Andrzej Pokrzywa – Seminar note on the paper "Regularization in Hilbert Space under

Unbounded Operators and General Source Conditions"

written by

Berndt Hofmann, Peter Matheé and Heinrich von Weizsäcker

We consider operators acting in a Hilbert space H. We assume that the domains of these operators are dense in H. The domain, range and kernel of an operator A are denoted by D(A), ranA, kerA, respectively.

Definitions

Operator A is **closed** if for any sequence $\{x_n\}_{n=1}^{\infty}$ such that $x_n \in D(A)$, $||x_n - x_0|| \to 0$ and $||Ax_n - y|| \to 0$ for some $y \in H$ implies $x_0 \in D(A)$ and $Ax_0 = y$.

Operator A is **closable** if there exists a closed extension of A, i.e. there exists a closed operator B such that $D(A) \subset D(B)$ and Ax = Bx for $x \in D(A)$.

An operator B is **adjoint** to A if $\langle Ax, y \rangle = \langle x, By \rangle$ for any $x \in D(A)$. The domain of B is the set of all those $y \in H$ that there exists $z \in H$ such that $\langle Ax, y \rangle = \langle x, z \rangle$. Then z = By. And we write $A^* = B$.

Polar decomposition

Because $A^*A \ge 0$ there exists the operator $B \ge 0$ such that $A^*A = B^2$.

Let us define $B^{\dagger} = 0_{|\ker B} \oplus \operatorname{cl}((B_{|D(B) \cap (\ker B)^{\perp}})^{-1})$, cl denotes here the closure of an operator.

We have the identity

$$\langle Ax, Ay \rangle = \langle Bx, By \rangle$$
 for $x, y \in D(A)$.

Note that

$$\overline{\operatorname{ran}B} = (\operatorname{ker}B)^{\perp} = (\operatorname{ker}A^*A)^{\perp} = (\operatorname{ker}A)^{\perp} = \overline{\operatorname{ran}A^*}.$$

Hence for $u, v \in \operatorname{ran} B$ we have the identity

$$\langle AB^{\dagger}u, AB^{\dagger}v \rangle = \langle u, v \rangle.$$

which shows that AB^{\dagger} is an isometry on ran*B*. The closure *U* of AB^{\dagger} is partial isometry – it isometrically transforms $\overline{\operatorname{ran}B} = \overline{\operatorname{ran}A^*}$ on $\operatorname{ran}U = \overline{\operatorname{ran}AB^{\dagger}} = \overline{\operatorname{ran}A}$ and vanishes on its kernel – ker $U = \ker B^{\dagger} = \ker B = \ker A$.

We have

$$UBx = AB^{\dagger}Bx = Ax \text{ for } x \in D(A).$$

A = UB is called right polar decomposition of A.

 U^* is also a partial isometry – it isometrically transforms $\overline{\operatorname{ran} A^*}$ on $\overline{\operatorname{ran} A}$ and $\ker U^* = (\operatorname{ran} U)^{\perp} = (\operatorname{ran} A)^{\perp} = \ker A^*$.

Moreover the equality

$$\langle U^*Uu, v \rangle = \langle Uu, Uv \rangle = \langle u, v \rangle$$
 valid for $u, v \in \overline{\operatorname{ran}B} = \overline{\operatorname{ran}A^*}$

shows that

$$U^*Uu = \begin{cases} u & \text{for } u \in \overline{\operatorname{ran} A^*}, \\ 0 & \text{for } u \in \ker A. \end{cases}$$

Therefore $A = UBU^*U = CU$, where $C = UBU^*$ is also a selfadjoint nonnegative operator. This is the *left polar decomposition* of A. Note that U is the same in both polar decompositions. The above in particularly implies that $AA^* = UB^2U^* = U(A^*A)U^*$.

Examples.

Let $H = L^2(0, 1)$ and A be the differentiation operator Ax(t) = x'(t). $D(A) = \{x \in H \text{ such that } x' \in H\}$. A is closed. What is A^* ? The equality

$$\langle Ax, y \rangle = \int x' \bar{y} = -\int x \bar{y}' + (x \bar{y})|_0^1$$

shows that if supp $y \subset (0,1)$ then $A^*y = -y'$, and that for $y \in D(A^*)$ we should have additionally y(0) = y(1).

Thus

$$A^*y = -y', D(A^*) = \{x \in H; x' \in H, x(0) = x(1) = 0\}.$$

We can easily see, that $AA^*y = -y''$ and $A^*Ay = -y''$, However domains of these operators differ.

$$D(AA^*) = \{x \in H; x'' \in H \text{ and } x(0) = x(1) = 0\},\$$
$$D(A^*A) = \{x \in H; x'' \in H \text{ and } x'(0) = x'(1) = 0\}.$$

The operator AA^* has eigenfunctions $\sin k\pi x$, with eigenvalues $k^2\pi^2$, k = 1, 2, ...,The operator A^*A has eigenfunctions $\cos k\pi x$, with eigenvalues $k^2\pi^2$, k = 0, 1, 2, ..., all these eigenfunctions have norm $\frac{1}{\sqrt{2}}$ except $\cos 0\pi x$, which has norm 1. Thus setting $s_k = s_k(x) = \sqrt{2} \sin k\pi x$, $c_k = c_k(x) = \sqrt{2} \cos k\pi x$, k = 1, 2, ... and $c_0 = 1$ we have expansions:

$$AA^* = \sum_{k=1}^{\infty} k^2 \pi^2 \langle \cdot, s_k \rangle s_k, \quad A^*A = \sum_{k=1}^{\infty} k^2 \pi^2 \langle \cdot, c_k \rangle c_k$$

Defining

$$B = \sum_{k=1}^{\infty} k \pi \langle \cdot, s_k \rangle s_k, \quad C = \sum_{k=1}^{\infty} k \pi \langle \cdot, c_k \rangle c_k,$$
$$U = \sum_{k=1}^{\infty} \langle \cdot, s_k \rangle c_k, \quad V = -\sum_{k=1}^{\infty} \langle \cdot, c_k \rangle s_k,$$

we have $AA^* = B^2$, $A^*A = C^2$ with nonnegative selfadjoint operators B, C.

We have also $Ac_k = -k\pi s_k = BVc_k = VCc_k$, and $A^*s_k = -k\pi c_k = -CUs_k = -UBs_k$

Now it is easy to see that we have polar decompositions:

$$A = BV = VC, \quad A^* = -CU = -UB.$$

U is an isometry, but its range is not all H, V is partial isometry with kernel spanned by c_0 . Here $U^* = -V$.

The operator A has a lot of eigenfunctions, namely any function $e^{\lambda x}$ with complex number λ is its eigenfunction. From this set of eigenfunctions we may get a subset, which forms an orthonormal basis of H, for example $e_k = e_k(x) = e^{2\pi kxi}$, $k = 0, \pm 1, \pm 2, \ldots$

Hence one may write

$$A = 2\pi i \sum_{-\infty}^{\infty} k \langle \cdot, e_k \rangle e_k,$$

and such equality implies that A is a normal operator, with polar decompositions $A = U_0 B_0 = B_0 U_0$, where

$$B_0 = 2\pi \sum_{-\infty}^{\infty} |k| \langle \cdot, e_k \rangle e_k, \quad U_0 = i \sum_{-\infty}^{\infty} \operatorname{sign} k \langle \cdot, e_k \rangle e_k.$$

Of course it contradicts our previus considerations. What is wrong? We have choosen a basis which consists from periodic functions, as a derivative of a periodic function is again periodic we have silently restricted the domain of A to periodic functions only. Thus the operator A with the above expansion this time has a domain $\{x \in H; x' \in H, x(0) = x(1)\}$. A similar effect happens, when one tries to use sine basis (s_k) for approximation operator A. This shows that one has to be carefull while approximating unbounded operators.

Stone–von Neumann operator calculus

Operator calculus enables us to define f(A), where f is a complex valued functions defined on a subset of the complex plane, and A an operator. If f is a polynomial f(A) expands in powers of A in the same way as the polynomial.

In the case when A is a diagonalizable operator, i.e. $A = \sum \lambda_j \langle \cdot, e_k \rangle e_k$ we set $f(A) = \sum f(\lambda_j) \langle \cdot, e_k \rangle e_k$ and this definiton is consistent with the definition for polynomials.

Defining functions of selfadjoint operators is nearly the same task as that for diagonal ones. Let μ be a nonnegative Borel mesure defined on Borel subsets of real line. Let $H = L^2(\mu)$, and A be an operator defined by Ax(t) = tx(t). This operator is selfadjoint, its spectrum coincides with the support of μ , and for any Borel function f the operator f(A) is defined by f(A)x(t) = f(t)x(t).

Operators of this kind are blocks from which any selfadjoint operator is composed. Namely, if A is a selfadjoint operator acting in a Hilbert space H then there exists a family $\{\mu_{\alpha}\}_{\alpha}$ of nonnegative Borel measures and a unitary operator $U : H \to \bigoplus_{\alpha} L^2(\mu_{\alpha})$ such that $A = U^* \oplus_{\alpha} A_{\alpha} U$, where $A_{\alpha} x(t) = tx(t)$.

It is well known that spectral measure is a useful tool for studying selfadjoint operators. For each Borel subset $\Omega \subset R$ is an orthogonal projection acting in H. Spectral measure has properties similar to measure, $E(\Omega)$ is an orthogonal projection in H, $E(\Omega_1)E(\Omega_2) =$ $E(\Omega_1 \cap \Omega_2), E(\emptyset) = 0, E(R) = I$. Moreover $E(\Omega)A = AE(\Omega)$, and the operator A and any Borel measureable function f of this operator may be expressed as

$$A = \int t dE$$
, $f(A) = \int f(t) dE$.

if ess sup $|f| = \sup_{t\geq 0} \{t : E(\{x : |f(x)| \geq t\}) \neq 0\}$ is bounded, then this quantity equals ||f(A)||, if it is unbounded the operator f(A) is unbounded.

With the representation of A as the direct sum of operatores we can write

$$E(\Omega)x = U^* \oplus_\alpha \chi(\Omega)x_\alpha U,$$

where $\chi(\Omega)$ is the charecteristic function of the set Ω .

Note also that $\sigma(A) = \text{supp } E = \bigcup_{\alpha} \text{supp } \mu_{\alpha}$

While investigating the proofs of the result of the paper, we can see that the most essentiall parts are those which refer to properties of a selfadjoint operator. We shall give the proofs in the case when $H = L^2(\mu)$, and A is defined by Ax(t) = tx(t). We shall refer to this case as the *model case*. For some results we will present also a proof in the general case. All the others may be modified similarly.

We shall use result numbering as in the original paper, changing sometimes notations.

Index function definition A positive function $\psi : (0, \infty) \to (0, \infty)$ is an index function if it is increasing (non-decreasing) and continuous with $\lim_{t\to 0} \psi(t) = 0$.

Theorem 1. Let A be a nonnegative selfadjoint operator acting in H with ker $A = \{0\}$. then

(a) For every $x \in H$ and $\varepsilon > 0$ there exists a bounded index function ψ such that the general source condition

$$x = \psi(A)w$$
 with $w \in H$ and $||w|| \le (1 + \varepsilon)||x||$

is satisfied, and hence $x \in \operatorname{ran}\psi(A)$.

(b) If $x \in \operatorname{ran}\psi(A)$ for some unbounded index function ψ , then $x \in \operatorname{ran}\psi_0(A)$ for every bounded index function ψ_0 which coincides with ψ on $(0, t_0]$ for some $t_0 > 0$.

Comment 1. Why there is $||w|| \leq (1 + \varepsilon)||x||$ above? – substituting ψ with $\psi_{\varepsilon} = \frac{1+\varepsilon}{\varepsilon}\psi_{\varepsilon}$ and w by $w_{\varepsilon} = \frac{\varepsilon}{1+\varepsilon}w$ we get estimation $||w|| \leq \varepsilon ||x||$, while theorem suggests that the constant 1 and any smaller one cannot be achived. However I suppose that have some good reason for it, for example the family of index function $\psi_{\gamma}(t) = \gamma \psi(t) \gamma > 0$ should be represented by this one, that $\psi_{\gamma}(\bar{\alpha}) = 1$.

Proof of Th. 1 part (a) – model case version We assume $H = L^2(\mu)$, Ax(t) = tx(t)and ||x|| = 1. We have $||x||^2 = \int_0^\infty |x(t)|^2 d\mu = 1$, therefore for any $\alpha \in (0, 1)$ there exists decreasing and converging to 0 sequence of numbers $\{\tau_n\}_{n=0}^\infty$ such that

$$\int_{(0,\tau_n)} |x(t)|^2 d\mu \le \varepsilon \alpha^n, \quad \text{for } n = 0, 1, \dots$$

Z	1	۱
7		

Define with $\beta > 1$ and such that $\alpha \beta^2 < 1$

$$\psi_0(t) = \begin{cases} 1 \text{ for } t \ge \tau_0 \\ \beta^{-n} \text{ for } t \in [\tau_n, \tau_{n-1}), & n = 1, 2, \dots \end{cases},$$
(1)

Then

$$\int_{[\tau_n,\tau_{n-1})} |\psi_0^{-1}(t)x(t)|^2 d\mu \le \varepsilon \beta^{2n} \alpha^{n-1}$$

and

$$\begin{split} \|\psi_0^{-1}(A)x\|^2 &= \int_{(0,\infty)} |\psi_0^{-1}(t)x(t)|^2 d\mu \\ &= \int_{[\tau_0,\infty)} |x(t)|^2 d\mu + \sum_{n=1}^{\infty} \int_{[\tau_n,\tau_{n-1})} |\psi_0^{-1}(t)x(t)|^2 d\mu \\ &\leq 1 + \frac{\varepsilon}{\alpha} \sum_{n=1}^{\infty} (\alpha\beta^2)^n = 1 + \varepsilon \frac{\beta^2}{1 - \alpha\beta^2}. \end{split}$$

Thus with $\alpha = \frac{1}{4}$, $\beta^2 = \frac{4}{3}$ (then $\frac{\beta^2}{1-\alpha\beta^2} = 2$) we have $\|\psi_0^{-1}(A)x\| \le \sqrt{1+2\varepsilon} < 1+\varepsilon$ and therefore $w = \psi_0^{-1}(A)x$ satisfies the thesis (part (a)).

If we require ψ to be a continuous function we may define it as a continuous piecewise linear function, linear in intervals $[\tau_n, \tau_{n-1}]$ and such that $\psi(\tau_n) = \psi_0(\tau_n)$. Then $\psi_0(t) \ge \psi(t)$ and $\|\psi^{-1}(A)x\|^2 = \int |\psi^{-1}(t)x(t)|^2 \le \int |\psi_0^{-1}(t)x(t)|^2 = \|\psi_0^{-1}(A)x\|^2$ and the thesis is satisfied for ψ .

Proof of Th. 1 part (a) – general version Let E be spectral measure for operator $A, \varepsilon > 0$ and $\alpha = \frac{1}{4}$. We can find decreasing and converging to 0 sequence of numbers $\{\tau_n\}_{n=0}^{\infty}$ such that $||E((0,\tau_n))x||^2 < \varepsilon \alpha^n$. With ψ_0 defined by (1) and $\beta^2 = \frac{4}{3}$ we have

$$\|\psi_0(\tau_n)^{-1}E([\tau_n,\tau_{n-1})x\|^2 \le \varepsilon \alpha^{n-1} \beta^{2r}$$

Because

$$\sum_{n=1}^{\infty} \psi_0^{-1}(\tau_n)^{-1} E([\tau_n, \tau_{n-1}) + E((\tau_0, \infty)) = \psi_0^{-1}(A)$$

we have

$$\|\psi_0^{-1}(A)x\|^2 = \sum_{n=1}^{\infty} \|\psi_0^{-1}(\tau_n)^{-1}E([\tau_n, \tau_{n-1})x\|^2 + \|E((\tau_0, \infty))x\|^2 < 1 + 2\varepsilon < (1+\varepsilon)^2$$

Thus $w = \psi_0^{-1}(A)x$ satisfies part (a) of the thesis.

Proof of part (b). Assume $H = L^2(\mu)$ and action of A on a function is its multiplication by the argument. Then

$$\begin{aligned} \|\psi_0 f\|^2 &= \left(\int_{(0,t_0)} + \int_{[t_0,\infty)}\right) |\psi_0(t)f(t)|^2 \\ &\leq \int_{(0,t_0)} |\psi(t)f(t)|^2 + \sup_t \psi_0^2(t) \int_{[t_0,\infty)} |f(t)|^2 \leq \|\psi f\|^2 + \sup_t \psi_0^2(t) \|f\|^2 \\ & 5 \end{aligned}$$

In the general case, with each nonzero $x \in H$ we may associate Borel measure on the line by $\mu(\Omega) = ||E(\Omega)x||^2$. For any Borel measureable function ψ we then have

$$\|\psi(A)x\|^{2} = \|\int \psi(t)xdE\|^{2} = \int \|\psi(t)xdE\|^{2} = \int |\psi(t)|^{2}\|xdE\|^{2} = \int |\psi(t)|^{2}d\mu.$$

The proof is analogous to the proof for $H = L^2(\mu)$ with f = f(t) = 1.

Regularization definition. Family $\{g_{\alpha}\}_{0 < \alpha < \bar{\alpha}}$ of bounded Borel functions $g_{\alpha} : \mathbb{R}^+ \to \mathbb{R}^+$ R^+ is regularization if they are piecewise continuous in α and

- a) $r_{\alpha}(t) = 1 tg_{\alpha}(t) \to 0$ as $\alpha \to 0$,
- b) $|r_{\alpha}(t)| = |1 tg_{\alpha}(t)| < \gamma_1$, for all $\alpha \in (0, \bar{\alpha}], t > 0$, c) $\sqrt{t}|g_{\alpha}(t)| < \frac{\gamma_*}{\sqrt{\alpha}}$ for all t > 0.

Approximate solution of equation Ax = y is defined as

$$x_{\alpha}^{\delta} = A^* g_{\alpha} (AA^*) y^{\delta}$$

where $||y^{\delta} - y|| \leq \delta$.

Source condition for the solution x^{\dagger} of the equation Ax = y is $x^{\dagger} = \psi(A^*A)w$.

Definition

$$W = \{g : \|g\|_W = \sup_{s \in R^+} \sqrt{s}|g(s)| < \infty\}$$

Proposition 1. If $g \in W$ then $A^*g(AA^*) = g(A^*A)A^*$ and $||A^*g(AA^*)|| \le ||g||_W$. In the space $H = L^2(\mu)$ proposition takes the form

$$\sup_{t>0} |tg(t^2)| \le ||g||_W$$

and becomes trivial.

Corollary 2. With $r_{\alpha}(t) = 1 - tg_{\alpha}(t)$

$$\|r_{\alpha}(A^*A)\| \leq \gamma_1, \quad \|A^*g_{\alpha}(AA^*)\| \leq \frac{\gamma_*}{\sqrt{\alpha}}.$$

Proof. In our model case the thesis reads as

$$\sup_{t>0} |1 - t^2 g_{\alpha}(t^2)| \le \gamma_1, \quad \sup_{t>0} |tg_{\alpha}(t^2)| \le \frac{\gamma_*}{\sqrt{\alpha}},$$

so there is nothing to prove, as this is equivalent with definitions.

In the general case let A = BU be polar decomposition of A and E be spectral measure for $B \ge 0$, then $A^*A = U^*B^2U$, $AA^* = B^2$ and

$$r_{\alpha}(A^*A) = U^* \int r_{\alpha}(t^2) dEU, \quad A^*g_{\alpha}(AA^*) = U^* \int tg(t^2) dE$$

Thesis follows form the fact that $||r_{\alpha}(A^*A)|| = \text{ess sup }_{t \in \sigma(A^*A)}|r_{\alpha}(t)| \leq \gamma_1$ and similarly for $||A^*g_{\alpha}(AA^*)||$.

Lemma 6. With $x_{\alpha} = A^* g_{\alpha}(AA^*)Ax^{\dagger} = A^* g_{\alpha}(AA^*)y$ we have

$$\|x_{\alpha} - x_{\alpha}^{\delta}\| \le \gamma_* \frac{\delta}{\sqrt{\alpha}}.$$

Proof. In the model case $x_{\alpha}(t) = tg_{\alpha}(t^2)y(t)$. Therefore

$$|x_{\alpha}(t) - x_{\alpha}^{\delta}(t)| = |tg_{\alpha}(t^{2})(y(t) - y^{\delta}(t))| \le \sup_{t>0} |tg_{\alpha}(t^{2})||y(t) - y^{\delta}(t))| \le \frac{\gamma_{*}}{\sqrt{\alpha}}|y(t) - y^{\delta}(t)|$$

and this implies the thesis.

In the general case let BU = A be polar decomposition of A, and E be spectral measure for B. Then $x_{\alpha} = U^* Bg_{\alpha}(B^2)y$, $x_{\alpha}^{\delta} = U^* Bg_{\alpha}(B^2)y^{\delta}$ and

$$x_{\alpha} - x_{\alpha}^{\delta} = U^* B g_{\alpha}(B^2)(y - y^{\delta})$$

and because

$$Bg_{\alpha}(B^2) = \int tg_{\alpha}(t^2)dE$$

where E is the spectral measure of B, we have

$$||Bg_{\alpha}(B^2)|| \le \sup_{t>0} t|g_{\alpha}(t^2)| \le \frac{\gamma_*}{\sqrt{\alpha}}$$

and finally

$$||x_{\alpha} - x_{\alpha}^{\delta}|| = ||U^*Bg_{\alpha}(B^2)y|| \le ||U^*|| |||Bg_{\alpha}(B^2)||||y - y^{\delta}|| \le \frac{\gamma_*}{\sqrt{\alpha}}||y - y^{\delta}||.$$

Lemma 7. If the solution x^{\dagger} satisfies source condition $x^{\dagger} = \psi(A^*A)w$ then

$$\|x^{\dagger} - x_{\alpha}\| \le \|w\| \sup_{s \in \sigma(A^*A)} |r_{\alpha}(s)|\psi(s)|$$

Proof. In the model case

$$x^{\dagger}(t) - x_{\alpha}(t) = \psi(t^{2})w(t) - t^{2}g_{\alpha}(t^{2})\psi(t^{2})w(t) = \psi(t^{2})(1 - t^{2}g_{\alpha}(t^{2}))w(t).$$

Hence

$$\|x^{\dagger} - x_{\alpha}\| \leq \sup_{t \in \text{supp } \mu} |\psi(t^2)r_{\alpha}(t^2)| \cdot \|w\|.$$

Now the thesis follows form the fact that $\sigma(A^2) = \{t^2 : t \in \sigma(A)\}$ and in the model case $\sigma(A) = \text{supp } \mu$.

In the general case with the notation used in proof of Lemma 6 we have $A^*A = U^*BBU$ and therefore

$$x^{\dagger} = \psi(A^*A)w = U^*\psi(B^2)Uw,$$

,

$$\begin{aligned} x_{\alpha} = & U^* B g_{\alpha}(B^2) y = U^* B g_{\alpha}(B^2) A x^{\dagger} \\ = & U^* B g_{\alpha}(B^2) B U U^* \psi(B^2) U w = U^* B^2 g_{\alpha}(B^2) \psi(B^2) U w \end{aligned}$$

Thus

$$x^{\dagger} - x_{\alpha} = U^* (I - B^2 g_{\alpha}(B^2)) \psi(B^2) U w.$$
(2)

Note that

$$(I - B^2 g_{\alpha}(B^2))\psi(B^2) = \int (1 - t^2 g_{\alpha}(t^2))\psi(t^2)dE$$
$$\|(I - B^2 g_{\alpha}(B^2))\psi(B^2)\| \le \sup_{t \in \sigma(B)} |1 - t^2 g_{\alpha}(t^2)|\psi(t^2) = \sup_{t \in \sigma(A^*A)} |r(t)|\psi(t), \qquad (3)$$

because $\sigma(A^*A)$ may differ from $\sigma(AA^*) = \sigma(B^2)$ only by 0, and by the spectral mapping theorem $\sigma(B^2) = \{t^2; t \in \sigma(B)\}.$

Because $||U|| = ||U^*|| = 1$ (2) and (3) imply the thesis.

From Lemmata 6 and 7 we get final estimation

$$\|x^{\dagger} - x_{\alpha}^{\delta}\| \le \|x^{\dagger} - x_{\alpha}\| + \|x_{\alpha} - x_{\alpha}^{\delta}\| \le \|w\| \sup_{s} |r_{\alpha}(s)|\psi(s) + \gamma_* \frac{\delta}{\sqrt{\alpha}}.$$
 (4)

Bias convergence. Using the notation of Lemma 6 we have

$$x^{\dagger} - x_{\alpha} = x^{\dagger} - A^* g_{\alpha} (AA^*) A x^{\dagger} = U^* U x^{\dagger} - U^* B g_{\alpha} (B^2) B U x^{\dagger}$$
$$= U^* (I - B^2 g_{\alpha} (B^2)) U x^{\dagger} = U^* r_{\alpha} (B^2) U x^{\dagger}$$

and

$$||x^{\dagger} - x_{\alpha}||^{2} = \int r_{\alpha}^{2}(t^{2}) ||dEUx^{\dagger}||^{2}.$$

 $(\|dEUx^{\dagger}\|^2 = d\mu$ where the measure μ is defined by $\mu(\Omega) = \|E(\Omega)Ux^{\dagger}\|^2$.) The convergence $\|x^{\dagger} - x_{\alpha}\| \to 0$ follows form definition of regularization (parts a) and b)) and the Lebesgue's dominated convergence theorem.

Qualification

Definition 2. Qualification definition An index function φ is a qualification of the regularisation g_{α} if there are constants $\gamma = \gamma_{\varphi} < \infty$, $\bar{\alpha}_{\varphi}$ such that

$$\sup_{s \in \sigma(A^*A)} |r_{\alpha}(s)|\varphi(s) \le \gamma \varphi(\alpha), \quad 0 < \alpha \le \bar{\alpha}_{\varphi}.$$
(5)

Usually we do not know $\sigma(A^*A)$ which appears in (5), all we know is that $\sigma(A^*A) \subset [0, \infty)$, moreover qualification function is not defined in 0, therefore (5) should be read as

$$\sup_{s>0} |r_{\alpha}(s)|\varphi(s) \le \gamma \varphi(\alpha), \quad 0 < \alpha \le \bar{\alpha}.$$
(5')

Proposition 2. (reformulated) Let g_{α} be a regularization with some known qualification φ . If ψ is an index function such that

there exists $s_0 > 0$ such that the function $s \to \psi(s)/\varphi(s)$, $0 < s \le s_0$ is non-increasing,

$$\psi(s) \le C\varphi(s) \quad \text{for } s > s_0$$
 (GC)

then ψ is a qualification of g_{α} .

Proof. If $s \leq \alpha$ then $\psi(s) \leq \psi(\alpha)$ and by Regularization definition (b)

$$|r_{\alpha}(s)|\psi(s) \le \gamma_1\psi(\alpha) \quad \text{for } s \le \alpha.$$
 (a1)

We have

$$|r_{\alpha}(s)|\psi(s) = |r_{\alpha}(s)|\varphi(s)\frac{\psi(s)}{\varphi(s)} \le \gamma_{\varphi}\varphi(\alpha)\frac{\psi(s)}{\varphi(s)}$$
(a2)

If $\alpha \leq s \leq s_0$ then

$$\frac{\psi(s)}{\varphi(s)} \le \frac{\psi(\alpha)}{\varphi(\alpha)}.$$

This and (a2) show that

$$|r_{\alpha}(s)|\psi(s) \leq \gamma_{\varphi}\varphi(\alpha)\frac{\psi(\alpha)}{\varphi(\alpha)} = \gamma_{\varphi}\psi(\alpha) \quad \text{if } \alpha \leq s \leq s_0 \tag{a3}$$

We write (a2) in the form

$$|r_{\alpha}(s)|\psi(s) \leq \gamma_{\varphi}\psi(\alpha)\frac{\varphi(\alpha)}{\psi(\alpha)}\frac{\psi(s)}{\varphi(s)}.$$

If $\alpha \leq s_0$ then

$$\frac{\psi(s_0)}{\varphi(s_0)} \le \frac{\psi(\alpha)}{\varphi(\alpha)} \quad \text{ or equivalently } \frac{\varphi(\alpha)}{\psi(\alpha)} \le \frac{\varphi(s_0)}{\psi(s_0)}$$

Therefore

$$|r_{\alpha}(s)|\psi(s) \le \gamma_{\varphi}\psi(\alpha)\frac{\varphi(s_0)}{\psi(s_0)}\frac{\psi(s)}{\varphi(s)} \quad \text{if } \alpha \le s_0$$

If $s \ge s_0$ then $\psi(s) \le C\varphi(s)$ and

$$|r_{\alpha}(s)|\psi(s) \le C\gamma_{\varphi}\frac{\varphi(s_0)}{\psi(s_0)}\psi(\alpha) \quad \text{if } \alpha \le s_0 \text{ and } s \ge s_0.$$

$$(a4)$$

The inequalities (a1), (a2) and (a4) show that ψ is a qualification for g_{α} with constants $\bar{\alpha}_{\psi} = \min\{\bar{\alpha}, s_0\} \ \gamma_{\psi} = \min\{C\gamma_{\varphi} \frac{\varphi(s_0)}{\psi(s_0)}, \gamma_{\varphi}, \gamma_1\}.$

Remark. It is easy to show, that if condition (GC) holds for some s_0 then it holds for any $s_0 > 0$, the constant C may change only. However s_0 appears also in the assumption

on the monotonicity of $\frac{\psi(s)}{\varphi(s)}$. Thus we cannot ignore the constant $\bar{\alpha}_{\psi}$ as the authors of the paper have done.

Proposition 3. (reformulated) Let g_{α} be a regularization with some known qualification φ . If ψ is an index function such that

there exists $s_0 > 0$ such that the function $s \to \psi(s)/\varphi(s)$, $0 < s \le s_0$ is non-decreasing, and (GC) holds. then

$$|r_{\alpha}(s)|\psi(s) \le C\varphi(\alpha) \quad \text{ for } \alpha \in (0,\bar{\alpha}), s > 0$$

Proof.(omited by th authors) We have

$$\frac{\psi(s)}{\varphi(s)} \le \frac{\psi(s_0)}{\varphi(s_0)} \quad \text{for } s \le s_0,$$

hence from (a2) it follows that

$$r_{\alpha}(s)|\psi(s) \leq \gamma_{\varphi}\varphi(\alpha)\frac{\psi(s)}{\varphi(s)} \leq \gamma_{\varphi}\varphi(\alpha)\frac{\psi(s_{0})}{\varphi(s_{0})} \quad \text{for } s \leq s_{0}.$$
 (a5)

On the other hand

$$\psi(s) \le C\varphi(s) \quad \text{for } s > s_0,$$

then again form (a2) we have

$$|r_{\alpha}(s)|\psi(s) \leq \gamma_{\varphi}\varphi(\alpha)\frac{\psi(s)}{\varphi(s)} \leq C\gamma_{\varphi}\varphi(\alpha) \quad \text{for } s > s_0.$$
 (a6)

The thesis follows form (a5) and (a6) with C replaced by $\gamma_{\varphi} \max\{C, \frac{\psi(s_0)}{\varphi(s_0)}\}$.

Comment 2. In the original formulation of the above proposition authors claim that $1 \leq C \leq \infty$. There is no reason for it – if ψ satisfies the thesis with C then $\frac{1}{2C}\varphi$ satisfies the assumptions and the thesie with $C = \frac{1}{2}$. See Comment 1.

Lemma 7 and Propositions 2 and 3 lead to bias estimation.

Proposition 4. Let g_{α} be a regularization with qualification φ and $x^{\dagger} = \psi(A^*A)w$ a source condition with index function ψ , which satisfies (GC).

a) If the function $\frac{\psi(s)}{\varphi(s)}$ is non-increasing in $(0, s_0]$ then for some $C, \bar{\alpha} > 0$

$$\|x^{\dagger} - x_{\alpha}\| \le C\psi(\alpha)\|w\|, \quad \alpha \in (0, \bar{\alpha}]$$

b) If the function $\frac{\psi(s)}{\varphi(s)}$ is non-decreasing in $(0, s_0]$ then for some $C, \bar{\alpha} > 0$

$$||x^{\dagger} - x_{\alpha}|| \le C\varphi(\alpha)||w||, \quad \alpha \in (0, \bar{\alpha}]$$

Remark Note that if we set

$$\begin{aligned} \varphi_0(s) &= \varphi(s), \quad \psi_0(s) = \psi(s) & \text{for } s \in (0, s_0] \\ \varphi_0(s) &= \varphi(s_0), \quad \psi_0(s) = \psi(s_0) & \text{for } s \in (s_0, \infty) \end{aligned}$$

then φ_0 is also the qualification for g_{α} (by Proposition 2) and the functions φ_0, ψ_0 satisfy the same assumptions as the functions φ, ψ in Propositions 2-4, therefore also the same claims for these functions hold.

Convergence rates.

With assumptions of Proposition 4 and Lemma 6 we get error estimates if the form

$$\|x^{\dagger} - x_{\alpha}^{\delta}\| \le C\psi(\alpha)\|w\| + \gamma_* \frac{\delta}{\sqrt{\alpha}}, \quad \alpha \in (0, \bar{\alpha}]$$
$$\|x^{\dagger} - x_{\alpha}^{\delta}\| \le C\varphi(\alpha)\|w\| + \gamma_* \frac{\delta}{\sqrt{\alpha}}, \quad \alpha \in (0, \bar{\alpha}]$$

If $\psi(s) = s^p$ for each fixed δ we may find $\alpha = \alpha(\delta)$ which minimizes the right hand side in these equalities. With such ψ or φ we get estimation of the form

$$\|x^{\dagger} - x_{\alpha}^{\delta}\| \le C\left(\alpha^{p} + \frac{c\delta}{\sqrt{\alpha}}\right).$$

The minimum is attained for $\alpha = \left(\frac{c\delta}{2p}\right)^{\frac{2}{2p+1}}$ and equals $c\delta^{\frac{2p}{2p+1}}$ with some new constant c. With this choice of α we get

$$\|x^{\dagger} - x_{\alpha}^{\delta}\| \le C\delta^{\frac{2p}{2p+1}}.$$

Splitting operator. Using polar decomosition and spectral measure we may split operator $A = A_b \oplus A_u$. Let A = BU be the polar decomposition of $A, A : D(A) \to H_2$, $D(A) \subset H_1$, where H_1, H_2 are Hilbert spaces. $B: D(B) \to H_2, D(B) \subset H_2$ is a positive selfadjoint operator, and $U: H_1 \to H_2$ is an isometry.

With E - the spectral measure of B we set

$$H_{2,b} = E([0, s_0])H_2, \quad H_{2,u} = E((s_0, \infty))H_2,$$
$$H_{1,b} = U^{-1}H_{2,b}, \quad H_{1,u} = U^{-1}H_{2,u}.$$

Now

$$A_b = A|_{H_{1,b}} : H_{1,b} \to H_{2,b},$$

$$A_u = A|_{H_{1,u}} : D(A_u) \to H_{2,u}, D(A_u) = D(A) \cap H_{1,u}.$$

In the model case $H_{1,b} = H_{2,b} = L^2_{\mu}([0, s_0]), H_{1,u} = H_{2,u} = L^2_{\mu}((s_0, \infty))$ A_b is a bounded operator $||A_b|| \leq s_0, A_u$ may be unbounded, however it has a bounded inverse, because for $x \in D(A_u) \subset H_{1,u}$ we have

$$||A_u x|| = ||BUx|| \ge s_0 ||Ux|| = s_0 ||x||.$$

1	1
_	_

With this splitting regularization splits also

 $\begin{aligned} x_{\alpha}^{\delta} &= A^* g_{\alpha}(AA^*) y^{\delta} = A_b^* g_{\alpha}(B^2) y_b^{\delta} \oplus A_u^* g_{\alpha}(B^2) y_u^{\delta}, \\ \text{where } y_b^{\delta} &= U^{-1} E([0, s_0]) U y^{\delta}, \ y_u^{\delta} = U^{-1} E((s_0, \infty)) U y^{\delta}, \text{ and therefore } \|y_u^{\delta}\|^2 + \|y_b^{\delta}\|^2 = \|y^{\delta}\|^2. \end{aligned}$

Regularization theory for bounded operators is known it suffices to check, how it may be applied for unbounded operators with bounded inverse.

If φ is a qualification for $\{g_{\alpha}\}$ then for any $s_0 > 0$

$$|r_{\alpha}(\xi)|\varphi(s_{0}) \leq |r_{\alpha}(\xi)|\varphi(\xi) \leq \sup_{s>0} |r_{\alpha}(s)|\varphi(s) \leq \gamma\varphi(\alpha), \quad 0 < \alpha \leq \bar{\alpha}, \quad \xi > s_{0}.$$

Then we can estimate some part of bias.

In the model case we have

$$E([s_0,\infty))(x^{\dagger} - x_{\alpha}) = (I - A_u^2 g_{\alpha}(A_u^2))E([s_0,\infty))x^{\dagger}$$

and

$$\|E([s_0,\infty))(x^{\dagger}-x_{\alpha})\|^2 = \int_{[s_0,\infty)} |r_{\alpha}(t^2)|x^{\dagger}(t)|^2 \le \frac{\gamma^2 \varphi^2(\alpha)}{\varphi^2(s_0^2)} \|E([s_0,\infty))x^{\dagger}\|^2$$

In the general case we have

$$U^*E([s_0,\infty))U(x^{\dagger} - x_{\alpha}) = U^*(I - B^2g_{\alpha}(B^2))E([s_0,\infty))Ux^{\dagger}$$

and therefore

$$\|U^*E([s_0,\infty))U(x^{\dagger}-x_{\alpha})\|^2 = \int_{[s_0,\infty)} r_{\alpha}^2(t^2) \|dEUx^{\dagger}\|^2 \le \frac{\gamma^2 \varphi^2(\alpha)}{\varphi^2(s_0^2)} \|E([s_0,\infty))Ux^{\dagger}\|^2.$$

Hence

$$|U^*E([s_0,\infty))U(x^{\dagger}-x_{\alpha})|| \le \frac{\gamma\varphi(\alpha)}{\varphi(s_0^2)}||x^{\dagger}||.$$
(6)

Part c) of regularization definition is mainly applicable to operators for which their positive part in polar decompsition is not strictly bounded by 0 from below. It is not the case for A_u .

$$\|U^* E([s_0,\infty))U(x_{\alpha} - x_{\alpha}^{\delta})\| \le \sup_{t \ge s_0} t |g_{\alpha}(t^2)\|y - y^{\delta}\| \le \delta \sup_{t \ge s_0} t |g_{\alpha}(t^2).$$

For Tikhonov relularization $g_{\alpha}(t) = \frac{1}{t+\alpha}$ and

$$\sup_{t \ge s_0} t | g_{\alpha}(t^2) = \frac{s_0}{s_0^2 + \alpha} \le s_0^{-1} \quad \text{for } \alpha \le s_0^2$$

because the derivative or $\frac{t}{t^2+\alpha}$ is negative for $\alpha \leq s_0^2$. Thus the bound does not depend on α .

References.

- Berndt Hofmann, Peter Matheé and Heinrich von Weizsäcker, Regularization in Hilbert Space under Unbounded Operators and General Source Conditions, Inverse Problems 25 (2009), 1–15.
- 1. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag 1976.