Given an ergodic dynamical system $(X, \mathcal{B}, \mu, T)$, we prove that for each function $f$ belonging to the Orlicz space $L(\log L)^2(\log \log L)(X, \mu)$, the ergodic averages \[ \frac{1}{\pi(N)} \sum_{p \in \mathbb{P}_N} f\big(T^p x\big), \] converge for $\mu$-almost all $x \in X$, where $\mathbb{P}_N$ is the set of prime numbers not larger that $N$ and $\pi(N) = \# \mathbb{P}_N$.