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Abstract. The internal structure of the iterations of Koch curve and
Sierpiński gasket—the known fractals [4]—is described in terms of multi-
hypergraphical membrane systems related to membrane structures [13]
and whose membranes are hyperedges of multi-hypergraphs used to de-
fine gluing patterns for the components of the iterations of the considered
fractals.

1 Introduction

One finds in [10] a more or less explicit conclusion that the birth of functional
analysis was accompanied by the emergence of various mathematical structures
(from vector space, abstract metric spaces and topological spaces to Hilbert
spaces, including spaces of functions) which were an antidotum against ‘capri-
cious’ intuitiveness of symbolic ‘calculations’ of early calculus.

This conclusion inspired the author of the present paper to search for struc-
tures of fractals and self-similarity against their intuitive explanations1 proposed
e.g. in [9]:

‘Local’ statements of self-similarity say something like ‘almost any small pat-

tern observed in one part of the object can be observed throughout the object,

at all scales’. Global statements say something like ‘the whole object consists of

several smaller copies of itself glued together’; more generally, there may be a

whole family of objects, each of which can be described as several objects in the

family glued together.

Viewed from another angle, a theory of global self-similarity is a theory of

recursive decomposition.

One should point out here that in a large extent the concepts of fractals and
self-similarity have been already described precisely in terms of iterated function
systems with their attractors constructed by using the tools of functional anal-
ysis (Hahn–Banach fix point theorem) [4] and domain theory (Tarski fix point
theorem) [3]. But a translation from the language of the above intuitive expla-
nation to the language of some derived concepts from the precise description of

1 the explanations suggested by the visual presentations of the iterations of some
fractals seen in the books and many articles about fractals.
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fractals and self-similarity (e.g. the trees induced by iterated function systems,
cf. [3]) is not effortless and not yet ready.

Thus searching for structure of fractals and self-similarity is approached by
various mathematicians, cf. [7], [9], not necessarily motivated explicitly by a need
of the above translation.

The goal of the paper is to propose an approach to searching for structure
of fractals which could provide the above translation. We describe in Section 3
the internal structure of the iterations of Koch curve and Sierpiński gasket—the
known fractals [4]—in terms of multi-hypergraphical membrane systems related
to membrane structures [13] and whose membranes are hyperedges of multi-
hypergraphs used to define gluing patterns for the components of the iterations
of the considered fractals.

2 Multi-hypergraphical membrane systems

We introduce the following new concepts.
By a directed multi-hypergraph we mean a structure G given by its set E(G)

of hyperedges, its set V (G) of vertices and the source and target mappings

sG : E(G) → P(V (G)), tG : E(G) → P(V (G))

such that V (G) together with
{

(V1,V2) | sG(e) = V1 and tG(e) = V2 for some e ∈ E(G)
}

form a directed hypergraph as in [5], where P(X) denotes the set of all subsets
of a set X.

We say that two directed multi-hypergraphs G,G′ are isomorphic if there
exist two bijections h : V (G) → V (G′), h′ : E(G) → E(G′) such that

sG′(h′(e)) = {h(v) | v ∈ sG(e)} and tG′(h′(e)) = {h(v) | v ∈ tG(e)}

for all e ∈ E(G).
Membrane structures in [13] are simply finite trees with nodes labelled by

multisets, where the finite trees have a natural visual presentation by Venn
diagrams and the tree nodes are called membranes.

We introduce (directed) multi-hypergraphical membrane systems to be finite
trees with nodes labelled by (directed) multi-hypergraphs.

We consider directed multi-hypergraphical membrane systems of a special
feature described formally in the following way.

A multi-hyperedge membrane system S is given by:

– the underlying tree TS of S which is a finite graph given by its set V (TS)
of vertices, its set E(TS) ⊆ V (TS) × V (TS) of edges, and its root r which
is a distinguished vertex such that for every vertex v different from r there
exists a unique path from v into r in TS , where for every vertex v we define
rel(v) = {v′ | (v′, v) ∈ E(TS)} and in trivial case V (TS) = {r} we assume
E(TS) = ∅;
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– a family (Gv | v ∈ V (TS)) of finite directed multi-hypergraphs for Gv given
by its set V (Gv) of vertices, its set E(Gv) of edges, its source function sv :
E(Gv) → P(V (Gv)), and its target function tv : E(Gv) → P(V (Gv)) such
that the following conditions hold:
1) E(Gv) = rel(v),
2) V (Gv) is empty for every elementary vertex v, i.e. such that rel(v) is

empty.

The above multi-hypergraphical membrane systems can be drawn by using
Venn diagrams with discs or boxes dv corresponding to vertices v of TS .

One can expect the applications of multi-hypergraphical membrane systems
for modelling various hierarchically organized systems of nested modules (hy-
peredges) interconnected by many input and output lines (vertices), where the
module interactions are described by source and target functions. These systems
of modules appear in computer science, where the modules are complex actions,
instructions, transitions (e.g. of structured Petri nets [2]), etc., from state charts
[6], models of systemC components [17], the systems discussed in [1], to the
semantics of some extensions of formal systems in [12], [17], and hierarchical
specifications [15].

3 Koch curve and Sierpiński gasket

We describe in this section the iterations of Koch curve and Sierpiński gasket
[8], [4], [14] in terms of multi-hypergraphical membrane systems.

For natural numbers n > 0 and i ∈ {Koch,Sierp} we define multi-hyperedge
membrane systems Si

n in the following way:

– the underlying tree T
i
n of Si

n is such that
• the set V (Ti

n) of vertices is the set of all strings (sequences) of length
not greater than n of digits in DSierp = {1, 2, 3} for i = Sierp, and in
DKoch = {1, 2, 3, 4} for i = Koch,

• the set E(Ti
n) of edges of T

i
n is such that E(Ti

n) = {(Γj, Γ ) | {Γj, Γ} ⊂
V (Ti

n) and j ∈ Di} with source and target functions being the projec-
tions on the first and the second component, respectively, where Γj is
the string obtained by juxtaposition a new digit j on the right end of Γ ,

– the family
(

Gi
Γ |Γ ∈ V (Ti

n)
)

of directed multi-hypergraphs of Si
n is such

that for every non-elementary vertex Γ ∈ V (Ti
n), i.e. with rel(Γ ) 6= ∅, Gi

Γ

is determined in the following way:
• for i = Koch if Γ is the empty string, then the directed multi-hypergraph

Gi
Γ is such that V (Gi

Γ ) is a five element set {v0, . . . , v4}, E(Gi
Γ ) =

{Γj | j ∈ Di}, and the source and target functions of Gi
Γ are given by

sGi
Γ
(Γj) = {vj−1}, tGi

Γ
(Γj) = {vj} for all j ∈ {1, . . . , 4},

where

v0 = (0, 0), v1 = (1
3
, 0), v2 = (1

2
, 2

2
√

3
), v3 = (2

3
, 0), v4 = (1, 0),
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• for i = Sierp if Γ is the empty string, then the directed multi-hypergraph
Gi

Γ is such that V (Gi
Γ ) is a six element set {v0, . . . , v5}, E(Gi

Γ ) =
{Γj | j ∈ Di}, and the source and target functions of Gi

Γ are given by

sGi
Γ
(Γ3) = {v1, v2}, tGi

Γ
(Γ3) = {v0},

sGi
Γ
(Γj) = {vj+2, vj+3}, tGi

Γ
(Γj) = {vj} for j ∈ {1, 2},

where

v0 = (1
2
,
√

3
2

),

v1 = (1
4
,
√

3
4

), v2 = (3
4
,
√

3
4

),

v3 = (0, 0), v4 = (1
2
, 0), v5 = (1, 0),

• if a non-elementary vertex Γ of T
i
n is of the form2 kΩ for k ∈ Di and a

string Ω of digits in Di, then

V (Gi
Γ ) =

{

f i
k(v) | v ∈ V (Gi

Ω)
}

, E(Gi
Γ ) = {Γj | j ∈ Di},

and

δGi
Γ
(Γj) =

{

f i
k(v) | v ∈ δGi

Ω
(Ωj)

}

for all j ∈ Di and δ ∈ {s, t}

where f i
k is the k-th function of the iterated function system given in

[14] for Koch curve in the case i = Koch and for Sierpiński gasket in the
case i = Sierp, respectively.

Lemma. For all natural numbers n > 0 and i ∈ {Koch,Sierp} the multi-

hyperedge membrane system Si
n is such that for every non-elementary vertex

Γ of T
i
n the directed multi-hypergraph Gi

Γ is isomorphic to Gi
Λ for empty string

Λ—the root of T
i
n.

Proof. We prove the lemma by induction on n and by using the property of the
functions of the iterated function systems for Koch curve and Sierpiński gasket
that they are injections.

For all natural numbers n > 0 and i ∈ {Koch,Sierp} we define a geometrical

realization of Si
n, denoted by space(Si

n), to be a subset of R
2 (R2 is a Cartesian

product of two copies of the set R of real numbers) which is the n-th iteration of
Koch curve for i = Koch and the n-th iteration of Sierpiński gasket for i = Sierp,
i.e.

space(SKoch
1 ) =

⋃

j∈DKoch

fKoch
j (interval),

space(SSierp
1 ) =

⋃

j∈DSierp

f
Sierp
j (equitriang),

space(Si
n+1) =

⋃

j∈Di

f i
j(space(Si

n)) for i ∈ {Koch,Sierp}

2 the form kΩ of Γ is understood that the first element of Γ is k followed by the
string Ω.
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where f i
j(X) is the image of a set X for f i

j , interval = {(t, 0) | t ∈ R, 0 ≤ t ≤ 1},
and equitriang is the union of the interior and the frontier of the equilateral

triangle in R
2 whose vertices are (0, 0), ( 1

2
,
√

3
2

), (1, 0).

Theorem. For all natural numbers n > 0 and i ∈ {Koch,Sierp} the set space

(Si
n) is not an amorphous set of points of R

2 but it is a structured set by its

hierarchically organized decomposition into subsets according to the underlying

tree T
i
n of Si

n, where the components of the decomposition form a family C
i,n
Γ

(Γ ∈ V (Ti
n), Γ is non-empty and is not an elementary vertex of T

i
n) such that :

– if Γ is of the form jΩ for j ∈ Di and a string Ω of digits in Di, then

• for the empty string Ω the component C
i,n
jΩ is f i

j(space(Si
n−1)),

• for a non-empty string Ω the component C
i,n
jΩ is f i

j(C
i,n−1
Ω ) for the Ω-th

component C
i,n−1
Ω of space(Si

n−1),

– for mi = max Di the mi components C
i,n
Γ1 , . . . , C

i,n
Γmi

are glued according to

the pattern given by Gi
Γ understood that

δ(Γj′) ∩ γ(Γj′′) = C
i,n
Γj′ ∩ C

i,n
Γj′′

for all δ, γ, j′, j′′ with {δ, γ} ⊆ {si
Gi

Γ

, ti
Gi

Γ

}, {j′, j′′} ⊆ Di, and j′ 6= j′′.

Proof. The theorem is an immediate consequence of the adopted definitions.

The above multi-hypergraphical membrane systems can be drawn by using
Venn diagrams with discs or boxes dΓ corresponding to vertices Γ of T

i
n such

that dΓj
is an immediate subset of dΓ .

Conclusion

The above lemma and theorem provide the translation claimed in the intro-
duction of the paper for iterations of fractals in the cases of Koch curve and
Sierpiński gasket. In this translation the main feature of self-similarity described
in its ‘local’ statement corresponds to the isomorphisms of hypergraphs ‘giving’
the gluing patterns (see the above theorem) for every level of hierarchical or-
ganization of the decomposition, where the levels of hierarchical organization
coincide with scale layers.

The iterations of jD-Cantor set (j ∈ {1, 2, 3}) require another approach
which is proposed in [11], where multigraphical membrane systems are used
with vertices as membranes. Thus one may say that the approach proposed in
the present paper is a ‘hyperedges as membranes’ approach.
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