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for nonselfadjoint operator approximation

Introduction. In the papers [1, 2, 3] the eigenvalue problem is studied:

Differential problem. Find u 6= 0, λ ∈ C such that

−∆u + β · ∇u = λu in Ω
u(x) = 0 for x ∈ ∂Ω

where div β = 0.
This problem has a variational formulatione find u ∈ V = H1

0 (Ω) ⊂ L2(Ω) = H such
that

a(u, φ) = λ(u, φ) ∀φ ∈ V,

where
a(u, v) =

∫

Ω

(∇u · ∇v̄) + (β · ∇u)v̄,

and (·, ·) is the scalar product in H.
Because

(β · ∇u, v) = −(v, β · v)

hence
‖u‖2V =

∫

Ω

(∇u · ∇b̄) = Rea(v, v).

The dual problem consists in finding λ∗, u∗ such that

a(φ, u∗) = λ̄∗(φ, u∗) ∀φ ∈ V

The authors do not define explicitly operators in V , this will be done in this paper.
The solution u of the variational problem: for f ∈ H find u ∈ V such that

a(u, φ) = (f, φ) ∀φ ∈ V

u = Af depends linearly on f . The equality

a(Af,Af) = (f, Af)

implies that

‖Au‖2V = Rea(Af, Af) ≤ |(f,Af)| ≤ ‖f‖‖Af‖ ≤ ‖f‖‖Af‖V .

Therefore
‖Au‖V ≤ ‖f‖ ≤ ‖f‖V .
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This shows that A : V → V is a bounded operator, and because the inclusion V in H is
compact the operator A is compact.

If Au = λu then the equality f = λ−1u implies that Af = u and we see that

a(u, φ) = (λ−1u, φ) = λ−1(u, φ).

Thus the eigenvalues of the form a are reciprocals of the eigenvalues of the operator A
while eigenvectors remain the same.

What is the dual problem ?
Similary as A we define the operator C : V → V by the equality

a(φ,Cg) = (φ, g) ∀φ ∈ V

Is it true that A∗ = C ?
As for u ∈ V a(u, ·) is a continous antylinear functional a(u, ·) equals to the scalar

product in V whith some vector in V , which we denote by Bu

a(u, v) = 〈Bu, v〉 u, v ∈ V (1)

(〈·, ·〉 denotes scalar product in V )
Because the form a is bounded we have

‖B‖ ≤ ‖a‖ = sup{|a(u, v); u, v ∈ V, ‖u‖V ≤ 1, ‖v‖V ≤ 1}

Similarily for u ∈ V (u, ·) is a continous antylinear functional, and may be interpreted
as a scalar product in V . Thus there exists linear operator T , such that

(u, v) = 〈Tu, v〉 u, v ∈ V.

Because 〈Tu, u〉 = ‖u‖2 ≥ 0,we have

T = T ∗ ≥ 0

Having defined the above operators we may find new definitions of A i C. The iden-
tities

a(Af, φ) = (f, φ), a(φ,Cg) = (φ, g) ∀φ ∈ V

are equivalent to

〈BAf, φ〉 = 〈Tf, φ〉, 〈Bφ, Cg〉 = 〈Tφ, g〉 ∀φ ∈ V

This holds for all f, g ∈ V and therefore we have the equalities:

BA = T, C∗B = T.

Hence
T = BA = C∗B and A = B−1C∗B
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The operator A is similar to C∗, or A∗ is similar to C. Simple statements concerning the
eigenvalues and eigenvectors of these operators may be formulated.

Approximation.
Let Vh ⊂ V be a subspace of V .
Approximaton problem in terms of the form a is the following:

find vh ∈ Vh such that
a(vh, φ) = (f, φ) ∀φ ∈ Vh

If v is the solution of the original problem this is equivalent to

a(vh, φ) = a(v, φ) ∀φ ∈ Vh

The transformation v → vh is linear and is a projection, let us denote it by P . We have
P 2 = P , ran P = Vh.

Thus
a(Pv, φ) = a(v, φ) ∀φ ∈ Vh,∀v ∈ V

or
a(Pv, Pφ) = a(v, Pφ) ∀φ, v ∈ V

Using (1) we have

〈P ∗BPv, φ〉 = 〈BPv, Pφ〉 = 〈Bv, Pφ〉 = 〈P ∗Bv, φ〉

This means P ∗BP = P ∗B, taking adjoint operators we have

P ∗B∗P = B∗P

Thus ran P ∗ = B∗Vh.
We may pose the questions:

a) Does ran P , ran P ∗ are sufficient for defining P , in particular, is the role of B essential
here?

b) If yes, are then the projection defined uniequely?

A little bit about projections
The following fact may be usefull: if P is a projection (finite-dimensional) the there

exists orthonormal sequences e1, . . . , en, f1, . . . , fn such that

P =
n∑
1

λj〈·, fj〉ej (2)

where λh〈ej , fi〉 = δi,j .
Proof. Let P = UA be a polar decoomposition of P , i.e. U is a unitary operator,

A = A∗ > 0. Let A =
∑

λj〈·, fj〉fj be the spectral representaton of A, (fj are orthonormal
eigenvectors, λj – eigenvalues of A). As U is unitary the vectors ej = Ufj j = 1, . . . , n
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form also an orthonormal sequence. Now the equality ek = Pek =
∑n

1 λj〈ek, fj〉ej and the
linear independence of ej implies that λk〈ek, fk〉 = 1, and 〈ek, fj〉 = 0 for j 6= k.

Does ranP , ran P ∗ define P uniquely ?
If there exists a projection Q such that

ranQ = ran P, (3)

then
PQ = Q, QP = P

If
ranQ∗ = ran P ∗ (4)

then
P ∗Q∗ = Q∗, Q∗P ∗ = P ∗

if (3) i (d) hold then
P = (P ∗)∗ = (Q∗P ∗)∗ = PQ = Q.

Next question: If we have to subspaces M, N such that dim M = dim N does there
exist a projection P such that ran P = M , ran P ∗ = N ?

Simple counterexample: let e ⊥ f span respectively the subspaces M,N . Then the
projection P may be represented by P = α〈·, f〉e with some α. But then Pe = 0.

What condition on M,N assures the existence of a desired projection? Any projection
P has a representation (2). Then (〈ei, fj〉)n

i,j=1 is a nonsingular matrix. If in this matirx the
vectors ei are substitued by any other basis ẽi, then the columns of the matrix (〈ẽi, fj〉)n

i,j=1

are linear combination of the previous matrix. If we repeat the same with fj then the new
matrix rows are linear combinatons of the previously constucted matrix. Any way the last
matrix remains nonsingular. Thus the condition is that for some basis {ej}n

1 of M , {fj}n
1

of N the matrix (〈ei, fj〉)n
i,j=1 is nonsingular.

The next question (more closer to the main problem) is: How to charecterize the
operators B such that for any subspace M there exists a projection P such that

ranP = M, BP = P ∗BP, (5)

i.e. ran P ∗ = BM .
If the subspace M is one dimensional, spanned by the vector e the condition is

〈Be, e〉 6= 0, or 0 6∈ W (B), where W (B) denotes the numerical range of B. The nu-
merical range is a convex set, therefore there exists a straight line in the complex plane
such that the point 0 and W (B) lie on other sides of this line. Thus there exists a complex
number α such that

Reα〈Be, e〉 ≥ 1 ∀e ∈ V, ‖e‖ = 1. (6)

We can say, that up to some multiplicative complex constant α these are the operators B
for which Re B = 1

2 (B + B∗) > I. The condition (6) is a necessary one. We shall show
it is also sufficient. Let {ej}n

1 be an orthonormal basis in M . It suffices to show that the
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matrix (〈Bei, ej〉)n
i,j=1 is nonsingular. This matrix represents the operator QB|M , where

Q is an orthogonal projection on M . The desired conclusion is implied by

σ(QB|M ) ⊂ W (QB|M ) ⊂ W (B)

Note also, that if Re B > 1 and P satisfies (5) then

‖Px‖2 ≤ 〈ReBPx, Px〉 = Re〈BPx, Px〉 ≤ |〈BPx, Px〉|
= |〈P ∗BPx, x〉| = |〈BPx, x〉| ≤ ‖B‖‖Px‖‖x‖

therefore ‖P‖ ≤ ‖B‖, thus all such projections a uniformly bounded.
We have thus shown.

Lemma 1 If ReB ≥ 1 then for any subspace M ⊂ V there exists exactly one projection
P such that ran P = V , ran P ∗ = BV . Moreover ‖P‖ ≤ ‖B‖.

Left multiplying the equality BP = P ∗BP by B−1 and setting P̄ = B−1P ∗B we get
P = P̄P . Hence ran P ⊂ ran P̄ , and at least in the finite dimensional case dim P = dim P̄ ,
what implies ran P = ran P̄ = M . Is it true that P = P̄ ? We check it with one dimensional
subspace M spanned by e. We search for f such that P = 〈·, f〉e satisfies (5). We count
Px = 〈x, f〉e, BPx = 〈x, f〉Be, P ∗BPx = 〈x, f〉〈Be, e〉f . Thus

f =
Be

〈Be, e〉 , P ∗Bx = 〈Bx, e〉f =
〈Bx, e〉
〈Be, e〉Be,

and

P̄ x = B−1P ∗Bx =
〈Bx, e〉
〈Be, e〉 e, Px = 〈x, f〉e =

〈
x,

Be

〈Be, e〉
〉

e =
〈x,Be〉
〈e,Be〉 e

If P = P̄ then
〈Bx, e〉
〈Be, e〉 =

〈x,Be〉
〈e,Be〉 ∀x ∈ V

or equivalently
B∗e
〈Be, e〉 =

Be

〈e, Be〉
Thus not always P = P̄ , but when B = B∗ then P = P̄ , not only in the case of onedimen-
sional projection. Moreover for the projection P satisfying (5) we have P ∗B = (P ∗BP )∗ =
P ∗BP = BP , and P̄ = B−1P ∗B = P .

Lemma 2 If {Pn} is a sequence of projections such that
a) Pn → I strongly,
b) ranP ∗n = ran BPn,
where B is a bounded operator such that Re B ≥ I then P ∗n → I strongly.
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Proof Fix x, and let xn = BPnB−1x, then

‖xn − x‖ = ‖B(PnB−1x−B−1x)‖ ≤ ‖B||‖(Pn − I)B−1x‖ → 0

Note that xn ∈ ranBPn = ran P ∗n , therefore xn = P ∗nxn. This and Lemma 1 imply

‖P ∗nx− x‖ = ‖P ∗n(x− xn)− (x− xn)‖ ≤ (‖P ∗n‖+ 1)‖x− xn‖ ≤ (‖B‖+ 1)‖x− xn‖ → 0.

Known Fact 1. If E = E2 and E 6= 0, E 6= I then ‖E‖ = ‖I − E‖.
We can represent E as a matrix

E =
(

I A
0 0

)
, I − E =

(
0 −A
0 I

)

then

EE∗ =
(

I A
0 0

)(
I 0

A∗ 0

)
==

(
I + AA∗ 0

0 0

)
,

(I − E)∗(I − E) =
(

0 0
−A∗ I

)(
0 −A
0 I

)
=

(
0 0
0 I + A∗A

) .

Hence
‖E‖2 = ‖I + AA∗‖ = ‖I + A∗A‖ = ‖I − E‖2.

Moreover we see that the singular values exeeding 1 of the projections E i I − E are the
same. The above beutiful proof of Corach may be found in [4].

Approximation error of eigenvalules
Let λ0 be an isolated eigenvalue of the operator A with finite geometrical multiplicity

n0, and let Γ be a closed curve (for example circle) inside which lies λ0 and outside the
rest of the spectrum of A. Let M = supλ∈Γ ‖(A− λ)−1‖.

If ‖A−B‖ < M−1/2 then the operator B − λ is invertible for λ ∈ Γ, because

B − λ = A− λ + (B −A) = (A− λ)(I − (A− λ)−1(B −A))

hence

(B − λ)−1 =
∞∑

k=0

(
(A− λ)−1(B −A)

)k
(A− λ)−1

This implies

‖(B − λ)−1‖ ≤ ‖(A− λ)−1‖ 1
1− ‖(A− λ)−1‖‖B −A‖ ≤ 2M

The identity

(B − λ)−1 − (A− λ)−1 =
∞∑

k=1

(
(A− λ)−1(B −A)

)k
(A− λ)−1
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implies that

‖(B − λ)−1 − (A− λ)−1‖ ≤
∞∑

k=1

Mk+1‖B −A‖k = M2‖B −A‖
∞∑

k=0

Mk‖B −A‖k

≤ 2M2‖B −A‖

Denoting by E,F spectral projections defined by

E =
−1
2πi

∫

Γ

(A− λ)−1, F =
−1
2πi

∫

Γ

(B − λ)−1

we can estimate the norm of their difference

‖E − F‖ ≤ 1
π
|Γ|M2‖B −A‖. (7)

We shall use the trace properties: trEAE = n0λ0 and that trFBF is the sum of the eigen-
values of B which lie inside Γ and are counted according to their geometrical multiplicities.
Thus the quantity tr(EAE − FBF ) measures the perturbation λ0.

We have the identity

(E − F )2E = (E + F − EF − FE)E = (E + FE − EF − FE)E

= E(E − F )E = E(E − F )2
(8)

We shall answer the question: What condition should satisfy the projections {Qn}∞1 ,
{Pn}∞1 that for any compact operator A ‖A−QnAPn‖ → 0 ?

It is rather obvious, that the norms of these projections should be uniformly bounded
by some constant m. If A is compact, then for every ε > 0 there exist operators C, D
such that A = C + D, ‖C‖ ≤ ε

2m , and D is finite dimensional. Obviousely ‖QnCPn‖ ≤
ε/2. Because any finite dimensional operator is a sum of one dimensional operators, and
each such operator G may be written as G = 〈·, f〉e our question restricts to: What
conditions the projection {Qn}∞1 , {Pn}∞1 should satisfy that for any operator G = 〈·, f〉e
‖G−QnGPn‖ → 0 ?

As
Gx−QnGPnx = 〈x, f〉 − 〈Pnx, f〉Qne = 〈x, f〉 − 〈x, P ∗nf〉Qne

thus for any f, e ∈ V we have to have ‖f −P ∗nf‖ → 0, ‖e−Qne‖ → 0, this means that the
operators P ∗n , Qn should strongly converge to the identity operator.

If B = PAP and the projections E,F are sufficiently close we may derive much
simpler estimate of tr(EAE − FBF ). Because P commutes with B then also PF = FP ,
we have also ran F ⊂ ran P hence PF = FP = F . Therefore

trFBF = tr FPAPF = tr FAF. (11)

using the splitting A = EAE + (I − E)A(I −A) we can write

tr FBF = tr F (EAE + (I − E)A(I −A))F. (12)
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We calculate the traces tr(FEAEF − EAE) i tr F (I − E)A(I −A)F .

tr(FEAEF − EAE) = tr(FEA− EA)E = tr(F − E)EAE = tr E(F − E)EA (13)

and
tr(F (I − E)A(I − E)F = tr(I − E)F (F − E)A = tr(F − E)F (F − E)A. (14)

(8) – (14) imply now the estimation

| tr(FBF − EAE)| ≤ ‖E − F‖2‖A‖(‖F‖+ ‖E‖). (15)

Let us resume our consideration in the way usefull for further ones.

Lemma3. If A is a compact operator, λ 6= 0 its eigenvalue, with spectral projection E,
and {Ph} is a sequence of projections such that,
Ph → I and P ∗h → I strongly,
‖(I − Ph)|ran E‖ ≤ h,
‖(I − P ∗h )|ran E‖ ≤ h,
‖(I − Ph)|ran E∗‖ ≤ h,
‖(I − P ∗h )|ran E∗‖ ≤ h
then for any r > 0 such that σ(A)∩K(λ, r) = {λ} and sufficiently small h the disc K(λ, r)
contains exactly dim E eigenvalues of the operator PhA|ran Ph

counted according to their
multiplicities, and their arithmetic mean λh satisfies |λ− λh| ≤ O(h2).

Approximating problems and projections
Let us come back to our problems - primal and dual. We use the notation B−∗ for

(B∗)−1.

Primal problem Dual problem

find v ∈ V such that find w ∈ V such that

a(v, ψ) = (f, ψ), ∀ψ ∈ V a(ψ, w) = (ψ, g) ∀ψ ∈ V

we define operators A,B by

〈BAf, ψ〉 = (f, ψ), ∀ψ ∈ V 〈Bψ, Cg〉 = (ψ, g) ∀ψ ∈ V

approximating problems

find vh ∈ Vh such that find wh ∈ Vh such that

a(vh, ψ) = (f, ψ), ∀ψ ∈ Vh a(ψ, wh) = (ψ, g) ∀ψ ∈ Vh

or equivalently

a(vh, ψ) = a(v, ψ), ∀ψ ∈ Vh a(ψ, wh) = a(ψ, w) ∀ψ ∈ Vh

we define operators acting in Vh
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Ah : Vh → Vh Ch : Vh → Vh

by

〈BAhv, ψ〉 = 〈BAv, ψ〉, ∀ψ ∈ Vh 〈Bψ,Chw〉 = 〈Bψ,Cw〉, ∀ψ ∈ Vh

if Ph, Qh are projections on Vh we have

〈BAhv, Phψ〉 = 〈BAv, Phψ〉, ∀ψ ∈ V 〈BQhψ, Chw〉 = 〈BQhψ,Cw〉, ∀ψ ∈ V

we may assume that

Ah : Vh → V Ch : Vh → V

Ah = PhAh Ch = QhCh

then

P ∗hBAh = P ∗hBA : Vh → V Q∗
hB∗Ch = Q∗hB∗C : Vh → V

we may require the projections to satisfy

ranP ∗h = BVh ran Q∗h = B∗Vh

then according to (5)

P ∗hBPh = BPh Q∗
hB∗Qh = B∗Qh

P ∗hBA = P ∗hBPhAh = BPhAh Q∗
hB∗C = Q∗

hB∗QhCh = B∗QhCh

left multiplying by operator B−1 or B−∗ we get

B−1P ∗hBA = PhAh B−∗Q∗hB∗C = QhCh

the operator

P̃h = B−1P ∗hB Q̃h = B−∗Q∗hB∗

is a projection and its easy to check that

ran P̃h = Vh ran Q̃h = Vh

because of

P̃ ∗h = B∗PhB−∗ Q̃∗
h = BQhB−1

we have

ran P̃ ∗h = B∗ ran Ph = B∗Vh = ran Q∗
h ran Q̃∗h = B ranQh = BVh = ran P ∗h
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this and Lemma 1 imply

P̃h = Qn = B−1P ∗hB Q̃h = Ph = B−∗Q∗hB∗

QhA = PhAh = Ah PhC = QhAh = Ch

we extend the operators for all the space V identyfying

Ah z AhQh Ch z ChPh

then

Ah = QhAQh Ch = PhCPh

Approximating operators are

Ah = QhAQh, Ch = PhCPh

where Ph, Qh are projections on Vh such that

ran P ∗h = BVh, ranQ∗h = B∗Vh.

A = B−1C∗B implies A∗ = B∗CB−∗ and

A∗h = Q∗
hA∗Q∗h = Q∗hB∗CB−∗Q∗h = B∗(B−∗Q∗hB∗)C(B−∗Q∗hB∗)B−∗

= B∗PhCPhB−∗ = B∗ChB−∗

Now we see, that with additional approximation properties of the subspaces Vh we
may use Lemma 3 to estimate the approximation error of eigenvalues.

A posteriori estimates

Example 1. If A = A∗ is a compact operator it may be represented by a series
A =

∑
j λj〈·, ej〉ej , where λj are eigenvalues corresponding to eigenvectors ej . Then for

any λ ∈ C, e ∈ V z ‖e = ‖ = 1

‖(A− λ)e‖2 = ‖
∑

j

(λj − λ)〈e, ej〉ej‖2 =
∑

j

|λj − λ|2|〈e, ej〉|2

≥ min
j
|λj − λ|2|

∑

j

|〈e, ej〉|2 = min
j
|λj − λ|2.

If λ, e are counted by some approximation algorithm and we have a possibility to calculate
‖Ae‖ we get in this way a posteriori estimation of eiganvalue error. In practise it suffices
to count Ae with greater precision.
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Example 2. Let A = E = 〈·, f〉g, where λ0 = 〈g, f〉 = 1 is the eigenvalue of A.
Let Ph be an orthogonal projection. Ah = PhAPh = 〈·, Phf〉Phg is an approximating
operator. The only nonzero eigenvalue of it is λh = 〈Pg, Pf〉 = 〈g, Pf〉, what follows from
AhPg = 〈Pg, Pf〉Pg. The normed eigenvector is uh = Pg

‖Pg‖ and we can write

(A− λh)uh = 〈uh, f〉g − λhuh = ‖Pg‖−1(〈Pg, f〉g − λhPg) = ‖Pg‖−1λh(g − Pg)

‖(A− λh)uh‖ = ‖Pg‖−1|λh|‖(g − Pg)‖
We may consider adjoint operators A∗ i A∗h = PA∗P . The nonzero eigenvalue of A∗h is λ̄h

and corresponds to the normed eigenvector vh = Pf
‖Pf‖ , and we have

(A∗ − λ̄h)vh = 〈vh, g〉f − λ̄hvh = ‖Pf‖−1(〈Pg, f〉f − λ̄hPf) = ‖Pf‖−1λ̄h(f − Pf)

‖(A∗ − λ̄h)vh‖ = ‖Pf‖−1|λh|‖(f − Pf)‖
How these quantities ‖(A−λh)uh‖, ‖(A∗−λ̄h)vh‖ obtained a posteriori may be used to

estimate the error λ−λh ? In the Example 1 we have the additional information about the
operator A – namely, that is selfadjoint, this has given us information about the resolvent
norm of A, namely ‖(A − λ)−1‖ = (dist(λ, σ(A)))−1. Let us find a similar information
for the operator in the example. Without any additional information we cannot get a
posteriori further conclusions.

We may estimate the norm of (A− λ)−1. With the equality A = E = E2 it is easy to
verify that

(A− λ)
(
((1− λ)−1E − λ−1(I − E)

)
= (1− λ)−1E − λ

(
((1− λ)−1E − λ−1(I − E)

)

=
(
(1− λ)−1 − λ(1− λ)−1 + 1

)
E + I = I.

With Fact 1 we get

‖(A− λ)−1‖ ≤ ‖(1− λ)−1E‖+ ‖λ−1(I − E)‖ ≤
(

1
|1− λ| +

1
|λ|

)
‖E‖

Thus for the computed eigenvalue λh and eigenvector uh

1 = ‖uh‖ ≤
(

1
|1− λh| +

1
|λh|

)
‖E‖‖(A− λh)uh‖

or

|λ0 − λh| ≤ (|λ0 − λh|+ |λh|)‖E‖
|λh| ‖(A− λh)uh‖.

|λ0 − λh| ≤ ‖E‖‖(A− λh)uh‖
(

1− ‖E‖
|λh| ‖(A− λh)uh‖

)−1
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This is an aposteriori extimation, however we do not know the constants on the right
side We have chances to estimate them, for example . λ0 − λh is close to zero, may be
estimated by ε > 0 – for small h it becomes true. E = 〈·, f〉g is eigenprojection, its
norm equals ‖f‖‖g‖, we may hope that for h small enough it close to |〈uh, vh〉|−1, where
uh, vh are unit eigenvectors of operators A i A∗ ocorresponding to eigenvalue λh (λ̄h),
Eh = 〈·, vh〉uh/〈uh, vh〉 aproximates E and ‖Eh‖ = |〈uh, vh〉|−1.

May we a posteriori extimate ‖u− uh‖ and ‖v − vh‖?
We have the equality

(A− λh)uh = (A− λh) (Euh + (I − E)uh) = (λ0 − λh)Euh + (A− λh)(I − E)uh

(15) implies that λh is aproximated with rate O(h2), while uh i vh are aproximated with rate
O(10), the second term should dominate in the above sum. In our example A(I −E) = 0
and consequently

|λh|‖(I −E)uh‖ ≤ ‖(A− λh)uh‖+ O(h2).

We may use (15) now, to do it we have to estimate the norm of the error of eigenpro-
jection

E − Eh =
〈·, v〉u
〈u, v〉 −

〈·, vh〉uh

〈uh, vh〉 ,

where u, v normalized vectors g, f .
We may expect, that with some constant c

‖E − Eh‖ ≤ c(‖(A− λh)uh‖+ ‖(A∗ − λ̄h)vh‖),

then using (15) we get

‖λ− λh‖ ≤ c1(‖(A− λh)uh‖+ ‖(A∗ − λ̄h)vh‖)2.

Example 2 is in fact not so far from the general case.

General case of simple eigenvalue.
Let λ be an isolated eigenvalue of A and E = E(λ) the spectral projection. Then the

operator (A− µ)|ker E is invertible for µ sufficiently close to λ.

‖ ((A− µI)|ker E)−1 ‖ = ‖ ((A∗ − µ̄I)|ker E∗)
−1 ‖ ≤ Cλ for |λ− µ| ≤ rλ, (16)

Cλ is called in [1-3] a week stability constant. In the sequel we assume that |λ− λh| ≤ rλ

and that each u ∈ ranE is an eigenvector, i.e. there are not nontrivial Jordan cells. (16)
implies that

‖(I − E)uh‖ = ‖(A− λh)−1(A− λh)(I − E)uh‖ ≤ Cλ‖(A− λh)(I − E)uh‖.

By the triangle inequality we have also

‖(A− λh)(I −E)uh‖ ≤ ‖(A− λh)uh‖+ ‖(A− λh)Euh‖ = ‖(A− λh)uh‖+ |λ− λh|‖Euh‖
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The above inequalities show that

‖(I − E)uh‖ ≤ Cλ(‖(A− λh)uh‖+ |λ− λh|‖Euh‖) (17)

Similar inequality may be written for adjoint operators.

‖(I − E∗)vh‖ ≤ Cλ(‖(A∗ − λ̄h)vh‖+ |λ− λh|‖E∗vh‖) (18)

To apply (15) and get aposteriori eigenvalue error estimation we need to estimate

‖E − Eh‖ =
∥∥∥∥
〈·, v〉u
〈u, v〉 −

〈·, vh〉uh

〈uh, vh〉

∥∥∥∥

The quantity |〈u, v〉|−1 is called a condtion number of eigenvalue λ, it is the norm ‖E‖.
Let c stands for the right hand side of (17). We may take u = Euh

‖Euh‖ .
uh = (uh−Euh)+Euh with the triangle inequality implies that ‖uh‖ = 1 ≤ ‖uh−Euh‖+
‖Euh‖, −Euh = uh − Euh + uh implies that ‖Euh‖ ≤ ‖uh − Euh‖+ 1. Therefore

1− c ≤ ‖Euh‖ ≤ 1 + c.

Thus ∥∥∥∥Euh − Euh

‖Euh‖

∥∥∥∥ = ‖Euh‖
∣∣∣∣1−

1
‖Euh‖

∣∣∣∣ = |‖Euh‖ − 1| ≤ c

this with (17) shows that

‖uh − u‖ ≤ 2Cλ(‖(A− λh)uh‖+ |λ− λh|‖E‖)

of course we have to assume that c ≤ 1. Similarily we show that

‖vh − v‖ ≤ 2Cλ(‖(A∗ − λ̄h)vh‖+ |λ− λh|‖E‖)

As the norm ‖E‖ may be very large the scalar product 〈u, v〉 may be very small.
However 〈uh, vh〉 → 〈u, v〉. To have |〈uh, vh〉| ≥ 1

2 |〈u, v〉| we have to make additional
assumptions. From the identity

〈uh, vh〉 = 〈u + (uh − u), v + (vh − v)〉 = 〈u, v〉+ 〈uh − u, v〉+ 〈u, vh − v〉+ 〈uh − u, vh − v〉

we have
|〈uh, vh〉 − 〈u, v〉| ≤ ‖uh − u‖+ ‖vh − v‖+ ‖uh − u‖‖vh − v‖

To proceed further we assume that

|〈uh, vh〉 − 〈u, v〉| ≤ 1
2
|〈u, v〉| = 1

2
‖E‖−1

to have
|〈uh, vh〉| ≥ 1

2
|〈u, v〉| = 1

2
‖E‖−1.
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Then
∣∣∣∣

1
〈uh, vh〉 −

1
〈u, v〉

∣∣∣∣ ≤
∣∣∣∣
〈uh, vh〉 − 〈u, v〉
〈uh, vh〉〈u, v〉

∣∣∣∣ ≤ 2‖E‖2(‖uh − u‖+ ‖vh − v‖)

(we add the assumption ‖uh − u‖‖vh − v‖ < 1). Now

‖E − Eh‖ =
∥∥∥∥
(

1
〈u, v〉 −

1
〈uh, vh〉

)
〈·, v〉u +

〈·, vh〉uh − 〈·, v〉u
〈uh, vh〉

∥∥∥∥
≤ 4‖E‖(‖uh − u‖+ ‖vh − v‖) + 2‖E‖‖〈·, vh〉(uh − u) + 〈·, vh − v〉u‖
≤ 6‖E‖(‖uh − u‖+ ‖vh − v‖)

Now we use trace estimation (15) and we get (using ‖Eh‖ ≤ 2‖E‖)

|λ− λh| ≤ 3‖E − Eh‖2‖A‖‖E‖

Thus with new constants c1 = 2Cλ, c2 = 2Cλ‖E‖, c3 = 18‖A‖‖E‖2
we have the system of inequalities

‖uh − u‖ ≤ c1‖(A− λh)uh‖+ c2|λ− λh|
‖vh − v‖ ≤ c1‖(A∗ − λ̄h)vh‖+ c2|λ− λh|
|λ− λh| ≤ c3(‖uh − u‖+ ‖vh − v‖)2

with unknowns ‖uh − u‖, ‖vh − v‖, |λ− λh|. Solving it we get a posteriori estimations

‖uh − u‖ ≤ c4(‖(A− λh)uh‖+ |(A∗ − λ̄h)vh‖)
‖vh − v‖ ≤ c4(‖(A− λh)uh‖+ |(A∗ − λ̄h)vh‖)
|λ− λh| ≤ c6(|(A− λh)uh‖+ |(A∗ − λ̄h)vh‖)2

which are valid for h sufficiently small.
The ”general case” studied above is in fact not general – we have considered the

case of an eigenvalue with geometric multiplicity one. We have used the fact that the
eigenprojection Eh = 〈·, vh〉uh, where uh, vh are eigenvectors of Ah and A∗h. Even if A is
a projection Ah may have nontrivial Jordan blocks. This shown in the next example.

Example 3. Let A be m-dimensional orthogonal projection,

A =
(

Im 0
0 0

)

and G some m×m matrix. Let

Pn =




Im − εG 0 Bε 0
0 In 0 0
Cε 0 εG 0
0 0 0 0
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where the bottom right block is infinite dimensional. Bε =
√

εIm, Cε =
√

εG(Im − εG).
If ε = εn → 0 then Pn → I and P ∗n → I strongly. Pn are projections, this follows from

(
Im − εG

√
εIm√

εG(Im − εG) εG

)2

=
(

(Im − εG)2 + εG(Im − εG)
√

ε(Im − εG) +
√

εεG√
εG(Im − εG)2 + ε

√
εG2(Im − εG) εG(Im − εG) + ε2G2

)

=
(

Im − εG
√

εIm√
εG(Im − εG) εG

)

PnAPn =
(

Im − εG
√

εIm√
εG(Im − εG) εG

)(
Im 0
0 0

)(
Im − εG

√
εIm√

εG(Im − εG) εG

)

=
(

Im − εG 0√
εG(Im − εG) 0

)(
Im − εG

√
εIm

0 0

)

= (Im − εG)
(

Im 0√
εG 0

)(
Im − εG

√
εIm

0 0

)
= (Im − εG)Pn

The above shows that An = PnAPn is unitarily equivalent to the direct sum of Im−εG
and null operator in the infinite dimensional space. and An restricted to the range of the
spectral projection Eh is just Im − εG. In particular it may be one Jordan block, and we
cannot argue is in ”General case”.

Note that An = {0} ∪ (1− εσ(G)).
Note that = ran En = ran Pn and

Pn

(
x
y

)
=

(
(Im − εG)x +

√
εGy√

ε(Im − εG)Gx + εGy

)
=

(
z√
εGz

)

with z = (Im − εG)x +
√

εGy.

Thus ran En =
{(

z√
εGz

)
; z ∈ ranA

}
. and

∥∥∥∥
(

z√
εGz

)
−A

(
z√
εGz

)∥∥∥∥ =
∥∥∥∥
(

0√
εGz

)∥∥∥∥ =
√

ε‖Gz‖

Thus ran En the generalized space of eigenvectors is approximated with order
√

ε while
eigenvalues are approximated with order ε as expected.

General case – multiple eigenvalue.
Instead of eigenvectors we may try to use eigenspaces. Let E be the eigenprojection

corresponding to λ ∈ σ(A), and Eh be the approximating eigenspace. We may compute

dist(ran Eh, ran AEh), dist(ran E∗
h, ranA∗E∗

h)
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With E instead of Eh these distances equal to zero. ran AEh should be close to ran EEh =
ranE – as ‖(I − E)Eh‖ tends to zero.

We may hope that the inequality

‖E − F‖ ≤ c max{dist(ran E, ran F ), dist(ran E∗, ranF ∗)

holds for sufficiently close projections E,F . Then with (15) we should get a posteriori
estimation of the eigenvalue error.

For two subspaces M, N we define

δ(M,N) = sup{x ∈ N, ‖x‖ = 1; inf
y∈M

‖x− y‖}, dist((M, N) = max{δ(M,N), δ(N, M)}.

Lemma. If E,F are projections then

‖E − F‖ ≤ max{‖E‖, ‖F‖}max{dist(ran E, ranF ), dist(ran E∗, ranF ∗)}.

Proof. Let ‖x‖ = 1 and ‖(E − F )x‖ = ‖E − F‖. Then

‖Ex− Fx‖ = ‖Ex− FEx + FEx− Fx‖ ≤ ‖Ex− FEx‖+ ‖Fx− FEx‖

‖Ex− FEx‖ = ‖Ex‖
∥∥∥∥

Ex

‖Ex‖ − F
Ex

‖Ex‖

∥∥∥∥ ≤ ‖E‖δ(ran E, ran F ).

Let ‖y‖ = 1 and

‖Fx− FEx‖ = 〈F (I − E)x, y〉 = 〈x, (I − E∗)F ∗y〉

then

‖Fx− FEx‖ ≤ ‖x‖‖F ∗y‖
∥∥∥∥

F ∗y
‖F ∗y‖ − E∗ F ∗y

‖F ∗y‖

∣∣∣∣ ≤ ‖F ∗‖δ(ranF ∗, ranE∗)

The above inequalities imply the thesis.
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