ρ(γ)⊗ u, 0) ∈ pr1(P̄ ).
(3.29)

Since C(SUq(2)) is generated by α and γ, we take τ to be the inclusion ρ̂(C(SUq(2))) ⊂ pr1(P̄ ).

We define the U(1)-C∗-algebra morphism ω by

ω : pr1(P̄ ) −→ C(U(1)), ω := (ε ◦ σ)⊗ id, (3.30)

where ε denotes the counit of C(U(1)). The surjectivity of ω follows from uk = ω(ρ(αk)⊗ uk)
and u−k = ω(ρ(α∗k)⊗ u∗k) for all k ∈ N and taking the closure of O(U(1)) in C(U(1)).

To prove the exactness of the lower row, note that K(`2(N))⊗̄C(U(1)) = ker(σ)⊗̄C(U(1)) ⊂
ker(ω). Now let f ∈ pr1(P̄ ) \ ker(σ)⊗̄C(U(1)). Then (σ ⊗ id)(f) 6= 0. By the commutative
diagram (3.21), there exists a non-zero element g ∈ C(U(1)) such that (σ ⊗ id)(f) = ∆(g).
Hence ω(f) = (ε⊗ id) ◦∆(g) = g 6= 0 which proves ker(ω) = K(`2(N))⊗̄C(U(1)).

It remains to show that the diagram (3.28) is commutative. This is clear for the left part
since τ is just the inclusion. The commutativity of the right part follows from

ω
(
τ
(
ρ̂(α)

))
= ε
(
σ
(
ρ(α)

))
⊗ u = ε(u)u = u = π̄(ρ̂(α)), (3.31)

ω
(
τ
(
ρ̂(γ)

))
= ε
(
σ
(
ρ(γ)

))
⊗ u = 0 = π̄(ρ̂(γ)) (3.32)

23



by taking limits since α̂ and γ̂ generate C(SUq(2)). Therefore, by the five lemma, τ is an
isomorphism of U(1)-C∗-algebra.

By the final remark of Section 1.3, we conclude from Theorem 3.2 that the Peter-Weyl
comodule algebras P∆(C(SUq(2))) and P are isomorphic. We use this isomorphism to identify
associated projective modules. For N ∈ Z and the left O(U(1))-coaction on C given by C∆(1) =
uN ⊗ 1, we define a “completed” version of MN (see (1.62)):

M̄N := P∆(C(SUq(2))) �
O(U(1))

C = {p ∈ P∆(C(SUq(2))) | ((id⊗ π̄) ◦∆)(p) = p⊗ uN}. (3.33)

Now it follows from Equation (3.14) that M̄N
∼= LN . Applying the same arguments as at the

end of Section 1.4, we infer that M̄N
∼= C(S2

q)
N+1

EN , with EN being the projection matrix of
Equation (1.64). Taking advantage of these isomorphisms of modules, we prove:

Lemma 3.3. Identifying C(S2
q) with K(`2(N)) ⊕ C, we obtain the following isomorphisms of

left C(S2
q)-modules:

C(S2
q)
N+1

EN ∼= C(S2
q)pN , pN := SNSN∗, N ≥ 0, (3.34)

C(S2
q)
|N |+1

EN ∼= C(S2
q)

2
pN , pN :=

(
1 0

0 1− S|N |S|N |∗

)
, N < 0. (3.35)

Proof. We apply (1.40) to construct projections PN , N ∈ Z, from the strong connection given
in (3.11) and (3.12). For N < 0, we obtain

(PN)11 = (S∗|N | ⊗ uN , uN)(S|N | ⊗ u|N |, u|N |) = (1⊗ 1, 1), (3.36)

(PN)12 = (PN)∗21 = (S∗|N | ⊗ uN , uN)((1− S|N |S∗|N |)⊗ u|N |, 0) = 0, (3.37)

(PN)22 = ((1− S|N |S∗|N |)⊗ uN , 0)((1− S|N |S∗|N |)⊗ u|N |, 0) = ((1− S|N |S∗|N |)⊗ 1, 0). (3.38)

Analogously, for N ≥ 0, we get

(PN)11 = (SN ⊗ uN , uN)(S∗N ⊗ u∗N , u∗N) = (SNS∗N ⊗ 1, 1). (3.39)

Finally, applying the isomorphism (3.19) componentwise to PN , N ∈ Z, yields the result.

The projections pN of Lemma 3.3 can also be obtained from the odd-to-even construction
in Section 1.2. First let N < 0. Since LN ∼= T×(u−Nσ,1)C (see (3.17)), we can apply the formula
(1.9) by taking E1 = T , E2 = C, π1∗E1 = π2∗E2 = C(U(1)), and choosing h in (1.6) to be
the isomorphism given by the multiplication with u|N |. As the symbol map σ applied to S is
u (see (1.61)), we can lift u|N | and its inverse u−|N | to S|N | and S|N |∗ respectively. Inserting
c = S|N |∗ and d= S|N | into (1.9) gives T ×(u−Nσ,1)C ∼= (T ×(σ,1)C)2QN , where

QN =

(
(1, 1) (0, 0)

(0, 0) (1− S|N |S|N |∗, 0)

)
. (3.40)

Finally, applying the isomorphism (3.19) yields the projection in (3.35). Similarly, for N ≥ 0,
we insert c = SN and d = SN∗ into (1.9). Since SN∗SN = 1, we obtain T ×(u−Nσ,1)C ∼=
(T ×(σ,1)C)2QN with

QN =

(
(SNSN∗, 1) (0, 0)

(0, 0) (0, 0)

)
, (3.41)

which is equivalent to T ×(u−Nσ,1)C ∼= C(S2
q)SNSN∗.
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3.3 Index pairing

Recall that for a C∗-algebra A, a projection p ∈ Matn(A), and *-representations ρ+ and ρ− of
A on a Hilbert space H such that [(ρ+, ρ−)] ∈ K0(A) (e.g. see [10, Chapter 4]), one has the
following: If the operator TrMatn(ρ+ − ρ−)(p) is trace class, then the formula

〈[(ρ+, ρ−)], [p]〉 = TrH (TrMatn(ρ+ − ρ−)(p)) (3.42)

yields a pairing between K0(A) and K0(A).

In this section, we compute the pairing between the K0-classes of the projective C(S2
q)-

modules describing quantum line bundles and the two generators of K0(A). By Lemma 3.3,
we can take the projections pN as representatives of respective K0-classes. Their simple form
makes it very easy to compute the index pairing.

Theorem 3.4. Let M̄N be the associated modules of (3.33), and let [(id, ε)] and [(ε, ε0)] denote
the generators of K0(C(S2

q)) given in Section 1.4. Then, for all N ∈ Z,

〈[(ε, ε0)], [M̄N ]〉 = 1, 〈[(id, ε)], [M̄N ]〉 = −N. (3.43)

Proof. Let N ≥ 0. Then pN = SNSN∗ = (SNSN∗ − 1) + 1, so that ε(pN) = 1 and ε0(pN) =
SS∗. Furthermore, since for any N ∈ N \ {0}, the image of the projection 1 − SNSN∗ is
span{e0, . . . , eN−1} ⊂ `2(N), the projection 1 − SNSN∗ is trace class. Moreover, with the help
of Lemma 3.3 and Formula (3.42), it implies that

〈[(ε, ε0)], [M̄N ]〉 = Tr`2(N)(ε− ε0)(pN) = Tr`2(N)(1− SS∗) = 1, (3.44)

〈[(id, ε)], [M̄N ]〉 = Tr`2(N)(id− ε)(pN) = Tr`2(N)(S
NSN∗ − 1) = −N. (3.45)

For N < 0, we have TrMat2(pN) = 2− S|N |S|N |∗ = 2− p|N |. Combining this with the above
index pairing for p|N |, the formulas (ε− ε0)(2) = 2(1− SS∗) and (id− ε)(2) = 0, and (3.42), we
obtain

〈[(ε, ε0)], [M̄N ]〉 = Tr`2(N)(ε− ε0)(2− p|N |) = Tr`2(N)(1− SS∗) = 1, (3.46)

〈[(id, ε)], [M̄N ]〉 = Tr`2(N)(id− ε)(2− p|N |) = Tr`2(N)(1− S|N |S|N |∗) = −N. (3.47)

This completes the proof.

The above theorem agrees with the classical situation. Indeed, the pairing 〈[(ε, ε0)], [M̄N ]〉
yields the rank of the line bundles, and 〈[(id, ε)], [M̄N ]〉 computes the winding number of the
map u−N : S1 → S1.

4 Examples of piecewise principal coalgebra coactions

We begin by recalling the piecewise structure [13] of a noncommutative join construction pro-
posed by [9]. Then we instantiate it to SUq(2) to obtain a quantum instanton bundle S7

q → S4
q

[23] as a piecewise trivial principal comodule algebra. A key step is then to replace SUq(2)
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by quotienting the Hopf algebra O(SUq(2)) by a coideal right ideal (O(S2
q,s) ∩ kerε)O(SUq(2))

provided by the generic Podleś quantum spheres S2
q,s, s 6= 0 [24]. The quotient coalgebra is

isomorphic with O(U(1)) [21]. Applying our main theorem, we will prove that the induced
right coaction of O(U(1)) is principal.

4.1 Piecewise principal coactions from a noncommutative join con-

struction

Let H̄ be the C∗-algebra of a compact quantum group and H its Peter-Weyl Hopf algebra
[30, 32]. We take the algebra of norm continuous functions C([a, b], H̄) from a closed interval
[a, b] to the C∗-algebra H̄, and define

P1 := {f ∈ C([0, 1
2
], H̄)⊗H | f(0) ∈ ∆(H)}, (4.1)

P2 := {f ∈ C([1
2
, 1], H̄)⊗H | f(1) ∈ C⊗H}. (4.2)

Here we identify elements of C([a, b], H̄)⊗H with functions [a, b]→ H̄ ⊗H. The Pi’s are right
H-comodule algebras for the coaction ∆Pi

= idC([ai,bi],H̄)⊗∆, where ∆ stands for the coproduct
of H. The subalgebras of coaction invariants can be identified with

B1 := {f ∈ C([0, 1
2
], H̄) | f(0) ∈ C},

B2 := {f ∈ C([1
2
, 1], H̄) | f(1) ∈ C}.

The comodule algebra P2 is evidently the same as B2⊗H. Unlike P2, the comodule algebra
P1 does not coincide with B1 ⊗H. However, there is a cleaving map j : H → P1 by j(h)(t) :=(
t 7→ h(1)

)
⊗h(2), that is, j(h)(t) := ∆(h) for all t ∈ [0, 1

2
]. Since j is an algebra homomorphism,

it identifies the comodule algebra P1 with a smash product B1#H.

Now one can define the noncommutative join of H̄ as the pullback right H-comodule algebra

P := {(p, q) ∈ P1 ⊕ P2 | π1(p) = π2(q)} (4.3)

given by the evaluation maps

π1 := ev 1
2
⊗ id : P1 → P12 := H̄ ⊗H, π2 := ev 1

2
⊗ id : P2 → P12 := H̄ ⊗H, (4.4)

where evt is given by the evaluation of functions of C([a, b], H̄) in t ∈ [a, b].

Our goal now is to replace H by a quotient coalgebra without loosing principality. Using [7,
Example 2.29], it is straightforward to verify the following lemma.

Lemma 4.1. Let H be a Hopf algebra with bijective antipode, let ∆P : P → P⊗H be a coaction
making P a right H-comodule algebra and J a coideal right ideal of H. Then C := H/J is a
coalgebra coacting on P via ρR := (id⊗ π) ◦∆P , π : H → C the canonical surjection, and the
formula

Ψ : C ⊗ P 3 π̄(h)⊗ p 7−→ p(0) ⊗ π(hp(1)) ∈ P ⊗ C (4.5)

defines a bijective entwining making P an entwined module. The inverse of Ψ is given by

Ψ−1(p⊗ π(h)) = π(hS−1(p(1)))⊗ p(0), (4.6)
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and defines a left oaction on P via

ρL : P 3 p 7−→ Ψ−1(p⊗ π(1)) = π(S−1(p(1))⊗ p(0) ∈ C ⊗ P. (4.7)

Lemma 4.2. Let P be a principal H-comodule algebra for ∆P : P → P ⊗H. Also, let J be a
coideal right ideal of H defining a coalgebra C := H/J , let ρR := (id ⊗ π) ◦ ∆P , π : H → C
the canonical surjection, be its right coaction on P , and let i : C → H be a unital (i.e.,
i(π(1)) = 1) C-bicolinear (for the coactions ∆H := (id ⊗ π) ◦ ∆ and H∆ := (π ⊗ id) ◦ ∆)
splitting (i.e., π ◦ i = id). Then P is principal for the coaction ρR.

Proof. Let ` : H → P ⊗ P be a strong connection on P . One can easily check that ` ◦ i :
C → P ⊗ P is a strong connection on P for the right coaction ρR := (id ⊗ π) ◦ ∆P and the
left coaction ρL := (π ⊗ id) ◦ P∆, where P∆(p) = S−1(p(1)) ⊗ p(0) is the left H-coaction on P
viewed as a principal H-comodule algebra. On the other hand, it follows from Lemma 4.1 that
Ψ : C ⊗P 3 π(h)⊗ p 7→ p(0)⊗ π(hp(1)) ∈ P ⊗C is a bijective entwining making P an entwined
module. Therefore, since ρR(1) = 1 ⊗ π(1), ρL(1) = π(1) ⊗ 1, and ρL(p) = Ψ−1(p ⊗ π(1)) for
all p ∈ P by (4.7), the principality of P for the C-coaction ρR follows from Lemma 1.1.

Combining Lemma 4.2 with Theorem 2.2 yields the following result.

Theorem 4.3. Let H̄ be the C∗-algebra of a compact quantum group, H its Peter-Weyl Hopf
algebra, J a coideal right ideal of H and π : H → C := H/J the cannonical surjection. Also let

P1 := {f ∈ C([0, 1
2
], H̄)⊗H | (ev0 ⊗ id)(f) ∈ ∆(H)}, (4.8)

P2 := {f ∈ C([1
2
, 1], H̄)⊗H | (ev1 ⊗ id)(f) ∈ C⊗H} (4.9)

be right and left C-comodules for the right and left coactions

ρiR := (id⊗ π) ◦∆Pi
, ρiL := (π ⊗ id) ◦ Pi

∆, i = 1, 2, (4.10)

respectively. Here ∆Pi
:= id ⊗ ∆ and Pi

∆ := (S−1 ⊗ id) ◦ flip ◦ ∆Pi
. Then, if there exists a

unital bicolinear splitting i : C → H of π : H → C, the pullback C-comodule

P := {(p1, p2) ∈ P1 × P2 | (ev 1
2
⊗ id)(p1) = (ev 1

2
⊗ id)(p2)} (4.11)

is principal.

Let us now take a closer look at the compatibility of strong connections on principal comod-
ules as appearing in the above theorem. First we observe that, if both of π1 and π2 defining
the pullback diagram (2.33) are surjective, then (2.39) simplifies to

` = ((α12
L +id)⊗(α12

R +id))◦`2 + (η1◦ε−mP1 ◦(α12
L ⊗α12

R )◦`2)∗
(
(id⊗(id+α21

R ))◦`1

)
. (4.12)

Indeed, since now α21
R is defined on the whole P1, a special constructed connection ˜̀

1 in (2.38)
can be replaced by any strong connection `1 on P1. Note that specializing (4.12) to comodule
algebras coincides with what was obtained in [13].

Next, we observe that the formulae

α1 : P12 → P1, α1(h̄⊗ h) = 2th̄⊗ h+ (1− 2t) ε̄(h̄)h(1) ⊗ h(2), (4.13)

α2 : P12 → P2, α2(h̄⊗ h) = 2(1− t)h̄⊗ h+ (2t− 1) ε̄(h̄)⊗ h, (4.14)
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where ε̄ is any unital linear functional on H̄, define unital C-bicolinear splittings of π1 and π2,
respectively. Hence we can take α12

L = α12
R = α1 ◦ π2 and α21

R = α2 ◦ π1. Combining this with
the fact that a cleaving map j defines a strong connection via ` := (j−1 ⊗ j) ◦ ∆, we obtain
very explicit formulae for strong connections on P1 and P2:

`1 := (j−1
1 ⊗ j1) ◦∆ ◦ i, `2 := (j−1

2 ⊗ j2) ◦∆ ◦ i. (4.15)

Here j1 : H → P1, j1(h) := (t 7→ h(1))⊗h(2), and j2 : H → P2, j2(h) := 1⊗h are cleaving maps
for P1 and P2, respectively.

4.2 Quantum complex projective spaces CP3
q,s

Finally, we instantiate H̄ to be C(SUq(2)), H = O(SUq(2)), J = (O(S2
q,s) ∩ kerε)O(SUq(2)),

and ε̄ : C(SUq(2)) → C to the counit. Here O(S2
q,s) stands for the coordinate algebra of a

Podleś quantum sphere S2
q,s, s ∈ [0, 1], [8]. (Note that the case s = 0 brings us to the comodule-

algebra setting.) The most interesting part of this structure is the unital bicolinear splitting of
π : O(SUq(2))→ O(SUq(2))/J given by [8, Proposition 6.3].

All this defines a family of noncommutative deformations of the U(1)-principal bundle
S7 → CP3. More precisely, we obtain deformations of a U(1)-principal action on S7 given
by

(z1, z2, z3, z4)eiϕ = (z1eiϕ, z2e−iϕ, z3eiϕ, z4e−iϕ), |z1|2 + |z2|2 + |z3|2 + |z4|2 = 1. (4.16)

However, this is isomorphic with the diagonal action of U(1) on S7, so that the quotient space is
again CP3. Thus out of Pflaum’s S7 we obtain a family of quantum projective spaces CP3

q,s. A
very explicit Mayer-Vietoris type formula for a strong connection on S7

q → CP3
q,s should allow

us to study the K-theory aspects of the tautological line bundle over CP3
q,s, but this is beyond

the scope of this paper.
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