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Abstract. An approach to the computational complexity beyond the
known complexity measures of the consumed time and space of compu-
tation is proposed. The approach focuses on the chaotic behavior and
randomness aspects of computational processes and is based on a repre-
sentation of these processes by causal nets.

1 Introduction

A certain new approach to the investigations of the computational complexity
of abstract systems allowing some unrestricted parallelism of computation is
proposed, where the computational processes realized in a discrete time with a
central clock by these systems are represented by causal nets similar to those
in [4] and related to causal sets in [1].

The representation of computational processes by causal nets is aimed to
provide an abstraction from those features of computational processes which do
not have a spatial nature such that the abstraction could make visible some new
aspects of the processes like an aspect of chaotic behavior or a fractal shape.

The aspects of a chaotic behavior and a fractal shape inspired by the research
area of dynamics of nonlinear systems [20] regarding an unpredictability of the
behavior of these systems1 could suggest an answer to the following question
formulated in [21]: Is the concept of randomness, founded in the concept of ab-

sence of computable regularities, the only adequate and consistent one? In which

direction, if any, should one look for alternatives?

The answers may have an impact on designing pseudorandom number gener-
ators, cf. [23], [24], applied in statistics, cryptography, and Monte Carlo Method.

The proposed approach is aimed to provide a possibly uniform precise math-
ematical treatment of causal nets and related concepts which could serve for
measuring of complexity of computational processes by a use of graph dimen-
sions [13] and network fractal dimensions [19], [7], [8] in parallel to measuring
complexity of random strings in [11] by Hausdorff dimension.

The proposed approach concerns the investigations of abstract computing
devices which are geometrical Gandy–Păun–Rozenberg machines.

1 unpredictability due to sensitive dependence on initial conditions—an important
feature of deterministic transient chaos [20] often having fractal shape.
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The geometrical Gandy–Păun–Rozenberg machines are some modifications
of the known Gandy–Păun–Rozenberg machines [14], [15].

The assumption that the sets of instantaneous descriptions of geometrical
Gandy–Păun–Rozenberg machines are skeletal sets of finite directed graphs to-
gether with the features of machine local causation rewriting rules provide a
natural construction of causal nets representing computational processes.

2 Geometrical Gandy–Păun–Rozenberg machines

We refer the reader to Appendix A and Appendix B (quoting the main defi-
nitions of [14], [15]) for unexplained notions and notation concerning labelled
directed graphs, Gandy–Păun–Rozenberg machines (briefly G–P–R machines),
and generalized G–P–R machines.

We recall the main difference between G–P–R machines and generalized
G–P–R machines:

– the auxiliary rules of the G–P–R machines are not specified and for every
G–P–R machine M with its transition function FM and for every instanta-
neous description G of M the instantaneous description FM(G) is a colimit
of the gluing diagram DG determined by the set Pℓ(G) of maximal applica-
tions of the machine rewriting rules to G.

– the generalized G–P–R machines are equipped with auxiliary rules besides
the rewriting rules and for every generalized G–P–R machine M with its
transition function FM and for every instantaneous description G of M the
instantaneous description FM(G) is a colimit of the generalized gluing dia-
gram DG determined by both the machine rewriting rules and the auxiliary
rules.

Definition 2.1. We define a simple geometrical G–P–R machine and a strict

geometrical G–P–R machine to be the modifications of a G–P–R machine and
a generalized G–P–R machine, respectively, such that

– in both cases of a simple and a strict machine we assume that

• the set of labels of vertices of the directed graphs belonging to the set
of instantaneous descriptions of a given machine is a one element set or
equivalently these graphs are not labelled at all, an analogous assump-
tion concerns the graphs appearing in the machine rewriting rules and
auxiliary rules,

• for every machine M there exists a natural number n > 0 such that for
every graph G belonging to the set of instantaneous descriptions of M
the set V (G) of vertices of G is a set of ordered n-tuples of elements
of Q•, where Q• is the set of rational numbers, if necessary, extended to
the recursive real numbers which are linear combinations of

√
2,

√
3, etc.

with rational coefficients (hence we use the adjective ‘geometrical’),
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– in the case of a simple machine we impose a strenghtening that the graphs
belonging to the set of instantaneous descriptions of the machine or ap-
pearing in the conclusions of the machine rewriting rules are not necessarily
isomorphically perfect graphs.

Theorem. For both cases of a simple and of a strict geometrical G–P–R ma-

chine if the set of its instantaneous description is a recursive set, then the tran-

sition function of the machine is a computable function.

Proof. We prove the theorem for the case of a simple geometrical G–P–R ma-
chine M with its transition function FM.

The following assignments are computable:

– the assignment to a finite gluing diagram its colimit constructed as in Ap-
pendix A in the domain of finite directed graphs,

– the assignment to an instantaneous description G of M the set Pℓ(G) of
maximal applications of the rewriting rules of M,

– the assignment to an instantaneous description G of M the gluing dia-
gram DG which is determined by Pℓ(G) in an effective way.

Hence the assignment to an instantaneous description G of M the result of
the construction of a colimit of the gluing diagram DG is also computable as-
signment. Therefore an effective search of that unique instantaneous description
G′ = FM(G) which is isomorphic to the above result of the construction of a
colimit of the gluing diagram DG suffices for reaching FM(G) in an effective way.
This effective search is provided by the assumption that the set of instantaneous
descriptions of the machine M is a recursive set. Thus the transition function
FM is a computable function.

The proof of the theorem for the case of strict geometrical G–P–R machines
is similar to the above proof.

Examples 2.1 (The simulation of cellular automata). The generalized
G–P–R machine MSGL in [15] is an example of a strict geometrical G–P–R
machine, where MSGL simulates the spatial and temporal behavior of a cellular
automaton identified with the eastern expansion fragment of Conway’s Game of

life.
We show now an example of a simple geometrical G–P–R machine which is

aimed to simulate the behavior of one-dimensional cellular automaton with two
cell states 0, 1 and with the rule 30 given by the formula

ai−1 xor (ai or ai+1),

cf. [23], [24], where xor is ‘exclusive or’. This simple geometrical G–P–R machine,
denoted by M30, is defined in the following way.

The instantaneous descriptions and the rewriting rules of M30 are defined
by using the finite directed graphs clnx (for an integer n and x ∈ {0, 1, !, ∅})
corresponding to the single cells for x ∈ {0, 1, !}, where clnx are such that:
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– the graph cln
∅

is the square

(n, 1) // (n + 1, 1)

(n, 0) //

OO

(n + 1, 0)

OO

together with the loop
(
(0, 0), (0, 0)

)
in the case n = 0, and with the path

from (n + 1, 0) to (n, 1) containing three intermediate vertices (n + 1− i
4 , i

4 )
with {1, 2, 3},

– the graph clnx for x ∈ {0, 1, !} consists of:
• the graph cln

∅
as a subgraph,

• the edge
(
(n, 0), (n + 1 − x+1

4 , x+1
4 )

)
for x ∈ {0, 1}, indicating that the

graph clnx corresponds to a cell in state x and called an edge indicating

a state of a cell,
• the edge

(
(n, 0), (n + 1 − 3

4 , 3
4 )

)
for x =!.

An instantaneous description of M30 is that graph G which is the graph
union (cf. Appendix A)

cli! ∪
( ⋃

i<k<j

clkxk

)
∪ clj!

for some integers i < −1, j > 1 and for some family clkxk
(i < k < j) with

xk ∈ {0, 1} for all integers k such that i < k < j.
The rewriting rules of M30 are given by

– cl1i ∪ cl2j ∪ cl3k ⊢ cl1
∅
∪ cl2ρ(i,j,k) ∪ cl3

∅
for {i, j, k} ⊆ {0, 1}, where ρ(i, j, k) =

i xor (j or k),
– cl2! ∪ cl3j ∪ cl4k ⊢ cl1! ∪ cl2ρ(0,0,j) ∪ cl3ρ(0,j,k) ∪ cl4

∅
for {j, k} ⊆ {0, 1},

– cl1i ∪ cl2j ∪ cl3! ⊢ cl1
∅
∪ cl2ρ(i,j,0) ∪ cl3ρ(j,0,0) ∪ cl4! for {i, j} ⊆ {0, 1},

– the identity rule • 0 ⊢ • 0, where • 0 is the graph with single vertex
0 and with single edge which is a loop.

The graphs cl2j and cl3j appearing in the middle of the premises of the above
rules are called the centers of these rules, respectively.

The one-dimensional cellular automata in [23], [24] and small Turing ma-
chines in [7], [8] can be simulated by simple G–P–R machines constructed in a
similar way to the machine M30.

Example 2.2 (generation of the contours of the iterations of fractals). We show
a simple geometrical G–P–R machine whose single rewriting rule serves for gen-
erating the contours of the iterations of Sierpiński gasket. This machine, denoted
by MSierp is defined in the following way.

Let ∆ be a directed graph given by

V (∆) =
{
(0, 0), ( 1

2 ,
√

3
2 ), (1, 0)

}
,

E(∆) =
{
((0, 0), (1, 0)), ((0, 0), ( 1

2 ,
√

3
2 )), ((1, 0), ( 1

2 ,
√

3
2 ))

}
.
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The graph ∆ is a contour of an equilateral triangle.
The instantaneous descriptions of MSierp are graphs ∆n (for a natural num-

ber n ≥ 0) defined inductively by

∆0 =
(
V (∆), E(∆) ∪ {((0, 1), (0, 1))}

)
,

∆n+1 =
⋃

i∈{1,2,3}
fi(∆n),

where f1, f2, f3 are functions forming the iterated function system for Sierpiński
gasket, cf. [18] and Appendix C, and for a directed graph G with V (G) ⊂ Q•×Q•

fi(G) is a graph such that

V (fi(G)) =
{
fi(v) | v ∈ V (G)

}
,

E(fi(G)) =
{
(fi(v), fi(v

′)) | (v, v′) ∈ E(G)
}
.

A unique rewriting rule of MSierp is of the form

∆1 ⊢ ∆2.

The graphs ∆n (n > 0) are the contours of the iterations of Sierpiński gasket.
The similar simple G–P–R machines can be constructed for some other frac-

tals determined by iteration function system, e.g. 3D Sierpiński gasket.

3 Causal nets of geometrical G–P–R machines

We propose some precise mathematical treatment of those concepts which ex-
press or explicate certain aspects and features of the computational processes
realized by geometrical G–P–R machines and which can be investigated within
‘experimental mathematics’ by an analysis (sometimes heuristic) of the plots il-
lustrating those concepts. The plots could be generated by computers like in [24].

Definitions 3.1. For both cases of a simple or of a strict geometrical G–P–R
machine M and an initial instantaneous description G of M we define an event

with respect to G to be an ordered pair (v, i) with v ∈ V (F i
M(G)) for a natural

number i ≥ 0, where F0
M(G) = G. Then we define a full causal relation ≺G

with respect to G to be a binary relation defined on the set Ev(G) of events with
respect to G given by

(v, i) ≺G (v′, i′) iff i′ = i + 1 and there exists h ∈ Pℓ(F i
M(G))

such that v ∈ V (im(h)) and v′ ∈ V (im(qh)) for the h-th canonical injection

qh : RM(dom(h)) → F i+1
M (G) into the colimit of the gluing diagram DFi

M
(G)

in the simple case and of the generalized gluing diagram DFi

M
(G) in the strict

case, where RM(dom(h)) is the conclusion of the rewriting rule with the premise
dom(h). Thus the ordered pair NG = (Ev(G),≺G) is called a full causal net of

M with respect to G.
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The proper subnets of the full causal net NG with respect to G correspond
to various aspects and features of the computation of M starting with G.

For instance, in the case of Example 2.2 it is worth to consider a causal net

N gr
G of growth with causal growth relation ≺gr

G given by

(v, i) ≺gr
G (v′, i′) iff i′ = i + 1 with (v, i) ≺G (v′, i′) and both v and v′

are new in F i
M(G) and in F i+1

M (G), respectively, whenever i > 0,

otherwise v′ is new in F i+1(G),

where a vertex x is new in Fk
M(G) if x ∈ V (Fk

M(G)) and x /∈ V (Fk−1
M (G)) for

k > 0.
In the case of the machine in Example 2.2 the projection of N gr

∆0
into the

phase space Q• × Q• yields Sierpiński gasket which is a fractal.
In the case of Examples 2.1 it is worth to consider a causal net N act

G of

activity with causal relation ≺act
G of activity given by

(v, i) ≺act
G (v′, i′) iff i′ = i + 1 with (v, i) ≺G (v′, i′) and both v and v′

are the targets of the edges indicating the states

of the cells in F i
M(G) and in F i+1

M (G), respectively.

For the geometrical G–P–R machines simulating one-dimensional cellular
automata like the machine M30 in Examples 2.1 one defines the causal net N stc

G

of strict changes with the causal relation ≺stc
G of strict changes given by

(v, i) ≺stc
G (v′, i′) iff i′ = i + 1 and there exists h ∈ Pℓ(F i

M(G))

such that h(v1) = v and qh(v2) = v′ for those v1, v2 which are such that

v1 is a vertex of the center of the rule dom(h) ⊢ RM(dom(h))

and both v1, v2 are the targets of the edges indicating the state

of a cell in the premise and in the conclusion of the rule, respectively.

Thus N stc
G is a subnet of N act

G , moreover, in the case of M30 the plots for
the one-dimensional cellular automaton with the rule 30 in [23], [24] illustrate
appropriate nets N stc

G .
The nets N stc

G (G ∈ SM) coincide with space-time diagrams in [7], [8], where
these diagrams are subject of the investigations of computational complexity by
using fractal dimension.

The transitive closures ≺∗
G, (≺x

G)∗ (x ∈ {gr, act, stc}) give rise to causal sets
CG = (Ev(G),≺∗

G) and Cx
G = (Ev(G), (≺x

G)∗) (x ∈ {gr, act, stc}) whose logical
aspects can be approached like in physics [12] or like in concurrency theory [2].

The investigations of machine MSierp defined in Example 2.2 suggest another
approach to the idea of a causal net of a computation of a geometrical G–P–R
machine which is introduced in the following definitions.
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Definitions 3.2. For both cases of a simple or of a strict geometrical G–P–R
machine M and an initial instantaneous description G of M we define a rule ap-

plication event with respect to G to be an ordered pair (h, i) with h ∈ Pℓ(F i
M(G))

for a natural number i ≥ 0, where F0
M(G) = G. Then we define a rule appli-

cation causal relation ≻app
G with respect to G to be a binary relation defined on

the set Evapp(G) of the rule application events with respect to G given by

(h, i) ≻app
G (h′, i′) iff i′ = i + 1 and im(h) is a subgraph of im(qh′)

for the h′-th canonical injection qh′ : RM(dom(h′)) → F i+1
M (G) into the col-

imit of the gluing diagram DFi

M
(G) in the simple case and of the general-

ized gluing diagram DFi

M
(G) in the strict case. Thus the ordered pair N app

G =

(Evapp(G),≻app
G ) is called a causal net of the rule application events with respect

to G.
For natural numbers n > 0 the restrictions of N app

G to n, denoted by N app
G ↾ n,

are the ordered pairs (Evapp(G) ↾ n,≻app
G ↾ n) with Evapp(G) ↾ n = {(h, i) ∈

Evapp(G) | i ≤ n}, where ≻app
G ↾ n is the restriction of ≻app

G to Evapp(G) ↾ n.

Lemma 3.1. Machine MSierp is such that for every rule application event (h, i)
with respect to ∆0 with i ≥ 0 there exists a unique ordered triple (h1, h2, h3) of

elements of Pℓ(F i+1
MSierp(∆0)) such that the following condition holds:

(α) (hj , i + 1) ≻app
∆0

(h, i) and hj = fj ◦ h for all j ∈ {1, 2, 3},

where f1, f2, f3 form the iteration function system for Sierpiński gasket, cf. Ap-

pendix C, and ◦ denotes the composition of functions.

Proof. We prove the lemma by induction on i.

Corollary 3.1. Causal net N app
∆0

of the rule application events with respect to

∆0 for machine MSierp is isomorphic to the (ternary) tree T whose vertices are

finite strings (including empty string) of digits in {1, 2, 3}, the edges are ordered

pairs (Γj, Γ ) for a finite string Γ and a digit j ∈ {1, 2, 3}, where the graph

isomorphism iz : T → N app
∆0

is defined inductively by

– iz(empty string) = (id∆0
, 0), where id∆0

is the identity graph homomorphism

on ∆0,

– iz(Γj) = (h′, length(Γ ) + 1) for a unique h′ which is the j-th element of a

unique ordered triple which satisfies the condition (α) for that h for which

iz(h) = (h, length(Γ )).

Proof. The corollary is a consequence of Lemma 3.1.

Corollary 3.2. Machine MSierp is such that for every rule application event

(h, i) with respect to ∆0 for i ≥ 0 the unique ordered triple (h1, h2, h3) of el-

ements of Pℓ(F i+1
MSierp(∆0) satisfying the condition (α) for h determines a di-

rected multi-hypergraph G(h,i) (see Appendix A) whose set of hyperedges is the set
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{(h1, i+1), (h2, i+1), (h3, i+1)}, the set of vertices is the union
⋃

1≤j≤3

V (im(hj))

and the source and target functions s, t are given by

s((hj , i + 1)) = {hj((0, 0)), hj((1, 0))},
t((hj , i + 1)) = {hj((

1
2 ,

√
3

2 ))} for all j ∈ {1, 2, 3}.
Moreover, for every rule application event (h, i) with respect to ∆0 for i ≥ 0 the

directed multi-hypergraph G(h,i) is isomorphic to the directed multi-hypergraph

G(id∆0
,0).

Proof. The corollary is a consequence of Lemma 3.1.

Remark 3.1. The directed multi-hypergraph G(h,i) in Corollary 3.2 could model
some interaction between the rule application events in the computation process
of MSierp starting with ∆0 and represented by N app

∆0
. This interaction could be

a gluing pattern understood as in the main theorem of [16].

Remark 3.2. Since the multi-hyperedge membrane systems SSierp
n in [16] for

n ≥ 0 are aimed to display the self-similar structure of (the iterations of) Sier-
piński gasket by using isomorphisms of directed multi-hypergraphs and net N app

∆0

represents the computation process of machine MSierp starting with ∆0, one can
see (in the light of Corollaries 3.1 and 3.2) that the self-similar structure (or form)
of the contours of the iterations of Sierpiński gasket coincides2 with (or simply
is) the process of their generation by machine MSierp. This coincidence is similar
to the coincidence of Nautilus shell, illustrated in Fig. 1 in [22], with the process
of its growth.

Final Remark 3.3. The author expects that the geometrical G–P–R machines
and their extensions to higher dimensions could provide the mathematical foun-
dations for the atomic basis of biological symmetry and periodicity3 due to An-
tonio Lima-da-Faria [9]. These foundations could explicate the links of cellular
automata approach to complexity in biology in S. Wolfram’s A New Kind of

Science with Evolution without selection [10] pointed out by B. Goertzel in his
review of A New Kind of Science in [6].

Open problem One can define geometrical G–P–R machines whose instan-
taneous descriptions are finite graphs with vertices labelled by multisets and
the machine rewriting rules contain multiset rewriting rules like in membrane
computing [17].

How to extract in the case of these machines the counterparts of causal nets
to be subject of measuring uncertainty via fractal dimension like e.g. in [7], [8].

2 by Corollaries 3.1 and 3.2 the restrictions N
app

∆0
↾ n together with the directed

hypergraphs G(h, i) provide a construction of multihyperedge membrane systems
(with the restrictions N

app

∆0
↾ n as their underlying trees) isomorphic to SSierp

n .
3 selfsimilarity characterized in terms of geometrical G–P–R machines like in MSierp

case could be a counterpart of spatial periodicity with respect to both time and scale
changes.
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Appendix A. Graph-theoretical and category-theoretical

preliminaries

A [finite] labelled directed graph over a set Σ of labels is defined as an ordered
triple G = (V (G), E(G), ℓG), where V (G) is a [finite] set of vertices of G, E(G) is
a subset of V (G) × V (G) called the set of edges of G, and ℓG is a function from
V (G) into Σ called the labelling function of G. We drop the adjective ‘directed’
if there is no risk of confusion.

A homomorphism of a labelled directed graph G over Σ into a labelled directed

graph G′ over Σ is an ordered triple (G,h : V (G) → V (G′),G′) such that h is a
function from V (G) into V (G′) which satisfies the following conditions:

(H1) (v, v′) ∈ E(G) implies (h(v),h(v′)) ∈ E(G′) for all v, v′ ∈ V (G),
(H2) ℓG′(h(v)) = ℓG(v) for every v ∈ V (G).

If a triple h = (G,h : V (G) → V (G′),G′) is a homomorphism of a labelled
directed graph G over Σ into a labelled directed graph G′ over Σ, we denote this
triple by h : G → G′, we write dom(h) and cod(h) for G and G′, respectively,
according to category theory convention, and we write h(v) for the value h(v).

A homomorphism h : G → G′ of labelled directed graphs over Σ is an embed-

ding of G into G′, denoted by h : G ֌ G′, if the following condition holds:

(E) h(v) = h(v′) implies v = v′ for all v, v′ ∈ V (G).

An embedding h : G ֌ G′ of labelled directed graphs G,G′ over Σ is an
inclusion of G into G′, denoted by h : G →֒ G′, if the following holds:

(I) h(v) = v for every v ∈ V (G).

We say that a labelled directed graph G over Σ is a labelled subgraph of a
labelled directed graph G′ over Σ if there exists an inclusion h : G →֒ G′ of
labelled directed graphs G,G′ over Σ.

For an embedding h : G ֌ G′ of labelled directed graphs G,G′ over Σ we
define the image of h, denoted by im(h), to be a labelled directed graph Ĝ over Σ

such that V (Ĝ) =
{
h(v) | v ∈ V (G)

}
, E(Ĝ) =

{
(h(v), h(v′)) | (v, v′) ∈ E(G)

}
,

and the labelling function ℓĜ of Ĝ is the restriction of the labelling function ℓG′

of V (G′) to the set V (Ĝ), i.e., ℓĜ(v) = ℓG′(v) for every v ∈ V (Ĝ).
A homomorphism h : G → G′ of labelled directed graphs over Σ is an iso-

morphism of G into G′ if there exists a homomorphism h−1 : G′ → G of labelled
directed graphs over Σ, called the inverse of h, such that the following conditons
hold:

(Iz1) h−1(h(v)) = v for every v ∈ V (G),
(Iz2) h(h−1(v)) = v for every v ∈ V (G′).

We say that a labelled directed graph G over Σ is isomorphic to a labelled
directed graph G′ over Σ if there exists an isomorphism h : G → G′ of labelled
graphs G,G′ over Σ.
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For an embedding h : G ֌ G′ of labelled directed graphs G,G′ over Σ we
define a homomorphism ḣ : G → im(h) by ḣ(v) = h(v) for every v ∈ V (G). This
homomorphism ḣ is an isomorphism of G into im(h), called an isomorphism

deduced by h.
For a labelled directed graph G over Σ, the identity homomorphism (or sim-

ply, identity of G), denoted by idG , is the homomorphism h : G → G such that
h(v) = v for every v ∈ V (G).

We say that a labelled directed graph G over Σ is an isomorphically perfect

labelled directed graph over Σ if the identity homomorphism idG is a unique
isomorphism of labelled directed graph G into G.

Lemma A.1. Let G be an isomorphically perfect labelled directed graph over Σ
and let h : G → G′, h′ : G → G′ be two isomorphisms of labelled graphs G,G′

over Σ. Then h = h′.

We say that a set or a class A of labelled directed graphs over Σ is skeletal

if for all labelled directed graphs G,G′ in A if they are isomorphic, then G = G′.
A gluing diagram D of labelled directed graphs over Σ is defined by:

— its set I of indexes with a distinguished index ∆ ∈ I, called the center

of D,
— its family Gi (i ∈ I) of labelled directed graphs over Σ,
— its family gli (i ∈ I − {∆}) of gluing conditions which are sets of ordered

pairs such that
(i) gli ⊆ V (G∆) × V (Gi) for every i ∈ I − {∆},
(ii) (v, v′) ∈ gli implies ℓG∆

(v) = ℓGi
(v′) for all v ∈ V (G∆), v′ ∈ V (Gi), and

for every i ∈ I − {∆},
(iii) for every i ∈ I − {∆} if gli is non-empty, then there exists a bijection

bi : L(gli) → R(gli)

for L(gli) = {v | (v, v′) ∈ gli for some v′} and R(gli) = {v′ | (v, v′) ∈ gli
for some v} such that

{
(v, bi(v)) | v ∈ L(gli)

}
= gli.

For a gluing diagram D of labelled directed graphs over Σ we define a cocone

of D to be a family hi : Gi → G (i ∈ I) of homomorphisms of labelled directed
graphs over Σ (here cod(hi) = G for every i ∈ I) such that

h∆(v) = hi(v
′)

for every pair (v, v′) ∈ gli and every i ∈ I − {∆}.
A cocone qi : Gi → G̃ (i ∈ I) of D is called a colimiting cocone of D if for

every cocone hi : Gi → G (i ∈ I) of D there exists a unique homomorphism

h : G̃ → G of labelled directed graphs G̃,G over Σ such that h(qi(v)) = hi(v) for

every v ∈ V (Gi) and for every i ∈ I. The labelled directed graph G̃ is called a
colimit of D, the homomorphisms qi (i ∈ I) are called canonical injections and
the unique homomorphism h is called the mediating morphism for hi : Gi → G
(i ∈ I).

For a gluing diagram D one constructs its colimit G̃ in the following way:
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— V (G̃) =
⋃

i∈I
(Vi × {i}), where

V∆ = V (G∆) for the center ∆ of D,
Vi = V (Gi) − R(gli) for every i ∈ I − {∆},

— E(G̃) =
⋃

i∈I
Ei, where

E∆ =
{(

(v,∆), (v′,∆)
)
| (v, v′) ∈ E(G∆)

}
for the center ∆ of D,

Ei =
{(

(v, i), (v′, i)
)
| (v, v′) ∈ E(Gi) and {v, v′} ⊆ Vi

}

∪
{(

(v,∆), (v′,∆)
)
| (v, v′′) ∈ gli, (v′, v′′′) ∈ gli,

and (v′′, v′′′) ∈ E(Gi) for some v′′, v′′′}

∪
{(

(v,∆), (v′, i)
)
| v′ ∈ Vi, (v, v′′) ∈ gli and (v′′, v′) ∈ E(Gi) for some v′′}

∪
{(

(v, i), (v′,∆)
)
| v ∈ Vi, (v′, v′′) ∈ gli and (v, v′′) ∈ E(Gi) for some v′′}

for every i ∈ I − {∆},
— the labelling function ℓeG is defined by ℓG̃((v, i)) = ℓGi

(v) for every (v, i) ∈
V (G̃).

The definition of a colimiting cocone of a gluing diagram D provides that any
other colimit of D is isomorphic to the colimit of D constructed above. Hence
one proves the following lemma.

Lemma A.2. Let D be a gluing diagram of labelled graphs over Σ. Then for

every colimiting cocone qi : Gi → G (i ∈ I) of D if i′ 6= i′′, then
(
V (im(qi′)) − V (im(q∆))

)
∩

(
V (im(qi′′)) − V (im(q∆))

)
= ∅

for all i′, i′′ ∈ I−{∆}, where ∆ is the center of D and the elements of nonempty

V (im(qi)) − V (im(q∆)) with i 6= ∆ are ‘new’ elements and the elements of

V (im(q∆)) are ‘old’ elements.

A generalized gluing diagram D of labelled directed graphs over Σ is defined
by:

— its set I of indexes with a distinguished index ∆ ∈ I, called the center

of D,
— its family Gi (i ∈ I) of labelled directed graphs over Σ,
— its family glij ((i, j)) ∈ I × (I − {∆}) and i 6= j) of gluing conditions which

are such that
• the set I∆ = I with families Gi (i ∈ I) and gl∆i (i ∈ I − {∆}) form a

gluing diagram D∆ with ∆ as the center of D∆,
• for every i ∈ I−{∆} the set Ii = I−{∆} with families Gi (i ∈ I−{∆})

and glij (j ∈ I − {i,∆}) form a gluing diagram Di with i as the center

for Di,
• the following conditions hold:
(G1) R(gl∆i ) ∩ L(glij) = ∅ for all i, j with {i, j} ⊂ I − {∆} and i 6= j,

(G2) (glij)
−1 = glji for all i, j with {i, j} ⊂ I − {∆} and i 6= j, where for

Q ⊂ A × B

(Q)−1 =
{
(x, y) ∈ B × A | (y, x) ∈ A × B}.
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For a generalized gluing diagram D of labelled directed graphs over Σ we
define a cocone of D to be a family hi : Gi → G (i ∈ I) of homomorphisms of
labelled directed graphs over Σ (here cod(hi) = G for every i ∈ I) such that for
every i ∈ I the sub-family hj : Gj → G (j ∈ Ii) is a cocone of the diagram Di.

For a generalized gluing diagram D a colimiting cocone of D, a colimit of D,
the canonical injections, and the mediating morphism are defined in the same
way as for a gluing diagram, e.g. a cocone qi : Gi → G̃ (i ∈ I) of D is called a
colimiting cocone of D if for every cocone hi : Gi → G (i ∈ I) of D there exists

a unique homomorphism h : G̃ → G of labelled directed graphs G̃,G over Σ such
that h(qi(v)) = hi(v) for every v ∈ V (Gi) and for every i ∈ I.

Lemma A.3. Let D be a generalized gluing diagram with finite set I of its

indexes and with center ∆, such that the following condition holds:
(G3) for all i, i′, j ∈ I − {∆} if i 6= i′, then L(glji ) ∩ L(glji′) = ∅.

Then one constructs a colimit of D to be a labelled directed graph G̃ which

is determined by an arbitrary nonrepetitive sequence i1, . . . , in0
of elements of

I − {∆} = {i1, . . . , in0
} and which is defined in the following way:

— V (G̃) =
⋃

i∈I
(Vi×{i}), where V∆ = V (G∆), Vi1 = V (Gi1)−R(gl∆i1), for every

k with 1 < k ≤ n0

Vik
= V (Gik

) −
(
R(gl∆ik

) ∪
⋃

1≤m<k

L(glik

im
)
)
,

— E(G̃) =
⋃

i∈I
Ei, where E∆ =

{
((v,∆), (v′,∆)) | (v, v′) ∈ E(G∆)

}
,

for every i ∈ I − {∆}
Ei = E1

i ∪ E2
i ∪ E3

i ∪ E4
i for

E1
i =

{
((v, i), (v′, i)) | {(v, i), (v′, i)} ⊂ V (G̃) and (v, v′) ∈ E(Gi)

}
,

E2
i =

{
((v, k), (v′, j)) | {(v, k), (v′, j)} ⊂ V (G̃), i /∈ {k, j} ⊂ I,

(v, v′′) ∈ glki , (v′, v′′′) ∈ glji , and (v′′, v′′′) ∈ E(Gi) for some v′′, v′′′},

E3
i =

{
((v, i), (v′, j)) | {(v, i), (v′, j)} ⊂ V (G̃), i 6= j ∈ I,

(v′, v′′) ∈ glji , and (v, v′′) ∈ E(Gi) for some v′′},

E4
i =

{
((v, j), (v′, i)) | {(v, j), (v′, i)} ⊂ V (G̃), i 6= j ∈ I,

(v, v′′) ∈ glji , and (v′′, v′) ∈ E(Gi) for some v′′},
— the labelling function ℓeG is defined by ℓeG((v, i)) = ℓGi

(v) for every (v, i) ∈
V (G̃).

Proof. Since by (G3) for all i ∈ I − {∆} and v ∈ V (Gi) − Vi there exists a

unique ordered pair (v∗, i∗) ∈ V (G̃) such that (v∗, v) ∈ gli
∗

i , one defines the i-th

component qi : Gi → G̃ (i ∈ I − {∆}) of colimiting cocone by

qi(v) =

{
(v, i) if v ∈ Vi,

(v∗, i∗) otherwise.
�
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Lemma A.4. Let D be a generalized gluing diagram with finite set I of its

indexes and with center ∆, such that the condition (G3) holds and let qi : Gi → G
(i ∈ I) be a colimiting cocone of D. Then for every H ⊆ I − {∆} if

⋂

i∈H

(
V (im(qi)) − V (im(q∆))

)
6= ∅,

then H has at most two elements and if H = {i, i′} with i 6= i′, then glii′ is

nonempty.

Proof. The lemma is a consequence of Lemma A.3 and the fact that two different
colimits of a generalized gluing diagram are always isomorphic labelled graphs.

For two directed graphs G1 = (V (G1), E(G1)), G2 = (V (G2), E(G2)), we
define their union by

G1 ∪ G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)).

We introduce the following new concepts.
By a directed multi-hypergraph we mean a structure G given by its set E(G)

of hyperedges, its set V (G) of vertices and the source and target mappings

sG : E(G) → P(V (G)), tG : E(G) → P(V (G))

such that V (G) together with

{
(V1,V2) | sG(e) = V1 and tG(e) = V2 for some e ∈ E(G)

}

form a directed hypergraph as in [5], where P(X) denotes the set of all subsets
of a set X.

We say that two directed multi-hypergraphs G,G′ are isomorphic if there
exist two bijections h : V (G) → V (G′), h′ : E(G) → E(G′) such that

sG′(h′(e)) = {h(v) | v ∈ sG(e)} and tG′(h′(e)) = {h(v) | v ∈ tG(e)}

for all e ∈ E(G).

Appendix B

We recall an idea of a Gandy–Păun–Rozenberg machine, briefly G–P–R machine,
introduced in [14].

The core of a G–P–R machine is a finite set of rewriting rules for certain
finite directed labelled graphs, where these graphs are instantenous descriptions
for the computation process realized by the machine.

The conflictless parallel (simultaneous) application of the rewriting rules of a
G–P–R machine is realized in Gandy’s machine mode (according to Local Cau-
sation Principle, cf. [3]), where (local) maximality of “causal neighbourhoods”
replaces (global) maximality of, e.g. conflictless set of evolution rules applied
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simultaneously to a membrane structure which appears during the evolution
process generated by a P system [17]. Therefore one can construct a Gandy’s
machine from a G–P–R machine in an immediate way, see [14].

For all unexplained terms and notation of category theory and graph theory
we refer the reader to Appendix A.

Definition B.1. A G–P–R machine M is determined by the following data:

— a finite set ΣM of labels or symbols of M,

— a skeletal set SM of finite isomorphically perfect labelled directed graphs
over Σ, which are called instantenous descriptions of M,

— a function FM : SM → SM called the transition function of M,

— a function RM : PREMM → CONCLM from a finite skeletal set PREMM
of finite isomorphically perfect labelled directed graphs over ΣM onto a
finite skeletal set CONCLM of finite isomorphically perfect labelled directed
graphs over ΣM such that RM determines the set

R̃M = {P ⊢ C |P ∈ PREMM and C = RM(P )}

of rewriting rules of M which are identified with ordered pairs r = (Pr, Cr),
where the graph Pr ∈ PREMM is the premise of r and the graph Cr =
RM(Pr) is the conclusion of r,

— a subset IM of SM which is the set of initial instantaneous descriptions

of M.

The above data are subject of the following conditions:

1) V (G) ⊆ V (FM(G)) for every G ∈ SM,

2) V (G) ⊆ V (RM(G)) for every G ∈ PREMM,

3) the rewriting rules of M are applicable to SM which means that for every
G ∈ SM the set

Pℓ(G) =
{
h |h is an embedding of labelled graphs over Σ

with dom(h) ∈ PREMM and cod(h) = G
such that for every embedding h′ of labelled graphs over Σ

with dom(h′) ∈ PREMM and cod(h′) = G
if im(h) is a labelled subgraph of im(h′), then h = h′}

of maximal applications4 h of the rules dom(h) ⊢ RM(dom(h)) of M in
places im(h) is such that the following conditions hold:

(i) V (G) =
⋃

h∈Pℓ(G)

V (im(h)), E(G) =
⋃

h∈Pℓ(G)

E(im(h)),

4 with respect to the relation of being a labelled subgraph which can be treated as a
natural priority relation between the applications of the rewriting rules
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(ii) for all h1, h2 ∈ Pℓ(G) the equation ℓGh1
(ḣ−1

1 (v)) = ℓGh2
(ḣ−1

2 (v)) holds
for every v ∈ V (im(h1))∩ V (im(h2)), where ℓGh1

, ℓGh2
are the labelling

functions of Gh1
= RM(dom(h1)), Gh2

= RM(dom(h2)), respectively,
and ḣ−1

1 , ḣ−1
2 are the inverses of isomorphisms induced by the embed-

dings h1, h2, respectively.
(iii) FM(G) is a colimit of a gluing diagram DG constructed in the following

way (the construction of DG is provided by (ii)):
• the set I of indexes of DG is such that I = Pℓ(G) ∪ {∆}, where

∆ /∈ Pℓ(G) is the center of DG ,
• the family Gi (i ∈ I) of labelled graphs of DG is such that Gh =
RM(dom(h)) for every h ∈ Pℓ(G), and G∆ is such that V (G∆) =
V (G), E(G∆) = ∅, and the labelling function ℓG∆

is such that pro-
vided by (ii)

ℓG∆
(v) = ℓGh

(ḣ−1(v))

for every v ∈ V (im(h)) and every h ∈ Pℓ(G), where ḣ−1 is the
inverse of the isomorphism ḣ induced by the embedding h,

• the gluing conditions glh (h ∈ Pℓ(G)) of DG are defined by

glh =
{
(v, ḣ−1(v)) | v ∈ V (im(h))

}

for every h ∈ Pℓ(G), where ḣ−1 is the inverse of the isomorphism ḣ
induced by embedding h,

(iv) the following equations hold:

V (FM(G)) =
⋃

i∈I
V (im(qi))

and E(FM(G)) =
⋃

i∈I
E(im(qi))

for the canonical injections qi : Gi → FM(G) (i ∈ I) forming a colimit-
ing cocone of the diagram DG defined in (iii),

(v) the canonical injection q∆ : G∆ → FM(G) is an inclusion of labelled
graphs, where ∆ is the center of DG and q∆ is ∆-th element of the
colimiting cocone in (iv).

Thus FM(G) is the result of simultaneous application of the rules dom(h) ⊢
RM(dom(h)) in the places im(h) for h ∈ Pℓ(G), where one replaces simultane-
ously im(h) by im(qh) in G for h ∈ Pℓ(G), respectively.

A finite sequence
(
F i

M(G)
)n

i=0
is called a finite computation of M, the num-

ber n is called the time of this computation, and Fn
M(G) is called the final

instantaneous description for this computation if

F0
M(G) = G ∈ IM, Fn−1

M (G) 6= Fn
M(G), and FM(Fn

M(G)) = Fn
M(G),

where F i
M(G) is defined inductively: F i

M(G) = FM
(
F i−1

M (G)
)
.

For a computation
(
F i

M(G)
)n

i=0
its space is defined by

space(M,G) = max{the number of elements of V (F i
M(G)) |0 ≤ i ≤ n}
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for G ∈ IM, where intuitively space(M,G) is understood as the size of hardware
measured by the number of indecomposable processors5 used in the computa-
tions.

We recall the following definition from [15].

Definition B.2. A generalized G–P–R machine M is defined by the following
data:

— the sets ΣM, SM, IM and the functions RM : PREMM → CONCLM,
FM : SM → SM, where SM, PREMM, CONCLM are skeletal sets of
finite isomorphically perfect labelled directed graphs over ΣM, the sets
ΣM, PREMM, CONCLM are finite sets, the condition 2) holds for RM,
and IM is a subset of SM;

— besides the function RM defining rewriting rules there is enclosed a new
function Ra

M : PREMa
M → CONCLa

M, where PREMa
M, CONCLa

M are
finite skeletal sets of finite isomorphically perfect labelled directed graphs

over ΣM and Ra
M defines auxiliary gluing rules P

a
⊢ C (P ∈ PREMa

M, C =
Ra

M(P )) for defining common parts of the boundaries of new compartments
appearing in a step of an evolution process;

— the above data are subject of the following conditions:

A) for every G ∈ PREMa
M we have V (G) ⊆ V (Ra

M(G)), the set Pℓ(G)
defined as in 3) satisfies 3)(ii), and there exists a generalized gluing
diagram D〈G〉, called gluing pattern determined by G, such that

a1) the set I〈G〉 of indexes of D〈G〉 is a set {∆} ∪ İ〈G〉 with ∆ being the

center of D〈G〉, İ〈G〉 ⊆ Pℓ(G), and ∆ /∈ İ〈G〉;
a2) the family of graphs Gi (i ∈ I〈G〉) of D〈G〉 is such that V (G∆) =

V (G), E(G∆) = ∅, and Gh = RM(dom(h)) for h ∈ İ〈G〉;
a3) the gluing conditions gl∆i (i ∈ İ〈G〉) are such that gl∆i = gli for gli

defined as in 3)(iii) for the gluing diagram DG ;
a4) Ra

M(G) is a colimit of D〈G〉 with gluing conditions glij ({i, j} ⊆ İ〈G〉
and i 6= j) such that they are unique together with İ〈G〉 to make
Ra

M(G) a colimit of D〈G〉;
B) for every G ∈ SM the following conditions hold:

b1) for Pℓa(G) defined as in 3) with PREMM replaced by PREMa
M and

for every h ∈ Pℓa(G) and gluing pattern D〈dom(h)〉 determined by

dom(h) the set SCPh = {h ◦ h′ |h′ ∈ İ〈dom(h)〉}, called the scope

of gluing pattern D〈dom(h)〉 in place h, is a subset of Pℓ(G) defined
as in 3) for G and PREMM, where ◦ denotes the composition of
homomorphisms of graphs;

b2) the set Pℓ(G) defined in 3) satisfies conditions 3)(i), (ii);
b3) the graph FM(G) is a colimit of a generalized gluing diagram DG

such that

5 The indecomposable processors coincide with urelements appearing in those Gandy
machines which represent G–P–R machines in [14].
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(β1) the set I of indexes of DG is the same as the set of indexes of
DG given in 3)(iii), i.e. I = Pℓ(G) ∪ {∆},

(β2) the family of graphs Gi (i ∈ I) of DG is the same as of DG

defined in 3)(iii),
(β3) the gluing condition gl∆i is gli defined in 3)(iii) for every i ∈

I − {∆},
(β4) for all h1, h2 with {h1, h2} ⊆ I − {∆} and h1 6= h2 if there

exists h ∈ Pℓa(G) for which {h1, h2} ⊆ SCPh, then the gluing

condition glh1

h2
of DG is the gluing condition gl

h′

1

h′
2

of the gluing

pattern determined by dom(h) for h′
1, h

′
2 such that h ◦ h′

1 = h1

and h ◦ h′
2 = h2,

(β5) if there does not exist h ∈ Pℓa(G) such that {h1, h2} ⊆ SCPh

for h1, h2 as in (β4), then the gluing condition glh1

h2
of DG is

defined to be the empty set;
b4) the colimiting cocone qi : Gi → FM(G) (i ∈ I) of DG is such that

(β6) the conditions 3)(iv) and (v) hold with DG replaced by DG ,
(β7) for every at least two element subset H of I − {∆} such that

⋂

i∈H

(
V (im(qi)) − V (im(q∆))

)
6= ∅

there exists h ∈ Pℓa(G) such that H is a subset of SCPh of
gluing pattern determined by dom(h).

The gluing conditions glij of DG defined in (β4), (β5) determine common parts
of the boundaries of new compartments appearing in a step of an evolution
process.

Appendix C

Basing on [18] we present the iterated function systems whose attractors are
Koch curve and Sierpiński gasket, respectively. These iterated function systems
consist of the bijections from R

2 onto R
2 (R2 denotes the set of ordered pairs of

real numbers) described in terms of matrices as follows:

— for Koch curve

fKoch
1 (x) =

[
1/3 0
0 1/3

]
x scale by 1/3

fKoch
2 (x) =

[
1/6 −

√
3/6√

3/6 1/6

]
x +

[
1/3
0

]
scale by 1/3, rotate by 60◦

fKoch
3 (x) =

[
1/6

√
3/6

−
√

3/6 1/6

]
x +

[
1/2√
3/6

]
scale by 1/3, rotate by −60◦

fKoch
4 (x) =

[
1/3 0
0 1/3

]
x +

[
2/3
0

]
scale by 1/3
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— for Sierpiński gasket

fSierp
1 (x) =

[
1/2 0
0 1/2

]
x scale by 1/2

fSierp
2 (x) =

[
1/2 0
0 1/2

]
x +

[
1/2
0

]
scale by 1/2

fSierp
3 (x) =

[
1/2 0
0 1/2

]
x +

[
1/4√
3/4

]
scale by 1/2
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