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We consider operators acting in a Hilbert space H. We assume that the domains
of these operators are dense in H. The domain, range and kernel of an operator A are
denoted by D(A), ranA, kerA, respectively.

Definitions
Operator A is closed if for any sequence {xn}∞n=1 such that xn ∈ D(A), ‖xn−x0‖ → 0

and ‖Axn − y‖ → 0 for some y ∈ H implies x0 ∈ D(A) and Ax0 = y.
Operator A is closable if there exists a closed extension of A, i.e. there exists a closed

operator B such that D(A) ⊂ D(B) and Ax = Bx for x ∈ D(A).
An operator B is adjoint to A if 〈Ax, y〉 = 〈x,By〉 for any x ∈ D(A). The domain

of B is the set of all those y ∈ H that there exists z ∈ H such that 〈Ax, y〉 = 〈x, z〉. Then
z = By. And we write A∗ = B.

Polar decomposition
Because A∗A ≥ 0 there exists the operator B ≥ 0 such that A∗A = B2.
Let us define B† = 0|kerB ⊕ cl((B|D(B)∩(kerB)⊥

)−1), cl denotes here the closure of an
operator.

We have the identity

〈Ax,Ay〉 = 〈Bx,By〉 for x, y ∈ D(A).

Note that

ranB = (kerB)⊥ = (kerA∗A)⊥ = (kerA)⊥ = ranA∗.

Hence for u, v ∈ ranB we have the identity

〈AB†u,AB†v〉 = 〈u, v〉.

which shows that AB† is an isometry on ranB. The closure U of AB† is partial isometry
– it isometrically transforms ranB = ranA∗ on ranU = ranAB† = ranA and vanishes on
its kernel – kerU = kerB† = kerB = kerA.

We have
UBx = AB†Bx = Ax for x ∈ D(A).

A = UB is called right polar decomposition of A.
U∗ is also a partial isometry – it isometrically transforms ranA∗ on ranA and kerU∗ =

(ranU)⊥ = (ranA)⊥ = kerA∗.
Moreover the equality

〈U∗Uu, v〉 = 〈Uu,Uv〉 = 〈u, v〉 valid for u, v ∈ ranB = ranA∗
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shows that

U∗Uu =
{
u for u ∈ ranA∗,
0 for u ∈ kerA.

Therefore A = UBU∗U = CU , where C = UBU∗ is also a selfadjoint nonnegative oper-
ator. This is the left polar decomposition of A. Note that U is the same in both polar
decompositions. The above in particullary implies that AA∗ = UB2U∗ = U(A∗A)U∗.

Examples.
Let H = L2(0, 1) and A be the differentiation operator Ax(t) = x′(t). D(A) = {x ∈

H such that x′ ∈ H}. A is closed. What is A∗? The equality

〈Ax, y〉 =
∫
x′ȳ = −

∫
xȳ′ + (xȳ)|10

shows that if supp y ⊂ (0, 1) then A∗y = −y′, and that for y ∈ D(A∗) we should have
additionally y(0) = y(1).

Thus
A∗y = −y′, D(A∗) = {x ∈ H;x′ ∈ H,x(0) = x(1) = 0}.

We can easily see, that AA∗y = −y′′ and A∗Ay = −y′′, However domains of these
operators differ.

D(AA∗) = {x ∈ H;x′′ ∈ H and x(0) = x(1) = 0},

D(A∗A) = {x ∈ H;x′′ ∈ H and x′(0) = x′(1) = 0}.

The operator AA∗ has eigenfunctions sin kπx, with eigenvalues k2π2, k = 1, 2, . . .,
The operator A∗A has eigenfunctions cos kπx, with eigenvalues k2π2, k = 0, 1, 2, . . ., all
these eigenfunctions have norm 1√

2
except cos 0πx, which has norm 1. Thus setting sk =

sk(x) =
√

2 sin kπx, ck = ck(x) =
√

2 cos kπx, k = 1, 2, . . . and c0 = 1 we have expansions:

AA∗ =
∞∑
k=1

k2π2〈·, sk〉sk, A∗A =
∞∑
k=1

k2π2〈·, ck〉ck

Defining

B =
∞∑
k=1

kπ〈·, sk〉sk, C =
∞∑
k=1

kπ〈·, ck〉ck,

U =
∞∑
k=1

〈·, sk〉ck, V = −
∞∑
k=1

〈·, ck〉sk,

we have AA∗ = B2, A∗A = C2 with nonnegative selfadjoint operators B,C.
We have also Ack = −kπsk = BV ck = V Cck, and A∗sk = −kπck = −CUsk =

−UBsk
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Now it is easy to see that we have polar decompositions:

A = BV = V C, A∗ = −CU = −UB.

U is an isometry, but its range is not all H, V is partial isometry with kernel spanned by
c0. Here U∗ = −V .

The operator A has a lot of eigenfunctions, namely any function eλx with complex
number λ is its eigenfunction. From this set of eigenfunctions we may get a subset, which
forms an orthonormal basis of H, for example ek = ek(x) = e2πkxi, k = 0,±1,±2, . . ..

Hence one may write

A = 2πi
∞∑
−∞

k〈·, ek〉ek,

and such equality implies that A is a normal operator, with polar decompositions A =
U0B0 = B0U0, where

B0 = 2π
∞∑
−∞
|k|〈·, ek〉ek, U0 = i

∞∑
−∞

signk〈·, ek〉ek.

Of course it contradicts our previus considerations. What is wrong? We have choosen
a basis which consists from periodic functons, as a derivative of a periodic function is again
periodic we have silently restricted the domain of A to periodic functions only. Thus the
operator A with the above expansion this time has a domain {x ∈ H;x′ ∈ H,x(0) = x(1)}.
A similar efect happens, when one tries to use sine basis (sk) for approximation operator
A. This shows that one has to be carefull while approximating unbounded operators.

Stone–von Neumann operator calculus
Operator calculus enables us to define f(A), where f is a complex valued functions

defined on a subset of the complex plane, and A an operator. If f is a polynomial f(A)
expands in powers of A in the same way as the polynomial.

In the case when A is a diagonalizable operator, i.e. A =
∑
λj〈·, ek〉ek we set f(A) =∑

f(λj)〈·, ek〉ek and this definiton is consistent with the definition for polynomials.
Defining functions of selfadjoint operators is nearly the same task as that for diagonal

ones. Let µ be a nonnegative Borel mesure defined on Borel subsets of real line. Let
H = L2(µ), and A be an operator defined by Ax(t) = tx(t). This operator is selfadjoint,
its spectrum coincides with the support of µ, and for any Borel function f the operator
f(A) is defined by f(A)x(t) = f(t)x(t).

Operators of this kind are blocks from which any selfadjoint operator is composed.
Namely, if A is a selfadjoint operator acting in a Hilbert space H then there exists a family
{µα}α of nonnegative Borel measures and a unitary operator U : H → ⊕αL2(µα) such
that A = U∗ ⊕α AαU , where Aαx(t) = tx(t).

It is well known that spectral measure is a useful tool for studying selfadjoint operators.
For each Borel subset Ω ⊂ R is an orthogonal projection acting in H. Spectral measure
has properties similar to measure, E(Ω) is an orthogonal projection in H, E(Ω1)E(Ω2) =
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E(Ω1 ∩ Ω2), E(∅) = 0, E(R) = I. Moreover E(Ω)A = AE(Ω), and the operator A and
any Borel measureable function f of this opeator may be expressed as

A =
∫
tdE, f(A) =

∫
f(t)dE.

if ess sup |f | = supt≥0{t : E({x : |f(x)| ≥ t}) 6= 0} is bounded, then this quantity equals
‖f(A)‖, if it is unbounded the operator f(A) is unbounded.

With the representation of A as the direct sum of operatores we can write

E(Ω)x = U∗ ⊕α χ(Ω)xαU,

where χ(Ω) is the charecteristic function of the set Ω.
Note also that σ(A) = supp E =

⋃
α supp µα

While investigating the proofs of the result of the paper, we can see that the most
essentiall parts are those which refer to properties of a selfadjoint operator. We shall give
the proofs in the case when H = L2(µ), and A is defined by Ax(t) = tx(t). We shall refer
to this case as the model case. For some results we will present also a proof in the general
case. All the others may be modified similarily.

We shall use result numbering as in the original paper, changing sometimes notations.

Index function definition A positive function ψ : (0,∞)→ (0,∞) is an index function
if it is increasing (non-decreasing) and continuous with limt→0 ψ(t) = 0.

Theorem 1. Let A be a nonnegative selfadjoint operator acting in H with kerA = {0}.
then
(a) For every x ∈ H and ε > 0 there exists a bounded index function ψ such that the

general source condition

x = ψ(A)w with w ∈ H and ‖w‖ ≤ (1 + ε)‖x‖

is satisfied, and hence x ∈ ranψ(A).
(b) If x ∈ ranψ(A) for some unbounded index function ψ, then x ∈ ranψ0(A) for every

bounded index function ψ0 which coincides with ψ on (0, t0] for some t0 > 0.
Comment 1. Why there is ‖w‖ ≤ (1 + ε)‖x‖ above? – substituting ψ with ψε = 1+ε

ε ψε
and w by wε = ε

1+εw we get estimation ‖w‖ ≤ ε‖x‖, while theorem suggests that the
constant 1 and any smaller one cannot be achived. However I suppose thay have some
good reason for it, for example the family of index function ψγ(t) = γψ(t) γ > 0 should
be represented by this one, that ψγ(ᾱ) = 1.
Proof of Th. 1 part (a) – model case version We assume H = L2(µ), Ax(t) = tx(t)
and ‖x‖ = 1. We have ‖x‖2 =

∫∞
0
|x(t)|2dµ = 1, therefore for any α ∈ (0, 1) there exists

decreasing and converging to 0 sequence of numbers {τn}∞n=0 such that∫
(0,τn)

|x(t)|2dµ ≤ εαn, for n = 0, 1, . . . .
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Define with β > 1 and such that αβ2 < 1

ψ0(t) =
{

1 for t ≥ τ0
β−n for t ∈ [τn, τn−1), n = 1, 2, . . . , . (1)

Then ∫
[τn,τn−1)

|ψ−1
0 (t)x(t)|2dµ ≤ εβ2nαn−1

and
‖ψ−1

0 (A)x‖2 =
∫

(0,∞)

|ψ−1
0 (t)x(t)|2dµ

=
∫

[τ0,∞)

|x(t)|2dµ+
∞∑
n−1

∫
[τn,τn−1)

|ψ−1
0 (t)x(t)|2dµ

≤1 +
ε

α

∞∑
n=1

(αβ2)n = 1 + ε
β2

1− αβ2
.

Thus with α = 1
4 , β2 = 4

3 (then β2

1−αβ2 = 2) we have ‖ψ−1
0 (A)x‖ ≤

√
1 + 2ε < 1 + ε and

therefore w = ψ−1
0 (A)x satisfies the thesis (part (a)).

If we require ψ to be a continuous function we may define it as a continuous piece-
wise linear function, linear in intervals [τn, τn−1] and such that ψ(τn) = ψ0(τn). Then
ψ0(t) ≥ ψ(t) and ‖ψ−1(A)x‖2 =

∫
|ψ−1(t)x(t)|2 ≤

∫
|ψ−1

0 (t)x(t)|2 = ‖ψ−1
0 (A)x‖2 and the

thesis is satisfied for ψ.
Proof of Th. 1 part (a) – general version Let E be spectral measure for operator
A, ε > 0 and α = 1

4 . We can find decreasing and converging to 0 sequence of numbers
{τn}∞n=0 such that ‖E((0, τn))x‖2 < εαn. With ψ0 defined by (1) and β2 = 4

3 we have

‖ψ0(τn)−1E([τn, τn−1)x‖2 ≤ εαn−1β2n

Because
∞∑
n=1

ψ−1
0 (τn)−1E([τn, τn−1) + E((τ0,∞)) = ψ−1

0 (A)

we have

‖ψ−1
0 (A)x‖2 =

∞∑
n=1

‖ψ−1
0 (τn)−1E([τn, τn−1)x‖2 + ‖E((τ0,∞))x‖2 < 1 + 2ε < (1 + ε)2

Thus w = ψ−1
0 (A)x satisfies part (a) of the thesis.

Proof of part (b). Assume H = L2(µ) and action of A on a function is its multiplication
by the argument. Then

‖ψ0f‖2 =

(∫
(0,t0)

+
∫

[t0,∞)

)
|ψ0(t)f(t)|2

≤
∫

(0,t0)

|ψ(t)f(t)|2 + sup
t
ψ2

0(t)
∫

[t0,∞)

|f(t)|2 ≤ ‖ψf‖2 + sup
t
ψ2

0(t)‖f‖2.
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In the general case, with each nonzero x ∈ H we may associate Borel measure on the
line by µ(Ω) = ‖E(Ω)x‖2. For any Borel measureable funciton ψ we then have

‖ψ(A)x‖2 = ‖
∫
ψ(t)xdE‖2 =

∫
‖ψ(t)xdE‖2 =

∫
|ψ(t)|2‖xdE‖2 =

∫
|ψ(t)|2dµ.

The proof is analogous to the proof for H = L2(µ) with f = f(t) = 1.

Regularization definition. Family {gα}0<α<ᾱ of bounded Borel functions gα : R+ →
R+ is regularization if they are piecewise continuous in α and

a) rα(t) = 1− tgα(t)→ 0 as α→ 0,
b) |rα(t)| = |1− tgα(t)| < γ1, for all α ∈ (0, ᾱ], t > 0,
c)
√
t|gα(t)| < γ∗√

α
for all t > 0.

Approximate solution of equation Ax = y is defined as

xδα = A∗gα(AA∗)yδ

where ‖yδ − y‖ ≤ δ.

Source condition for the solution x† of the equation Ax = y is x† = ψ(A∗A)w.

Definition
W = {g : ‖g‖W = sup

s∈R+

√
s|g(s)| <∞}

Proposition 1. If g ∈W then A∗g(AA∗) = g(A∗A)A∗ and ‖A∗g(AA∗)‖ ≤ ‖g‖W .
In the space H = L2(µ) proposition takes the form

sup
t>0
|tg(t2)| ≤ ‖g‖W

and becomes trivial.

Corollary 2. With rα(t) = 1− tgα(t)

‖rα(A∗A)‖ ≤ γ1, ‖A∗gα(AA∗)‖ ≤ γ∗√
α
.

Proof. In our model case the thesis reads as

sup
t>0
|1− t2gα(t2)| ≤ γ1, sup

t>0
|tgα(t2)| ≤ γ∗√

α
,

so there is nothing to prove, as this is equivalent with definitions.
In the general case let A = BU be polar decomposition of A and E be spectral measure

for B ≥ 0, then A∗A = U∗B2U , AA∗ = B2 and

rα(A∗A) = U∗
∫
rα(t2)dEU, A∗gα(AA∗) = U∗

∫
tg(t2)dE.
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Thesis follows form the fact that ‖rα(A∗A)‖ = ess sup t∈σ(A∗A)|rα(t)| ≤ γ1 and similarily
for ‖A∗gα(AA∗)‖.

Lemma 6. With xα = A∗gα(AA∗)Ax† = A∗gα(AA∗)y we have

‖xα − xδα‖ ≤ γ∗
δ√
α
.

Proof. In the model case xα(t) = tgα(t2)y(t). Therefore

|xα(t)− xδα(t)| = |tgα(t2)(y(t)− yδ(t))| ≤ sup
t>0
|tgα(t2)||y(t)− yδ(t))| ≤ γ∗√

α
|y(t)− yδ(t)|

and this implies the thesis.
In the general case let BU = A be polar decomposition of A, and E be spectral

measure for B. Then xα = U∗Bgα(B2)y, xδα = U∗Bgα(B2)yδ and

xα − xδα = U∗Bgα(B2)(y − yδ)

and because
Bgα(B2) =

∫
tgα(t2)dE

where E is the spectral measure of B, we have

‖Bgα(B2)‖ ≤ sup
t>0

t|gα(t2)| ≤ γ∗√
α

and finally

‖xα − xδα‖ = ‖U∗Bgα(B2)y‖ ≤ ‖U∗‖‖‖Bgα(B2)‖‖y − yδ‖ ≤ γ∗√
α
‖y − yδ‖.

Lemma 7. If the solution x† satisfies source condition x† = ψ(A∗A)w then

‖x† − xα‖ ≤ ‖w‖ sup
s∈σ(A∗A)

|rα(s)|ψ(s).

Proof. In the model case

x†(t)− xα(t) = ψ(t2)w(t)− t2gα(t2)ψ(t2)w(t) = ψ(t2)(1− t2gα(t2))w(t).

Hence
‖x† − xα‖ ≤ sup

t∈supp µ
|ψ(t2)rα(t2)| · ‖w‖.

Now the thesis follows form the fact that σ(A2) = {t2 : t ∈ σ(A)} and in the model case
σ(A) = supp µ.
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In the general case with the notation used in proof of Lemma 6 we have A∗A =
U∗BBU and therefore

x† = ψ(A∗A)w = U∗ψ(B2)Uw,

,
xα =U∗Bgα(B2)y = U∗Bgα(B2)Ax†

=U∗Bgα(B2)BUU∗ψ(B2)Uw = U∗B2gα(B2)ψ(B2)Uw

Thus
x† − xα = U∗(I −B2gα(B2))ψ(B2)Uw. (2)

Note that
(I −B2gα(B2))ψ(B2) =

∫
(1− t2gα(t2))ψ(t2)dE

‖(I −B2gα(B2))ψ(B2)‖ ≤ sup
t∈σ(B)

|1− t2gα(t2)|ψ(t2) = sup
t∈σ(A∗A)

|r(t)|ψ(t), (3)

because σ(A∗A) may differ from σ(AA∗) = σ(B2) only by 0, and by the spectral mapping
theorem σ(B2) = {t2; t ∈ σ(B)}.

Because ‖U‖ = ‖U∗‖ = 1 (2) and (3) imply the thesis.
From Lemmata 6 and 7 we get final estimation

‖x† − xδα‖ ≤ ‖x† − xα‖+ ‖xα − xδα‖ ≤ ‖w‖ sup
s
|rα(s)|ψ(s) + γ∗

δ√
α
. (4)

Bias convergence. Using the notation of Lemma 6 we have

x† − xα =x† −A∗gα(AA∗)Ax† = U∗Ux† − U∗Bgα(B2)BUx†

=U∗(I −B2gα(B2))Ux† = U∗rα(B2)Ux†

and
‖x† − xα‖2 =

∫
r2
α(t2)‖dEUx†‖2.

(‖dEUx†‖2 = dµ where the measure µ is defined by µ(Ω) = ‖E(Ω)Ux†‖2.) The conver-
gence ‖x† − xα‖ → 0 follows form definition of regularization (parts a) and b)) and the
Lebesgue’s dominated convergence theorem.

Qualification

Definition 2. Qualification definition An index function ϕ is a qualification of the
regularisation gα if there are constants γ = γϕ <∞, ᾱϕ such that

sup
s∈σ(A∗A)

|rα(s)|ϕ(s) ≤ γϕ(α), 0 < α ≤ ᾱϕ. (5)

Usually we do not know σ(A∗A) which appears in (5), all we know is that σ(A∗A) ⊂
[0,∞), moreover qualification function is not defined in 0, therefore (5) should be read as

sup
s>0
|rα(s)|ϕ(s) ≤ γϕ(α), 0 < α ≤ ᾱ. (5′)
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Proposition 2. (reformulated) Let gα be a regularization with some known qualification
ϕ. If ψ is an index function such that
there exists s0 > 0 such that the function s→ ψ(s)/ϕ(s), 0 < s ≤ s0 is non-increasing,

ψ(s) ≤ Cϕ(s) for s > s0 (GC)

then ψ is a qualification of gα.

Proof. If s ≤ α then ψ(s) ≤ ψ(α) and by Regularization definition (b)

|rα(s)|ψ(s) ≤ γ1ψ(α) for s ≤ α. (a1)

We have

|rα(s)|ψ(s) = |rα(s)|ϕ(s)
ψ(s)
ϕ(s)

≤ γϕϕ(α)
ψ(s)
ϕ(s)

(a2)

If α ≤ s ≤ s0 then
ψ(s)
ϕ(s)

≤ ψ(α)
ϕ(α)

.

This and (a2) show that

|rα(s)|ψ(s) ≤ γϕϕ(α)
ψ(α)
ϕ(α)

= γϕψ(α) if α ≤ s ≤ s0 (a3)

We write (a2) in the form

|rα(s)|ψ(s) ≤ γϕψ(α)
ϕ(α)
ψ(α)

ψ(s)
ϕ(s)

.

If α ≤ s0 then
ψ(s0)
ϕ(s0)

≤ ψ(α)
ϕ(α)

or equivalently
ϕ(α)
ψ(α)

≤ ϕ(s0)
ψ(s0)

Therefore

|rα(s)|ψ(s) ≤ γϕψ(α)
ϕ(s0)
ψ(s0)

ψ(s)
ϕ(s)

if α ≤ s0

If s ≥ s0 then ψ(s) ≤ Cϕ(s) and

|rα(s)|ψ(s) ≤ Cγϕ
ϕ(s0)
ψ(s0)

ψ(α) if α ≤ s0 and s ≥ s0. (a4)

The inequalities (a1), (a2) and (a4) show that ψ is a qualification for gα with constants
ᾱψ = min{ᾱ, s0} γψ = min{Cγϕ ϕ(s0)

ψ(s0) , γϕ, γ1}.

Remark. It is easy to show, that if condition (GC) holds for some s0 then it holds for
any s0 > 0, the constant C may change only. However s0 appears also in the assumption
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on the monotonicity of ψ(s)
ϕ(s) . Thus we cannot ignore the constant ᾱψ as the authors of the

paper have done.

Proposition 3. (reformulated) Let gα be a regularization with some known qualification
ϕ. If ψ is an index function such that
there exists s0 > 0 such that the function s → ψ(s)/ϕ(s), 0 < s ≤ s0 is non-decreasing,
and (GC) holds. then

|rα(s)|ψ(s) ≤ Cϕ(α) for α ∈ (0, ᾱ), s > 0.

Proof.(omited by th authors) We have

ψ(s)
ϕ(s)

≤ ψ(s0)
ϕ(s0)

for s ≤ s0,

hence from (a2) it follows that

|rα(s)|ψ(s) ≤ γϕϕ(α)
ψ(s)
ϕ(s)

≤ γϕϕ(α)
ψ(s0)
ϕ(s0)

for s ≤ s0. (a5)

On the other hand
ψ(s) ≤ Cϕ(s) for s > s0,

then again form (a2) we have

|rα(s)|ψ(s) ≤ γϕϕ(α)
ψ(s)
ϕ(s)

≤ Cγϕϕ(α) for s > s0. (a6)

The thesis follows form (a5) and (a6) with C replaced by γϕ max{C, ψ(s0)
ϕ(s0)}.

Comment 2. In the original formulation of the above proposition authors claim that
1 ≤ C ≤ ∞. There is no reason for it – if ψ satisfies the thesis with C then 1

2Cϕ satisfies
the assumptions and the thesie with C = 1

2 . See Comment 1.
Lemma 7 and Propositions 2 and 3 lead to bias estimation.

Proposition 4. Let gα be a regularization with qualification ϕ and x† = ψ(A∗A)w a
source condition with index function ψ, which satisfies (GC).

a) If the function ψ(s)
ϕ(s) is non-increasing in (0, s0] then for some C, ᾱ > 0

‖x† − xα‖ ≤ Cψ(α)‖w‖, α ∈ (0, ᾱ]

b) If the function ψ(s)
ϕ(s) is non-decreasing in (0, s0] then for some C, ᾱ > 0

‖x† − xα‖ ≤ Cϕ(α)‖w‖, α ∈ (0, ᾱ]
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Remark Note that if we set

ϕ0(s) = ϕ(s), ψ0(s) = ψ(s) for s ∈ (0, s0]
ϕ0(s) = ϕ(s0), ψ0(s) = ψ(s0) for s ∈ (s0,∞)

then ϕ0 is also the qualification for gα (by Proposition 2) and the functions ϕ0, ψ0 satisfy
the same assumptions as the functions ϕ,ψ in Propositions 2-4, therefore also the same
claims for these functions hold.

Convergence rates.
With assumptions of Proposition 4 and Lemma 6 we get error estimates if the form

‖x† − xδα‖ ≤ Cψ(α)‖w‖+ γ∗
δ√
α
, α ∈ (0, ᾱ]

‖x† − xδα‖ ≤ Cϕ(α)‖w‖+ γ∗
δ√
α
, α ∈ (0, ᾱ]

If ψ(s) = sp for each fixed δ we may find α = α(δ) which minimizes the right hand
side in these equalities. With such ψ or ϕ we get estimation of the form

‖x† − xδα‖ ≤ C
(
αp +

cδ√
α

)
.

The minimum is attained for α =
(
cδ
2p

) 2
2p+1

and equals cδ
2p

2p+1 with some new constant c.
With this choice of α we get

‖x† − xδα‖ ≤ Cδ
2p

2p+1 .

Splitting operator. Using polar decomosition and spectral measure we may split op-
erator A = Ab ⊕ Au. Let A = BU be the polar decomposition of A, A : D(A) → H2,
D(A) ⊂ H1, where H1, H2 are Hilbert spaces. B : D(B) → H2, D(B) ⊂ H2 is a positive
selfadjoint operator, and U : H1 → H2 is an isometry.

With E - the spectral measure of B we set

H2,b = E([0, s0])H2, H2,u = E((s0,∞))H2,

H1,b = U−1H2,b, H1,u = U−1H2,u.

Now
Ab = A|H1,b

:H1,b → H2,b,

Au = A|H1,u
:D(Au)→ H2,u, D(Au) = D(A) ∩H1,u.

In the model case H1,b = H2,b = L2
µ([0, s0]), H1,u = H2,u = L2

µ((s0,∞))
Ab is a bounded operator ‖Ab‖ ≤ s0, Au may be unbounded, however it has a bounded

inverse, because for x ∈ D(Au) ⊂ H1,u we have

‖Aux‖ = ‖BUx‖ ≥ s0‖Ux‖ = s0‖x‖.
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With this splitting regularization splits also

xδα = A∗gα(AA∗)yδ = A∗bgα(B2)yδb ⊕A∗ugα(B2)yδu,

where yδb = U−1E([0, s0])Uyδ, yδu = U−1E((s0,∞))Uyδ, and therefore ‖yδu‖2 + ‖yδb‖2 =
‖yδ‖2.

Regularization theory for bounded operators is known it suffices to check, how it may
be applied for unbounded operators with bounded inverse.

If ϕ is a qualification for {gα} then for any s0 > 0

|rα(ξ)|ϕ(s0) ≤ |rα(ξ)|ϕ(ξ) ≤ sup
s>0
|rα(s)|ϕ(s) ≤ γϕ(α), 0 < α ≤ ᾱ, ξ > s0.

Then we can estimate some part of bias.
In the model case we have

E([s0,∞))(x† − xα) = (I −A2
ugα(A2

u))E([s0,∞))x†

and

‖E([s0,∞))(x† − xα)‖2 =
∫

[s0,∞)

|rα(t2))x†(t)|2 ≤ γ2ϕ2(α)
ϕ2(s2

0)
‖E([s0,∞))x†‖2

In the general case we have

U∗E([s0,∞))U(x† − xα) = U∗(I −B2gα(B2))E([s0,∞))Ux†

and therefore

‖U∗E([s0,∞))U(x† − xα)‖2 =
∫

[s0,∞)

r2
α(t2)‖dEUx†‖2 ≤ γ2ϕ2(α)

ϕ2(s2
0)
‖E([s0,∞))Ux†‖2.

Hence

‖U∗E([s0,∞))U(x† − xα)‖ ≤ γϕ(α)
ϕ(s2

0)
‖x†‖. (6)

Part c) of regularization definition is mainly applicable to operators for which their
positive part in polar decompsition is not strictly bounded by 0 from below. It is not the
case for Au.

‖U∗E([s0,∞))U(xα − xδα)‖ ≤ sup
t≥s0

t|gα(t2)‖y − yδ‖ ≤ δ sup
t≥s0

t|gα(t2).

For Tikhonov relularization gα(t) = 1
t+α and

sup
t≥s0

t|gα(t2) =
s0

s2
0 + α

≤ s−1
0 for α ≤ s2

0

because the derivative or t
t2+α is negative for α ≤ s2

0. Thus the bound does not depend
on α.
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