Andrzej Pokrzywa – Seminar note A posteriori eigenvalue error estimations for nonselfadjoint operator approximation

Introduction. In the papers [1, 2, 3] the eigenvalue problem is studied:

Differential problem. Find $u \neq 0, \lambda \in C$ such that

$$-\Delta u + \beta \cdot \nabla u = \lambda u \quad \text{in } \Omega$$
$$u(x) = 0 \quad \text{for } x \in \partial \Omega$$

where div $\beta = 0$.

This problem has a variational formulation e find $u \in V = H^1_0(\Omega) \subset L^2(\Omega) = H$ such that

$$a(u,\phi) = \lambda(u,\phi) \quad \forall \phi \in V,$$

where

$$a(u,v) = \int_{\Omega} (\nabla u \cdot \nabla \bar{v}) + (\beta \cdot \nabla u) \bar{v},$$

and (\cdot, \cdot) is the scalar product in H.

Because

$$(\beta \cdot \nabla u, v) = -(v, \beta \cdot v)$$

hence

$$||u||_V^2 = \int_{\Omega} (\nabla u \cdot \nabla \bar{b}) = \operatorname{Re} a(v, v).$$

The dual problem consists in finding λ^*, u^* such that

$$a(\phi, u^*) = \bar{\lambda}^*(\phi, u^*) \quad \forall \phi \in V$$

The authors do not define explicitly operators in V, this will be done in this paper. The solution u of the variational problem: for $f \in H$ find $u \in V$ such that

$$a(u,\phi) = (f,\phi) \quad \forall \phi \in V$$

u = Af depends linearly on f. The equality

$$a(Af, Af) = (f, Af)$$

implies that

$$||Au||_V^2 = Re \, a(Af, Af) \le |(f, Af)| \le ||f|| ||Af|| \le ||f|| ||Af||_V.$$

Therefore

$$||Au||_V \le ||f|| \le ||f||_V.$$

1

 $\ll 28$ may, 2012, 10⁰³

This shows that $A: V \to V$ is a bounded operator, and because the inclusion V in H is compact the operator A is compact.

If $Au = \lambda u$ then the equality $f = \lambda^{-1}u$ implies that Af = u and we see that

$$a(u,\phi) = (\lambda^{-1}u,\phi) = \lambda^{-1}(u,\phi).$$

Thus the eigenvalues of the form a are reciprocals of the eigenvalues of the operator A while eigenvectors remain the same.

What is the dual problem ?

Similary as A we define the operator $C: V \to V$ by the equality

$$a(\phi, Cg) = (\phi, g) \quad \forall \phi \in V$$

Is it true that $A^* = C$?

As for $u \in V$ $a(u, \cdot)$ is a continuus antylinear functional $a(u, \cdot)$ equals to the scalar product in V which some vector in V, which we denote by Bu

$$a(u,v) = \langle Bu, v \rangle \quad u, v \in V \tag{1}$$

 $(\langle \cdot, \cdot \rangle$ denotes scalar product in V) Because the form a is bounded we have

$$||B|| \le ||a|| = \sup\{|a(u,v); u, v \in V, ||u||_V \le 1, ||v||_V \le 1\}$$

Similarly for $u \in V(u, \cdot)$ is a continuous antylinear functional, and may be interpreted as a scalar product in V. Thus there exists linear operator T, such that

$$(u,v) = \langle Tu,v \rangle \quad u,v \in V.$$

Because $\langle Tu, u \rangle = ||u||^2 \ge 0$, we have

 $T = T^* \ge 0$

Having defined the above operators we may find new definitions of A i C. The identities

$$a(Af, \phi) = (f, \phi), \quad a(\phi, Cg) = (\phi, g) \quad \forall \phi \in V$$

are equivalent to

$$\langle BAf, \phi \rangle = \langle Tf, \phi \rangle, \quad \langle B\phi, Cg \rangle = \langle T\phi, g \rangle \quad \forall \phi \in V$$

This holds for all $f, g \in V$ and therefore we have the equalities:

$$BA = T, \quad C^*B = T.$$

Hence

$$T = BA = C^*B$$
 and $A = B^{-1}C^*B$

 $\ll 28$ may, 2012, 10⁰³

The operator A is similar to C^* , or A^* is similar to C. Simple statements concerning the eigenvalues and eigenvectors of these operators may be formulated.

Approximation.

Let $V_h \subset V$ be a subspace of V.

Approximaton problem in terms of the form a is the following: find $v_h \in V_h$ such that

$$a(v_h, \phi) = (f, \phi) \quad \forall \phi \in V_h$$

If v is the solution of the original problem this is equivalent to

$$a(v_h, \phi) = a(v, \phi) \quad \forall \phi \in V_h$$

The transformation $v \to v_h$ is linear and is a projection, let us denote it by P. We have $P^2 = P$, ran $P = V_h$.

Thus

$$a(Pv,\phi) = a(v,\phi) \quad \forall \phi \in V_h, \forall v \in V$$

or

$$a(Pv, P\phi) = a(v, P\phi) \quad \forall \phi, v \in V$$

Using (1) we have

$$\langle P^*BPv, \phi \rangle = \langle BPv, P\phi \rangle = \langle Bv, P\phi \rangle = \langle P^*Bv, \phi \rangle$$

This means $P^*BP = P^*B$, taking adjoint operators we have

$$P^*B^*P = B^*P$$

Thus ran $P^* = B^* V_h$.

We may pose the questions:

- a) Does ran P, ran P^* are sufficient for defining P, in particular, is the role of B essential here?
- b) If yes, are then the projection defined uniequely?

A little bit about projections

The following fact may be usefull: if P is a projection (finite-dimensional) the there exists orthonormal sequences $e_1, \ldots, e_n, f_1, \ldots, f_n$ such that

$$P = \sum_{1}^{n} \lambda_j \langle \cdot, f_j \rangle e_j \tag{2}$$

where $\lambda_h \langle e_j, f_i \rangle = \delta_{i,j}$.

Proof. Let P = UA be a polar decomposition of P, i.e. U is a unitary operator, $A = A^* > 0$. Let $A = \sum \lambda_j \langle \cdot, f_j \rangle f_j$ be the spectral representation of A, $(f_j$ are orthonormal eigenvectors, λ_j – eigenvalues of A). As U is unitary the vectors $e_j = Uf_j$ $j = 1, \ldots, n$

 $\ll 28$ may, 2012, 10⁰³

form also an orthonormal sequence. Now the equality $e_k = Pe_k = \sum_{j=1}^n \lambda_j \langle e_k, f_j \rangle e_j$ and the linear independence of e_j implies that $\lambda_k \langle e_k, f_k \rangle = 1$, and $\langle e_k, f_j \rangle = 0$ for $j \neq k$.

Does ran P, ran P^* define P uniquely ?

If there exists a projection Q such that

$$\operatorname{ran} Q = \operatorname{ran} P,\tag{3}$$

then

If

$$PQ = Q, \quad QP = P$$
$$\operatorname{ran} Q^* = \operatorname{ran} P^* \tag{4}$$

then

$$P^*Q^* = Q^*, \quad Q^*P^* = P^*$$

if (3) i (d) hold then

$$P = (P^*)^* = (Q^*P^*)^* = PQ = Q.$$

Next question: If we have to subspaces M, N such that dim $M = \dim N$ does there exist a projection P such that ran P = M, ran $P^* = N$?

Simple counterexample: let $e \perp f$ span respectively the subspaces M, N. Then the projection P may be represented by $P = \alpha \langle \cdot, f \rangle e$ with some α . But then Pe = 0.

What condition on M, N assures the existence of a desired projection? Any projection P has a representation (2). Then $(\langle e_i, f_j \rangle)_{i,j=1}^n$ is a nonsingular matrix. If in this matrix the vectors e_i are substitued by any other basis \tilde{e}_i , then the columns of the matrix $(\langle \tilde{e}_i, f_j \rangle)_{i,j=1}^n$ are linear combination of the previous matrix. If we repeat the same with f_j then the new matrix rows are linear combinatons of the previously constucted matrix. Any way the last matrix remains nonsingular. Thus the condition is that for some basis $\{e_j\}_1^n$ of M, $\{f_j\}_1^n$ of N the matrix $(\langle e_i, f_j \rangle)_{i,j=1}^n$ is nonsingular.

The next question (more closer to the main problem) is: How to charecterize the operators B such that for any subspace M there exists a projection P such that

$$\operatorname{ran} P = M, \quad BP = P^* BP, \tag{5}$$

i.e. ran $P^* = BM$.

If the subspace M is one dimensional, spanned by the vector e the condition is $\langle Be, e \rangle \neq 0$, or $0 \notin W(B)$, where W(B) denotes the numerical range of B. The numerical range is a convex set, therefore there exists a straight line in the complex plane such that the point 0 and W(B) lie on other sides of this line. Thus there exists a complex number α such that

$$Re \alpha \langle Be, e \rangle \ge 1 \quad \forall e \in V, ||e|| = 1.$$
 (6)

We can say, that up to some multiplicative complex constant α these are the operators B for which $Re B = \frac{1}{2}(B + B^*) > I$. The condition (6) is a necessary one. We shall show it is also sufficient. Let $\{e_j\}_1^n$ be an orthonormal basis in M. It suffices to show that the

$$\ll 28 \text{ may}, 2012, 10^{03}$$
 4 last \gg

matrix $(\langle Be_i, e_j \rangle)_{i,j=1}^n$ is nonsingular. This matrix represents the operator $QB|_M$, where Q is an orthogonal projection on M. The desired conclusion is implied by

$$\sigma(QB|_M) \subset W(QB|_M) \subset W(B)$$

Note also, that if Re B > 1 and P satisfies (5) then

$$||Px||^{2} \leq \langle Re BPx, Px \rangle = Re \langle BPx, Px \rangle \leq |\langle BPx, Px \rangle|$$
$$= |\langle P^{*}BPx, x \rangle| = |\langle BPx, x \rangle| \leq ||B|| ||Px|| ||x||$$

therefore $||P|| \leq ||B||$, thus all such projections a uniformly bounded.

We have thus shown.

Lemma 1 If $Re B \ge 1$ then for any subspace $M \subset V$ there exists exactly one projection P such that ran P = V, ran $P^* = BV$. Moreover $||P|| \le ||B||$.

Left multiplying the equality $BP = P^*BP$ by B^{-1} and setting $\bar{P} = B^{-1}P^*B$ we get $P = \bar{P}P$. Hence ran $P \subset \operatorname{ran} \bar{P}$, and at least in the finite dimensional case dim $P = \dim \bar{P}$, what implies ran $P = \operatorname{ran} \bar{P} = M$. Is it true that $P = \bar{P}$? We check it with one dimensional subspace M spanned by e. We search for f such that $P = \langle \cdot, f \rangle e$ satisfies (5). We count $Px = \langle x, f \rangle e$, $BPx = \langle x, f \rangle Be$, $P^*BPx = \langle x, f \rangle \langle Be, e \rangle f$. Thus

$$f = \frac{Be}{\langle Be, e \rangle}, \quad P^*Bx = \langle Bx, e \rangle f = \frac{\langle Bx, e \rangle}{\langle Be, e \rangle}Be,$$

and

$$\bar{P}x = B^{-1}P^*Bx = \frac{\langle Bx, e \rangle}{\langle Be, e \rangle}e, \quad Px = \langle x, f \rangle e = \left\langle x, \frac{Be}{\langle Be, e \rangle} \right\rangle e = \frac{\langle x, Be \rangle}{\langle e, Be \rangle}e$$

If $P = \overline{P}$ then

$$\frac{\langle Bx, e\rangle}{\langle Be, e\rangle} = \frac{\langle x, Be\rangle}{\langle e, Be\rangle} \quad \forall x \in V$$

or equivalently

$$\frac{B^*e}{\langle Be, e \rangle} = \frac{Be}{\langle e, Be \rangle}$$

Thus not always $P = \overline{P}$, but when $B = B^*$ then $P = \overline{P}$, not only in the case of onedimensional projection. Moreover for the projection P satisfying (5) we have $P^*B = (P^*BP)^* = P^*BP = BP$, and $\overline{P} = B^{-1}P^*B = P$.

Lemma 2 If $\{P_n\}$ is a sequence of projections such that a) $P_n \to I$ strongly, b) ran $P_n^* = \operatorname{ran} BP_n$, where B is a bounded operator such that $\operatorname{Re} B \geq I$ then $P_n^* \to I$ strongly.

 $\ll 28$ may, 2012, 10⁰³

Proof Fix x, and let $x_n = BP_n B^{-1}x$, then

$$||x_n - x|| = ||B(P_n B^{-1} x - B^{-1} x)|| \le ||B|| ||(P_n - I)B^{-1} x|| \to 0$$

Note that $x_n \in \operatorname{ran} BP_n = \operatorname{ran} P_n^*$, therefore $x_n = P_n^* x_n$. This and Lemma 1 imply

$$||P_n^*x - x|| = ||P_n^*(x - x_n) - (x - x_n)|| \le (||P_n^*|| + 1)||x - x_n|| \le (||B|| + 1)||x - x_n|| \to 0.$$

Known Fact 1. If $E = E^2$ and $E \neq 0$, $E \neq I$ then ||E|| = ||I - E||.

We can represent E as a matrix

$$E = \begin{pmatrix} I & A \\ 0 & 0 \end{pmatrix}, \quad I - E = \begin{pmatrix} 0 & -A \\ 0 & I \end{pmatrix}$$

then

$$EE^* = \begin{pmatrix} I & A \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ A^* & 0 \end{pmatrix} = = \begin{pmatrix} I + AA^* & 0 \\ 0 & 0 \end{pmatrix},$$
$$(I - E)^*(I - E) = \begin{pmatrix} 0 & 0 \\ -A^* & I \end{pmatrix} \begin{pmatrix} 0 & -A \\ 0 & I \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & I + A^*A \end{pmatrix}.$$

Hence

$$||E||^{2} = ||I + AA^{*}|| = ||I + A^{*}A|| = ||I - E||^{2}$$

Moreover we see that the singular values exceeding 1 of the projections E i I - E are the same. The above beutiful proof of Corach may be found in [4].

Approximation error of eigenvalules

Let λ_0 be an isolated eigenvalue of the operator A with finite geometrical multiplicity n_0 , and let Γ be a closed curve (for example circle) inside which lies λ_0 and outside the rest of the spectrum of A. Let $M = \sup_{\lambda \in \Gamma} ||(A - \lambda)^{-1}||$. If $||A - B|| < M^{-1}/2$ then the operator $B - \lambda$ is invertible for $\lambda \in \Gamma$, because

$$B - \lambda = A - \lambda + (B - A) = (A - \lambda)(I - (A - \lambda)^{-1}(B - A))$$

hence

$$(B - \lambda)^{-1} = \sum_{k=0}^{\infty} \left((A - \lambda)^{-1} (B - A) \right)^k (A - \lambda)^{-1}$$

This implies

$$||(B-\lambda)^{-1}|| \le ||(A-\lambda)^{-1}|| \frac{1}{1-||(A-\lambda)^{-1}|| ||B-A||} \le 2M$$

The identity

$$(B-\lambda)^{-1} - (A-\lambda)^{-1} = \sum_{k=1}^{\infty} \left((A-\lambda)^{-1} (B-A) \right)^k (A-\lambda)^{-1}$$

 $\ll 28$ may, 2012, 10⁰³

 $last \gg$

implies that

$$\|(B-\lambda)^{-1} - (A-\lambda)^{-1}\| \le \sum_{k=1}^{\infty} M^{k+1} \|B-A\|^k = M^2 \|B-A\| \sum_{k=0}^{\infty} M^k \|B-A\|^k \le 2M^2 \|B-A\|$$

Denoting by E, F spectral projections defined by

$$E = \frac{-1}{2\pi i} \int_{\Gamma} (A - \lambda)^{-1}, \quad F = \frac{-1}{2\pi i} \int_{\Gamma} (B - \lambda)^{-1}$$

we can estimate the norm of their difference

$$||E - F|| \le \frac{1}{\pi} |\Gamma| M^2 ||B - A||.$$
(7)

We shall use the trace properties: tr $EAE = n_0\lambda_0$ and that tr FBF is the sum of the eigenvalues of B which lie inside Γ and are counted according to their geometrical multiplicities. Thus the quantity tr(EAE - FBF) measures the perturbation λ_0 .

We have the identity

$$(E - F)^{2}E = (E + F - EF - FE)E = (E + FE - EF - FE)E$$

= $E(E - F)E = E(E - F)^{2}$ (8)

We shall answer the question: What condition should satisfy the projections $\{Q_n\}_1^\infty$, $\{P_n\}_1^\infty$ that for any compact operator $A ||A - Q_n A P_n|| \to 0$?

It is rather obvious, that the norms of these projections should be uniformly bounded by some constant m. If A is compact, then for every $\varepsilon > 0$ there exist operators C, Dsuch that A = C + D, $||C|| \leq \frac{\varepsilon}{2m}$, and D is finite dimensional. Obviously $||Q_n CP_n|| \leq \varepsilon/2$. Because any finite dimensional operator is a sum of one dimensional operators, and each such operator G may be written as $G = \langle \cdot, f \rangle e$ our question restricts to: What conditions the projection $\{Q_n\}_1^\infty$, $\{P_n\}_1^\infty$ should satisfy that for any operator $G = \langle \cdot, f \rangle e$ $||G - Q_n GP_n|| \to 0$?

As

$$Gx - Q_n GP_n x = \langle x, f \rangle - \langle P_n x, f \rangle Q_n e = \langle x, f \rangle - \langle x, P_n^* f \rangle Q_n e$$

thus for any $f, e \in V$ we have to have $||f - P_n^*f|| \to 0$, $||e - Q_n e|| \to 0$, this means that the operators P_n^* , Q_n should strongly converge to the identity operator.

If B = PAP and the projections E, F are sufficiently close we may derive much simpler estimate of tr(EAE - FBF). Because P commutes with B then also PF = FP, we have also ran $F \subset \operatorname{ran} P$ hence PF = FP = F. Therefore

$$\operatorname{tr} FBF = \operatorname{tr} FPAPF = \operatorname{tr} FAF. \tag{11}$$

using the splitting A = EAE + (I - E)A(I - A) we can write

$$\operatorname{tr} FBF = \operatorname{tr} F(EAE + (I - E)A(I - A))F.$$
(12)

 $\ll 28$ may, 2012, 10⁰³

$$last \gg$$

We calculate the traces tr(FEAEF - EAE) i tr F(I - E)A(I - A)F.

$$\operatorname{tr}(FEAEF - EAE) = \operatorname{tr}(FEA - EA)E = \operatorname{tr}(F - E)EAE = \operatorname{tr}E(F - E)EA \qquad (13)$$

and

$$tr(F(I-E)A(I-E)F = tr(I-E)F(F-E)A = tr(F-E)F(F-E)A.$$
 (14)

(8) - (14) imply now the estimation

$$|\operatorname{tr}(FBF - EAE)| \le ||E - F||^2 ||A|| (||F|| + ||E||).$$
(15)

Let us resume our consideration in the way usefull for further ones.

Lemma3. If A is a compact operator, $\lambda \neq 0$ its eigenvalue, with spectral projection E, and $\{P_h\}$ is a sequence of projections such that,

 $P_{h} \rightarrow I \text{ and } P_{h}^{*} \rightarrow I \text{ strongly},$ $\|(I - P_{h})|_{\operatorname{ran} E}\| \leq h,$ $\|(I - P_{h}^{*})|_{\operatorname{ran} E}\| \leq h,$ $\|(I - P_{h})|_{\operatorname{ran} E^{*}}\| \leq h,$ $\|(I - P_{h}^{*})|_{\operatorname{ran} E^{*}}\| \leq h$ then for any r > 0 such that of

then for any r > 0 such that $\sigma(A) \cap K(\lambda, r) = \{\lambda\}$ and sufficiently small h the disc $K(\lambda, r)$ contains exactly dim E eigenvalues of the operator $P_h A|_{\operatorname{ran} P_h}$ counted according to their multiplicities, and their arithmetic mean λ_h satisfies $|\lambda - \lambda_h| \leq O(h^2)$.

Approximating problems and projections

Let us come back to our problems - primal and dual. We use the notation B^{-*} for $(B^*)^{-1}$.

Primal problem

find $v \in V$ such that

Dual problem

find $w \in V$ such that

 $a(v,\psi) = (f,\psi), \quad \forall \psi \in V \qquad \qquad a(\psi,w) = (\psi,g) \quad \forall \psi \in V$

we define operators A, B by

$$\langle BAf, \psi \rangle = (f, \psi), \quad \forall \psi \in V$$
 $\langle B\psi, Cg \rangle = (\psi, g) \quad \forall \psi \in V$

approximating problems

find
$$v_h \in V_h$$
 such that
 $a(v_h, \psi) = (f, \psi), \quad \forall \psi \in V_h$
find $w_h \in V_h$ such that
 $a(\psi, w_h) = (\psi, g) \quad \forall \psi \in V_h$

or equivalently

$$a(v_h,\psi) = a(v,\psi), \quad \forall \psi \in V_h$$
 $a(\psi,w_h) = a(\psi,w) \quad \forall \psi \in V_h$

we define operators acting in V_h

 $\ll 28$ may, 2012, 10⁰³

$$A_h: V_h \to V_h \qquad \qquad C_h: V_h \to V_h$$

$$\langle BA_h v, \psi \rangle = \langle BAv, \psi \rangle, \quad \forall \psi \in V_h \quad \left| \begin{array}{c} by \\ \langle B\psi, C_h w \rangle = \langle B\psi, Cw \rangle, \quad \forall \psi \in V_h \end{array} \right|$$

if P_h, Q_h are projections on V_h we have

$$\langle BA_h v, P_h \psi \rangle = \langle BAv, P_h \psi \rangle, \quad \forall \psi \in V \middle| \langle BQ_h \psi, C_h w \rangle = \langle BQ_h \psi, Cw \rangle, \quad \forall \psi \in V$$

we may assume that

then

we may require the projections to satisfy

$$\operatorname{ran} P_h^* = BV_h \qquad \qquad \operatorname{ran} Q_h^* = B^* V_h$$

then according to (5)

$$P_h^* B P_h = B P_h$$

$$Q_h^* B^* Q_h = B^* Q_h$$

$$P_h^* B A = P_h^* B P_h A_h = B P_h A_h$$

$$Q_h^* B^* C = Q_h^* B^* Q_h C_h = B^* Q_h C_h$$

left multiplying by operator B^{-1} or B^{-*} we get

$$B^{-1}P_h^*BA = P_hA_h \qquad \qquad B^{-*}Q_h^*B^*C = Q_hC_h$$

the operator

$$\tilde{P}_h = B^{-1} P_h^* B \qquad \qquad \tilde{Q}_h = B^{-*} Q_h^* B^*$$

is a projection and its easy to check that

$$\operatorname{ran} \tilde{P}_h = V_h \qquad \qquad \operatorname{ran} \tilde{Q}_h = V_h$$

because of

$$\tilde{P}_h^* = B^* P_h B^{-*} \qquad \qquad \tilde{Q}_h^* = B Q_h B^{-1}$$

we have

 $\operatorname{ran} \tilde{P}_h^* = B^* \operatorname{ran} P_h = B^* V_h = \operatorname{ran} Q_h^* \left| \operatorname{ran} \tilde{Q}_h^* = B \operatorname{ran} Q_h = B V_h = \operatorname{ran} P_h^* \right|$

 $\ll 28$ may, 2012, 10^{03}

this and Lemma 1 imply

$$\tilde{P}_h = Q_n = B^{-1} P_h^* B$$

$$\tilde{Q}_h = P_h = B^{-*} Q_h^* B^*$$

$$P_h C = Q_h A_h = C_h$$

we extend the operators for all the space V identyfying

$$A_h \ge A_h Q_h \qquad \qquad C_h \ge C_h P_h$$

 then

Approximating operators are

$$A_h = Q_h A Q_h, \quad C_h = P_h C P_h$$

where P_h, Q_h are projections on V_h such that

$$\operatorname{ran} P_h^* = BV_h, \quad \operatorname{ran} Q_h^* = B^* V_h.$$

 $A = B^{-1}C^*B$ implies $A^* = B^*CB^{-*}$ and

$$A_h^* = Q_h^* A^* Q_h^* = Q_h^* B^* C B^{-*} Q_h^* = B^* (B^{-*} Q_h^* B^*) C (B^{-*} Q_h^* B^*) B^{-*}$$
$$= B^* P_h C P_h B^{-*} = B^* C_h B^{-*}$$

Now we see, that with additional approximation properties of the subspaces V_h we may use Lemma 3 to estimate the approximation error of eigenvalues.

A posteriori estimates

Example 1. If $A = A^*$ is a compact operator it may be represented by a series $A = \sum_j \lambda_j \langle \cdot, e_j \rangle e_j$, where λ_j are eigenvalues corresponding to eigenvectors e_j . Then for any $\lambda \in C$, $e \in V \ge ||e|| = 1$

$$\|(A-\lambda)e\|^{2} = \|\sum_{j} (\lambda_{j}-\lambda)\langle e, e_{j}\rangle e_{j}\|^{2} = \sum_{j} |\lambda_{j}-\lambda|^{2}|\langle e, e_{j}\rangle|^{2}$$
$$\geq \min_{j} |\lambda_{j}-\lambda|^{2}|\sum_{j} |\langle e, e_{j}\rangle|^{2} = \min_{j} |\lambda_{j}-\lambda|^{2}.$$

If λ , e are counted by some approximation algorithm and we have a possibility to calculate ||Ae|| we get in this way a posteriori estimation of eiganvalue error. In practise it suffices to count Ae with greater precision.

$$\ll 28 \text{ may}, 2012, 10^{03}$$
 10 last \gg

Example 2. Let $A = E = \langle \cdot, f \rangle g$, where $\lambda_0 = \langle g, f \rangle = 1$ is the eigenvalue of A. Let P_h be an orthogonal projection. $A_h = P_h A P_h = \langle \cdot, P_h f \rangle P_h g$ is an approximating operator. The only nonzero eigenvalue of it is $\lambda_h = \langle Pg, Pf \rangle = \langle g, Pf \rangle$, what follows from $A_h Pg = \langle Pg, Pf \rangle Pg$. The normed eigenvector is $u_h = \frac{Pg}{\|Pg\|}$ and we can write

$$(A - \lambda_h)u_h = \langle u_h, f \rangle g - \lambda_h u_h = \|Pg\|^{-1} (\langle Pg, f \rangle g - \lambda_h Pg) = \|Pg\|^{-1} \lambda_h (g - Pg)$$
$$\|(A - \lambda_h)u_h\| = \|Pg\|^{-1} |\lambda_h| \|(g - Pg)\|$$

We may consider adjoint operators A^* i $A_h^* = PA^*P$. The nonzero eigenvalue of A_h^* is $\bar{\lambda}_h$ and corresponds to the normed eigenvector $v_h = \frac{Pf}{\|Pf\|}$, and we have

$$(A^* - \bar{\lambda}_h)v_h = \langle v_h, g \rangle f - \bar{\lambda}_h v_h = \|Pf\|^{-1} (\langle Pg, f \rangle f - \bar{\lambda}_h Pf) = \|Pf\|^{-1} \bar{\lambda}_h (f - Pf)$$
$$\|(A^* - \bar{\lambda}_h)v_h\| = \|Pf\|^{-1} |\lambda_h| \|(f - Pf)\|$$

How these quantities $||(A-\lambda_h)u_h||$, $||(A^*-\overline{\lambda}_h)v_h||$ obtained a posteriori may be used to estimate the error $\lambda - \lambda_h$? In the Example 1 we have the additional information about the operator A – namely, that is selfadjoint, this has given us information about the resolvent norm of A, namely $||(A - \lambda)^{-1}|| = (\operatorname{dist}(\lambda, \sigma(A)))^{-1}$. Let us find a similar information for the operator in the example. Without any additional information we cannot get a posteriori further conclusions.

We may estimate the norm of $(A - \lambda)^{-1}$. With the equality $A = E = E^2$ it is easy to verify that

$$(A - \lambda) \left(((1 - \lambda)^{-1}E - \lambda^{-1}(I - E)) = (1 - \lambda)^{-1}E - \lambda \left(((1 - \lambda)^{-1}E - \lambda^{-1}(I - E)) \right) \\ = \left((1 - \lambda)^{-1} - \lambda (1 - \lambda)^{-1} + 1 \right)E + I = I.$$

With Fact 1 we get

$$\|(A-\lambda)^{-1}\| \le \|(1-\lambda)^{-1}E\| + \|\lambda^{-1}(I-E)\| \le \left(\frac{1}{|1-\lambda|} + \frac{1}{|\lambda|}\right) \|E\|$$

Thus for the computed eigenvalue λ_h and eigenvector u_h

$$1 = ||u_h|| \le \left(\frac{1}{|1 - \lambda_h|} + \frac{1}{|\lambda_h|}\right) ||E|| ||(A - \lambda_h)u_h||$$

or

$$|\lambda_0 - \lambda_h| \le \frac{(|\lambda_0 - \lambda_h| + |\lambda_h|) \|E\|}{|\lambda_h|} \|(A - \lambda_h)u_h\|.$$
$$|\lambda_0 - \lambda_h| \le \|E\| \|(A - \lambda_h)u_h\| \left(1 - \frac{\|E\|}{|\lambda_h|} \|(A - \lambda_h)u_h\|\right)^{-1}$$

 $\ll 28$ may, 2012, 10⁰³

This is an aposteriori extimation, however we do not know the constants on the right side We have chances to estimate them, for example . $\lambda_0 - \lambda_h$ is close to zero, may be estimated by $\varepsilon > 0$ – for small h it becomes true. $E = \langle \cdot, f \rangle g$ is eigenprojection, its norm equals ||f|||g||, we may hope that for h small enough it close to $|\langle u_h, v_h \rangle|^{-1}$, where u_h, v_h are unit eigenvectors of operators A i A^* occorresponding to eigenvalue λ_h $(\bar{\lambda}_h)$, $E_h = \langle \cdot, v_h \rangle u_h / \langle u_h, v_h \rangle$ aproximates E and $||E_h|| = |\langle u_h, v_h \rangle|^{-1}$.

May we a posteriori extimate $||u - u_h||$ and $||v - v_h||$?

We have the equality

$$(A - \lambda_h)u_h = (A - \lambda_h)\left(Eu_h + (I - E)u_h\right) = (\lambda_0 - \lambda_h)Eu_h + (A - \lambda_h)(I - E)u_h$$

(15) implies that λ_h is approximated with rate $O(h^2)$, while u_h i v_h are approximated with rate O(10), the second term should dominate in the above sum. In our example A(I - E) = 0 and consequently

$$\|\lambda_h\|\|(I-E)u_h\| \le \|(A-\lambda_h)u_h\| + O(h^2)$$

We may use (15) now, to do it we have to estimate the norm of the error of eigenprojection

$$E - E_h = \frac{\langle \cdot, v \rangle u}{\langle u, v \rangle} - \frac{\langle \cdot, v_h \rangle u_h}{\langle u_h, v_h \rangle},$$

where u, v normalized vectors g, f.

We may expect, that with some constant c

$$||E - E_h|| \le c(||(A - \lambda_h)u_h|| + ||(A^* - \bar{\lambda}_h)v_h||),$$

then using (15) we get

$$\|\lambda - \lambda_h\| \le c_1(\|(A - \lambda_h)u_h\| + \|(A^* - \bar{\lambda}_h)v_h\|)^2.$$

Example 2 is in fact not so far from the general case.

General case of simple eigenvalue.

Let λ be an isolated eigenvalue of A and $E = E(\lambda)$ the spectral projection. Then the operator $(A - \mu)|_{\ker E}$ is invertible for μ sufficiently close to λ .

$$\| \left((A - \mu I)|_{\ker E} \right)^{-1} \| = \| \left((A^* - \bar{\mu}I)|_{\ker E^*} \right)^{-1} \| \le C_{\lambda} \quad \text{for } |\lambda - \mu| \le r_{\lambda}, \tag{16}$$

 C_{λ} is called in [1-3] a week stability constant. In the sequel we assume that $|\lambda - \lambda_h| \leq r_{\lambda}$ and that each $u \in \operatorname{ran} E$ is an eigenvector, i.e. there are not nontrivial Jordan cells. (16) implies that

$$||(I-E)u_h|| = ||(A-\lambda_h)^{-1}(A-\lambda_h)(I-E)u_h|| \le C_\lambda ||(A-\lambda_h)(I-E)u_h||.$$

By the triangle inequality we have also

$$\begin{aligned} \|(A - \lambda_h)(I - E)u_h\| &\leq \|(A - \lambda_h)u_h\| + \|(A - \lambda_h)Eu_h\| = \|(A - \lambda_h)u_h\| + |\lambda - \lambda_h|\|Eu_h\| \\ &\ll 28 \text{ may, } 2012, \ 10^{03} & 12 & \text{last} \end{aligned}$$

The above inequalities show that

$$\|(I-E)u_h\| \le C_\lambda(\|(A-\lambda_h)u_h\| + |\lambda-\lambda_h|\|Eu_h\|)$$
(17)

Similar inequality may be written for adjoint operators.

$$\|(I - E^*)v_h\| \le C_{\lambda}(\|(A^* - \bar{\lambda}_h)v_h\| + |\lambda - \lambda_h|\|E^*v_h\|)$$
(18)

To apply (15) and get aposteriori eigenvalue error estimation we need to estimate

$$\|E - E_h\| = \left\|\frac{\langle \cdot, v \rangle u}{\langle u, v \rangle} - \frac{\langle \cdot, v_h \rangle u_h}{\langle u_h, v_h \rangle}\right\|$$

The quantity $|\langle u, v \rangle|^{-1}$ is called a condition number of eigenvalue λ , it is the norm ||E||.

Let c stands for the right hand side of (17). We may take $u = \frac{Eu_h}{\|Eu_h\|}$. $u_h = (u_h - Eu_h) + Eu_h$ with the triangle inequality implies that $\|u_h\| = 1 \le \|u_h - Eu_h\| + \|Eu_h\|$, $-Eu_h = u_h - Eu_h + u_h$ implies that $\|Eu_h\| \le \|u_h - Eu_h\| + 1$. Therefore

$$1 - c \le ||Eu_h|| \le 1 + c.$$

Thus

$$\left|Eu_{h} - \frac{Eu_{h}}{\|Eu_{h}\|}\right| = \|Eu_{h}\| \left|1 - \frac{1}{\|Eu_{h}\|}\right| = |\|Eu_{h}\| - 1| \le \epsilon$$

this with (17) shows that

$$||u_h - u|| \le 2C_{\lambda}(||(A - \lambda_h)u_h|| + |\lambda - \lambda_h|||E||)$$

of course we have to assume that $c \leq 1$. Similarly we show that

$$\|v_h - v\| \le 2C_\lambda(\|(A^* - \bar{\lambda}_h)v_h\| + |\lambda - \lambda_h|\|E\|)$$

As the norm ||E|| may be very large the scalar product $\langle u, v \rangle$ may be very small. However $\langle u_h, v_h \rangle \rightarrow \langle u, v \rangle$. To have $|\langle u_h, v_h \rangle| \geq \frac{1}{2} |\langle u, v \rangle|$ we have to make additional assumptions. From the identity

$$\langle u_h, v_h \rangle = \langle u + (u_h - u), v + (v_h - v) \rangle = \langle u, v \rangle + \langle u_h - u, v \rangle + \langle u, v_h - v \rangle + \langle u_h - u, v_h - v \rangle$$

we have

$$|\langle u_h, v_h \rangle - \langle u, v \rangle| \le ||u_h - u|| + ||v_h - v|| + ||u_h - u|| ||v_h - v||$$

To proceed further we assume that

$$|\langle u_h, v_h \rangle - \langle u, v \rangle| \le \frac{1}{2} |\langle u, v \rangle| = \frac{1}{2} ||E||^{-1}$$

to have

$$|\langle u_h, v_h \rangle| \ge \frac{1}{2} |\langle u, v \rangle| = \frac{1}{2} ||E||^{-1}.$$

 $\ll 28$ may, 2012, 10⁰³

Then

$$\left|\frac{1}{\langle u_h, v_h \rangle} - \frac{1}{\langle u, v \rangle}\right| \le \left|\frac{\langle u_h, v_h \rangle - \langle u, v \rangle}{\langle u_h, v_h \rangle \langle u, v \rangle}\right| \le 2\|E\|2(\|u_h - u\| + \|v_h - v\|)$$

(we add the assumption $||u_h - u|| ||v_h - v|| < 1$). Now

$$\begin{split} \|E - E_h\| &= \left\| \left(\frac{1}{\langle u, v \rangle} - \frac{1}{\langle u_h, v_h \rangle} \right) \langle \cdot, v \rangle u + \frac{\langle \cdot, v_h \rangle u_h - \langle \cdot, v \rangle u}{\langle u_h, v_h \rangle} \right\| \\ &\leq 4 \|E\| (\|u_h - u\| + \|v_h - v\|) + 2 \|E\| \|\langle \cdot, v_h \rangle (u_h - u) + \langle \cdot, v_h - v \rangle u\| \\ &\leq 6 \|E\| (\|u_h - u\| + \|v_h - v\|) \end{split}$$

Now we use trace estimation (15) and we get (using $||E_h|| \le 2||E||$)

$$|\lambda - \lambda_h| \le 3 ||E - E_h||^2 ||A|| ||E||$$

Thus with new constants $c_1 = 2C_{\lambda}$, $c_2 = 2C_{\lambda} ||E||$, $c_3 = 18 ||A|| ||E||^2$ we have the system of inequalities

$$\begin{aligned} \|u_{h} - u\| &\leq c_{1} \| (A - \lambda_{h}) u_{h} \| + c_{2} |\lambda - \lambda_{h}| \\ \|v_{h} - v\| &\leq c_{1} \| (A^{*} - \bar{\lambda}_{h}) v_{h} \| + c_{2} |\lambda - \lambda_{h}| \\ |\lambda - \lambda_{h}| &\leq c_{3} (\|u_{h} - u\| + \|v_{h} - v\|)^{2} \end{aligned}$$

with unknowns $||u_h - u||, ||v_h - v||, |\lambda - \lambda_h|$. Solving it we get a posteriori estimations

$$\begin{aligned} \|u_h - u\| &\leq c_4(\|(A - \lambda_h)u_h\| + |(A^* - \bar{\lambda}_h)v_h\|) \\ \|v_h - v\| &\leq c_4(\|(A - \lambda_h)u_h\| + |(A^* - \bar{\lambda}_h)v_h\|) \\ |\lambda - \lambda_h| &\leq c_6(|(A - \lambda_h)u_h\| + |(A^* - \bar{\lambda}_h)v_h\|)^2 \end{aligned}$$

which are valid for h sufficiently small.

The "general case" studied above is in fact not general – we have considered the case of an eigenvalue with geometric multiplicity one. We have used the fact that the eigenprojection $E_h = \langle \cdot, v_h \rangle u_h$, where u_h, v_h are eigenvectors of A_h and A_h^* . Even if A is a projection A_h may have nontrivial Jordan blocks. This shown in the next example.

Example 3. Let A be m-dimensional orthogonal projection,

$$A = \begin{pmatrix} I_m & 0\\ 0 & 0 \end{pmatrix}$$

and G some $m \times m$ matrix. Let

$$P_n = \begin{pmatrix} I_m - \varepsilon G & 0 & B_{\varepsilon} & 0 \\ 0 & I_n & 0 & 0 \\ C_{\varepsilon} & 0 & \varepsilon G & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\ll 28$ may, 2012, 10⁰³

where the bottom right block is infinite dimensional. $B_{\varepsilon} = \sqrt{\varepsilon}I_m$, $C_{\varepsilon} = \sqrt{\varepsilon}G(I_m - \varepsilon G)$. If $\varepsilon = \varepsilon_n \to 0$ then $P_n \to I$ and $P_n^* \to I$ strongly. P_n are projections, this follows from

$$\begin{pmatrix} I_m - \varepsilon G & \sqrt{\varepsilon} I_m \\ \sqrt{\varepsilon} G(I_m - \varepsilon G) & \varepsilon G \end{pmatrix}^2$$

$$= \begin{pmatrix} (I_m - \varepsilon G)^2 + \varepsilon G(I_m - \varepsilon G) & \sqrt{\varepsilon} (I_m - \varepsilon G) + \sqrt{\varepsilon} \varepsilon G \\ \sqrt{\varepsilon} G(I_m - \varepsilon G)^2 + \varepsilon \sqrt{\varepsilon} G^2 (I_m - \varepsilon G) & \varepsilon G(I_m - \varepsilon G) + \varepsilon^2 G^2 \end{pmatrix}$$

$$= \begin{pmatrix} I_m - \varepsilon G & \sqrt{\varepsilon} I_m \\ \sqrt{\varepsilon} G(I_m - \varepsilon G) & \varepsilon G \end{pmatrix}$$

$$P_n A P_n = \begin{pmatrix} I_m - \varepsilon G & \sqrt{\varepsilon} I_m \\ \sqrt{\varepsilon} G (I_m - \varepsilon G) & \varepsilon G \end{pmatrix} \begin{pmatrix} I_m & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I_m - \varepsilon G & \sqrt{\varepsilon} I_m \\ \sqrt{\varepsilon} G (I_m - \varepsilon G) & \varepsilon G \end{pmatrix}$$
$$= \begin{pmatrix} I_m - \varepsilon G & 0 \\ \sqrt{\varepsilon} G (I_m - \varepsilon G) & 0 \end{pmatrix} \begin{pmatrix} I_m - \varepsilon G & \sqrt{\varepsilon} I_m \\ 0 & 0 \end{pmatrix}$$
$$= (I_m - \varepsilon G) \begin{pmatrix} I_m & 0 \\ \sqrt{\varepsilon} G & 0 \end{pmatrix} \begin{pmatrix} I_m - \varepsilon G & \sqrt{\varepsilon} I_m \\ 0 & 0 \end{pmatrix} = (I_m - \varepsilon G) P_n$$

The above shows that $A_n = P_n A P_n$ is unitarily equivalent to the direct sum of $I_m - \varepsilon G$ and null operator in the infinite dimensional space. and A_n restricted to the range of the spectral projection E_h is just $I_m - \varepsilon G$. In particular it may be one Jordan block, and we cannot argue is in "General case".

Note that $A_n = \{0\} \cup (1 - \varepsilon \sigma(G))$. Note that $= \operatorname{ran} E_n = \operatorname{ran} P_n$ and

$$P_n\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}(I_m - \varepsilon G)x + \sqrt{\varepsilon}Gy\\\sqrt{\varepsilon}(I_m - \varepsilon G)Gx + \varepsilon Gy\end{pmatrix} = \begin{pmatrix}z\\\sqrt{\varepsilon}Gz\end{pmatrix}$$

with $z = (I_m - \varepsilon G)x + \sqrt{\varepsilon}Gy$. Thus ran $E_n = \left\{ \begin{pmatrix} z \\ \sqrt{\varepsilon}Gz \end{pmatrix}; z \in \operatorname{ran} A \right\}$. and $\left\| \begin{pmatrix} z \\ \sqrt{\varepsilon}Gz \end{pmatrix} - A \begin{pmatrix} z \\ \sqrt{\varepsilon}Gz \end{pmatrix} \right\| = \left\| \begin{pmatrix} 0 \\ \sqrt{\varepsilon}Gz \end{pmatrix} \right\| = \sqrt{\varepsilon} \|Gz\|$

Thus ran E_n the generalized space of eigenvectors is approximated with order $\sqrt{\varepsilon}$ while eigenvalues are approximated with order ε as expected.

General case – multiple eigenvalue.

Instead of eigenvectors we may try to use eigenspaces. Let E be the eigenprojection corresponding to $\lambda \in \sigma(A)$, and E_h be the approximating eigenspace. We may compute

$$\operatorname{dist}(\operatorname{ran} E_h, \operatorname{ran} AE_h), \quad \operatorname{dist}(\operatorname{ran} E_h^*, \operatorname{ran} A^*E_h^*)$$

 $\ll 28$ may, 2012, 10⁰³

With E instead of E_h these distances equal to zero. ran AE_h should be close to ran $EE_h = \operatorname{ran} E - \operatorname{as} ||(I - E)E_h||$ tends to zero.

We may hope that the inequality

$$||E - F|| \le c \max\{\operatorname{dist}(\operatorname{ran} E, \operatorname{ran} F), \operatorname{dist}(\operatorname{ran} E^*, \operatorname{ran} F^*)\}$$

holds for sufficiently close projections E, F. Then with (15) we should get a posteriori estimation of the eigenvalue error.

For two subspaces M, N we define

$$\delta(M, N) = \sup\{x \in N, \|x\| = 1; \inf_{y \in M} \|x - y\|\}, \quad \operatorname{dist}((M, N) = \max\{\delta(M, N), \delta(N, M)\}.$$

Lemma. If E, F are projections then

 $||E - F|| \le \max\{||E||, ||F||\} \max\{\operatorname{dist}(\operatorname{ran} E, \operatorname{ran} F), \operatorname{dist}(\operatorname{ran} E^*, \operatorname{ran} F^*)\}.$

Proof. Let ||x|| = 1 and ||(E - F)x|| = ||E - F||. Then

$$||Ex - Fx|| = ||Ex - FEx + FEx - Fx|| \le ||Ex - FEx|| + ||Fx - FEx||$$
$$||Ex - FEx|| = ||Ex|| \left\| \frac{Ex}{||Ex||} - F\frac{Ex}{||Ex||} \right\| \le ||E||\delta(\operatorname{ran} E, \operatorname{ran} F).$$

Let ||y|| = 1 and

$$||Fx - FEx|| = \langle F(I - E)x, y \rangle = \langle x, (I - E^*)F^*y \rangle$$

then

$$\|Fx - FEx\| \le \|x\| \|F^*y\| \left\| \frac{F^*y}{\|F^*y\|} - E^* \frac{F^*y}{\|F^*y\|} \right\| \le \|F^*\|\delta(\operatorname{ran} F^*, \operatorname{ran} E^*)$$

The above inequalities imply the thesis.

References

- [1] Joscha Gedicke and Carsten Carstensen, A posteriori error estimators for non-symetric eigenvalue problems, August 2009. DFG Research Center MATHEON, preprint 659.
- [2] Vincent Heuvelline and Folf Rannacher A posteriori error control for finite element approximation of elliptic eigenvalue problems, Adv. Comp. Math. 15 (2001) 107–138
- [3] Carstensen, C.; Gedicke, J.; Mehrmann, V.; Miedlar, A. An adaptive homotopy approach for non-selfadjoint eigenvalue problems. Numer. Math. 119 (2011), no. 3, 557–583
- [4] Daniel B. Szyld, The many proofs of an identity on the norm of oblique projections. Numer.Algor (2006) 42, 309–323

 $\ll 28$ may, 2012, 10⁰³